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TOWARD AN OPTIMIZED GLOBAL-IN-TIME SCHWARZ ALGORITHM
FOR DIFFUSION EQUATIONS WITH DISCONTINUOUS AND
SPATIALLY VARIABLE COEFFICIENTS.
PART 2: THE VARIABLE COEFFICIENTS CASE *

FLORIAN LEMARIET, LAURENT DEBREU!, AND ERIC BLAYO?}

Abstract. This paper is the second part of a study dealing with the eafpdin of a global-in-time Schwarz
method to a one-dimensional diffusion problem defined on two-meerlapping subdomains. In the first part, we
considered the case that the diffusion coefficients wersteaih and possibly discontinuous. In the present study,
we address the problem for spatially variable coefficierith @ discontinuity at the interface between subdomains.
For this particular case, we derive a new approach to analjtidetermine the convergence factor of the associated
algorithm. The theoretical results are illustrated by nuo@®gxperiments witirichlet-NeumanrandRobin-Robin
interface conditions. In thRobin-Robircase, thanks to the convergence factor found at the aralligiel, we can
optimize the convergence speed of the Schwarz algorithm.
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1. Introduction. The overall context of the present work is the coupling betwece-
anic and atmospheric numerical models, in particular fpresenting processes in which the
interactions between both media are of prime importance. alorithms generally used to
couple this type of numerical models are often not fully eotrfrom a mathematical point
of view. Indeed, they do not ensure a perfect consistenchefflixes exchanged at the
air-sea interfaced]. In this context, the long-term objective of our work is terive al-
ternative numerical techniques ensuring such a consiswell as to study their possible
impact on the physical results of coupled models. Globdinre optimized Schwarz methods
(also called Schwarz waveform relaxation methods}p] based on the concept of absorbing
boundary conditions3] are particularly well suited for such problems. The préstndy
aims at finding efficient transmission conditions in the aafshe coupling between two dif-
fusion equations representing the turbulent vertical ngn the planetary boundary layers
near the air-sea interface (see Sec8dbfor further details on the notion of turbulent vertical
mixing).

In the first part of this pape®], we analytically derive optimized conditions in the case
of a diffusion coefficient being constant in each medium biti & discontinuity through the
interface. However, this provides only a simplified view loé ttrue physics. The ocean and
the atmosphere interact through various multi-scale jghayprocesses that are usually hardly
explicitly resolved by the spatio-temporal discretizati@ecause it is essential to account for
the effect of the subgrid turbulent boundary layers on tiselked part of the flow, parame-
terization schemes were designé&dl4]. Those schemes usually take the form of a turbulent
mixing term with a spatially variable diffusion coefficieilotaccount for local effects. Indeed,
a parameterization with a constant diffusion originallfraduced in P] is now known to be
naive. In this second part of the paper, we study the impattti®f/ariability of the diffusion
coefficients, in particular in the vicinity of the interfaae the convergence properties of the
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Schwarz algorithm. To our knowledge, the spatial variapitif the coefficients has never
been considered in the framework of Schwarz-like methodsgin [LO], where absorbing
conditions are given for a one-dimensional stationaryditin problem.

This paper is organized as follows. In the rest of this sectiwe briefly recall some
theoretical aspects of optimized Schwarz methods negesséollow the reasoning of the
present study. In Sectidh) we introduce a general methodology to analytically asthessn-
pact of the spatial variability of the diffusion coefficierin the convergence of the Schwarz
method. This method is applied first to a simpleichlet-Neumanralgorithm and then to a
more generaRobin-Robiralgorithm. Finally in Sectior3, we illustrate the relevance of our
approach by numerical results.

1.1. Model problem and Schwarz algorithm. The present study focuses on the cou-
pling between two one-dimensional diffusion equationshwiariable coefficients. Con-
sider two subdomain®; =] — Ly, 0[ and2; =]0, Lo with a common interfacE = {z = 0}.
The coupling problem reads

Liug = f’ in Q) x [O,T],
up(z,0) = w,(x), x € Qy,
Biui(—Ly,t) = g1, te[0,71,
f1u1(07t) = ngg(O,t), onI' x [O,T]7
1.1)
ﬁgUg = f, in QQ X [O,T],
uz(x,0) = wo(x), x € Qo,
Baua(L2,t) = go, t 0,77,
QQUQ(O,t) = glul(O,t), onI' x [O,T],

whereL; = 0, — 0,(D;(x)0,), B; correspond to the boundary conditions on the compu-
tational domain(2, and F; andG; are operators defining the interface conditions. Those
operators must be designed to ensure a given consistenhg gbtution throught™. In our
study we require the equality of the subproblems solutiomsad their normal fluxes.

In order to solve the coupling problerh.(), we propose to implement a Schwarz algo-
rithm with Robin-Robirinterface conditions:

Lk = f, inQy x [0,7),
uf(2,0) = wu,(x), x €y,
Blu}f(le,t) = Ji1, te [O,T],
(D1(0)0y + Ay ub(0,), = (D2(0)d, + Ay)us=1(0,t), onT x [0,T],
(1.2)
Louk = f, in Qs x 0,7,
ub(z,0) = wuy(x), x € Qo,
Bgug(Lg,t) = @9, t e [O,T],
(=D2(0)0,, + Ao) ub(0,t) = (=D1(0)9, + Ag)uk(0,t), onT x [0,T],

wherek = 1,2, ... is the iteration number and the initial guesX0,t) is given. A; and A,
are operators to be determined. As mentioned.ij, those operators can be either local or
nonlocal.

1.2. Reminder of the framework in the case of constant (but dicontinuous) diffu-
sion coefficients. We briefly recall here some known results useful for the prestidy and
detailed in P]. The convergence study of the algoriththd) with constant coefficients is
performed by introducing the erro:e§C = uf — u* between thé:-th iterate and the exact
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solutionu* of the coupled problem. Using a Fourier transform in timenged for any func-

tiong € L?(R) by g := Fg), the partial differential equatiofi;e; = 0 becomes an ordinary
— 2~

differentia] gquationcjej = iwe; — Dj% = 0 (D; is spatially constant here), whose

characteristic roots are

Itis then usually assumed tha — oo and thaie; tends to zero forr — oo, which leads to
& (z,w) = af(w) e’ and e (x,w) = B*(w) e?2 @,

wherea(w) andj(w) are determined to satisfy the boundary conditions. Fintily conver-
gence factop corresponding to the ratio between the errors at two suiseeissrations can
be determined as a function @f, D;,and); (the Fourier symbols of the operatoks):

(A1 (w) + D20y ) (A2(w) — Dio7)

(1.3) pP= (M (w) + D1o}) (Me(w) — Daoy )|

We remark that in Fourier space, the following symbols
Aip‘ = —DQO'Q_ and )\%pt = Dlof'

lead top = 0, i.e., ensure convergence in two iterations. However, treesponding op-
erators, which are calleabsorbingconditions, are nonlocal in time and therefore cannot be
used in practical applications. We thus need to look for allapproximation of these op-
timal operators. It was first suggested il to use a low frequency approximation of the
symbols based on a Taylor expansion aroune: 0. This results in effective transmission
conditions only forw being small. To obtain a more general approximation, efficeéso
for high frequencies, the so callegtimized Schwarz metho@@SM) were introduced. The
simplest version consists of approximatiay' and A\J" by two constant values) and \S:
this corresponds to Robin interface conditions (also datleroth ordetwo-sidedtransmis-
sion conditions). The values fo! and )\ are then determined by solving the optimization
problem

49 i (Lgm o).

In [9], this optimization problem is solved analytically for ctant (and possibly discontin-
uous acros$’) diffusion coefficients. In this second part of our study, ezenplement the

previous work ] and discuss the effect of the spatial variability of thdwdifon coefficients

on the convergence speed and on the determination of thmiapt conditions.

When the diffusion coefficient is spatially variable, thealsapproach of determining the
convergence factor is no longer straightforward. To cireent this problem, we develop in
the next section a methodology to analytically derive a eog@nce factor similar tal(3) but
including the spatial variability of the diffusion coeffieits. Thanks to this new convergence
factor, it will then be possible to find optimized valulegéusing (L.4). We expect a non-trivial
effect of this variability on the convergence propertieshaf associated Schwarz algorithm.
Indeed, in [LO] it is shown for the stationary diffusion equatierd, (D(x)d,u) = f that

0
the absorbing conditions are given by Robin conditions wffh= ( D7 (s) ds)

—Ly
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Lo
and\y' = D5 *(s) ds . This result strongly suggests that it is not only the local
0

values of the diffusion coefficient near the interface thaatehan impact on the parameters
but the whole profileD(x), = € Q.

2. OSM for diffusion problems with spatially variable coefficients. As mentioned
earlier, the diffusion coefficient may be spatially var@hb account for local effects (e.g., in
the turbulent boundary layers) within subdomains. In pcattpplications (like in oceanog-
raphy or meteorology), diffusion coefficients are likelwary by several orders of magnitude
in the vertical direction (this point is further discussedSection3.1). This is the primary
motivation to look for a methodology to analytically detene the convergence factor for
non-constant diffusion coefficients defined on two non-lapging subdomains. Throughout
this study, we make the assumption that the diffusion prdfiles not vary with time.

2.1. Analytical determination of the shape of the errors. The first part of this section
does not require any distinction between subdomains, sg-gubscripts are temporarily
dropped. We denote hy(t) the function containing the information given by the neigtibg
subdomain, hence the problem under investigation is

Oe — 0y (D(x) 0ze) = 0, x €]0, L[, t >0,
2.) e(x,0) = 0, x€l0,L],
' D(0) 0,¢e(0,t) + XA e(0,t) = g(t), t>0,
e(L,t) = 0, t >0,

with X being the Robin parameter we wish to determine to optimigetmvergence speed. A
Dirichlet condition is imposed at = L, which corresponds in having, = B> = 1in (1.2)
with | the identity map.

First, we notice that the method based on a Fourier analysismonly used to analyti-
cally determine the convergence factor, is less convefoenur model problem with variable
coefficients. Indeed, in Fourier space we would obtain th&eOlve — J,,(D(x)0,€) = 0
for €. The study of this ODE appears to be at least as complicatdaasiginal problem in
physical space. This is why we propose to study directly yis¢esn @.1). We transform this
original problem with a homogeneous equation and nonhomemes boundary conditions
into a problem with nonzero right-hand side but with homagmrs boundary conditions by
searching for a solution of the foratz, t) = ¢(x,t)+ U (x,t) with ¢ being a lifting function
satisfying the boundary conditions. The transformed pobteads

U — 0, (D(x)0,U) = f(a,t) x €]0, L[,t > 0,
= —Owp + 0x (D(z) Ougp)
(2.2) U(x,0) = —p(x,0), x €]0, L],
—D(0)8,U(0,t) + AU(0,t) = 0, t>0,
U(L,t) = 0, £>0.

The choice ofp is not unique. We choose this function as the solution of todlpm @.1)
with a constant diffusion coefficient whose value is the gatfi D atx = 0, i.e., p is the
solution of

O — D(0)Oprp = 0, x €]0,L[,t > 0,
(2.3) —D(0) 3y0(0, 1) + A (0, ) t>0,
o(Lt) = 0, t>0.

R}

—~
~

~—
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We then search fob/(«x, t) using a separation of variablé&(z,t) = Z(bn(x)T t

substitution in 2.2) leads to
S TOP(a) = 2 T(0) 20 (D) 20, (2) = f.1)
where the right hand side is also expanded with respect tiutiwtions®,, (),
f(@,t) = —0rp+ 0, ( }jn

The next step is to properly choose the functidns An adequate choice would enable
us to transform the PDE into ODEs for the unknown functidngxz) and T;,(¢). The
natural choice is therefore to look fdr, (x) as a solution of the followingegular Sturm-
Liouville (SL) problem

€0, L],

8, (D (x)a@)+cq> )
(2.4) —D(O) 9:Pn(0) + AP,(0) = 0,
<I>n(L) 0,

with ¢,, the eigenvalues of the SL operator. Such a choice leads toilyfaf functions®,, (x)

which are orthonormal for the scalar prodget v) = fOL u(z)v(x)dx. The properties of
regular SL problems are fully described iij pr [6]. After some simple algebra, we find that
a general solution of problen2 (1) is given by

(2.5) e(z,t) = ¢(x,t) + Uz, t),

with U (z,t) Z@ / exp (—c2(t — 7)) fo(r)dr. In (2.5, ¢ satisfies 2.3, ®,

satisfies 2.4), and fn( ) satisfies

L ~ ~
t) = /0 02 (D(2)030) Py (x)dx  with  D(xz) = D(z) — D(0).

By formulating the solution of our problem usirf@(x), we can properly separate the error
into two parts corresponding to two different contribusom(x, t) corresponds to the error
for a constant coefficienD(0), andU (x, t) represents the error coming from the perturba-
tions aroundD(0), namelyD(z).

We must now determine explicitly the functign A straightforward way consists of us-
ing the continuous Fourier transform in time. By introdyrthe functionE,, (z) = e\/%m
and by taking into account the boundary conditions at 0 andz = L, we get

E,(z)— E,(2L — x)
A(1—E,(2L)) — v/iwD(0) (1 + E,(2L))

plo,w) = g(w).

Itis now possible to express the err@r) in the Fourier space. The functiofis are extended
to zero fort < 0 and by the convolution theorem we have

L[ v (-ct-m) nmar) =) win

Sn(w) =7 (eicth(t)) - c2 j— iw’
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whereH (t) is the Heaviside unit step function. The general formdfar, w) is
a,w) = Bz,w) + Y B ()30 (W) fow).

In practice it is usually assumed that the subdomains areuntded { — o) to simplify

the expression of the convergence factor and thus to siyrthkf optimization problemi(4).
Using this assumption; becomes

~ Ew(_l) ~

T,w) Y ———"owr—=¢g(w),

Plaw) A+ /iwD(0) 9w)

which implies

s e (P50

As a result of our study we get an expression for the errortfandn Fourier space that takes
into account the spatial variability of the diffusion coeiint:

fn(w) =~ Ew(—x’)) ®,,(z")dz'.

W) B
e(%w)—wr\/wT[Ew( z)
(2.6)
+zn: Zw+02 /D )Cfiq)/ 1fora:>0

This error has been constructed for positive values,afrhich can be identified as subdo-
main €2, following the notations introduced in Sectidnl. For negativer (i.e., on€)), we
obtain a very similar form:

oew) > — g @)
A+ \/iwD(0)
@2.7) N
D(O n( d®,, o
— <
En zw+c2 / D )d’ forx <0,

where the functiorh is the analog of the function previously introduced.
The form of the errorZ.6) suggests that the impact of the spatial variability of tfiiel
sion coefficients will be primarily seen for low temporaldreencies. Indeed, the terta(x)

arising from the variability of the coefficient is weighted |&,,(—z)| = ¢V DO ", making
the effect of the variability negligible for large valueswbut potentially significant for low
frequencies. Moreover, we can draw the same conclusiohéovdriations with respect ta
whenz is small (near the interface])(z) is weighted by a non-negligible number, while
for x being large enoughy,,(—x) is very small.

2.2. Convergence factor of thdirichlet-Neumann algorithm with spatially variable
coefficients. So far we have established a general form of the errors patipggn each sub-
domain. We are now able to propose a formulation of the cgarere speed for the global-in-
time Schwarz algorithm with spatially variable coefficenBefore dealing with the general
Robin-Robin case, we intend to determine the convergeneedsm a simplelDirichIet-
Neumanrcase, i.e., using the notations introducedliri) for G; =l and F; = D;(0 )

oz
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Moreover for the sake of practical convenience, we alsodifynd the expression of an "ef-
fective” vaIueD;?lcf corresponding to a constant value which would have the séi®et en
the convergence speed as the non-constant diffusion profile).

THEOREM 2.1 (Convergence factor with Dirichlet-Neumann transioisgonditions).
The convergence factefs of the Schwarz algorithnil(2) with Dirichlet-Neumann transmis-
sion conditions is

cst

(2-8) p\[';\:(w) = Pon ﬁDNa

whereps = D1(0)’ and

W ®,1(0) 0
_ > Dy (0) ~ ™1 5 NIt gy
Pon = | (1 — W L Dl(x )EWJ(JC ) dm/ (I )d.r

d®y, 2 (0) Ly _ dd
1 dx Dy(2)E,, o(—2' n,2 Nda'
( Lord, fy DBl TR @ )

with B, ;(z) = eVP@* D;(z) = D;(x) — D,(0), and the eigenfunctiong,, ; and
eigenvalues;, ; being solutions of the Sturm-Liouville probleth4).

Proof. Hereafter we use again the subscripte characterize both subdomains, and we
use the functiorE,, ,(x) defined above that plays the same role as the fundiippreviously
defined. A derivation very similar to what has been done irti8e@.1 but with a Dirichlet
boundary condition instead of a Robin boundary conditi@u$eto

ea(x,w) = g(w) (Ew,z(—w)

(2.10) ‘
Do)y /2~ Ly
M /L Dy(3)Ey o(—2') 2On2 (xl)de/) )
0

+ Z iw+c2 dz’

whereg(w) = €;(0,w) and where the function®,, » are defined by a SL problem similar
to (2.4) but again with a Dirichlet condition instead of a Robin citieth. On Q;, we have
(by simply taking\ = 0 in the derivation of Sectiof.1):

e1(z,w) = _hw) B ()
ile(O) '
(2.11) _
(bn,l(m) i 0 ~
B " ) / Dy (@) B (2) 201 (1) )
n Z(")—*—cn,l —L; dx

whereﬁ(w) = DQ(O)%—%(O,w) and where the function$,, ; are defined by a SL prob-
lem similar to @.4) with a homogeneous Neumann conditionzat= 0. The multiplica-
tive Schwarz algorithm with Dirichlet-Neumann conditiosobtained by replacing. (re-
spectivelyg) by & (respectivelye® (0,w)) in (2.10), ande, (respectivelyh) by é* (respec-
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tively E’“‘l(w) = D5(0) ‘9@(;5: (0,w)) in (2.171). Therefore we have

©n1(0)y/ 50 dd hE=1(w)
~k —11= / / n, 1 /
) ; iw+ A7 L, Eua(@) da’ ()de iwD,(0)
W w) = [-1+ Z =0 szv (z')E (—gg')L‘I’”’2 (z")dz" | \/iwDs(0)g" (w)
iw+ A2, ? w2 dx’ 2N

Then, if we define a convergence factor by

pvar(w) /e\lf( )
0w
the previous relations lead to
g | _ |8 P
pDN( )_ /g\k-_l - /}\lk—l gk—l = Pon " Pons
whereps = gfggg is the convergence factor obtained in the case of constéosidin

coefficients (seel?]) and p,, is given in €.9). a

Theorem?2.1 shows that the convergence facigff naturally appears as the product of
the convergence factor with constant coefficients (theaseralues) and a term coming from
the spatial variability of the diffusion coefficient ¢y and(2,.

Starting from Equation2.8), we can suggest two “effective” constant values foy
and D,. These (spatially constant) values have a similar effedherconvergence speed as
D5(w)
D§f(w)

the non-constant vertical profild3; (x) and Dy (z). They satisfyp, = with

Dy (0)

Di(w) = 2

—
1y, Yoot ® 0 B () B () 222 () do

’
uu-i—cn 1 dx

and

APy, 2 L. 2
=(0 2~ P
R e L O Lo e

DY = D5(0) |1
o) = D0 -3 | i

It is worth mentioning that, due to the variability of the fft@ents, the convergence factor

is a function of the time frequency, whereas this dependency does not exist with constant
coefficients. Some examples of convergence fagifjrare given in Sectio8.2. Note that in

the casev — 0, we getD$" — D, (0), while

D5 (w — 0) = Dy(0)

2
o, br o d®
o -2 n,2 / n,2 / /
1= a3 0 [ Date) G e

n

The effect of the variability of the coefficient in the subdaimwith a Neumann condition
asymptotically vanishes. This is, however, not the cas¢h®isubdomairi2, with Dirichlet
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conditions O (w — 0) # D2(0)). This result shows that, when a Dirichlet-Neumann
algorithm is usedp, < 1 does not necessarily imply thafi < 1. In other words, the fact
that the algorithm with constant coefficients (the integfamlues) theoretically converges
does not ensure that the algorithm with variable coeffisievill. Indeed,

var ‘DQ(O) —2 d®n,2 /L2 D / d@n,? / /
(2.12) Panlw = 0) = D1(0) (1 ; 2 g (0) ; Dy(z") = (z")dz
# Pous

whereag (w — oo) — p&.

2.3. Convergence factor of thérobin-Robin algorithm with spatially variable coef-
ficients. In this section we determine the convergence fagfpfor the more general case of
Robin-Robin interface conditions.

THEOREM 2.2 (Convergence factor with Robin-Robin transmissiondétions). The
convergence factgs of the Schwarz algorithml(2) with Robin-Robin transmission condi-
tions is

(2.13) Pre = [[(A1 + A2)K1 — 1] [(A1 + A2)K2 — 1],
with A; being the Fourier symbol of the operatdy in (1.2) and

1
IC =
"N + iwDs (0)
/@, 1(0) 0
D1(0) 1 ~ / ’ d(bnl /
1-— - D E —_—
( Xn: iw_’_ci’l 7L1 1(1‘) w,l('r) d.’L'I d.’E 9
(2.14) .
Ko

A /iiwq) (0) Lo
DZ(O) n,2 ~ / / d(I)n,Q /
(1 + gn BT Dy(2")Ey, 2(—2") dz' |,

n,2 0 dx’

where E,, ;(z) = ¢V 7" D;(z) = D;(z) — D,(0), and the eigenfunction®,, ; and
eigenvalues,, ; are solutions of the Sturm-Liouville problei.4).

Proof. Thanks to 2.6) and @.7), we can expresg; ande, in a compact form for the
iteratek as

~

(w,0) = K1 (w, D1(0), @y 1,01, M) B

(2.15) K
(OJ,O) - ,CZ(waD2(0)7(I)n,27Cn,27)\2) )

NP

Wher8§ =-D (O)@T% (O,w) + )\Qé\l (O,w), E = D2(0)8x€2(0, w) + /\1€2(0, w), andICj is
given in 2.14). The problem on the interface= 0 is given by the relations

(2.16) (D1(0)8y + A1) eF(0,w) = (Dg(0)8y + A1) eh H(0,w) = h*,
' (=D2(0)8; + X2) &5(0,0) = (=D1(0)d; +A2) e (O,w) = 7,
and by combiningZ.15 and @.16), we obtain
D1(0)0,%(0,w) = B =N (0,w) = (1— MKy R
—DQ(O)&E@’;(O,w) = @\k — )\2€’2"(0, w) = (1 — )\2’(:2) @\k
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By substituting those expressions ih16), we finally get a relation linking andh

G° = [(A\1 + M)y — 1] AR,
PR = [+ Ao — 1G5,

which leads to an expression for the convergence factor

-~k

var

RR ~

F = I[()q + A)Ky — 1] [(/\1 + X))o — 1] I . 0

We note that this expression of the convergence factor isistmt with the expres-
sion (1.9 obtained in the case of constant (but discontinuous) aoefiis. Indeed, if we
setD;(x) = Do(x) = 0in (2.13, we then haveC; = 1/4/iwD;(0), which leads to 1.3
becauseDjaji = +/iwD;(0). A convenient formulation ofy: without complex numbers
can be found in AppendiR. To conclude this section, we look at the asymptotic belravio
of p&, and we can easily find that

RR?
Pra(w = 0) = pg(w — 00) = 1,

which shows that the effect of the variability of the diffosicoefficients asymptotically van-
ishes when a Robin-Robin algorithm is used.

3. Numerical results. In this section we verify numerically the validity of the tret-
ical results presented in Secti@n To do this, we first briefly describe the rationale for the
spatial variability of the diffusion coefficient and proei@ typical profile which we will use
for the numerical tests. Then we design a few experimentéukirate the relevance of our
theoretical results.

3.1. Planetary boundary layer turbulence. Unlike boundary layers in many engineer-
ing flows, the atmospheric and oceanic planetary boundgeydaare almost always turbulent
and cannot be explicitly resolved due to the insufficientigal resolution in computational
models. The numerical representation of those layers #liesron the Reynolds decompo-
sition: the flow is split into a mean (resolved) pau and a fluctuating (subgrid) patt
(whereu can either represent a velocity component or an activerradéen this decompo-
sition is applied to nonlinear (advective) terms, this givise to additional terms and hence
to a closure problem. The dominant expression in the tunibldeundary layers arising from
the Reynolds decomposition is the divergence of the vépiad of (u'w’) (wherew denotes
the vertical component of the velocity). Typically, thighulent vertical flux is expressed
as a function of the mean (resolved) part of the flow by usirgdiwn-gradient assump-
tion, (v'w’) = —D(z)0, (u), whereD(x) is the so-callecdddy diffusivityor eddy-viscosity
if u represents a velocity. This assumption explains why a ameytsional diffusion equa-
tion, like the one studied in the present paper, is genesalfficient to locally represent the
turbulent mixing in the boundary layers. The eddy diffusivD(z) is defined to allow the
flow to make the transition between its surface (the air-staface) and its interior (below
the boundary layer) properties. This is the reason WHy:) exhibits a strong spatial vari-
ability. In this context, several ways to specify the coéfit D () have been proposed. The
formulation most commonly used in the state-of-the-art etdoal models can be found if][
and [L4]. Those formulations define the eddy diffusivity as

2
X
(3.) D(x)={ A% (1 a hbl> Tty z €]0, hy],
v x > hp,
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Fic. 3.1. Typical diffusion profileD(x) obtained forA = 0.5 ms~! andhy; = 150 m in (3.1) with respect
tox (top) and two associated eigenfunctiehg (z) (bottom) of the Sturm-Liouville probler.d) with homogeneous
Dirichlet condition atx = 0.

with hy; the thickness of the boundary layer (depending on the sfateedlow) andA a
parameter setting the intensity of the mixing (note thét:) is continuous and differentiable
atz = hy). Throughout this section we assume tlixtc) is given by @.1), and a typical
profile for A = 0.5 m/s andh;; = 150 mis given in Figure3.1

In the remainder of this section we study first a DirichletaN&nn algorithm and then
a Robin-Robin algorithm. We define spatially variable coffits withA; = 0.1 m/s (re-
spectively4, = 0.5 m/s) andhy 1 = 50 m (respectivelyh, » = 150 m) on; (respec-
tively 25). The values of/; andv, (corresponding to the surface valuBs(0) and D2 (0))
are chosen to be the same as the values usdj] in fhe constant coefficient case. If we in-

troducey = |/ %, we investigate the two cases= 10 andy = v/ v/10 with v, = 0.5 m?/s

(the value ofv; is adjusted depending on the valueydf Those various parameter values
lead to diffusion profiles that can be found in the atmosphanid oceanic boundary layers.
The discretization of the problem, the computational gaisl,well as the initial conditions
are described ind, Section 5]. We usé\¢ = 100 s and a random initial guess on the inter-
face so that it contains a wide range of the temporal fregaesrbat can be resolved by the
computational grid.

3.2. Test case 1: Dirichlet-Neumann.The analytical convergence factpfy(w) in
Equation 2.8) is shown for different values of in Figure 3.2 The eigenvalues,, and
eigenfunctionsb,, are computed numerically on the same computational griti@snodel
problem. We remark that depending on the jump in the coefffisithrough the interface,
the spatial variability of the diffusivities either tend &mcelerate the convergence speed
(for v = 1/+/10) or to slow it down (fory = 10) compared to the convergence speed ob-
tained with constant coefficients. As expected, the comrerg factor for spatially variable
coefficients is no longer independentwf and for low frequencies we get a significant de-
parture from the convergence rate of the algorithm with taomscoefficients. The trend seen
in the convergence factpf: (w) determined at a continuous level is confirmed by the numer-
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FiG. 3.2. Evolution of the£>-norm of the error of the Dirichlet-Neumann algorithm as adtion of the

iterates fory = /110 (top, left) andy = 10 (top, right). These results are obtained for constant diffin
coefficients (gray dashed line) and for spatially variabteefficients (black line) as defined in Secti®i. The
corresponding convergence factqr§;(w) (black line) andpgy (w) (gray dashed line) determined at the analytical

level are given fory = v/1/10 (bottom, left) andy = 10 (bottom, right).

ical results (Figure3.2, top). These results as well as the asymptotic expres&idm)(call
for caution when we use a Dirichlet-Neumann algorithm withtglly variable coefficients
because it can lead to significantly different performar@aspared to the one obtained with
constant coefficients. We can expect a Robin-Robin typeriéihgo to provide a more robust
alternative thanks to the tuning of the parameters.

3.3. Test case 2: Robin-RobinHere, we denote by’ the optimal Robin parameters
obtained using the analytical results found @ for constant coefficients. We consider that
these constant coefficients are the interface valdg®). Moreover, we denote by the
Robin parameters optimized by solving numerically the faob(1.4) with the convergence
factor ps: as given in 2.13. This optimization is done using the Rosenbrock methds] [
and by taking the parameteis* to initialize the algorithm. We see from Figuge3 that
the use of the parametek§" provide slightly better convergence properties compavetie
parameters\?”, regardless of the value of. As for the Dirichlet-Neumann algorithm, we
can check that our analytical study at the continuous lex@liges a convergence factpf
representative of the behavior of the algorithm at a disdeatel (Figure3.3, bottom). From
Figure3.3 (bottom left), we also see that the way we initialize the athon (with a random
initial guess foru3(0, t), ¢t € [0,77]) leads to the generation of a large range of temporal
frequencies and more particularly low frequencies slowdog/n the convergence speed of
the simulation using the parameters, although the latter provide a faster convergence than
the parameters™ for most of the frequency spectrum. For our model problers, use
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FiG. 3.3. Evolution of the£>°-norm of the error of the Robin-Robin algorithm as a functafrthe iterates

for v = /10 (top, left) andy = 10 (top, right). Those results are obtained for spatially \ednie diffusion
coefficients and the Robin parameters optimized by assuatingtant coefficients (gray dashed line) or the full
convergence factopi® (black line). The corresponding convergence facm%(k;) (black line) andp;aFg(/\g.s‘)

(gray dashed line) are given for = 1/+/10 (bottom, left) andy = 10 (bottom, right).

of the parameters’ provides a relatively modest improvement over #tj¢ parameters.
However, in general, this statement has to be mitigatedusecih we considef; 2 = 10 m
instead ofhy o = 150 m, we see in Figuré.4 that the parameters obtained through an
optimization of pi; are clearly superior to the parametefg. For this case, we show in
Figure 3.5 the asymptotic behavior of the optimized convergence ratethe associated
Robin parameters’”. We numerically show that thanks to the theoretical worksprged
earlier in the paper, we are able to bring the proper adjustsrte the Robin parameters so
that our algorithm asymptotically maintains a good effickeaven in the presence of spatially

variable coefficients.

4. Conclusion. In this paper we present and analyze a new approach to stadoth
vergence properties of a global-in-time Schwarz algorithrthe case of a one-dimensional
diffusion problem with spatially variable diffusion coeiénts. We analytically derive an
expression for the evolution of the errors of such an algoritvith respect to the iterates.
Thanks to our formulation, we are able to gain a better unaeding of the behavior of the
associated convergence factor. We exhibit some integefatures that were not shown by
the usual convergence studies with constant diffusionficoeits. We put particular em-
phasis on the fact that for low temporal frequencies, it cam lvery inaccurate assumption
to replace a variable diffusion coefficient by its constameiface value in the convergence
study. Moreover, we also show that depending on the typegurié&hm under considera-
tion (Dirichlet-Neumann or Robin-Robin) the variability the coefficients may have more
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FiG. 3.4.Evolution of theC>°-norm of the error (left) of the Robin-Robin algorithm as adtion of the iterates
for v = v/ V10 for hy; o = 10 m (instead of,; » = 150 m as in Figure3.3). These results are obtained for Robin
parameters optimized by assuming constant coefficiersy @ashed line) or the full convergence facig (black

line). The corresponding convergence factp}gg()g) (black line) andpgf,:g(A;.s‘) (gray dashed line) are on the right
panel.
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FiG. 3.5. Evolution of the convergence raieax pgy (left) and optimal Robin parametevs;.af (right) of the
w
optimized Schwarz algorithm with spatially variable cagdfints with respect td\t. The parameters of the problem
arehp; 1 =50m,hy 0 =10m,A; = 0.1 ms 1, 4 = 0.5 ms !, andy = v/V/10.

or less impact on the asymptotic convergence propertiefeToore attractive for practical
applications, our approach requires further developmanserforming an accurate study of
the eigenvalue problems to improve our knowledge of the \iehaf these eigenvalues with
respect to the perturbations of the diffusion profiles.
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Appendix A. Determination of the convergence factor in the ase of variable coeffi-
cients. We recall £.13:

(A1) p=[(A1 + A2)Ky — 1] [(A1 + A2)Ko — 1],
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W+ A?L,l —I D1(0) dx

/iiwq)ml(o) 0o _ 3
(1 - Z Voo D1 (x) exp ( d x) P dz |,

(A.1) can be rewritten as

p =1/ (ZmC0)2 (M + A2)2 + [\ + M) Re(Kr) — 1]
(A.2) \/< )

\/(Im(ng)2()\1 F22)2 4 [ + Ae)Re(KCs) — 1}2).

In order to determine the real and imaginary part&efand KC;, we can decompose each
term appearing in the preceding expressions:

aJRe(VD-(O)) W ( n.j w>’

- 2
iw =+ A;
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D]' (O)LU

Y N — 2
fi =Im (Aﬁm)_ X+ D;(0)w + X;1/2D; (0)w’

Thanks to these equalities, we can redastnto the following form

Ki=(e1+if1)

. 0 g dq)n 1 .
(1 — Y “(ay +iby),, 1 (0) Dy () == (1 () —Hdl(x))dx) ,

n —L
ICo = (62 + ng)
b2 dq)n 2

(1 + Z(ag + ibg)q)n,g(()) DQ(I) d:C, (Cg(l‘) =+ ng($))d$> R

0

and by noting that

Yo [ B a@d b [ Bie) e a@is] 2,40
g1 = aq L 1(T d ci(r)ax 17L1 1T du 1(z)ax | Pp1(Y),

n L

hi=> B ’ D (x)dq)n’lc (z)dz + a ’ D (x)dq)”’ld (z)dx| ®,,.1(0)
1—n _1 o 1 d 1 1 L 1 d 1 n,1 ,

=> " la sz) (z) dOn2 (z)dx —b - D (:c)d(I)"’Qd (z)dz| ®,(0)
g2 = — | 2 ; 2 dx 2 2 . 2 dr 2 n,2\U),
Lr . 4®,, 5 Lr o 4®,, 5
hy = b D "2 eo(2)d D 22 do(2)dx | ®,,.9(0
2 ; > | 2(z) o co(z)dx + as ; 2(z) T 2(7)dz | ©4,2(0),

we obtain

Ki=(e1(1 = g1) + fiha) +i(f1(1 — g1) — e1ha),
Ko = (e2(1+4 g2) — fah2) +i(f2(1 4 g2) + e2h2).

Hence, thanks toX.2), this yields an expression for the convergence faetoithout complex
numbers.
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