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AN EXTENSION OF THE QZ ALGORITHM BEYOND THE
HESSENBERG-UPPER TRIANGULAR PENCIL *

RAF VANDEBRILT AND DAVID S. WATKINS*

Abstract. Recently, an extension of the class of matrices admitting adisdype of multishiftQ R algorithm
was proposed by the authors. These so-called condenseatesaadmit a storage cost identical to that of the
Hessenberg matrix and share all of the properties esseatithé development of an effective implic R type
method. This article continues along this trajectory by ulising the generalized eigenvalue problem. The novelty
does not lie in the almost trivial extension of replacing tressenberg matrix in the pencil by a condensed matrix,
but in the fact that both pencil matrices can be partially afdensed form. Again, the storage cost and crucial
features of the Hessenberg-upper triangular pencil aeénel, giving rise to an equally viab@Z-like method.
The associated implicit algorithm also relies on bulge afmsind exhibits a sort of bulge hopping from one to the
other matrix. This article presents the reduction to a coseémpencil form and an extension of &7 algorithm.
Relationships between these new ideas and some known higerire also discussed.
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1. Introduction. The@Z algorithm is one of the most popular methods for computing
(generalized) eigenvalues of pendilg, B). It is well known that theQ Z algorithm origi-
nates from Francis’s implicitly shifte@ R algorithm P, 10]. To achieve a computationally
economical@ R or Q7 algorithm, the matrix or pencil is first transformed to a censked
form, usually a Hessenberg matrix or a Hessenberg-upemguiar pencil. In16] a whole
family of condensed matrices admitting low c@3fR steps was proposed. 11§ a con-
vergence theory was provided and it was shown that the tygerddensed form affects the
convergence speed.

In this article, we continue this research by studying theegalized eigenvalue problem.
We will not elaborate on the almost trivial extension of ddesing a pencil composed of
a condensed and an upper triangular matrix. Instead, wecwilkider pencil§ A, B) in
which both matrices are partially of condensed form. Bdthnd B are stored in factored
form A=G42R4 andB = GgRp, whereG Gp = C;, ---C; _,, with {é1,...,i,_1} @
permutation of 1,...,n—1} and eaclC}, is acoretransformation, acting on two consecutive
rowsk andk + 1. In total there are thus — 1 core transformationé’y, .. .,C,,_ distributed
betweenA andB. The matrices? 4 and Ry are upper triangular and for simplicity assumed
to be nonsingular.

We will show that it is possible to achieve any condensed ipéarn by a finite num-
ber of equivalence transformations. Moreover, under thd oandition of unitarity of the
transforming matrices, uniqueness is guaranteed. A ahgsiocedure to execute an im-
plicit QZ step on such a condensed pencil is proposed and a convergesicglied. To
conclude, a discussion relating this new algorithm to @égsalgorithms is included. It will
be shown, e.g., that the Schur-parameter pencil approaBbrafe-Gerstner and Elsner is an
instance of this general framework.
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The paper is organized as follows. Sectibdiscusses preliminaries and the condensed
pencil formats under consideration. In Sectiban explicit equivalence to this condensed
format is proposed. Sectighpresents a novel implicitrZ algorithm. In Sectiorb the link
with extended Krylov methods is studied, and based thetberyniqueness of the reduction
and a proof of convergence are presented. Secfiarsl7 present two appealing instances
of the general framework.

Concerning notation, we have the following conventionstridas are typeset in an up-
percase fontA, Q; vectors appear as bold-face, lowercase lettgrs:; scalars are depicted
as lowercase letters, e.g., the elements of matrices andrsed = [a;;];; andp = [p;];;
uppercase calligraphic letters stand for subspaCes.

2. Condensed matrix pencils and handling core transformatins. Consider two pos-
sibly complexn x n matricesA and B, whose generalized eigenvalues we wish to compute.
Assume that no zero or infinite eigenvalues exists, thasd B are nonsingular.

2.1. A detailed factorization by core transformations. The pencil (A, B) will be
stored in compact format as a product of (possibly nonupiteore transformations and an
upper triangular matrix. Aore transformatiorC; is the embedding of a nonsingularx 2
matrix at the intersection of th&h and(i + 1)st rows and columns in the identity matrix.
The inverse of a core transformation is again a core trameftion. Left multiplying a matrix
with a core transformatiod’; only alters two consecutive rows§;; is said toact on rows:
and: + 1. Unless stated otherwise, the subscfipt C; points to the rows the core trans-
formation acts on. Adetailed factorizatiorof a matrix is aG R factorization withR upper
triangular and= decomposed entirely as a product of core transforms.

Consider a matrix pencilA, B) which has detailed7 R decompositionsd = G4R 4
andB = G Rg. The pencil is icondensedorm if the total number of core transformations
in the factorizations of7 4 andGp is n — 1, and the set of core transformations includes
exactly oneC; actingonrows andi + 1fori =1, ...,n — 1.

We call a core transformatio@’; nontrivial if it is not upper triangular. Observe that
if any of the core transforms is trivial, the associated galiwed eigenvalue problem can
be split into two smaller eigenvalue problems. A matrix peimccondensed form without
trivial core transformations will be calleidreducible To avoid a discussion of degenerate
cases, we assume from this point on that the pencil is iribiuand the pencil matrices are
nonsingular.

2.2. Examples. The sparseness pattern of a core transformation reveal§’ifzand C;
commute wheneverand; differ by more than one. So besides the fact that a core ansf
is assigned to eithed or B, the mutual relative position of two successive core trams$é
plays a big role. A fine and coarse grained graphical manniezep track of the position of
each of the individual rotations is therefore presented.

The Hessenberg-upper triangular matrix pencil is in coeddifiormat, as the Hessenberg
matrix admits aG R decomposition withG factored as7 = C,C5 - - - C,, 1. For unitaryG
andC;’s, the factorization o7 coincides with the Schur parameterizatid][ The detailed
graphical factorization of7 is presented in Figur@.1(a) each bracket represents a core
transformation with arrows pointing to the rows affectedthy transformation. For clarity,
the upper triangular part will often be omitted. The factation of G manifests alescending
sequence of core transformations. The corresponding egaesned graphical depiction is
shown in Figure?2.1(b} the dots stand for core transformations which in turn arenected
by a line to stress the ordering. Again, typically, we willibthe upper triangular matrix, and
when the position of the dots is clear from the context, théyhtnbe omitted as well. For
a pencil(A, B) with B upper triangularA can be, for instance, of inverse Hessenberg form
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(a) Fine grained (b) Coarse grained
Fig. 2.1: Graphical depictions of a detailed factorizatida Hessenberg matrix.

shown in Figure2.2(a)or CMV form as in Figure2.2(b) Both A and B can be of reducible
Hessenberg form with a non-conformable pattern; see,Figure2.2(c) where the rotations
tied to A are represented by black disks, the ones boun@ &re circles. Linking the even
core transforms tol and the odd ones t® also results in an admissible condensed pencil
shown in Figure2.2(d) Many of these generalizations appeared in other contémtpar-

~ *
/ % ~ .
~ *
(a) Inverse Hessenberg (b) CMV (c) Double Hessenberg (d) Alternating

Fig. 2.2: Condensed formats forx< 7 matrices, omitting the upper triangular matrix.

ticular, Fiedler factorizations, which provide new vaisodecompositions of the companion
pencil for retrieving roots of polynomials, fit into this freework [7, 8]. For unitary matrices,
we refer to the overview article on CMV matricesd] and [19)], the paper by Kimural4],
and the generalizations iB][ The CMV and unitary matrices in general are linked to ogtho
onal polynomials on the unit circle for which a rich varietyliberature is available; early
contributions and references can be foundli3]. For instance, the iterative eigenvalue al-
gorithm proposed in€] operates on the alternating factorization, shown in Fegu?(d) see
Section?.

2.3. The position vector. The position vectorstores the mutual ordering of the core
transformations. This vectgs of lengthn — 2 contains element§ r, and s, where/ or r
indicates that the core transformatiof is positioned to the left or right of the next core
transformatiorC; ; ands stands for a matrix swap, i.e., the next core transfofmny, belongs
to B (or A) for C; belonging toA (or B). Here we tacitly assume that; goes withA;
exchanging variable names and mapping the eigenvaluesitoehiprocals demonstrates that
there is no loss of generality in this assumption. In a fevesakowever, we will explicitly
mentionC, tied to B.

Reconsider the examples from Subsecttoh The matrix pencil associated with Fig-
ure 2.1 admits a factorizatiot4 = C1Cs---C,_1, Gg = I and has an associated po-
sition vectorp = [(,¢,...,¢]. For Figure2.2(a) G4 = C,_1Cp—2---C1, Gg = I
andp = [r,r,...,r]; the core transformations are ordered inemeendingsequence. The
CMV-shaped pencil partially depicted in Figuge2(b) corresponds t = [¢,r, ¢, /],
Gy = C1C3C5 - CoC4Cq, andGp = I. The double Hessenberg pencil relates to a posi-
tion vectorp = [/, s, ¢, s,¢] and two factorization& 4 = C1C2C5Cs andGp = C3Cy.
The alternate positioning of the core transformations dsignire 2.2(d) corresponds to the
vectorp = [s, s, s, 8, .

2.4. Juggling core transforms. The algorithms in this article consist entirely of sys-
tematic modifications and repositionings of core transtdiroms. We will utilize three types
of operations, which we caflassing throughturnover, andfusion
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In the passing throughoperation, core transformations are “passed through” uppe
angular matrices. Consider, e.g., the produgR. The resulting matrix is upper triangular,
except for a bulge in positiofi + 1,¢). The bulge can be removed by applying a core trans-
formation on the right involving columnisandi + 1, resulting in a new factorizatioRC;,
with R again upper triangular. We ha@ R = RC;, so the core transformation has been
passed from the left to the right of the upper triangular iratBimilarly one can pass core
transformations from right to left. Given a long sequencea® transformations in a par-
ticular patternto the left of an upper triangular matrix, we can pass the traresformations
through one by one so that the same pattern of core transfiome@&merges on the right-hand
side, e.g.,

E X X X X X X X X X X
SO T T I
KKEKE < < KKEKB

The triangular matrices are not equal, and neither are the tcansformations on the left
equal to those on the right. What is preserved isphtern of the core transformations.
The possibility of transferring core transforms from ongesto the other side of an upper
triangular matrix without altering the mutual orderingaais us to suppress the triangular
matrix in forthcoming descriptions.

Multiplying two core transformations acting on the same tewy's results in a new core
transformation. This operation is callégsionand is depicted graphically as

€L = L

The final operation we need to describe is tineover (or shift-through) operation, de-
picted by

EEE _ KKE

A factorization of three core transformations, one actingraws: and: + 1 sandwiched
between two others acting on rows- 1 ands, is reshuffled into a different product of three
core transformations, one acting on roivs 1 andi sandwiched between two transforms
acting on rows andi: + 1. This operation is always possible if the core transfororegiare
unitary [17]. In the non-unitary case, the operation is almost alwayssitde but can fail in
exceptional cases. The procedure is described]in [

A chain of turnovers of lengtl, is a simple succession éfsuccessive turnover opera-
tions. Graphically we depict consecutive turnovers simultaneously as follows

Al :
.1 KKEKB BKEKB
‘ it

One can interpret this as moving the core transformatiorherfar left-hand side in(1) to
the far right-hand side ir2(1).
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3. Conversion to condensed pencil formatStarting from any pencilA, B), we will
present an algorithm for computing nonsingular matrige¥” such that( U AV, U¥ BV)
with G4R4 = UP AV andGgRp = UY BV satisfies a prespecified position vector.

We presume bothl and B of non-structured form, admitting a detailéd? factorization
in pyramidshape 17]. This means that, for example, for bathand B of size5 x 5, theG
factor admits a decomposition into core transforms of thmfo

:
a- 0.0,
bl

This shape naturally emerges when computing@tigfactorization by eliminating elements
columnwise by rotations or elementary Gauss-transforrisgaonly on successive rows.

Before presenting and demonstrating the algorithm, weoesdb on two requisite multi-
plicative operations and their effect on the detailed pydsshaped factorization.

3.1. Removal of core transforms and updating the pyramid.Removingight (left)
outer core transforms from a detailed factorization in pyichform is done by a right (left)
multiplication with the inverses of the core transformatalesignated for removal. Graphi-
cally, this is depicted as

G= [: [: = UG= L% = E ,
Celete Tartelele et

where a multiplication on the left witl/ annihilates four outer-left core transforms by exe-
cuting four individual fusions.

Updatinga detailed factorization in pyramid shape after a left ohtigultiplication by
core transformations differs from tliemovaloperation in the sense that basically no opera-
tion will be annihilated. It is possible, however, to reddice total number of core transfor-
mations by incorporating the multiplication factors in fwramid pattern. Graphically, we
start identically to the removal operation by a multiplioaton the left (or right)

C ( C C
vg- L O O G
EL%KHKEKKE KKKEKEKK

Executing the bottom fusion reduces the overall numberasfsiorms already by one. The
turnover operation depicted on the left &.1) extracts one of the core transforms of the
outer-left descending sequence and deposits it insideyttaamid shape, ready to be fused.
We have eliminated two transforms already.

@1 UG= KK ~ KKK _ KK KKE
C KEEK C

C C LB C°C
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To get rid of another transformation, a chain of two turnowperations is carried out, fol-
lowed by a fusion.

KEEKEKK :EEKE KE EEEEE'
O O O S S S

A sole core transformation dangling on the upper-left silthe pyramid remains. Three
turnovers and a fusion suffice to incorporate this transforim the pyramid pattern. In a
similar manner, one can dispose core transforms performégecright of the pyramid shape.

3.2. The conversion algorithm.

ALGORITHM 3.1. Let the detailed> R decompositions oft and B be given as well as
a prespecified position vectpr. SetX = AandZ = B.
Execute steps=1,...,n — 2.

1. Remove — i core transformations from the detailed factorizationffFor i = 1,
choose to remove the outer left or right ones. For 1: if p,_; = ¢, remove from
the right side; ifp,_, = r, take the left side; ib;_; = s, take left/right, opposite to
the choice made in stehin the previous passage of this loop.

2. Apply the multiplication otk ; update its detailed factorization.

3. Remove.—i—1 core transformations from the detailed factorizationafIf p;, = ¢,
remove from the left side; if; = r, take right; if p; = s, choose right/left.

4. Apply the multiplication ot¥; update its detailed factorization.

5. If p; = s, interchangeX and Z.

The final step completes the transition to a condensed pencil

1. Remove one core transformation from the detailed fazation ofZ. If p,,_» =/,
remove from right side; ip,,_o = r, take left side; ifp,_> = s, take left/right,
opposite to the choice made in stém run n — 2 of the loop.

2. Apply the multiplication otX'; update its detailed factorization.

We remark that if¥; were bound td3, then we initially would have required that = B
andZ = A.

3.3. Example. Let A, B € C"™7, and takep = [/, s,, s, {]. The reduction algorithm
results in the following~ factors belonging to the detail€dR factorizations of/ (A, B)V

: X

GA: and éB: E

For the ease of exposition, the upper triangular matricesappressed.
We begin with two detailed factorizations of the matriceand B, havingG 4 andGpg
in pyramid shape.

Ga and Gp

31 31 3
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Stepi = 1 (p1 = ¢). Remove6 core transformations from the right—in this initial
step one has the freedom to choose also left—of the métgxby a right multiplication
with V1. In this description, it is assumed that the detailed reggion of the counter-
matrix is updated straight away. Next, remdveore transformations from the left of the
factorization bound to! by a left multiplication withU{Z. It is easily verified by techniques
offered in SectiorB8.1 that the updating process does not recreate previouslyvenmore
transformations. The result is depicted as

I
E[: and UEGpV, = [:[:EEE

EBE EHEEEEEKE

Stepi = 2 (p2 = s), removeb core transformations from the right, as = ¢, of
the matrix associated tB by V5. Removing them from the left is not feasible: one cannot
update the factorization of the matrik as the top rotation blocks everything. Next remove
4 transformations from the right (or left) of the matrix lirtkéo A by the transformatiorys.

We get

'

UG VoV = C C C and UZGpViVLoVs = C C ¢

KKEKKKE EKKKKKE

Stepi = 3 (ps = r). We switched the matrice¥ andZ. We disposel core transfor-
mations from the matrix stemming fror by multiplying on the left (or right, depending on
what was taken in step= 2) with U1, This is followed by annihilating transforms from
the right of the matrix tied t@ by multiplication withV,. Graphically, we have the following
detailed factorizations fav ! U (G 4, G)V1 V2 V3V,

g

I
|: and B
KKKEK KKKKE

Stepi = 4 (p4 = s). We get rid of3 transforms from the matrix bound té by a left
multiplication; remove2 transforms from the matrix related # by operating on the right
(or left). The final shape becomes visibleli! U U (G 4, Gp)V1VaV3 ViV

"

and [:

N N
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In stepi = 5 (ps = £), 2 transforms are removed from the left (or right, check step4)
of the matrix stemming fronB. A single core transformation is removed by a left multipli-
cation applied td. The factorization of

UAUSUSTUS U (G4, Gp)ViVaV3ViVs

corresponds to

and K

KK C

and displays only one more transformation designated fooval.
Final step Clear the transformation from the bottom of the matrix sténg from B by
a right multiplication. We obtain the desired condensedpatructure

"

UHGLV = and UPGRV = KE

g

3.4. Conversion to Hessenberg - upper triangular pencilIf Algorithm 3.1is applied
withp = [¢,4,¢,...,¢], the pencil is reduced to Hessenberg-triangular form. Trderoof
reduction is different from that of the traditional algbirit that is presented in most textbooks.
The latter begins by reducing to triangular form, then reducesto Hessenberg form while
defending the upper triangular form 8.

In [20, § 6.2] two reduction algorithms are presented. The first istthditional algo-
rithm. The second begins by creating zeros in the first colahid below the main diagonal.
Then it creates zeros in the first column_fbelow the subdiagonal. Then it creates zeros
in the second column aB, then the second column &f, and so on. The algorithm can be
summarized as follows.

ALGORITHM 3.2.Execute steps=1,...,n — 2.

1. Determine an elimination matrik such thatBV has zeros in columibelow the
diagonal. Multiplication by/” only affects the trailingr —i — 1 columns ofB and A.
2. SetB =BV andA = AV.
3. Determine an elimination matri¥ such that/*’ A has zeros in columihbelow the
subdiagonal. Multiplication by/* only affects the trailing: — i rows.
4. SetA =U"AandB = U"B.
Finally remove by right elimination the bottom element &f {th — 1)st column ofB.

Algorithm 3.1 is just like this. It begins by removing core transformasidnom the
detailed factorization o in such a way that the new has zeros in its first column below
the main diagonal. Then it removes core transformationa fAowith the effect that the first
column of A has zeros below the subdiagonal. The next removal of consftramations
creates zeros in the second columm3yfand so on. Thus, the two algorithms are essentially
the same except that one operates on the matrices direcilly thie other operates on the
detailed factorization.
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3.5. Conversion to a mirrored Hessenberg pair.If Algorithm 3.1 is applied with a
position vector that contains only the symbdland s, the result is a pair in which both
matrices are upper Hessenberg. In fact each of them is péetigenberg and partly triangular
in character, as shown by the example in the final picture gdiféi3. 1 If we partition each
of the matrices so that its main diagonal consists of alteargaHessenberg and triangular
blocks, we find that the Hessenberg blocksibbegin where the Hessenberg blocksAf
end, and vice versa. Therefore we call thimiarored Hessenberg pair

In the case of reductions to a mirrored Hessenberg pairpivssible to reformulate the
conversion algorithm so that it acts directly on the magice

ALGORITHM 3.3. Let (A, B) represent am x n pencil. The following steps execute a
transition to a mirrored Hessenberg pair. S€t= A, Z = B.

Execute steps=1,...,n — 2.
1. Determine an elimination matrik such thatZV" has zeros in columibelow the
diagonal. Multiplication byl” only affects the trailings — ¢ — 1 columns.
2. SetZ =ZVandX = XV.
3. Determine an elimination matriX such that/ X has zeros in columnbelow the
subdiagonal. Multiplication by/ only affects the trailing: — i rows.
4. SetX =UfX andZ =U"Z.
5. If p; = s, interchangeX and Z.
Finally remove by right elimination the bottom element &f {th — 1)st column ofZ.

The intermediate structures when running this algorithntvem5 x 5 matrices are de-

picted in Figure3.1 The outcome corresponds to a position vegiet s, £, s].

(a) Pencil (b) Afteri = (c) After: = 2 (d) Afteri = 3 (e) End

Fig. 3.1: Sparsity pattern invoked by Algorith®n3.

4. Generalization of the GZ algorithm. The algorithm presented below executes a
single shifted generalize@'Z step on a condensed matrix pencil. We can also do double
generalized7Z steps or indeed steps of arbitrary degree, but the desmripgcomes quite
complicated. For this reason, we are restricting our dsiongo single steps. The designation
GZ means that we are allowing non-unitary transformation itedt When we want to
confine our attention to the unitary case, we will 438 instead ofGZ.

A core transformation is said to Beft or right freeif it can be relocated (commuted
with other core transforms) in the detailed factorizatiod&come the outer left or right core
transformation. Beinfreeimplies thus that this transform can be canceled easily lejt @t
right multiplication.

A single shiftedGZ step will push up the shape of the core transformations by one
position. Strictly speaking, the first element of the positvector drops off, all other elements
move to the left leaving an open spot at position2. One can freely choose which element to
place in this final positioné, r, or s. Though one usually does not reflect on this, this behavior
takes place in af R andGR like algorithms [L6, 18]. For example, in the Hessenberg case
one always takes to fill up the free spot to retain the Hessenberg structureutinout the
successive iterates.

4.1. Implicit single shifted extension of theGGZ algorithm. Let the pencil 4,B) be
condensed and irreducible. The next steps perform a geretainplicitly shiftedG R step.
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e Step 0.Build and apply an initial perturbing core transformatioma prepare the
pencil for a turnover operation in the matrix possessingng@rmCs. More pre-
cisely:

— Pick a shiftp. Letx = (A — pB)e; if py = fors,andx = (B~ — pA~1)e;

if p1 = r, with e; the jth canonical basis vector. Either wayhas only its

first two entries nonzero and depends only upgrand the top entries aR 4

andRg. LetC, be a core transformation such thatx = «e; for somea.

Left multiply A andB by the initial perturbing core transformaticH .

If not blocked byCs, fuseC; with the top transfornt;.

Remove the right free transform acting on rowand2 from the matrixnot

containingCy by a right multiplication.

If C1 was not yet fused, fuse it with the transform along its right.

e Stepsi = 1,...,n — 3. Execute the turnover and prepare by well-chosen left and
right multiplications the pencil for the next turnover tagiplace in the matrix pos-
sessing transformatio@; ;. . More specifically:

— Execute the turnover operation in the matrix containinggfarmationC; ;.
This involves two transforms acting on rowsindi + 1, and the in-between
located transfornd’; ; operating on rows + 1 andi + 2.

— The matrix just affected has at least one free core transéating on rows+1
andi + 2. Execute a left/right multiplication to remove it.

— Remove the right/left (the opposite side as above) freestoam acting on
rowsi + 1 andi + 2 from the matrixnot containingC; ;2.

e Stepn — 2. Select, r, or s to position the new trailing transform.

— Execute the turnover in the matrix containiég_ .

— The matrix just affected has now two free transforms, GayandC,., for re-
spectively the left and right free one.

— Choosé, r, or s to append to the position vector.

— If choice= ¢: removeC, by a right multiplication; remove the newly created
core transform from the other matrix by a left multiplicatjcfuse the new
transform withC,.

— If choice = r: removeC by a left multiplication; remove the newly created
core transform from the other matrix by a right multiplicatj fuse the new
transform withC,..

— If choice= s: removeC, by a left multiplication; remove&’, by a right multi-
plication; fuse both new transforms into the other matrix.

4.2. Example. We will elucidate the implicitGZ algorithm by an example. Lef
andB both be of dimensio6 x 16 andp = [r, s, s, s,7,1,8,0,£,8,4,1,0, 5].

Left or right multiplication introduces extra transfornmsthe schemes, for clarity initially
rendered slightly bigger than the other bullets. Trans&dioms bound to be removed, fused,
or subjected to a turnover operation are outlined in gray.

Figure4.lillustrates Step 0. Ag; = r, the newly added core transformations from a
left multiplication (Figure4.1(b) cannot be fused immediately. First a right multiplicatisn
performed (Figurel.1(c) to dispose of one transformation and enabling a fusiontregun
Figure4.1(d)

In the main loop of the algorithm, we first execute, fo= 1, the turnover operation
indicated in Figuret.1(d)leading to Figuret.2(a) Both transformations bound té acting
on rows2 and3 are free. The right one is marked and removed first in Figuzéo) next the
left one is removed (Figuré.2(c). We end up with three transformations in turnover-format
in Figure4.2(b)
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(a) Initially (b) Left (c) Right (d) Result
multiplication multiplication

Fig. 4.1: Graphical depiction of Step 0 of th&Z algorithm.

e e e
A 2 A 2 A 2
(a) Turnover (b) Right (c) Left
multiplication multiplication

Fig. 4.2: Graphical depiction of Step 1 of th&” algorithm.

. e e %7 o7 .
~ ~ ~ ~ ~

A T T
@i=2 ()i =3 ©i=4 d)i=5 ©)i=6

Fig. 4.3: Graphical depiction of the outcome of Steps 253 dnd 6.

A A s
NN o ~ ™

2 b = 2o e °
| (@)i=09 | (b)i =10 .(C)i: 11 ) (d)i=12 (e)i =13

Fig. 4.4: Graphical depiction of the outcome of Steps 9,144, and 13.

Figure 4.3 displays the end results of steps= 2, 3,4, 5,6, highlighting already the
subsequent turnover operation. The upward movement ofdtterp is plainly visible. To
illustrate the algorithm in case of a zigzag shape, step9, 10, 11, 12, 13 are visualized in
Figure4.4. In the last step; = n — 2 = 14, a choice has to be made for the updated position
vector's14th element. Figuré.5shows the result after the final turnover and also the three
possible outcomes of th@&Z step for the new value qf 4.

5. Associated Krylov spacesKrylov spaces linked to the condensed matrix pencil pro-
vide us with an elegant tool for proving uniqueness and ag®aree of the presented algo-
rithms. For a Hessenberg-upper triangular pefdil B), standard Krylov spaces generated
by the matricesdB—' and B—' A play an accommodating role. To deal with the extended
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) ) ) )
o o o o

D

h 2 h g h g h g
(a) Turnover (b) pra =2 ©)pra=r d)p1a=s

Fig. 4.5: Possible outcomes ensuing from carrying out stef 4.

Krylov spaces stemming from B~ and B—* A linked to a condensed pencil, we will draw
from [16, 19].

The nomenclature for pencils is inherited by matrices. Retance, a matrix is said to
be incondensedormat if it admits a detailed factorization

(5.1) Ci,---Ci, R,

whereiq, ...,i,_1 denotes a permutation of the integérs..,n — 1. Each core transfor-
mation C;; acts on rowsi; andi; + 1, and R is upper triangular. A matrix is said to be
in irreducible condenseébrmat if it is nonsingular and there are no upper triangulare
transforms. The position vector regulating the factortwabf a condensed matrix will only
comprise valueg andr, nots as there is only one single matrix.

5.1. Position vectors associated with the product matriceslt remains to derive the
position vectors of the product$B~—! and B~ ' A.

Replacing the matriced and B by their detailed factorization and relying on the pass-
ing through operation, we can gather the upper trianguldrices in the back and the core
transforms in front without having altered the patterns.

For the productAB—!, the core transforms tied td are always situated to the left of
those bound td3, for B~1 A the reverse statement holds. We continue to assumethiat
attached tad. To construct the position vector fotB~! from the position vector related
to the pencil, we have thé r entries ofp shaping the patterns in the matrix swapped
due to the inversion oB, and we alternatingly replace the valueby ¢ andr. For the
productB—! A, the elements, r linked to B are again swapped and tks are overwritten
by » and/ in turn. To clearly differentiate between the various fositvectors, we denote
the one associated with the pencil pythe one regulating the shape 4B~ by p45, and
the vector controlling the pattern &' A by pp 4.

ExAMPLE 5.1. Consider the pencils of Figured.2(c) and 2.2(d) For the double
Hessenberg factorization, the position vector= [, s, ¢, s, ¢] of the pencil is converted
intopap = [4,¢,r,r,f) andppa = [¢,r,7,¢,¢]; see Figure5.1 The position vector bound
to Figure2.2(d)is transformed int@ a5 = [¢,7,¢,r, £, 7] andppa = [r, £, 7, L, 7].

2 < S

(a) ForAB—! (b) ForB—'A (a) ForAB—! (b) ForB—1A
Fig. 5.1: Shapes linked to Figuge2(c) Fig. 5.2: Shapes linked to Figuge2(d)

ExAMPLE 5.2. We proceed with the example from Sectia®) where the position vector
wasp = [r, s, s, s, 1,1, 8,0,0,5, 0,10, s]. Weretrievepap = [r, b, 1, 0,0, 0,1, 0, 0,0, 0,1 L 7]
andpga = [r,r, 4,7, 0,0, 0,0, 0,7, L 7,0, L]
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5.2. Extended Krylov spaces.This section is merely a summary of indispensable re-
sults from [L6, 18] and as such does not contain new theoretical results.

Standard Krylov spaces are denotediy(A,v) = spa{v, Av,..., A*"!v}. Fora
position vectorp bound to a condensed forrh.(), the extended Krylov spad€, (A, v) is
spanned by vectors from the bilateral sequence

(5.2) o AP, A%y, Av, v, AT, A7, A3, L

where the position vectqs determines the vectors to be taken.
LEMMA 5.3 (Lemma 3.5 in18]). Suppose that in the firét — 1 components gp the
symbol/ appearsi times and the symbelappearsj times ( + j = k£ — 1). Then

Kpi(A,v)=spafA~dv,... Alv} = ATTKL(A,v) = AKL(A™Y, v).

ExAMPLE 5.4 (Hessenberg matrjx The position vector associated with a Hessenberg
matrix only takes value&(Figure2.1(a). As a consequence, we retrieve the standard Krylov
subspacesCy, 1 (4, v) = spaf{v, Av, ..., A" v} = Ki(A,v).

ExAMPLE 5.5 (Inverse Hessenberg matfix For an inverse Hessenberg matrix (Fig-
ure2.2(a), the position vector is mirrored as well and only comprigesvalues-. As in the
previous example, the standard Krylov spaces are obtaimgdbuilt from the inverse of the
matrix A: Kp (A, v) =spaf{v, A" v, ... A7k yv} = K (471 v).

ExAMPLE 5.6 (CMV-patterr). A CMV matrix is characterized by the alternating oc-
currence off andr in the position vector. The Krylov spaces accompanying Egu2(b)
readkp (A, v) = spa{v, Av, A= v, A%v, A v, ... }.

Let &, = spafes,...,ex}, with 1 < k < n. The standard Krylov spaces satisfy the
identity £, = Kr(A4, e1); see, e.g.,11,20]. Making use of the previously defined extended
Krylov spaces, this property carries over neatly.

THEOREM 5.7 (Theorem 3.7 in1g]). Let A be a matrix in irreducible condensed
form (5.1) with associated position vectgr. Then fork =1, ...,n —1,

Er =Kp (A er).

5.3. Uniqueness of the unitary conversion to a condensed peh In the case of uni-
tary core transformations, we can prove essential unicggenéthe conversion to a con-
densed pencil form. Lek, (A, v) denote the matrix having as columns exactly the vec-
tors that generate the sequence of spaCgs(A,v), for k = 1,...,n — 1. More pre-
cisely, K, (A, v) hasv as the first column, for the second column we take either
(if p1 =¢) or A=tv (if p; = r). Each next column is taken from the left (if = ¢) or
right (if p; = r) of the bilateral sequencé @) from columns not yet taken.

The next theorem is self-contained and as such does noftitieassumption that
is associated tal. The proof proceeds along the lines outlined4d, p1].

THEOREM 5.8. Given nonsingulatd and B and a position vectop. LetU;, Us, V1,
and V5 be unitary, withU; and U, sharing the first column (up to a unimodular factor) such
that

(A, B)) =UH(A,B)V; and (Ay, By) = U (A, B)Vs,

are irreducible and obey the shape imposedpbyThen the pencil§A;, B;) and (A4, Bs)
are essentially identical.
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Proof. By employing elementary operations on Krylov spaces, wetlye following
equalities & is unimodular):

AlBl_lvel) = KPAB (UlAlBl_lUle Ulel)
= Kp,,(AB™ ', Use;)
=0Kp,,(AB™ ! Usey)

= 0Ky, (Us Ay By 'UH Usey) = oUs Ky, (A2 Byt e1).

PAB

AB(

UKy

Starting with an irreducible pencil, both produet$3—! and B—! A are irreducible as well.
Theorems5.7 employs this irreducibility constraint and reveals thathbl, , , (4, B; ", e;)
andeAB(AgBQ_l, e;) are upper triangular. By the uniqueness of €nR factorization, we
thus conclude thdl’; andU, are essentially interchangeable.

It remains to prove that als; andV; are essentially indistinguishable. Matching the
first columns forl; andV; is not required as this can be deduced from the restrictioseg
on the leading columns @f; andUs.

Both condensed pencilsi,, B;) and (A, B;) have the same position vector and thus
the first core transform is assigned to either ther B matrices. Suppose that this top core
transformC is associated t@; and for the other pencil t@,. In this case, it holds that the
columnsA;e; and Ase; are multiples ok;. Based or/;e; = oUse; and

(53) Viep = AilUlAlel and Voer = 1471(]2142(317

we deduce that; andV; share the first column up to a unimodular factor. Egrbound to
the A matrices, theB matrices have the first columns as multipliespfand 6.3) still holds
for A, A;, and A, substituted byB, B;, and B,, respectively. Thu¥; andV; are essentially
the same. a

When loosening the constraint of irreducibility in Theorénd, uniqueness can only
be guaranteed up to a certain point, which is identical totwa@pens in the Hessenberg
setting [L1]. This theorem also proves the appealing result that theoowt of aQZ step,
starting from an identical perturbation, is essentiallique.

5.4. Convergence theory.An iteration of the generalize@ Z algorithm on(A, B) re-
sults in a pair

(A,B) =U"Y(A,B)V.
Thus,
(5.4) AB™' = U 'AB'U.

The matrixU —! is the product of all of the left transformations that werplagul in the course
of the iteration. By construction, the first column @Gfis proportional to(AB~! — pI)e;
if the first component op 45 equals? and (AB~1)~1(AB~! — pI)e, if this component
equalsr. It follows from Theorem 6.2 of Jg] that (5.4) is an iteration of the general-
ized GR algorithm onAB~!. Therefore, applying Theorem 6.3 dfq], we see that the
generalized= R step effects nested subspace iterations on nested geedr#liylov sub-
spaces, = Kp (AB™!,e1). Therefore, good choices of shift will result in rapid conve
gence of the algorithm.

REMARK 5.9. In [18] we assumed unitary transformations. However, the thesfesm
that paper that we have cited here do not depend upon thédararaions being unitary.
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6. Bulge hopping for a mirrored Hessenberg pair. In Section3 we showed that if the
position vector contains only the symbdlands, the conversion to condensed form can be
achieved directly by eliminations on the matrices. The ltesupencil is a mirrored Hessen-
berg pair. It follows that it is also possible to execute thagralized>~Z algorithm directly
on the matrices without recourse to detailed factorizatidieG Z iteration then becomes a
classical bulge chase, except that the bulge hops back ahdbietween the matrices in the
course of an iteration.

We illustrate the general procedure by an example. Take eailpsith position vec-
torp=1[(¢,s,¢,s,/¢). Figure6.1(a)pictures the sparsity pattern of the Hessenberg pencil.
Running a single iteration of the generaliz€d algorithm will result in a bulge chase in
which the Hessenberg parts will move up and the bulge will fhom the Hessenberg parts
in one matrix to the Hessenberg parts in the other matrixur€i§y.1(a)shows the initial sit-
uation. Step effects a left multiplication that produces a bulge in fhenatrix, outlined in
gray in Figure6.1(b) This deviation from the structure is eliminated by a coluoperation
leading to Figures.1(c) having a bulge in thel part.

(a) Initial pencil (b) Step0: After left (c) End of ste
multiplication

Fig. 6.1: Stef in a bulge hopping=Z step for mirrored Hessenberg pairs.

Up to the end of step (Figure6.2(a), there is no difference between this and the clas-
sical GZ algorithm. Nothing changes until we come to the end of theselelserg part ofi.
Step?2 starts as before by removal of the bulgedrby a left multiplication (Figures.2(b)),
but at this point we must do something different. Removahef hewly created subdiago-
nal element in Figuré.2(b) by a column operation would create more fill-in than desired.
As the pattern has to move up one position, we will keep theésneht and instead remove
the element4, 3) from the A matrix by a right multiplication. This multiplication créss a
perturbation in the Hessenberg part of the matrix boun® {&igure6.2(c). The bulge has
hopped from the Hessenberg partdrio the Hessenberg structure Bf

(a) After Stepl (b) Step2: After left (c) End of Ste
multiplication

Fig. 6.2: Stepl and2 in a bulge hopping~Z step.

In Figure6.3, the results of steps, 4, 5 are visualized. Again, at the end of the Hessen-
berg part ofB, the bulge migrated back td.

(a) End of ste3 (b) End of stept (c) End of Steb

Fig. 6.3: Steps$, 4, and5 in a bulge hopping=Z step.
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The final step offers again flexibility to put the last subdiagl element in thed or B
matrix. The possible outcomes are shown in Figbi#e where Figure5.4(a)has position
vectorp = [£, 4, s,¢, s, ¢, £], and Figures.4(b)corresponds tp = [¢, ¢, 5,4, s, ¢, s].

(a) End of stes: choice= ¢ (b) End of stegs: choice= s

Fig. 6.4: Possible endings of tli¢Z step.

7. The unitary case. Consider a penci(A4, B), where bothA and B are unitary. In
the Q R decomposition of a unitary matrix, thR factor is the identity matrix. Therefore,
the upper triangular matrices are absent from the detadetbiization of(A, B). After
conversion to a condensed fo(ii, ), the detailed factorization consists of just 1 unitary
core transformations distributed betweérand V. If we then apply our generalization of
the QZ algorithm to this condensed form, the algorithm is greaitiyddified by the absence
of the upper triangular factors. The work per iteration tuged fromO(n?) to O(n), so this
qualifies as a “fast” algorithm.

Let us consider some special cases. If we coniértB) to a condensed form using
the position vectop = [¢, ¢, ..., /], we obtain a penci{U, I), whereU = C;---C,,_; isa
unitary upper Hessenberg matrix factored as a produet-efi unitary core transformations.
This is essentially a Schur parameterizatigi P]. If we apply our generalize@ Z algorithm
in this setting making the choidkat the end of each iteration, we have a fast unita# al-
gorithm similar to the one originally proposed by Gradg][

If we convert to condensed form using the position vegtot [s, s, ..., s], we obtain
a pencil(U, V) with U = C1C5--- andV = C2Cy ---. The matrices in this pencil, which
is called aSchur parameter pengibare block diagonal. Since this is a case where the po-
sition vector does not contain the symholthe results of Sectio3.5 apply: we can use
Algorithm 3.3, which carries out the reduction by elimination operatidinectly on the ma-
trices A and B. When we do this in the unitary case, we find that the unitanctire forces
many more zeros to appear in the matrices in addition to tlee trat are caused directly by
the eliminations. Taking these extra zeros into accountamige at an algorithm proposed
by Bunse-Gerstner and Elsnéi.[ Figure 7.1 gives a high level overview of the flow of the
algorithm.

(a) Unitary (b) After step2,  (c) After step4,  (d) After step2,  (e) After step4,
pencil fori =1 fori=1 fori =2 fori =2

(f) After step2,  (g) After step4,  (h) After the
fori =3 fori =3 final step

Fig. 7.1: Reduction of unitary pencil to Schur parametemfor

Bunse-Gerstner and Elsnéj plso presented fast single- and double-gRift algorithms
for unitary pencils in this condensed form. It is interegtamd puzzling that their single-shift
algorithm differs from our generalizegZ algorithm presented here. Our algorithm requires



ETNA

Kent State University
http://etna.math.kent.edu

A GENERALIZATION OF THE QZ ALGORITHM 33

that the pattern moves up one position in each iterations fifd@ans that it/ andV contain
the odd and even core transformations, respectively, e&foiiteration, the situation will be
reversed after the iteration. The flow of the algorithm isgigraphically in Figur&.2. Here
we are depicting the version of the algorithm that acts diyem the matriced/ andV, not
on the detailed factorizations. The iteration begins byysbing the pencil of Figur&.2(a)
by applying a single core transformation on the left invofyrows1 and2. Figure7.2(b),
which has three extra nonzero elements, is obtained. Ongeale the one highlighted in
gray, is dedicated for removal by operating on the right.eAéixecuting the multiplication,
the structure of both matrices changes quite a bit. FiguPéc) shows one matrix having
a3 x 3 block on its diagonal. This block will be trimmed by removiitglower left and upper
right element; see Figures2(d)and7.2(e) After having done that, the counter matrix will
have & x 3 block (Figure7.2(e)—the elements designated for removal are highlighted—and
the procedure continues. Subsequent steps are visuatizedures7.2(f)and7.2(g) As a
result, an upward shifted Schur parameter pencil is obdaine

cee . oo
oo (X} oo eee . .o
oo (X} o0

oo oe oo oo oo oo oo oo oo
. oe ) oo . oo . oo . oo

(a) Initial form (b) After the (c) After right (d) After left (e) After right
perturbation removal removal removal

(f) Leftand right  (g) Final form
removal

(X ]
. eee
. oo

Fig. 7.2: Flow of the generalize@Z algorithm on a Schur parameter pencil.

The single-shift algorithm off] does not behave this way. The pattern does not move
up; the odd core transformations always stayin The flow of this algorithm is shown
in Figure 7.3. Figures7.2(b)and7.3(b) are exactly the same, but the element marked for
removal is different. Figur&.3(c)then illustrates that another element of the matrix on the
right will be removed next, again by a right multiplicatioA perturbation brings in many
nonzero elements and an elimination removes quite someealspybut when comparing the
sparseness pattern of Figute(c)with the one of Figur&.3(d) we note that the second one
accommodates many more nonzero elements. Moreover, instedternating left and right
annihilations, two successive right will be followed by taoccessive left annihilations; see
Figures7.3(e)and7.3(f). After a few more annihilations we arrive at a new Schur patam
pencil in Figure7.3(h)

(a) Initial form (b) After the (c) After right (d) After right (e) After left

perturbation removal removal removal
(f) After left (g) Two right (h) Final left
removal removals removal

Fig. 7.3: Flow of the single shifte@Z algorithm from [].
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This algorithm requires twice as many eliminations as ouesdIt also leaves the pattern
unchanged. These anomalies can be explained by noticinghaingle-shift algorithm
of [6] is actually a double-shift algorithm in disguise, as wellshi@sently explain.

The double-shift algorithm presented ] plso leaves the pattern invariant, but this is
to be expected: a double step should move the pattern up taitiqes, which would leave
the pattern invariant in this particular case. The doubi&-algorithm of [6] does not require
any more eliminations than the single-shift algorithm ddesgain an understanding of this,
consider how the algorithms are set in motion. The singift-sération with shift p begins
with a perturbing core transformation determined by thdorec

(7.1) x = (U —pV)ey.

The double-shift iteration[8] with shifts p andé begins with a pair of perturbing core trans-
formations determined by

(7.2) x = (U - pV)(VH —gUuH)e,.

Now notice that if we takéd = 0 in Equation {.2), we get the same vectar as in (7.1)
becausel fe, = e;. Therefore, the single-shift algorithm of][is really a double-shift
algorithm with shiftsp ando0.

8. Conclusions. We have described a new, substantially enlarged, class wixnpan-
cils admissible as condensed forms for computing genexhéigenvalues. A direct reduction
procedure to the condensed pencil form and a generalizederation to compute the eigen-
values were presented. Some well-known algorithms werersho be special cases of this
new family of algorithms.
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