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VERIFIED STABILITY ANALYSIS USING THE LYAPUNOV MATRIX EQUA  TION*

ANDREAS FROMMER AND BEHNAM HASHEMI#

Abstract. The Lyapunov matrix equatiod X + X A* = C arises in many applications, particularly in the
context of stability of matrices or solutions of ordinaryfdiential equations. In this paper we present a method,
based on interval arithmetic, which computes with mathematigat an interval matrix containing the exact solution
of the Lyapunov equation. We work out two options which camubéed to verify, again with mathematical certainty,
that the exact solution of the equation is positive definitais allows to prove stability of the (non-Hermitian) matrix
A if we choseC' as a negative definite Hermitian matrix. Our algorithm has cdatmnal cost comparable to that of
a state-of-the art algorithm for computing a floating poirprgximation of the solution because we can cast almost
all operations as matrix-matrix operations for which intéugthmetic can be implemented very efficiently.
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1. Introduction. Let A andC' be two given (real or) complex matrices of sizex n.
The equation

(1.1) AX + X A" =C,

which is linear in the entries of, is called the Lyapunov matrix equation. It is well-known
that this equation has a unique solution if and onlpjf+ X; # 0 for all i andj where
A1, Ao, -, A, are the eigenvalues of; see, e.g.,40]. The Lyapunov matrix equation is of
interest in control and system theory especially in cofalility and observability Gramians,
balancing transformation, stability robustness to patameariations, robust stability and
performance study of large scale systems, reduced-ordéelng and control filtering with
singular measurement noisé3]. Of particular interest is the case in which the right-hand
side matrixC' is Hermitian 4, 16, 42] for which, if unique, the solutiorX is also Hermitian.

The matrixA is called stable (also negative stable or Hurwitz stablééliterature), if
all its eigenvalues have negative real parts. Negativat{pesdefinite matrices are a special
case of stable (positive stable) matric@§][ An important tool for checking stability of a
given matrixA is to solve the Lyapunov matrix equatioh {) with C' chosen to be a negative
definite matrix and then check for positive definiteness, because the following theorem
holds.

THEOREM1.1. A matrixA € C"*" is stable if and only if there exists a positive definite
solution to the Lyapunov equatiof. ) whereC' is Hermitian negative definite.

A proof of this basic theorem can be found in, e.d,[Thm 4.4] or RO, Thm 2.2.1];
see alsog6, Thm 13.24]. Checking the stability of a matrix based on Thevol.1 has the
advantage that the question of stability for an arbitraryrinad € C™*" is transferred to the
simpler question of checking positive definiteness for ankigéan matrix X' [20].

To further highlight the importance of the concept of mastiability consider a nonlinear
system ofn first-order differential equations

(1.2) &= f(x),
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with z € R* and f : R® — R". A vectorz is called anequilibrium pointof (1.2) if
f(z) =0, i.e., the constant function(t) = & is a solution. An equilibrium point is called
asymptotically stabld there is a neighborhood/ of z, such that for every solution of.(2)
for whichz(t) € N for somet, we havdim;_, ., x(t) = & [44, pp. 298-299]. Physically this
means that a system whose state is perturbed slightly froaegaitibrium point will return to
that equilibrium point. The stability of each equilibriumipt can be analyzed by linearizing
(1.2) about that point. Specifically, far nearz the solutions of 1.2) are approximated well
by solutions of

(1.3) i = %(i‘)(z‘ — &),

which is a linear system of differential equations with dmént matrix%. It can be shown

that all solutions of 1.3) satisfyx — & — 0 ast — oo if the Jacobiang—i atz is stable; see,
e.g., B4, pp. 291-298]. To put it another way:is an asymptotically stable equilibrium point
of (1.2) if all the eigenvalues of the Jacobianiahave negative real parts. We refer 0]
Ch. 2] for more details.

1.1. Verified stability analysis. In this paper we consider the Lyapunov matrix equation
(1.1) whereC' is Hermitian. Our goal is to presentvarified numerical algorithm, i.e., an
algorithm whose output will be exactly one of the two followistatements, where the first
one is correct with mathematical certainty:

1. (1.1) has a Hermitian positive definite solution. The algorithmert also provides
correct (and tight) lower and upper bounds for each entrpefsolutionX .
2. Failure, i.e., we do not obtain any information on whetieis positive definite or
not.
In the case that the algorithm outputs the first statement ave lthus proved mathemati-
cally that A is stable. The major ingredient in our algorithm is its usérofchine) interval
arithmetic to fully control rounding of floating point opéi@ns which—starting from a given
approximate solutiorX to the Lyapunov equation—allows to compute enclosing iatisrv
for all entries of then x n solution matrix X, i.e., a matrixX whose entries are compact
intervals which have been proven to contain the correspanentries of the exact solution
X by the algorithm. The aim is to compute narrow intervals fiboathese entries so that
we have high chances of success for a subsequent, final step prbves that all Hermitian
matrices contained iX are positive definite using an approach by Rurf)].[ Our algo-
rithm will also be computationally efficient in theory andaptice: In many cases its total
cost is of the same order as the cost for obtaining the apmiate solutionX, i.e., O(n?).
Moreover, the algorithm almost exclusively uses matriximaperations, a crucial feature
for time efficient machine interval arithmetic since it ad®imost of the otherwise very costly
switchings of rounding modes.

Verified stability analysis based on the Lyapunov matrixamn AX + X A* = —I has
already been considered i, [Ch. 4] and §, 33]. The details on how the Lyapunov equation
is solved are not available i8] 9, 33], the reported numerical examples only inclutle 2
matrices. Moreover, in these publicatio2is~! “corner” matrices had to be used to verify
positive definiteness of interval matrices, employing ahudtby Alefeld [L].

Another approach to verify stability of a matrix based oreimtl arithmetic was pursued
by Gross [L5]; see also the comments i&F]. Here, the problem of verified stability analysis
of A is firstly converted into the problem of verified Schur stipilall eigenvalues have mod-
ulus less than 1) of an interval matrix enclosing thétWus transfornf(A) = I+2(A—1)~1.
The so-called Cordes algorithri][is then applied to the enclosure 8f{A). The Cordes al-
gorithm checks whether for a certain exponent N the spectral radius of an interval matrix
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containing the sefY | Y = A™, A € S(A)} is less than 1, using Gagorin’s theorem, e.g.,
[43]. Itis important to avoid the wrapping effect as much as pidssvhich is why the Cordes
algorithm considers only exponents which are powers of two in a recursive manner and,
in addition, uses Lohner’s idea@T] of representing parallelepipeds in a factorized form.sThi
approach has also been extended for an interval input matipy applying a partitioning
process on non-degenerate interval elementd aft the risk of ending up with exponential
complexity.

1.2. Interval arithmetic and Intlab. (Machine) interval arithmetic is the basic mathe-
matical tool in verified numerical computing{]. Detailed investigations of the mathematical
properties of interval arithmetic can be found in, e.8,,49, 30]. Here, we only review those
basic properties needed in our methods. A real compactvaitean be represented via its
two endpoints or via its midpoint and radius. Generalizimg to the set of complex numbers
yields two different concepts of complex intervals: regfalar intervals, characterized by a
lower left and upper right corner in the complex plane, andutar intervals, characterized
again by midpoint and radius. More precisely, a rectangudanplex intervak is the closed
rectanglea = {z + iy : « € x,y € y} with  andy real compact intervals, also denoted
a = z + iy, while a circular complex intervat is a closed circular disk of radiusd (a)
and centemid (a), i.e.,a = (mid (a),rad (a)) = {z € C: |z —mid (a)| <rad(a)}.

An arithmetic operatior € {+, —, %, /} between two intervals can, in principle, be de-
fined in the set theoretic sense. For reasons of a practipgémentation, however, one wants
these operations to be closed in the given interval fornrad,the characterizing parameters
should be easy to compute. So, for example, the standatdresiiic for circular complex
interval arguments, b is defined as follows:

(mid (a),rad (@)) £+ (mid (b),rad (b)) =
(mid (a),rad (a)) * (mid (b),rad (b))
(mid (@)mid (b), |mid (a)|rad (b) 4+ |mid (b)|rad (a) + rad (a)rad (b)),
(1/mid (@), 1/(jmid (a)| — rad (a))),
(1/{mid (b),rad (b))) * (mid (a),rad (a)).

Herein, the operations and — coincide with the set theoretic definition; see, e.g],fpr
details. For all operationswe have the fundamental enclosure relation

(mid (a) + mid (b), rad (a) + rad (b)),

1/(mid (a),rad (a)) =
(mid (a),rad (a@))/(mid (b), rad (b))

(1.4) aobD{aob:aca,beb}.

The enclosure propertyl(4) carries over to expressions: #{z1, ..., z,) is an arithmetic
expression in the variables, . . ., z,,, then its interval arithmetic evaluatiotix,, . .., x,),
an interval, contains the rangeofor xy € x4, ..., 2, € x,.

When interval arithmetic is implemented on a computer, theupaters defining the
result interval are computed in floating point arithmetiorfr the parameters defining the
interval operands. For the enclosure property to hold fehsamachine interval arithmetic
it is mandatory to use directed roundings appropriatelg; sey., B1]. Intlab [39] is an open
source Matlab toolbox that provides such a reliable macimtezval arithmetic. It is freely
available for non-commercial use fronttp://www.ti3.tu-harburg.de/-rump/
intlab/ . A crucial ingredient to the efficiency of Intlab is the fabiat it allows to use
implementations of (interval) matrix-matrix and matrigetor operations in the midpoint-
radius format in a way that the number of switches of the ringpdhode is independent of
the dimension of the matrices/vectors. On today’s compaitehitectures this allows much
(up to 1000 times) faster execution times than an intervdeda which rounding modes
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would be switched anew for each operation with scalar okx§88]. A similar approach is
also available for the C++ package C-XSC; s&@ P3].

We used Intlab[39] to implement the algorithms for verifying stability of a mnix de-
veloped in the present paper. In order to make these impletiens efficient, we seek to
formulate as much of the computational work as possible imdeof matrix-matrix opera-
tions.

We end this introduction by explaining some of our notatiBor a complex: x n. matrix
N, the matrix) := N7 represents the transposedt The notationV* for the Hermitian
transposeV* = N was already used earlier; seke]).

For two matricesA € C™*™ andB € C"*", A ® B (see, e.g.,40]) denotes the
Kronecker product off andB, s0A ® B is a matrix of sizenn x mn. By vec we denote the
operation of stacking the columns of a matrix in order to obtene long vector. Seec(A) is
a vector of lengthn?. Ford = [dy, ..., d,]T € C", the matrixDiag (d) denotes the diagonal
matrix in C™**" whosei-th diagonal entry igl;. We extend this to matrices: F&r € C"*™
we putDiag (D) = Diag (vec(D)) € C»™*"™ By ./ we mean the Hadamard (pointwise)
division.

The following lemma will turn out to be useful. For part a)ese.g., P0]; part b) is
trivial.

LEMMA 1.2. For any three (real or) complex matrice$, B, and C with compatible
sizes we have

a) vec(ABC) = (CT ® A)vec(B).
b) Diag (A)~'vec(B) = vec(B./A).

The remaining part of this paper is organized as follows.dot®n2, we give the details
of our algorithms for verified stability analysis. SectiBrrontains the results of a series of
numerical experiments, and some conclusions are givendtidbel.

2. Verified solution of the Lyapunov equation via (block) diggonalization. In this
section we describe in detail our verification algorithmdomputing enclosures for the solu-
tion of a Lyapunov equation along with the test for positiediniteness. The approach relies
on a Krawzcyk-type method which we present first.

Krawczyk’s method is a classical method for computing arlasure for the solution of
a general, unstructured, non-singular linear system

(2.1) Pr=c, PeC™™ zceC™.

Given an approximate solutianof the linear system, computed by some floating point linear
system solver, and given an approximate invé®sef P, again computed by some floating
point algorithm, Krawczyk's metho®f] in its improved version by Rum8[/] uses machine
interval arithmetic (including outward rounding) to chegkether

(2.2) k:=R(c—Pz)+ (I, — RP)z C int (2).

Here,I,, denotes the identity i@ andint (z) denotes the topological interior of the (closed)
interval vectorz. If (2.2) holds we know that the solution 02.(l) is contained ini + z due
to the following result from 37]; see also12].

THEOREM2.1.[12, 37] Let z be an interval vector. If

(2.3) K:={R(c—Pz)+ (I, —RP)z: z € z} Cint(2),

IMore precisely, we used Intlab V6. The latest (end 2012)assentlab V7 represents a major update where
several algorithms have been modified.



ETNA

Kent State University
http://etna.math.kent.edu

VERIFIED STABILITY ANALYSIS 191

then” andR are non-singular, and the solution d.(l) is contained int + K C & + z.
Note that/C C k due to the enclosure property of interval arithmetic. Thel@sure
method we will present for the Lyapunov equations also setie Theoren®.1, but it uses
interval arithmetic in a different manner than i %) to compute an enclosure fé.
The Lyapunov equatiori(1) can be written using theec and® notations in the form of
the following system of linear equation®(, 45]

(2.9) Px =c, whereP =1, @ A+ A® I,,, x = vec(X) andc = vec(C).

Note that by Lemma.2we havevec(X A*) = (A ® I,,)vec(X).
In order to apply Krawczyk’s method t@ (4), we need to compute an approximate in-
verser,

RaP =, 0A+A0 L) eC™,

which is anO(n®) process if we use Gaussian elimination and do not try to takargtage
of the sparsity structure @?. But even ifR were computed more efficiently, we still need to
computel — RP. If Aisadense (non-sparse) matrix we must ex@etd be a dense matrix,
too. Since each column @ then contains (at mos®n — 1 nonzero entries an® is an
n? x n? matrix, computingR P has a complexity)(n>). Therefore, the cost for computing
kin (2.2) is at leastO(n®) which is prohibitively high for larger values of.

The Lyapunov equation is a special case of the SylvestebnegfuationAX + X B = C
with B = A*. We have shown in1[2] how the complexity of an enclosure method for the
solution of the Sylvester equation can be reduced®te?®) if A and B are diagonalizable.
While [12] expicitly relies on interval arithmetic, the recent pap2g] extends the approach
of [12] in a way that it is sufficient to check certain inequalitiesng (IEEE standard compli-
ant) floating point operations. We now recall the approack.gf specialized to the case of
the Lyapunov equation. To expose the central idea on howdtecethe complexity td (n?),
we first discuss the idealized situation where all arithmeperations are done exactly. The
modification to be applied in practice using machine inteavithmetic to completely control
all roundings will be discussed thereafter.

If Ais diagonalizable we have the (exact) spectral decompasiti

(2.5) VA= DV with V,D € C"*", D = diag(\1, ..., An).

Here,V is a matrix of left eigenvectors ofl. So X is an exact solution of the Lyapunov
equation {.2) if and only if

(VAV HYVXVH + (VXVHVAV H)* =V Cev™,
ThereforeY = V XV* is the solution of the linearly transformed Lyapunov eqoati
(2.6) DY +YD* =G,

whereG = VCV*. The Lyapunov equatior2(6) is equivalent to the linear system of equa-
tions

(2.7) Qy=y,

where

(2.8) Q=1I1, VAV H+ (VAV-YH® I,,
y=(VaV)ur,

g=VaVe
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Since we temporarily assume thais a matrix of exact eigenvectors, we have, of course,
thatV AV —! = D, which shows tha@ is diagonal. This means that an approximate inverse
R for Q can be computed very cheaply at c6¥tn?), and the same holds for the product
RQ. This shows that diagonalization bears the potential oftutiially reducing the com-
putational cost in a Krawczyk-type enclosure method.

Let us now turn to the realistic setting, where instead otegathmetic we use floating
point and machine interval arithmetic. We assume thaind D in the diagonalization of
A are computed via a floating point algorithm. The&ng will hold only approximately, but
we still have that the solutiol of the transformed Lyapunov equatiah ) is related to the
solution X of the original Lyapunov equatiori(l) viaY = VX V* if in (2.6) we replaceD
with the matrixV’ AV —!, which is now only approximately diagonal. But singelV ! is
close toD, we also have that the diagonal matrix

(2.9) A=T®D+D®I,

is close to the matrix2 from (2.8) (which asV’ AV ~! is not exactly diagonal any more). This
shows that the inverse of the diagonal matixcan be taken as the approximate invelse
in a Krawczyk-type enclosure method. This is crucial to tficiency of a Krawczyk-type
method, since becaugeis diagonal the computation df ~*Q has complexityO(n?) only,
given thatQ has (at mostkn — 1 non-zero entries in each of it& rows.

While the matriced” and D are available as the result of a floating point algorithm, the
matrix V! is not. Working just with an approximation féf—*, obtained by some floating
point algorithm, is not sufficient for our purposes, becatn the relationt” = VXV*
between the original solutioX and the solutiort” of the transformed systen2 (/) would
hold only approximately. We therefore work with an enclasiiy; for V1, i.e., with an
interval matrix I,y known to contain the exact inverdé—!. Such an interval matrix
can be obtained using Krawczyk’s method for the funclioh — 7. An implementation is
available through the Intlab functiorerifylss

Let now X be an approximate solution for the Lyapunov equatibri)( obtained by
some floating point algorithm and I6t:= AX + X A* — C be its residual. Then the error
T := X — X with respect to the exact solution solves

AT +TA* = -6.

The idea is now to use the transformations described so falotiin an efficient Krawczyk-
type method to compute an enclosurefor

Let B and F be interval matrices that contalnAV —! andV (AX + X A* — C)V*, re-
spectively. If we can compute an interval matfixthat contains all solutions of all equations

(2.10) BE + EB* = —F,

for every B € B and everyF € F, thenX + Iy EI5, will contain the exact solution
X = X + T of the original Lyapunov equatiori(1). To obtain suchE, we wish to apply

a Krawczyk-type method based on Theorgrh Converting matrices into vectors using the
vec operator, this means that we have to compute an enclosutieseet

(2.11) K(e) ={A Y (~f+(A-(I,®B+B®I,))e, f€ f, BEB, ec e},

where f = vec(F'), e = vec(E). Using machine interval arithmetic to evaluate the expres-
sion definingF’, an enclosure fof—f + (A — (I, ® B+ B®1I,))e, f € f, B€ B,e € e}
can be computed in matrix termsas:(G) where

G:=-F+(D-B)E+ED-B)".
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Also, in matrix instead of vector terms, the multiplicatiaith the diagonal matrixA 1! is
a pointwise division by the matri - I* + [ - d*, whered € C"*! is a vector containing
the diagonal entries ab andi* = [1,---,1] € R, Note that the(i, j)-entry d; + d;
of this matrix cannot be computed exactly in floating poirithemetic, but machine interval
arithmetic yields a matribdX. O d - [* + [ - d*. Using Theoren®.1and writing everything in
matrix terms we have that if

K(E)=(-F + (D — B)E + E(D — B)*)./L C int (E),

then K := K (F) contains all solutions of2(10, and the exact solutioX of the original
Lyapunov equationl(1) is contained inX + I KT},

In Algorithm 1, we explicitly “symmetrize” a computed interval matrig when we
know that the exact, non-interval matrices of interest am@d inA are Hermitian. In prin-
ciple, symmetrization would mean that we replace an eatryof A by a,; N a;;, show-
ing that this operation works towards making the entriesAomore narrow. In midpoint-
radius format, the intersection of two intervals is not akd@y more. Intlab therefore
has to use a relatively sophisticated algorithm to obtaisk dontaining this intersection.
Interestingly, the Intlabintersect operator doesot fulfill a commutativity relation of
the kindintersect  (a,b) = intersect (a,b). As a result, an interval matrix com-
puted as the entrywise intersection 4f and A* is not necessarily “Hermitian”. Instead
of intersect (A, A*) we therefore use a symmetrization operatbimplemented via the
following Matlab-Intlab commands:

H=intersect (A, A");

H(A) := tril(H,-1)+diag(real(diag(H)))+tril(H,-1) *
Here, tril(H,-1) is the Matlab command which returns the strictly Iower tgalar part
of H. Note thatH (A) contains indeed all Hermitian (point) matricdsc A.

The interval hull operatorl(0, U) used in Step 10 of Algorithrit, produces an interval
matrix each entry of which is the smallest compact intenaaitaining0 and the respective
entry of the interval matribxU .

2.1. Checking positive definiteness of interval matricesDetermining the positive
definiteness of symmetric interval matrices plays an ingoartole in several applications
ranging from stability analysis of matrices, global optzation problems and solution of lin-
ear interval equations over semi-definite programming lemis, to the representation theory
of Lie groups [LO, 41]. Rohn [35] showed that the problem of determining the positive def-
initeness of a real symmetric interval matrix is NP-harda&knd Hou41] proved that an
n x n Hermitian interval matrixA is positive definite if and only ifi*~*(n — 1)! specially
chosen Hermitian vertex matrices are positive definite; adse [L8, 36]. Rump KQ] pre-
sented a computationally simple and fast sufficient coteimplying positive definiteness
of a symmetric or Hermitian interval matrix. His method isbd on a single floating-point
Cholesky decomposition of the midpoint matrix, its backdvatability analysis and a per-
turbation result. More recently, Domes and Neumaléi [proposed a so-called directed
Cholesky factorization that can also be used for verifyingifive definiteness.

In Step 17 of Algorithml we need to check the positive definiteness of the exact saluti
X of the Lyapunov equatiori(1). We did so using the Intlab functiasspd which is based
on [40]. We also tested the alternative approach to prove positeftniteness from10],
where the code was kindly made available to us by the authatsobserved very similar
results. We thus stayed witbspd from Intlab in the present paper.

Since the exact solutioX is contained inX = X + I K1}, our first option to be
implemented in Step 17 is as follows
Option 1: Apply isspd to H(X), i.e., the Hermitian part oX..



ETNA

Kent State University
http://etna.math.kent.edu

194 A. FROMMER AND B. HASHEMI

Algorithm 1 If successful this algorithm obtains an interval mati#X such thatX+ W
contains the unique Hermitian solutioXi of the Lyapunov equationl(l) and checks the
positive definiteness oX .

1: Use a floating point algorithm to get an approximate soluffoof the Lyapunov equation
(1.1). Then, replaceX by its Hermitian partH (X).

2: ComputeV andD in the spectral decompositio.f) using a floating point algorithm.

3: Compute am x n interval matrixL s.t.L D d - I* + 1 - d*. {L is an interval matrix due
to outward rounding

4: LetL = H(L). {vec(L) 2 diag(A) from (2.9}

5: Compute an interval matri%y containingl’ —!.

6: Compute F = V - (AX + (AX)* — C) - V* using interval arithmetic and let

F=H(F).
7. ComputeB = (V A)Iy using interval arithmetic everywhere.
8: ComputeE = —F./L, putj = 1. {Prepare loop
9: repeat
10: PutE=0(0,E-[1—¢,1+¢]), incrementj. {e-inflation}
11: ComputeN = (D — B)E.
122 ComputeM = —F + (N + N™). {M is Hermitiar}
13:  ComputeK = M ./L. {K is Hermitiar}

14: until (K Cint E Or j = jmaz)
15: if K C int E then {successful terminatign

16:  ComputeW = (I K)I; . {solutionX of (1.1)isin H(X + W)}
17:  Check for positive definiteness &f (X + W). {2 options availablp
18: else

19:  Output “verification not successful”.

20: end if

On the other hand, we know that
X=X+VI'EV =V} Y+ E)V * withY =VXV*andV * = (V" 1)*,

So, the matrixX is positive definite if and only it” = Y + E is positive definite. We know
thatY is contained inY” + K whereY = (VX)V*. Therefore, an alternative approach is
to show that every Hermitian matrix contained in an intemaltrix Y O Y + K is positive
definite. Our second option is therefore as follows
Option 2: Apply isspd to H(Y), whereY is given as(VX)V* 4+ K with (VX)V*
computed using machine interval arithmetic to account foatfhg point roundings in the
evaluation of the products.

Option 2 is likely to be superior to option 1 since the intépsries ofY” can be expected
to be narrower than those & andY is often (slightly) better conditioned thaX.

2.2. Block diagonalization. The approach presented may fail at two places: The variant
of Krawczyk’s method may fail to verify the crucial conditid C int E in Step 14 of
Algorithm 1, or the test for positive definiteness may fail in Step 17. ghances for failures
increase as the condition number of the left eigenvectorim&t increases. Due to the
wrapping effect, the radii of the entries of the various im& matrices to be computed in
Algorithm 1 will then tend to become very large so that the conditkorC int E in Step 14
will not hold any more.

We therefore also present a variant of our algorithm whereisestheblock diagonaliza-
tion of Bavely and Stewart3] to control the condition number df at the expense of having
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D with (hopefully small) blocks along the diagonal. The blatigigonal factorization can be
written as

(2.12) A=Vv"'DV,

whereD is blockdiagonal with each diagonal block being triangular.

We now formally defineQ exactly as in 2.8) and its approximatiom\ as in @.9), i.e.,

A =1,® D+ D®I,. Of course,A is not diagonal any more. It is block diagonal with
upper triangular diagonal blocks. We refer ] for further details.

The following modifications need to be applied to Algoritdmin Step 2, the matrices
V' and D will be obtained from the block diagonal factorizatioh.12). Since the matrix
D is not diagonal any more we have to modify Steps 8 and 13 wher@ised pointwise
division by the interval matrix.. For the block modification, Steps 3 and 4 will not be
needed and instead of Step 8 we use forward substitutionlve sovec(E) = —vec(F)
for E and letE = H(E). Similarly, instead of Step 13, we solvevec(K) = vec(M)
for K using forward substitution and Ig&K = H(K). It must be noted that these two
modifications destroy the matrix-matrix operation paradigo that the modified algorithm
will be substantially more time consuming in Steps 8 and I3=#hsre. Note that this modified
algorithm will have complexity©(n?) only if the sizes of the blocks i are bounded by a
constant.

We refer to [L2] for a discussion of why a standard Schur decompositiompf.e.,
an orthogonal reduction to (full) triangular form, is not ee approach for an enclosure
method based on machine interval arithmetic due to the exqaily growing accumulation
of outward roundings.

3. Numerical results. All our numerical examples focus on proving the stabilityaof
given matrixA. So, in view of Theoreni..1, we apply Algorithml to compute an enclosing
interval matrix for the solution of the Lyapunov matrix edjoa

(3.1) AX + XA* = 1,

and then runisspd on the thus computed enclosure f&r (option 1) orY = VXV*
(option 2).

In our tables, we wish to report indicators on the quality leé tomputed enclosure
matrices. These indicators will be based onrative precisiorof an intervala given as

rp(a) := min(relerr  (a), 1),

whererelerr  is defined as

rad (@)
relerr (a) = { \Iniéi Ea))‘v 8 ¢ a,
rad(a), € a,

available as an Intlab function. Loosely speakirgdlog,,(rp(a)) can be regarded as the
number of known correct digits of an “exact” value contaired:. For an interval matrix
X we will report two indicatorsnrp andarp based on the relative precisiop(X;;) of its
entriesX ;;, defined as

3.2) mrp(X) = max{rp(X,;) | i,/ =1,...,n},
1/n?

(3.3) arp(X) = | [] @p(X))

1,7=1,n
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So—log,,(mrp(X)) and—log,,(arp(X)) represent the minimum and average number of
known correct digits, respectively.

The following notation is used in all our tables: Under thadigme “problem info” we
summarize basic information about the Lyapunov equatiamsiciered. The first column
refers to the name under which the test matrix is known froenlitierature or to our choice
of parameters if4 is from a parametrized family of test matrices. The secordron gives
important basic information about, namely, the/s-condition number of its (approximate)
eigenvector matrix” from (2.5). For smaller problem sizes we also repg(tP), the (,-
condition number of the matri® from (2.4) and the separation “sep” of and—A*, i.e., the
smallest singular value @?. As was suggested by one of the referees, whéthe Jacobian
of a system of ODEs, the quotient of the largest and smallesiutas of the eigenvalues of
Ais a customary measure for the stiffness of the system of QBdss e.g.,41, pp. 56]. We
therefore also report thistiffness ratia-, for all our examples.

The third column contains information about the computatié the floating point ap-
proximationX. This matrix is obtained using the commalgdp from the Matlab Control
System Toolbox. We report the timg; required bylyap in seconds as well as the qual-
ity of the approximate solutiolX as given by the Frobenius norm of the residual matrix
AX + XA* +1.

We report numerical results for both options available fégakithm 1. Here, X andY
stand for the (symmetrized) interval matrices computed IgoAthm 1 with option 1 and 2,
respectively. The columns namegd(X ) andspd(Y') show the result of Intlab’ssspd
function for checking positive definiteness. Here, 1 meaas évery Hermitian matrixX €
X has been verified bigsspd to be positive definite, while 0 means that no verified result
could be obtained bisspd , and similarly forY". In a second column we give information
on the quality of the computed enclosing matrix by reportihg values of the indicators
mrp andarp defined in 8.2) and @.3). The valuek is the number of sweeps through the
repeat loop of Algorithm 1. We sét,... = 9. If the algorithm is successful in computing an
enclosure, it very often is so in the first sweéps 1. In the fourth column, “time” stands for
the total time required by Algorithri followed by one call tasspd , andx(mid (X)) and
x(mid (Y")) stand for the condition number of the midpoint of the compwaclosures as a
hint on the condition of the respective exact solution.

It remains to explain the meaning of the parameter “res..prébe success of a Krawczyk
type method crucially depends on the precision we obtainvewvaluating the residual, i.e.,
the radii of the components of the computed interval matiz V - (AX + XA* —C)-V*.
Note thatF' is an interval matrix since we have to account for all floatpggint roundings
when evaluating the residual. In our tables, “res. precfereto the effort we invested
into getting “tighter” enclosures for the residual. Moresgisely, “res. prec. = double” in
the fourth column corresponding to option 1 means that nciapeffort is made, i.e.F' is
obtained by performing all matrix operations using the d&ad interval arithmetic opera-
tions (based on rounded IEEE double precision operatiataiting with the point matrices
V, A, X andC. Similarly, for option 2 “res. prec. = double” means that veerpute an enclo-
sure forY = (VX)V* in Y using standard interval arithmetic with the point matriteand
X. If the algorithm is not successful with these standardagmiwe use an improved method
from [32] for computing an interval enclosuB for the product4dX. We then use standard
double precision to evaluate the suBnt- B* — C' and the subsequent multiplications with
andV*. This option is indicated as “res. prec. = impr.” in the fdudolumn corresponding
to option 1, and similarly in option 2 where it means that we tiés improved multiplication
just for the facto” X when computing” = VXV*.

If the algorithm is still not successful, we turn to “res. pre quad.”, where now the ma-
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trix product AX is evaluated using simulated quadruple precision basedronfece trans-
formations. This option is available as a choice in Intlabt ib should be noted that its
computation speed is orders of magnitudes slower, sinceraonding modes are switched
for each scalar operation. For this option, as a side effeetactually also obtain a “tighter”
enclosurel y for the inverse of the matri¥” (see line 5 of Algorithml). We always obtain
V via the Intlab functiorverifylss . This function computes an interval enclosure for a
linear system and allows for block right hand sides (rhsthst an enclosure for the inverse
is obtained when choosing rhs as the identity matrix. Whelalbris required to work with
simulated quadruple precisioverifylss for a block rhs actually does not use (simulated)
quadruple precision everywhere, but rather uses just amowepl precision implementation
of the functionlssresidual which is called fromverifylss

Ouir first set of tests is from Example 4.1 of the CTLEX bencHojab)]. This is an aca-
demic example which has the advantage that we can chosabkpaeameters to control the
conditioning ofP as well as the dimensian, thus enabling, in particular, a scaling study. We
report our numerical results in Tabl8sl and3.2 n, r, s are parameters in Example 4.1 from
the CTLEX benchmarkd5]. For the smaller examples in Taliel we also report results ob-
tained with the functio ERMATREQWf the software package Versofi4] for comparison.
Versoft is a collection of Intlab programs, computing eisclies for the solutions of various
numerical problems. For the Lyapunov equatiERMATREQb&sically uses Krawczyk’s
method for the large systeri.@). It has the advantage of not having to diagonalize or block
diagonalizeA at the disadvantage of a computational complexity bey@ta).

TABLE 3.1
Numerical results for different tests from Example 4.1 ef@TLEX benchmarl2f].

problem info. Versoft [34] Alg. 1 with option 1 Alg. 1 with option 2
n  k(V) ty [spd mrp(X) time [spd mrp(X) k& time |[spd mrp(Y) time
r  k(P) rs [(X) arp(X) (X) arp(X) res. prec./(Y) arp(Y) prec. (f’)
s sep ||res|| r(mid X)) K(midY)
10 3.1E3 19E-30 9.2E-5 3.1E-20 34E4 1 15E-2| 1 7.6E-4 2.4E-2
3.1 3.4E12 2.6E4 9.1E-5 2.4E-4 double 1.1E-4 double
2.5 6.5E-6 1.4E-3 3.9E10 1.2E5
10 1.5E-3 33E-2 1 8.7E-11 1 45E-2| 1 4.7E-7 3.7E-2
3.1 6.1E-11 impr. 8.8E-9  double
2.5
50 1.2E2 1.1E-2 0 8.6E-1 3.2E2 O 1.2E-2 8 27E-1| 1 4.1E-2 2.9E-1
1.8 3.2E15 3.2E12 1.5E-2 2.5E-5 quad. 2.6E-6 double
1.1 1.6E-2 9.5E-2 2.4E15 1.1E13

The following observations can be made from Tallesand 3.2 Option 2 in Algo-
rithm 1 allows to prove stability more often than option 1. This candttributed to the fact
that the condition number of the matnixid (Y') is often significantly smaller than that of
mid (X') and that, at least on the average, the relative width of ttesval entries ofy” from
option 2 is smaller than foX from option 1. The right part of Figurg.1 depicts this fact
graphically.

When the condition number @ is very high (beyond inverse machine precision), stan-
dard double precision arithmetic is not sufficient. Howeseritching to improved or quadru-
ple precision often helps. For = 50, the Versoft functionVERMATREQBIready needs
almost a factor of 1000 more time than Algoritiinandisspd is never successful on the
results computed with Versoft. It should be noted, howetet we could not adapt the pre-
cision in Versoft as we did in Algorithm to be successful for the problems considered in
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TABLE 3.2
Numerical results for larger tests from Example 4.1 of th&. EX benchmarkZ5).
problem info. Alg. 1 with option 1 Alg. 1 with option 2
n k(V) tsl spd mrp(X) k time spd  mrp(Y) time
r &(P) Ts (X) arp(X) res. prec. | (Y) arp(Y) prec. )
s sep [|res]| K (mid X) k(midY")
70 7.7E2 1.7E-2| O 2.0E-1 9 3.9E-1 0 2.5E-1 4.1E-1
15 1.5E18 1.4E12 2.0E-4 quad. 1.4E-5 double
1.1 54E-4 2.1E1 2.9E16 7.2E12
70 16E-2| O 2.2E-1 3 1.5E-1 1 1.9E-3 2.0E-1
15 2.2E-4 impr. 3.3E-6 impr.
1.1
250 19E1 5.0E-1 O 4.6E-1 1 1.9 1 5.2E-1 1.9
1.1 - 2.0E10 8.8E-5 double 2.4E-5 double
1.01 - 3.9E-5 4.5E11 1.3E11
500 3.5E2 4.6 0 1.0 1 1.6E1 1 8.4E-1 1.6E1
1.05 - 3.7E10 2.5E-3 double 1.3E-4 double
1.01 - 1.9E-3 2.9E13 1.4E12
700 2.7E3 14E1] 1 4.5E-4 1 4.5E1 1 1.4E-6 4.4E1
1.005 - 3.3E1 5.8E-10 double 2.8E-12 double
1.01 - 1.2E-9 4.2E5 1.8E5
1000 5.1E4 43E1l| O 1.2E-2 1 1.4E2 1 3.9E-3 1.4E2
1.005 - 1.5E2 1.6E-7 double 3.6E-10 double
1.01 - 1.2E-6 6.6E8 5.9E7
Table3.1

The results from Tabl8.2 also illustrate the scaling behavior of Algorithin Remark-
ably, the computation of the interval enclosure and theftegbositive definiteness, i.e., the
total run time of Algorithm 1 is consistently only about 3 tdidhes as large as the time spent
in lyap , i.e. the time needed to obtain the approximate solutiorap@ically, this fact is
reported in the left part of Figurd.1, thus illustrating itsO(n?) complexity as well as the
efficiency of Intlab and of the matrix-matrix operation apach of Algorithm 1.

floating point appr. ||
¢ option 1
—%— option 2 o

0 200

400
n

600

=7 & option 1
—#-option 2

800 1000 1200

800 1000 1200

FiG. 3.1. Time versus dimension (left) and the average relative pi@efrp) versus dimension (right) for
different tests from Example 4.1 of CTLEX with= 1.005, s = 1.01

Table3.3reports results for some “real world examples” taken fré@in The CDplayer
example refers to the problem of finding a low-cost contrahat can make the servo-system
of a CD player faster and less sensitive to external sha@kg he corresponding model con-
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tains 60 vibration modes and both options of Algorithrvere successful to verify stability

of the matrixA. Theheat-cont example comes from a dynamical system corresponding
to the heat diffusion equatiorg]] and we were again successful in proving stability of the
matrix A. Theiss example is a structural model of component 1r (Russian semiodule)

of the International Space Station (ISS). Here, both ouragghes were successful to verify
stability of the matrixA. Thebeam example is the clamped beam model obtained by spatial
discretization of a partial differential equatio8]| The eady example comes from a model
of atmospheric storm track. We refer tg for details. Note that the condition number of the
eigenvector matri¥%/ for theeady example has a condition number of approximately®.

In the example€Dplayer andheatcont the matrixA is actually normal (with non-
real eigenvalues), so that the condition of the eigenventirix V' is 1. In the other examples,
the matrixA is non-normal and we see that the “difficulty” to prove stépiincreases with
the condition ofl/. Exampleeady is particularly interesting because it is the only example
in which option 2 failed while option 1 was successful (ussirgulated quadruple precision).
We attribute this to the high condition numberliofwhich affects the width of the computed
interval enclosure fol” XV *. Indeed, this is the only example where the average precisio
in Y is less than that ikX.

It can also be noted that in these examples the executionftimie whole verified
computation can be up to 100 times more than for the floatingtpmmputation of the
approximate solutiodX. There are two main reasons for this deterioration as coetptr
the examples of Tabl8.3. On the one hand our Algorithrh sometimes needs more than
one sweep through the repeat loop. On the other hand, thénfioabint computation of
X via Matlab’s functionlyap can take advantage of sparsity of the mattixwhereas our
Algorithm 1 always works with dense matrices. This applies particylerlthe examples
CDplayer andiss in which the matrixA is sparse, so that the computation’ofis orders
of magnitude faster than it would be with a dense matrigf the same size.

Our final numerical results deal with situations where iadtef a full diagonalization
a block diagonalization should be performed. Our first teshes from Example 4.2 in the
CTLEX benchmark25]. This is a45 x 45 matrix having just one Jordan block. So the matrix
is not exactly diagonalizable, and the computed eigenvecadrix V' has a condition number
of 1017, approximately. Here, Algorithri fails because it was impossible to obtain the matrix
Iy, an interval enclosure for —'. Usingbdschur to obtain a block diagonalization with
a requested bound ab?® for the condition ofl” results in just one block of siz5, i.e., we
have the classical reduction to Schur form. Our algorithitinlwlock diagonalization, termed
Algorithm 2 in Table3.4, is now successful. This is actually an exceptionally lusityation
to be attributed to the fact that all elements in the trianguhatrix have the same sign so
that the accumulation of outward roundings does not cawsmtech harm when we perform
forward substitution in interval arithmetic. The executittime increases substantially due to
the fact that the backward substitution for the triangulatn® A cannot be cast into matrix-
matrix operations.

We note that for this example the functidERMATREQfXom Versoft is successful in
computing an enclosure, which, in addition, is verified topusitive definite byisspd .
The computed enclosutX¥ by Versoft was obtained after 160s withirp andarp equal to
51071t and1.4 - 10713, respectively.

The matrixA in our second test comes from Example 5.271i4, [p. 110]. We multiply
the matrixA given there by-1 to make it stable. The matrix i) x 10 and is both, defective
and derogatory. Algorithni again fails because it attempts to diagonalizeobtaining a
matrix V' with condition number:(V) = 2.5 - 10'® so that it is impossible to compute an
interval enclosure for its inverse. On the other hand, alkboliiagonal factorization of the
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TABLE 3.3
Numerical results for tests fron®][.

problem info. Alg. 1 with option 1 Alg. 1 with option 2
n k(V) tsl spd mrp(X) k time spd  mrp(Y) time
name Kk(P) rs (X) arp(X) res. prec. | (Y) arp(Y) prec. i)
sep [|res]| k(mid X) Kk(midY)
120 1 40E-2| 1 15E-13 3 3.6 1 2.9E-12 2.9
CDplayer 1.8E6 3.3E4 5.5E-15 double 1.4E-14 double
49E-2 2.4E-14 3.3E4 3.3E4
200 1 16E-1| 1 20E-8 1 6.8E-1 1 1.0 6.4E-1
heat-cont 2.4E4 1.6E4 2.5E-11 double 2.5E-12 double
1.9E-1 6.3E-11 2.0E+4 1.6E4
270 6.1E1 1.8E-1] 1 5.6-9 3 2.6E1 1 3.1E-13 1.9E1
iss 2.3E7 9.8El 3.5E-12 double 3.7E-14 double
3.3E-4 8.4E-12 3.8E3 9.9E1
348 3.6E2 9.4E-1] O 8.0E-1 1 1.1E1 1 8.3E-1 1.1E1
beam - 1.0E5 1.3E-5 double 5.6E-5 double
- 2.0E-5 1.4E10 5.1E5
598 1.1E9 48 0 1.0 1 5.3E1 0 2.9E-5 5.4E1
eady - 4.2E1 6.7E-4 double 1.2E-10 double
- 1.8E-9 4.6E5 1.1E18
598 4.7 1 15E-3 3 2.9E2 0 3.6E-6 2.9E2
eady 1.7E-12 quad. 7.6E-12 double
1.8E-9 4.6E5 7.4E17

matrix A computed withbdschur results in one block of size 5, one block of size 4 and
one block of size 1 with a condition number for of approximatelyl02. The second row
of Table 3.4 contains results for this example with this block-diagastlon, where now
our algorithm is again successful. As befoversoft is also successful for this example.
It takes 0.5s and obtains an enclosure #mwith mrp andarp equal to1.2 - 10~!! and
3.3- 1012, respectively.

TABLE 3.4
Numerical results using "Alg. 2.“, i.e., the variant of Algthm 1 which uses block diagonalization. The first
test is from Example 4.2 from the CTLEX benchma#,[while the second is from Example 5.27 id].

problem info. Alg. 2 with option 1 Alg. 2 with option 2

n k(V) ts spd mrp(X) k time spd mrp(Y) time

A w(P) T (X) arp(X) res. prec. | (Y) arp(Y) prec. )
s sep [[res|| k(mid X) k(midY)
45 1.0 6.9E-3| 1 6.1E-3 1 5.8E1 1 1.4E-6 5.8E1
-1.1 3.4E5 2.3 9.1E-6 double 3.7E-11 double
1.1 4.1E-17 8.0E-17 2.1E4 1.9E4
10 1.8E2 21E-1 1 39E-10 1 6.7E-1 1 7.1E-12 6.7E-1
- 5.3E4 3.0 3.3E-11 double 3.3E-12 double
- 5.6E-16 2.8E-11 7.2E3 9.4E4

We conclude this section with some more general commentgorihm 1 consists of
three critical parts: The computation of the floating poippaximationX, which should
be accurate, the computation of the enclosAfewhich should be narrow, and the check
for positive definiteness, which should be successful. Rerfirst part, we can take the
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best floating point algorithm available. Obtaining a goodfilag point approximation will
be particularly hard if the problem is very stiff, i.e., ifehvalue ofr, reported in all our
tables is large. Computing the enclosiitecrucially depends on the condition number of the
eigenvector matriX/. If this condition number is too large, we will not succee@¢amputing

an enclosure, and we then have to use the block method (wigshtd bound the condition
number ofl/) instead. If a small condition number for can only be obtained with relatively
large blocks, the approach of (the block version of) Alduritl will fail as a whole because
the interval quantities computed in the forward substituprocess induced by the blocks will
yield interval quantities which become too large. Compyitki can also fail just becausg

is not accurate enough. Finally, the success of checkingiymsefiniteness usingspd

on H(X) or H(Y ') depends on the condition afid (X (X)) ormid (H(Y")), respectively,
and the radii of the entries aX andY. The method is more likely to succeed when the
interval entries are narrow, i.e. when we have tight enalesuand whenmnid (H (X)) or
mid (H(Y')) is well conditioned. The latter property, in principle, égyls on the choice of
the matrixC, which we always took to be-7 in our examples. As a rule, we would also
expect the matrices to be less well conditioned when thimes$ ratio-, of the matrixA is
large.

Note that we can also fail to obtain an enclosure becausedimputed approximate
solution X is not accurate enough.

4. Conclusions. We presented a verified numerical method to prove stablilityatrices
by computing interval enclosures for the solution of a Lyapuequation and subsequently
showing that this solution is positive definite. If our alglom is successful, it is proved in a
mathematically rigorous manner that the matrix is stabi¢hé algorithm is not successful,
we do not have a mathematically rigorous result, i.e., weatdknow whether the matrix is
stable or not. We presented two options for the task of pigthie positive definiteness, where
the one which works with the interval enclosure for the tfamsed solutionY” = VXV*
usually yields better enclosures and is successful in masex Due to an implementation
oriented towards matrix-matrix operations, the algoritisrtime efficient when implemented
in Intlab. In its basic version our method requires the matribe diagonalized numerically,
but it can be generalized to use a block diagonalization sesavhere the eigenvector matrix
is too ill conditioned. Larger blocks, however, will usyafirevent our algorithm from being
successful since we then suffer from the accumulation eiffiemutward roundings during the
forward substitution process.

Let us finally note that Algorithni can be adapted to the case where the input maitrix
is an interval matrixA. This situation arises when one wants to model uncertaittiehe
input datad. In Algorithm 1 we then compute the approximate soluti&nand V, D with
respect to the midpoint ofe, while all other occurencies ofl in Algorithm 1 have to be
replaced byA. Numerical tests show that this approach gives good enaesas long asd
has narrow interval entries. As is to be expected, this aguras faster thaWERMATREQN
from theVERSOFTibrary while the enclosures obtained are (slightly) larden those from
VERMATREQN
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