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TOWARD AN OPTIMIZED GLOBAL-IN-TIME SCHWARZ ALGORITHM
FOR DIFFUSION EQUATIONS WITH DISCONTINUOUS AND

SPATIALLY VARIABLE COEFFICIENTS.
PART 2: THE VARIABLE COEFFICIENTS CASE ∗

FLORIAN LEMARIÉ†, LAURENT DEBREU†, AND ERIC BLAYO‡

Abstract. This paper is the second part of a study dealing with the application of a global-in-time Schwarz
method to a one-dimensional diffusion problem defined on two non-overlapping subdomains. In the first part, we
considered the case that the diffusion coefficients were constant and possibly discontinuous. In the present study,
we address the problem for spatially variable coefficients with a discontinuity at the interface between subdomains.
For this particular case, we derive a new approach to analytically determine the convergence factor of the associated
algorithm. The theoretical results are illustrated by numerical experiments withDirichlet-NeumannandRobin-Robin
interface conditions. In theRobin-Robincase, thanks to the convergence factor found at the analytical level, we can
optimize the convergence speed of the Schwarz algorithm.
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1. Introduction. The overall context of the present work is the coupling between oce-
anic and atmospheric numerical models, in particular for representing processes in which the
interactions between both media are of prime importance. The algorithms generally used to
couple this type of numerical models are often not fully correct from a mathematical point
of view. Indeed, they do not ensure a perfect consistency of the fluxes exchanged at the
air-sea interface [8]. In this context, the long-term objective of our work is to derive al-
ternative numerical techniques ensuring such a consistency as well as to study their possible
impact on the physical results of coupled models. Global-in-timeoptimized Schwarz methods
(also called Schwarz waveform relaxation methods) [4, 5] based on the concept of absorbing
boundary conditions [3] are particularly well suited for such problems. The present study
aims at finding efficient transmission conditions in the caseof the coupling between two dif-
fusion equations representing the turbulent vertical mixing in the planetary boundary layers
near the air-sea interface (see Section3.1for further details on the notion of turbulent vertical
mixing).

In the first part of this paper [9], we analytically derive optimized conditions in the case
of a diffusion coefficient being constant in each medium but with a discontinuity through the
interface. However, this provides only a simplified view of the true physics. The ocean and
the atmosphere interact through various multi-scale physical processes that are usually hardly
explicitly resolved by the spatio-temporal discretization. Because it is essential to account for
the effect of the subgrid turbulent boundary layers on the resolved part of the flow, parame-
terization schemes were designed [7, 14]. Those schemes usually take the form of a turbulent
mixing term with a spatially variable diffusion coefficientto account for local effects. Indeed,
a parameterization with a constant diffusion originally introduced in [2] is now known to be
naive. In this second part of the paper, we study the impact ofthis variability of the diffusion
coefficients, in particular in the vicinity of the interface, on the convergence properties of the
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†INRIA Grenoble Rĥone-Alpes, Montbonnot, 38334 Saint Ismier Cedex, France andJean Kuntzmann Labora-
tory, BP 53, 38041 Grenoble Cedex 9, France, ({florian.lemarie, laurent.debreu}@inria.fr).

‡University of Grenoble, Jean Kuntzmann Laboratory, BP 53, 38041 Grenoble Cedex 9, France
(eric.blayo@imag.fr).

170



ETNA
Kent State University 

http://etna.math.kent.edu

OPTIMIZED SCHWARZ ALGORITHM FOR DIFFUSION EQUATIONS II 171

Schwarz algorithm. To our knowledge, the spatial variability of the coefficients has never
been considered in the framework of Schwarz-like methods except in [10], where absorbing
conditions are given for a one-dimensional stationary diffusion problem.

This paper is organized as follows. In the rest of this section, we briefly recall some
theoretical aspects of optimized Schwarz methods necessary to follow the reasoning of the
present study. In Section2, we introduce a general methodology to analytically assessthe im-
pact of the spatial variability of the diffusion coefficients on the convergence of the Schwarz
method. This method is applied first to a simpleDirichlet-Neumannalgorithm and then to a
more generalRobin-Robinalgorithm. Finally in Section3, we illustrate the relevance of our
approach by numerical results.

1.1. Model problem and Schwarz algorithm. The present study focuses on the cou-
pling between two one-dimensional diffusion equations with variable coefficients. Con-
sider two subdomainsΩ1=]− L1, 0[ andΩ2=]0, L2[ with a common interfaceΓ = {x = 0}.
The coupling problem reads

L1u1 = f, in Ω1 × [0, T ],
u1(x, 0) = uo(x), x ∈ Ω1,

B1u1(−L1, t) = g1, t ∈ [0, T ],
F1u1(0, t) = F2u2(0, t), onΓ× [0, T ],

L2u2 = f, in Ω2 × [0, T ],
u2(x, 0) = uo(x), x ∈ Ω2,

B2u2(L2, t) = g2, t ∈ [0, T ],
G2u2(0, t) = G1u1(0, t), onΓ× [0, T ],

(1.1)

whereLj = ∂t − ∂x(Dj(x)∂x), Bj correspond to the boundary conditions on the compu-
tational domainΩ, andFj andGj are operators defining the interface conditions. Those
operators must be designed to ensure a given consistency of the solution throughΓ. In our
study we require the equality of the subproblems solutions and of their normal fluxes.

In order to solve the coupling problem (1.1), we propose to implement a Schwarz algo-
rithm with Robin-Robininterface conditions:

L1u
k
1 = f, in Ω1 × [0, T ],

uk
1(x, 0) = uo(x), x ∈ Ω1,

B1u
k
1(−L1, t) = g1, t ∈ [0, T ],

(D1(0)∂x + Λ1)u
k
1(0, t), = (D2(0)∂x + Λ1)u

k−1
2 (0, t), onΓ× [0, T ],

L2u
k
2 = f, in Ω2 × [0, T ],

uk
2(x, 0) = uo(x), x ∈ Ω2,

B2u
k
2(L2, t) = g2, t ∈ [0, T ],

(−D2(0)∂x + Λ2)u
k
2(0, t) = (−D1(0)∂x + Λ2)u

k
1(0, t), onΓ× [0, T ],

(1.2)

wherek = 1, 2, ... is the iteration number and the initial guessu0
2(0, t) is given.Λ1 andΛ2

are operators to be determined. As mentioned in [10], those operators can be either local or
nonlocal.

1.2. Reminder of the framework in the case of constant (but discontinuous) diffu-
sion coefficients.We briefly recall here some known results useful for the present study and
detailed in [9]. The convergence study of the algorithm (1.2) with constant coefficients is
performed by introducing the errorsekj = uk

j − u⋆ between thek-th iterate and the exact
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solutionu⋆ of the coupled problem. Using a Fourier transform in time (denoted for any func-
tion g ∈ L2(R) by ĝ := Fg), the partial differential equationLjej = 0 becomes an ordinary

differential equation̂Ljej = iωêj − Dj
∂2êj
∂x2 = 0 (Dj is spatially constant here), whose

characteristic roots are

σ+
j =

√
iω

Dj

, σ−

j = −σ+
j = −

√
iω

Dj

.

It is then usually assumed thatLj → ∞ and thatej tends to zero forx → ∞, which leads to

êk1(x, ω) = αk(ω) eσ
+
1 x and êk2(x, ω) = βk(ω) eσ

−

2 x,

whereα(ω) andβ(ω) are determined to satisfy the boundary conditions. Finally, the conver-
gence factorρ corresponding to the ratio between the errors at two successive iterations can
be determined as a function ofσ±

j , Dj , andλj (the Fourier symbols of the operatorsΛj):

(1.3) ρ =

∣∣∣∣
(λ1(ω) +D2σ

−

2 )

(λ1(ω) +D1σ
+
1 )

(λ2(ω)−D1σ
+
1 )

(λ2(ω)−D2σ
−

2 )

∣∣∣∣ .

We remark that in Fourier space, the following symbols

λopt

1 = −D2σ
−

2 and λopt

2 = D1σ
+
1

lead toρ = 0, i.e., ensure convergence in two iterations. However, the corresponding op-
erators, which are calledabsorbingconditions, are nonlocal in time and therefore cannot be
used in practical applications. We thus need to look for a local approximation of these op-
timal operators. It was first suggested in [11] to use a low frequency approximation of the
symbols based on a Taylor expansion aroundω = 0. This results in effective transmission
conditions only forω being small. To obtain a more general approximation, efficient also
for high frequencies, the so calledoptimized Schwarz methods(OSM) were introduced. The
simplest version consists of approximatingλopt

1 andλopt

2 by two constant valuesλ0
1 andλ0

2:
this corresponds to Robin interface conditions (also called zeroth ordertwo-sidedtransmis-
sion conditions). The values forλ0

1 andλ0
2 are then determined by solving the optimization

problem

(1.4) min
λ0
1,λ

0
2∈R

(
max

ω∈[ωmin,ωmax]
ρ(λ1, λ2, ω)

)
.

In [9], this optimization problem is solved analytically for constant (and possibly discontin-
uous acrossΓ) diffusion coefficients. In this second part of our study, wecomplement the
previous work [9] and discuss the effect of the spatial variability of the diffusion coefficients
on the convergence speed and on the determination of the optimized conditions.

When the diffusion coefficient is spatially variable, the usual approach of determining the
convergence factor is no longer straightforward. To circumvent this problem, we develop in
the next section a methodology to analytically derive a convergence factor similar to (1.3) but
including the spatial variability of the diffusion coefficients. Thanks to this new convergence
factor, it will then be possible to find optimized valuesλ0

j using (1.4). We expect a non-trivial
effect of this variability on the convergence properties ofthe associated Schwarz algorithm.
Indeed, in [10] it is shown for the stationary diffusion equation−∂x (D(x)∂xu) = f that

the absorbing conditions are given by Robin conditions withλopt

1 =

(∫ 0

−L1

D−1
1 (s) ds

)−1
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andλopt

2 =

(∫ L2

0

D−1
2 (s) ds

)−1

. This result strongly suggests that it is not only the local

values of the diffusion coefficient near the interface that have an impact on the parametersλj

but the whole profileD(x), x ∈ Ω.

2. OSM for diffusion problems with spatially variable coefficients. As mentioned
earlier, the diffusion coefficient may be spatially variable to account for local effects (e.g., in
the turbulent boundary layers) within subdomains. In practical applications (like in oceanog-
raphy or meteorology), diffusion coefficients are likely tovary by several orders of magnitude
in the vertical direction (this point is further discussed in Section3.1). This is the primary
motivation to look for a methodology to analytically determine the convergence factor for
non-constant diffusion coefficients defined on two non-overlapping subdomains. Throughout
this study, we make the assumption that the diffusion profiledoes not vary with time.

2.1. Analytical determination of the shape of the errors.The first part of this section
does not require any distinction between subdomains, so thej-subscripts are temporarily
dropped. We denote byg(t) the function containing the information given by the neighboring
subdomain, hence the problem under investigation is

(2.1)

∂te− ∂x (D(x) ∂xe) = 0, x ∈]0, L[, t > 0,
e(x, 0) = 0, x ∈]0, L[,

−D(0) ∂xe(0, t) + λ e(0, t) = g(t), t > 0,
e(L, t) = 0, t > 0,

with λ being the Robin parameter we wish to determine to optimize the convergence speed. A
Dirichlet condition is imposed atx = L, which corresponds in havingB1 = B2 = I in (1.2)
with I the identity map.

First, we notice that the method based on a Fourier analysis,commonly used to analyti-
cally determine the convergence factor, is less convenientfor our model problem with variable
coefficients. Indeed, in Fourier space we would obtain the ODE iωê − ∂x(D(x)∂xê) = 0
for ê. The study of this ODE appears to be at least as complicated asthe original problem in
physical space. This is why we propose to study directly the system (2.1). We transform this
original problem with a homogeneous equation and nonhomogeneous boundary conditions
into a problem with nonzero right-hand side but with homogeneous boundary conditions by
searching for a solution of the forme(x, t) = ϕ(x, t)+U(x, t) with ϕ being a lifting function
satisfying the boundary conditions. The transformed problem reads

(2.2)

∂tU − ∂x (D(x) ∂xU) = f(x, t) x ∈]0, L[, t > 0,
:= −∂tϕ+ ∂x (D(x) ∂xϕ) ,

U(x, 0) = −ϕ(x, 0), x ∈]0, L[,
−D(0) ∂xU(0, t) + λU(0, t) = 0, t > 0,

U(L, t) = 0, t > 0.

The choice ofϕ is not unique. We choose this function as the solution of the problem (2.1)
with a constant diffusion coefficient whose value is the value of D at x = 0, i.e.,ϕ is the
solution of

(2.3)
∂tϕ−D(0) ∂xxϕ = 0, x ∈]0, L[, t > 0,

−D(0) ∂xϕ(0, t) + λϕ(0, t) = g(t), t > 0,
ϕ(L, t) = 0, t > 0.
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We then search forU(x, t) using a separation of variablesU(x, t) =
∑

n

Φn(x)Tn(t). A

substitution in (2.2) leads to
∑

n

T ′
n(t)Φn(x)−

∑

n

Tn(t) ∂x (D(x) ∂xΦn(x)) = f(x, t),

where the right hand side is also expanded with respect to thefunctionsΦn(x),

f(x, t) = −∂tϕ+ ∂x (D(x)∂xϕ) =
∑

n

fn(t)Φn(x).

The next step is to properly choose the functionsΦn. An adequate choice would enable
us to transform the PDE into ODEs for the unknown functionsΦn(x) and Tn(t). The
natural choice is therefore to look forΦn(x) as a solution of the followingregular Sturm-
Liouville (SL) problem

(2.4)
∂x (D(x) ∂xΦn) + c2nΦn = 0, x ∈]0, L[,

−D(0) ∂xΦn(0) + λΦn(0) = 0,
Φn(L) = 0,

with cn the eigenvalues of the SL operator. Such a choice leads to a family of functionsΦn(x)

which are orthonormal for the scalar product(u, v) =
∫ L

0
u(x)v(x)dx. The properties of

regular SL problems are fully described in [1] or [6]. After some simple algebra, we find that
a general solution of problem (2.1) is given by

(2.5) e(x, t) = ϕ(x, t) + U(x, t),

with U(x, t) =
∑

n

Φn(x)

∫ t

0

exp
(
−c2n(t− τ)

)
fn(τ)dτ . In (2.5), ϕ satisfies (2.3), Φn

satisfies (2.4), andfn(t) satisfies

fn(t) =

∫ L

0

∂x(D̃(x)∂xϕ)Φn(x)dx with D̃(x) = D(x)−D(0).

By formulating the solution of our problem using̃D(x), we can properly separate the error
into two parts corresponding to two different contributions: ϕ(x, t) corresponds to the error
for a constant coefficientD(0), andU(x, t) represents the error coming from the perturba-
tions aroundD(0), namelyD̃(x).

We must now determine explicitly the functionϕ. A straightforward way consists of us-

ing the continuous Fourier transform in time. By introducing the functionEω(x) = e

√
iω

D(0)
x

and by taking into account the boundary conditions atx = 0 andx = L, we get

ϕ̂(x, ω) =
Eω(x)− Eω(2L− x)

λ (1− Eω(2L))−
√

iωD(0) (1 + Eω(2L))
ĝ(ω).

It is now possible to express the error (2.5) in the Fourier space. The functionsfn are extended
to zero fort < 0 and by the convolution theorem we have

F
{∫ t

0

exp
(
−c2n(t− τ)

)
fn(τ)dτ

}
= ŝn(ω)f̂n(ω) with

ŝn(ω) = F
(
e−c2ntH(t)

)
=

1

c2n + iω
,
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whereH(t) is the Heaviside unit step function. The general form forê(x, ω) is

ê(x, ω) = ϕ̂(x, ω) +
∑

n

Φn(x)ŝn(ω)f̂n(ω).

In practice it is usually assumed that the subdomains are unbounded (L → ∞) to simplify
the expression of the convergence factor and thus to simplify the optimization problem (1.4).
Using this assumption,̂ϕ becomes

ϕ̂(x, ω) ≃ Eω(−x)

λ+
√
iωD(0)

ĝ(ω),

which implies

f̂n(ω) ≃
ĝ(ω)

λ+
√
iωD(0)

∫ L

0

∂

∂x′

(
D̃(x′)

∂

∂x′
Eω(−x′)

)
Φn(x

′)dx′.

As a result of our study we get an expression for the error function in Fourier space that takes
into account the spatial variability of the diffusion coefficient:

ê(x, ω) ≃ ĝ(ω)

λ+
√
iωD(0)

[
Eω(−x)

+
∑

n

√
iω

D(0)Φn(x)

iω + c2n

∫ L

0

D̃(x′)Eω(−x′)
dΦn

dx′
dx′

]
for x ≥ 0.

(2.6)

This error has been constructed for positive values ofx, which can be identified as subdo-
mainΩ2 following the notations introduced in Section1.1. For negativex (i.e., onΩ1), we
obtain a very similar form:

ê(x, ω) ≃ ĥ(ω)

λ+
√
iωD(0)

[
Eω(x)

−
∑

n

√
iω

D(0)Φn(x)

iω + c2n

∫ 0

−L

D̃(x′)Eω(x
′)
dΦn

dx′
dx′

]
for x ≤ 0,

(2.7)

where the functionh is the analog of the functiong previously introduced.
The form of the error (2.6) suggests that the impact of the spatial variability of the diffu-

sion coefficients will be primarily seen for low temporal frequencies. Indeed, the term̃D(x)

arising from the variability of the coefficient is weighted by |Eω(−x)| = e
−
√

ω
2D(0)

x, making
the effect of the variability negligible for large values ofω but potentially significant for low
frequencies. Moreover, we can draw the same conclusion for the variations with respect tox:
whenx is small (near the interface),̃D(x) is weighted by a non-negligible number, while
for x being large enough,Eω(−x) is very small.

2.2. Convergence factor of theDirichlet-Neumann algorithm with spatially variable
coefficients. So far we have established a general form of the errors propagating in each sub-
domain. We are now able to propose a formulation of the convergence speed for the global-in-
time Schwarz algorithm with spatially variable coefficients. Before dealing with the general
Robin-Robin case, we intend to determine the convergence speed in a simplerDirichlet-
Neumanncase, i.e., using the notations introduced in (1.1) for Gj = I andFj = Dj(0)

∂
∂x

.
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Moreover for the sake of practical convenience, we also try to find the expression of an ”ef-
fective” valueDeff

j corresponding to a constant value which would have the same effect on
the convergence speed as the non-constant diffusion profileDj(x).

THEOREM 2.1 (Convergence factor with Dirichlet-Neumann transmission conditions).
The convergence factorρvar

DN of the Schwarz algorithm (1.2) with Dirichlet-Neumann transmis-
sion conditions is

(2.8) ρvar
DN(ω) = ρcst

DN ρ̃DN,

whereρcst
DN =

√
D2(0)

D1(0)
, and

ρ̃DN =

∣∣∣∣∣

(
1−

∑

n

√
iω

D1(0)
Φn,1(0)

iω + c2n,1

∫ 0

−L1

D̃1(x
′)Eω,1(x

′)
dΦn,1

dx′
(x′)dx′

)

(
1−

∑

n

dΦn,2

dx
(0)

iω + c2n,2

∫ L2

0

D̃2(x
′)Eω,2(−x′)

dΦn,2

dx′
(x′)dx′

)∣∣∣∣∣,

(2.9)

with Eω,j(x) = e

√
iω

Dj(0)
x
, D̃j(x) = Dj(x) − Dj(0), and the eigenfunctionsΦn,j and

eigenvaluescn,j being solutions of the Sturm-Liouville problem (2.4).

Proof. Hereafter we use again the subscriptsj to characterize both subdomains, and we
use the functionEω,j(x) defined above that plays the same role as the functionEω previously
defined. A derivation very similar to what has been done in Section 2.1 but with a Dirichlet
boundary condition instead of a Robin boundary condition leads to

ê2(x, ω) = ĝ(ω)

(
Eω,2(−x)

+
∑

n

Φn,2(x)
√

iω
D2(0)

iω + c2n,2

∫ L2

0

D̃2(x
′)Eω,2(−x′)

dΦn,2

dx′
(x′)dx′

)
,

(2.10)

whereĝ(ω) = ê1(0, ω) and where the functionsΦn,2 are defined by a SL problem similar
to (2.4) but again with a Dirichlet condition instead of a Robin condition. OnΩ1, we have
(by simply takingλ = 0 in the derivation of Section2.1):

ê1(x, ω) =
ĥ(ω)√
iωD1(0)

(
Eω,1(x)

−
∑

n

Φn,1(x)
√

iω
D1(0)

iω + c2n,1

∫ 0

−L1

D̃1(x
′)Eω,1(x)

dΦn,1

dx′
(x′)dx′

)
,

(2.11)

where ĥ(ω) = D2(0)
∂ê2
∂x

(0, ω) and where the functionsΦn,1 are defined by a SL prob-
lem similar to (2.4) with a homogeneous Neumann condition atx = 0. The multiplica-
tive Schwarz algorithm with Dirichlet-Neumann conditionsis obtained by replacinĝe2 (re-
spectivelyĝ) by êk2 (respectivelŷek1(0, ω)) in (2.10), andê1 (respectivelŷh) by êk1 (respec-
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tively ĥk−1(ω) = D2(0)
∂ê

k−1
2

∂x
(0, ω)) in (2.11). Therefore we have

ĝk(ω) =


1−

∑

n

Φn,1(0)
√

iω
D1(0)

iω + λ2
n,1

∫ 0

−L1

D̃1(x
′)Eω,1(x

′)
dΦn,1

dx′
(x′)dx′


 ĥk−1(ω)√

iωD1(0)
,

ĥk(ω) =

(
−1 +

∑

n

dΦn,2

dx
(0)

iω + λ2
n,2

∫ L2

0

D̃2(x
′)Eω,2(−x′)

dΦn,2

dx′
(x′)dx′

)
√
iωD2(0)ĝ

k(ω).

Then, if we define a convergence factor by

ρvar
DN(ω) =

∣∣∣∣
êk1(0, ω)

êk−1
1 (0, ω)

∣∣∣∣ ,

the previous relations lead to

ρvar
DN(ω) =

∣∣∣∣
ĝk

ĝk−1

∣∣∣∣ =
∣∣∣∣∣
ĝk

ĥk−1

ĥk−1

ĝk−1

∣∣∣∣∣ = ρcst
DN · ρ̃DN,

whereρcst
DN =

√
D2(0)
D1(0)

is the convergence factor obtained in the case of constant diffusion
coefficients (see [12]) and ρ̃DN is given in (2.9).

Theorem2.1 shows that the convergence factorρvar
DN naturally appears as the product of

the convergence factor with constant coefficients (the surface values) and a term coming from
the spatial variability of the diffusion coefficient onΩ1 andΩ2.

Starting from Equation (2.8), we can suggest two “effective” constant values forD1

andD2. These (spatially constant) values have a similar effect onthe convergence speed as

the non-constant vertical profilesD1(x) andD2(x). They satisfyρvar
DN =

√
Deff

2 (ω)

Deff
1 (ω)

with

Deff
1 (ω) =

D1(0)∣∣∣∣∣1−
∑

n

√
iω

D1(0)
Φn,1(0)

iω+c2n,1

∫ 0

−L1
D̃1(x′)Eω,1(x′)

dΦn,1

dx′
(x′)dx′

∣∣∣∣∣

2

and

Deff
2 (ω) = D2(0)

∣∣∣∣∣1−
∑

n

dΦn,2

dx
(0)

iω + c2n,2

∫ L2

0

D̃2(x
′)Eω,2(−x′)

dΦn,2

dx′
(x′)dx′

∣∣∣∣∣

2

.

It is worth mentioning that, due to the variability of the coefficients, the convergence factor
is a function of the time frequencyω, whereas this dependency does not exist with constant
coefficients. Some examples of convergence factorsρvar

DN are given in Section3.2. Note that in
the caseω → 0, we getDeff

1 → D1(0), while

Deff
2 (ω → 0) = D2(0)

∣∣∣∣∣1−
∑

n

c−2
n,2

dΦn,2

dx
(0)

∫ L2

0

D̃2(x
′)
dΦn,2

dx′
(x′)dx′

∣∣∣∣∣

2

.

The effect of the variability of the coefficient in the subdomain with a Neumann condition
asymptotically vanishes. This is, however, not the case forthe subdomainΩ2 with Dirichlet
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conditions (Deff
2 (ω → 0) 6= D2(0)). This result shows that, when a Dirichlet-Neumann

algorithm is used,ρcst
DN < 1 does not necessarily imply thatρvar

DN < 1. In other words, the fact
that the algorithm with constant coefficients (the interface values) theoretically converges
does not ensure that the algorithm with variable coefficients will. Indeed,

ρvar
DN(ω → 0) →

√
D2(0)

D1(0)

(
1−

∑

n

c−2
n,2

dΦn,2

dx
(0)

∫ L2

0

D̃2(x
′)
dΦn,2

dx′
(x′)dx′

)

6= ρcst
DN,

(2.12)

whereasρvar
DN(ω → ∞) → ρcst

DN.

2.3. Convergence factor of theRobin-Robin algorithm with spatially variable coef-
ficients. In this section we determine the convergence factorρvar

RR for the more general case of
Robin-Robin interface conditions.

THEOREM 2.2 (Convergence factor with Robin-Robin transmission conditions). The
convergence factorρvar

RR of the Schwarz algorithm (1.2) with Robin-Robin transmission condi-
tions is

(2.13) ρvar
RR = |[(λ1 + λ2)K1 − 1] [(λ1 + λ2)K2 − 1]| ,

with λj being the Fourier symbol of the operatorΛj in (1.2) and

K1 =
1

λ1 +
√

iωD1(0)

1−

∑

n

√
iω

D1(0)
Φn,1(0)

iω + c2n,1

∫ 0

−L1

D̃1(x
′)Eω,1(x

′)
dΦn,1

dx′
dx′


 ,

K2 =
1

λ2 +
√

iωD2(0)

1 +

∑

n

√
iω

D2(0)
Φn,2(0)

iω + c2n,2

∫ L2

0

D̃2(x
′)Eω,2(−x′)

dΦn,2

dx′
dx′


 ,

(2.14)

whereEω,j(x) = e

√
iω

Dj(0)
x
, D̃j(x) = Dj(x) − Dj(0), and the eigenfunctionsΦn,j and

eigenvaluescn,j are solutions of the Sturm-Liouville problem (2.4).
Proof. Thanks to (2.6) and (2.7), we can expresŝe1 and ê2 in a compact form for the

iteratek as

êk1(ω, 0) = K1(ω,D1(0),Φn,1, cn,1, λ1) ĥ
k−1,

êk2(ω, 0) = K2(ω,D2(0),Φn,2, cn,2, λ2) ĝ
k,

(2.15)

whereĝ = −D1(0)∂xê1(0, ω) + λ2ê1(0, ω), ĥ = D2(0)∂xê2(0, ω) + λ1ê2(0, ω), andKj is
given in (2.14). The problem on the interfacex = 0 is given by the relations

(2.16)
(D1(0)∂x + λ1) ê

k
1(0, ω) = (D2(0)∂x + λ1) ê

k−1
2 (0, ω) = ĥk−1,

(−D2(0)∂x + λ2) ê
k
2(0, ω) = (−D1(0)∂x + λ2) ê

k
1(0, ω) = ĝk,

and by combining (2.15) and (2.16), we obtain

D1(0)∂xê
k
1(0, ω) = ĥk−1 − λ1ê

k
1(0, ω) = (1− λ1K1) ĥ

k−1,

−D2(0)∂xê
k
2(0, ω) = ĝk − λ2ê

k
2(0, ω) = (1− λ2K2) ĝ

k.
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By substituting those expressions in (2.16), we finally get a relation linkinĝg andĥ

ĝk = [(λ1 + λ2)K1 − 1] ĥk−1,

ĥk−1 = [(λ1 + λ2)K2 − 1] ĝk−1,

which leads to an expression for the convergence factor

ρvar
RR =

∣∣∣∣
ĝk

ĝk−1

∣∣∣∣ = |[(λ1 + λ2)K1 − 1] [(λ1 + λ2)K2 − 1] | .

We note that this expression of the convergence factor is consistent with the expres-
sion (1.3) obtained in the case of constant (but discontinuous) coefficients. Indeed, if we
setD̃1(x) = D̃2(x) = 0 in (2.13), we then haveKj = 1/

√
iωDj(0), which leads to (1.3)

becauseDjσ
±

j = ±
√
iωDj(0). A convenient formulation ofρvar

RR without complex numbers
can be found in AppendixA. To conclude this section, we look at the asymptotic behavior
of ρvar

RR, and we can easily find that

ρvar
RR(ω → 0) = ρvar

RR(ω → ∞) → 1,

which shows that the effect of the variability of the diffusion coefficients asymptotically van-
ishes when a Robin-Robin algorithm is used.

3. Numerical results. In this section we verify numerically the validity of the theoret-
ical results presented in Section2. To do this, we first briefly describe the rationale for the
spatial variability of the diffusion coefficient and provide a typical profile which we will use
for the numerical tests. Then we design a few experiments to illustrate the relevance of our
theoretical results.

3.1. Planetary boundary layer turbulence. Unlike boundary layers in many engineer-
ing flows, the atmospheric and oceanic planetary boundary layers are almost always turbulent
and cannot be explicitly resolved due to the insufficient vertical resolution in computational
models. The numerical representation of those layers thus relies on the Reynolds decompo-
sition: the flow is split into a mean (resolved) part〈u〉 and a fluctuating (subgrid) partu′

(whereu can either represent a velocity component or an active tracer). When this decompo-
sition is applied to nonlinear (advective) terms, this gives rise to additional terms and hence
to a closure problem. The dominant expression in the turbulent boundary layers arising from
the Reynolds decomposition is the divergence of the vertical part of 〈u′w′〉 (wherew denotes
the vertical component of the velocity). Typically, this turbulent vertical flux is expressed
as a function of the mean (resolved) part of the flow by using the down-gradient assump-
tion, 〈u′w′〉 = −D(x)∂x 〈u〉 , whereD(x) is the so-callededdy diffusivityor eddy-viscosity
if u represents a velocity. This assumption explains why a one-dimensional diffusion equa-
tion, like the one studied in the present paper, is generallysufficient to locally represent the
turbulent mixing in the boundary layers. The eddy diffusivity D(x) is defined to allow the
flow to make the transition between its surface (the air-sea interface) and its interior (below
the boundary layer) properties. This is the reason whyD(x) exhibits a strong spatial vari-
ability. In this context, several ways to specify the coefficientD(x) have been proposed. The
formulation most commonly used in the state-of-the-art numerical models can be found in [7]
and [14]. Those formulations define the eddy diffusivity as

(3.1) D(x) =





A x

(
1− x

hbl

)2

+ ν, x ∈]0, hbl],

ν, x > hbl,
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FIG. 3.1. Typical diffusion profileD(x) obtained forA = 0.5 ms−1 andhbl = 150 m in (3.1) with respect
tox (top) and two associated eigenfunctionsΦn(x) (bottom) of the Sturm-Liouville problem (2.4) with homogeneous
Dirichlet condition atx = 0.

with hbl the thickness of the boundary layer (depending on the state of the flow) andA a
parameter setting the intensity of the mixing (note thatD(x) is continuous and differentiable
at x = hbl). Throughout this section we assume thatD(x) is given by (3.1), and a typical
profile forA = 0.5 m/s andhbl = 150 m is given in Figure3.1.

In the remainder of this section we study first a Dirichlet-Neumann algorithm and then
a Robin-Robin algorithm. We define spatially variable coefficients withA1 = 0.1 m/s (re-
spectivelyA2 = 0.5 m/s) andhbl,1 = 50 m (respectivelyhbl,2 = 150 m) onΩ1 (respec-
tively Ω2). The values ofν1 andν2 (corresponding to the surface valuesD1(0) andD2(0))
are chosen to be the same as the values used in [9] in the constant coefficient case. If we in-

troduceγ =
√

ν2

ν1
, we investigate the two casesγ = 10 andγ =

√√
10 with ν2 = 0.5 m2/s

(the value ofν1 is adjusted depending on the value ofγ). Those various parameter values
lead to diffusion profiles that can be found in the atmospheric and oceanic boundary layers.
The discretization of the problem, the computational grid,as well as the initial conditions
are described in [9, Section 5]. We use∆t = 100 s and a random initial guess on the inter-
face so that it contains a wide range of the temporal frequencies that can be resolved by the
computational grid.

3.2. Test case 1: Dirichlet-Neumann.The analytical convergence factorρvar
DN(ω) in

Equation (2.8) is shown for different values ofγ in Figure 3.2. The eigenvaluescn and
eigenfunctionsΦn are computed numerically on the same computational grid as the model
problem. We remark that depending on the jump in the coefficients through the interface,
the spatial variability of the diffusivities either tend toaccelerate the convergence speed
(for γ =

√√
10) or to slow it down (forγ = 10) compared to the convergence speed ob-

tained with constant coefficients. As expected, the convergence factor for spatially variable
coefficients is no longer independent ofω, and for low frequencies we get a significant de-
parture from the convergence rate of the algorithm with constant coefficients. The trend seen
in the convergence factorρvar

DN(ω) determined at a continuous level is confirmed by the numer-
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FIG. 3.2. Evolution of theL∞-norm of the error of the Dirichlet-Neumann algorithm as a function of the

iterates forγ =
√√

10 (top, left) andγ = 10 (top, right). These results are obtained for constant diffusion
coefficients (gray dashed line) and for spatially variable coefficients (black line) as defined in Section3.1. The
corresponding convergence factorsρvar

DN(ω) (black line) andρcst
DN(ω) (gray dashed line) determined at the analytical

level are given forγ =
√√

10 (bottom, left) andγ = 10 (bottom, right).

ical results (Figure3.2, top). These results as well as the asymptotic expression (2.12) call
for caution when we use a Dirichlet-Neumann algorithm with spatially variable coefficients
because it can lead to significantly different performancescompared to the one obtained with
constant coefficients. We can expect a Robin-Robin type algorithm to provide a more robust
alternative thanks to the tuning of theλj parameters.

3.3. Test case 2: Robin-Robin.Here, we denote byλcst
j the optimal Robin parameters

obtained using the analytical results found in [9] for constant coefficients. We consider that
these constant coefficients are the interface valuesDj(0). Moreover, we denote byλvar

j the
Robin parameters optimized by solving numerically the problem (1.4) with the convergence
factor ρvar

RR as given in (2.13). This optimization is done using the Rosenbrock method [13]
and by taking the parametersλcst

j to initialize the algorithm. We see from Figure3.3 that
the use of the parametersλvar

j provide slightly better convergence properties compared to the
parametersλcst

j , regardless of the value ofγ. As for the Dirichlet-Neumann algorithm, we
can check that our analytical study at the continuous level provides a convergence factorρvar

RR

representative of the behavior of the algorithm at a discrete level (Figure3.3, bottom). From
Figure3.3 (bottom left), we also see that the way we initialize the algorithm (with a random
initial guess foru0

2(0, t), t ∈ [0, T ]) leads to the generation of a large range of temporal
frequencies and more particularly low frequencies slowingdown the convergence speed of
the simulation using the parametersλcst

j , although the latter provide a faster convergence than
the parametersλvar

j for most of the frequency spectrum. For our model problem, the use
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FIG. 3.3. Evolution of theL∞-norm of the error of the Robin-Robin algorithm as a functionof the iterates

for γ =
√√

10 (top, left) andγ = 10 (top, right). Those results are obtained for spatially variable diffusion
coefficients and the Robin parameters optimized by assumingconstant coefficients (gray dashed line) or the full
convergence factorρvar

RR (black line). The corresponding convergence factorsρvar
RR(λ

⋆
j ) (black line) andρvar

RR(λ
cst
j )

(gray dashed line) are given forγ =
√√

10 (bottom, left) andγ = 10 (bottom, right).

of the parametersλvar
j provides a relatively modest improvement over theλcst

j parameters.
However, in general, this statement has to be mitigated because if we considerhbl,2 = 10 m
instead ofhbl,2 = 150 m, we see in Figure3.4 that the parameters obtained through an
optimization ofρvar

RR are clearly superior to the parametersλcst
j . For this case, we show in

Figure 3.5 the asymptotic behavior of the optimized convergence rate and the associated
Robin parametersλvar

j . We numerically show that thanks to the theoretical work presented
earlier in the paper, we are able to bring the proper adjustments to the Robin parameters so
that our algorithm asymptotically maintains a good efficiency even in the presence of spatially
variable coefficients.

4. Conclusion. In this paper we present and analyze a new approach to study the con-
vergence properties of a global-in-time Schwarz algorithmin the case of a one-dimensional
diffusion problem with spatially variable diffusion coefficients. We analytically derive an
expression for the evolution of the errors of such an algorithm with respect to the iterates.
Thanks to our formulation, we are able to gain a better understanding of the behavior of the
associated convergence factor. We exhibit some interesting features that were not shown by
the usual convergence studies with constant diffusion coefficients. We put particular em-
phasis on the fact that for low temporal frequencies, it can be a very inaccurate assumption
to replace a variable diffusion coefficient by its constant interface value in the convergence
study. Moreover, we also show that depending on the type of algorithm under considera-
tion (Dirichlet-Neumann or Robin-Robin) the variability of the coefficients may have more
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FIG. 3.4.Evolution of theL∞-norm of the error (left) of the Robin-Robin algorithm as a function of the iterates

for γ =
√√

10 for hbl,2 = 10 m (instead ofhbl,2 = 150 m as in Figure3.3). These results are obtained for Robin
parameters optimized by assuming constant coefficients (gray dashed line) or the full convergence factorρvar

RR (black
line). The corresponding convergence factorsρvar

RR(λ
⋆
j ) (black line) andρvar

RR(λ
cst
j ) (gray dashed line) are on the right

panel.

FIG. 3.5. Evolution of the convergence ratemax
ω

ρvar
RR (left) and optimal Robin parametersλvar

j (right) of the

optimized Schwarz algorithm with spatially variable coefficients with respect to∆t. The parameters of the problem

arehbl,1 = 50 m,hbl,2 = 10 m,A1 = 0.1 ms−1, A2 = 0.5 ms−1, andγ =
√√

10.

or less impact on the asymptotic convergence properties. Tobe more attractive for practical
applications, our approach requires further developmentsby performing an accurate study of
the eigenvalue problems to improve our knowledge of the behavior of these eigenvalues with
respect to the perturbations of the diffusion profiles.
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ject “COMMA” and by the INRIA project-team MOISE. The authors are thankful for the
comments and suggestions of two anonymous reviewers, whichhelped to improve the clarity
of this manuscript.

Appendix A. Determination of the convergence factor in the case of variable coeffi-
cients.We recall (2.13):

(A.1) ρ = |[(λ1 + λ2)K1 − 1] [(λ1 + λ2)K2 − 1]| ,
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with

K1 =
1

λ1 +
√
iωD1(0)

1−

∑

n

√
iω

D1(0)
Φn,1(0)

iω + λ2
n,1

∫ 0

−L1

D̃1(x) exp

(√
iω

D1(0)
x

)
dΦn,1

dx
dx


 ,

K2 =
1

λ2 +
√
iωD2(0)

1 +

∑

n

√
iω

D2(0)
Φn,2(0)

iω + λ2
n,2

∫ L2

0

D̃2(x) exp

(
−
√

iω

D2(0)
x

)
dΦn,2

dx
dx


 .

(A.1) can be rewritten as

ρ =

√(
Im(K1)2(λ1 + λ2)2 + [(λ1 + λ2)Re(K1)− 1]

2
)

√(
Im(K2)2(λ1 + λ2)2 + [(λ1 + λ2)Re(K2)− 1]

2
)
.

(A.2)

In order to determine the real and imaginary parts ofK1 andK2, we can decompose each
term appearing in the preceding expressions:

aj = Re




√
iω

Dj(0)

iω + λ2
n,j


 =

√
ω

2Dj(0)

(
λ2
n,j + ω

ω2 + λ4
n,j

)
,

bj = Im




√
iω

Dj(0)

iω + λ2
n,j


 =

√
ω

2Dj(0)

(
λ2
n,j − ω

ω2 + λ4
n,j

)
,

c1 = Re

(
exp

(√
iω

D1(0)
x

))
= cos

(√
ω

2D1(0)
x

)
exp

(√
ω

2D1(0)
x

)
,

d1 = Im
(
exp

(√
iω

D1(0)
x

))
= sin

(√
ω

2D1(0)
x

)
exp

(√
ω

2D1(0)
x

)
,

c2 = Re

(
exp

(
−
√

iω

D2(0)
x

))
= cos

(√
ω

2D2(0)
x

)
exp

(
−
√

ω

2D2(0)
x

)
,

d2 = Im
(
exp

(
−
√

iω

D2(0)
x

))
= − sin

(√
ω

2D2(0)
x

)
exp

(
−
√

ω

2D1(0)
x

)
,

ej = Re

(
1

λj +
√
iωDj(0)

)
=

λj +
√

Dj(0)ω
2

λ2
j +Dj(0)ω + λj

√
2Dj(0)ω

,
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fj = Im
(

1

λj +
√
iωDj(0)

)
= −

√
Dj(0)ω

2

λ2
j +Dj(0)ω + λj

√
2Dj(0)ω

.

Thanks to these equalities, we can recastKj into the following form

K1 = (e1 + if1)(
1−

∑

n

(a1 + ib1)Φn,1(0)

∫ 0

−L1

D̃1(x)
dΦn,1

dx
(c1(x) + id1(x))dx

)
,

K2 = (e2 + if2)(
1 +

∑

n

(a2 + ib2)Φn,2(0)

∫ L2

0

D̃2(x)
dΦn,2

dx
(c2(x) + id2(x))dx

)
,

and by noting that

g1 =
∑

n

[
a1

∫ 0

−L1

D̃1(x)
dΦn,1

dx
c1(x)dx− b1

∫ 0

−L1

D̃1(x)
dΦn,1

dx
d1(x)dx

]
Φn,1(0),

h1 =
∑

n

[
b1

∫ 0

−L1

D̃1(x)
dΦn,1

dx
c1(x)dx+ a1

∫ 0

−L1

D̃1(x)
dΦn,1

dx
d1(x)dx

]
Φn,1(0),

g2 =
∑

n

[
a2

∫ L2

0

D̃2(x)
dΦn,2

dx
c2(x)dx− b2

∫ L2

0

D̃2(x)
dΦn,2

dx
d2(x)dx

]
Φn,2(0),

h2 =
∑

n

[
b2

∫ L2

0

D̃2(x)
dΦn,2

dx
c2(x)dx+ a2

∫ L2

0

D̃2(x)
dΦn,2

dx
d2(x)dx

]
Φn,2(0),

we obtain

K1 = (e1(1− g1) + f1h1) + i(f1(1− g1)− e1h1),

K2 = (e2(1 + g2)− f2h2) + i(f2(1 + g2) + e2h2).

Hence, thanks to (A.2), this yields an expression for the convergence factorρwithout complex
numbers.
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