
Electronic Transactions on Numerical Analysis.
Volume 40, pp. 187-203, 2013.
Copyright  2013, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University

http://etna.math.kent.edu

VERIFIED STABILITY ANALYSIS USING THE LYAPUNOV MATRIX EQUA TION ∗

ANDREAS FROMMER† AND BEHNAM HASHEMI‡§

Abstract. The Lyapunov matrix equationAX + XA∗ = C arises in many applications, particularly in the
context of stability of matrices or solutions of ordinary differential equations. In this paper we present a method,
based on interval arithmetic, which computes with mathematicalrigor an interval matrix containing the exact solution
of the Lyapunov equation. We work out two options which can beused to verify, again with mathematical certainty,
that the exact solution of the equation is positive definite.This allows to prove stability of the (non-Hermitian) matrix
A if we choseC as a negative definite Hermitian matrix. Our algorithm has computational cost comparable to that of
a state-of-the art algorithm for computing a floating point approximation of the solution because we can cast almost
all operations as matrix-matrix operations for which interval arithmetic can be implemented very efficiently.

Key words. stability analysis, Lyapunov matrix equation, interval arithmetic, Krawczyk’s method, verified
computation

AMS subject classifications.65F05, 65G20

1. Introduction. Let A andC be two given (real or) complex matrices of sizen × n.
The equation

AX + XA∗ = C,(1.1)

which is linear in the entries ofX, is called the Lyapunov matrix equation. It is well-known
that this equation has a unique solution if and only ifλi + λj 6= 0 for all i and j where
λ1, λ2, · · · , λn are the eigenvalues ofA; see, e.g., [20]. The Lyapunov matrix equation is of
interest in control and system theory especially in controllability and observability Gramians,
balancing transformation, stability robustness to parameter variations, robust stability and
performance study of large scale systems, reduced-order modeling and control filtering with
singular measurement noise [13]. Of particular interest is the case in which the right-hand
side matrixC is Hermitian [4, 16, 42] for which, if unique, the solutionX is also Hermitian.

The matrixA is called stable (also negative stable or Hurwitz stable in the literature), if
all its eigenvalues have negative real parts. Negative (positive) definite matrices are a special
case of stable (positive stable) matrices [20]. An important tool for checking stability of a
given matrixA is to solve the Lyapunov matrix equation (1.1) with C chosen to be a negative
definite matrix and then checkX for positive definiteness, because the following theorem
holds.

THEOREM 1.1. A matrixA ∈ C
n×n is stable if and only if there exists a positive definite

solution to the Lyapunov equation (1.1) whereC is Hermitian negative definite.
A proof of this basic theorem can be found in, e.g., [11, Thm 4.4] or [20, Thm 2.2.1];

see also [26, Thm 13.24]. Checking the stability of a matrix based on Theorem 1.1 has the
advantage that the question of stability for an arbitrary matrix A ∈ C

n×n is transferred to the
simpler question of checking positive definiteness for a Hermitian matrixX [20].

To further highlight the importance of the concept of matrixstability consider a nonlinear
system ofn first-order differential equations

ẋ = f(x),(1.2)

∗Received September 7, 2012. Accepted for publication February 12, 2013. Published online July 10, 2013.
Recommended by P. Van Dooren. This work was completed while the second author was visiting University of
Wuppertal under support of grant A/12/06039 by the German Academic Exchange Service (DAAD).

†Department of Mathematics, University of Wuppertal, 42097 Wuppertal, Germany
(frommer@math.uni-wuppertal.de).

‡Department of Mathematics, Faculty of Basic Sciences, ShirazUniversity of Technology, Modarres Boule-
vared, Shiraz 71555-313, Iran (hashemi@sutech.ac.ir, hoseynhashemi@gmail.com).

187

ETNA
Kent State University

http://etna.math.kent.edu

188 A. FROMMER AND B. HASHEMI

with x ∈ R
n and f : R

n → R
n. A vector x̂ is called anequilibrium pointof (1.2) if

f(x̂) = 0, i.e., the constant functionx(t) = x̂ is a solution. An equilibrium point̂x is called
asymptotically stableif there is a neighborhoodN of x̂, such that for every solution of (1.2)
for whichx(t) ∈ N for somet, we havelimt→∞ x(t) = x̂ [44, pp. 298-299]. Physically this
means that a system whose state is perturbed slightly from anequilibrium point will return to
that equilibrium point. The stability of each equilibrium point can be analyzed by linearizing
(1.2) about that point. Specifically, forx nearx̂ the solutions of (1.2) are approximated well
by solutions of

ẋ =
∂f

∂x
(x̂)(x − x̂),(1.3)

which is a linear system of differential equations with coefficient matrix ∂f
∂x . It can be shown

that all solutions of (1.3) satisfyx − x̂ → 0 ast → ∞ if the Jacobian∂f
∂x at x̂ is stable; see,

e.g., [44, pp. 291-298]. To put it another way:̂x is an asymptotically stable equilibrium point
of (1.2) if all the eigenvalues of the Jacobian atx̂ have negative real parts. We refer to [20,
Ch. 2] for more details.

1.1. Verified stability analysis. In this paper we consider the Lyapunov matrix equation
(1.1) whereC is Hermitian. Our goal is to present averifiednumerical algorithm, i.e., an
algorithm whose output will be exactly one of the two following statements, where the first
one is correct with mathematical certainty:

1. (1.1) has a Hermitian positive definite solution. The algorithm then also provides
correct (and tight) lower and upper bounds for each entry of the solutionX.

2. Failure, i.e., we do not obtain any information on whetherX is positive definite or
not.

In the case that the algorithm outputs the first statement we have thus proved mathemati-
cally thatA is stable. The major ingredient in our algorithm is its use of(machine) interval
arithmetic to fully control rounding of floating point operations which—starting from a given
approximate solutioňX to the Lyapunov equation—allows to compute enclosing intervals
for all entries of then × n solution matrixX, i.e., a matrixX whose entries are compact
intervals which have been proven to contain the corresponding entries of the exact solution
X by the algorithm. The aim is to compute narrow intervals for all of these entries so that
we have high chances of success for a subsequent, final step which proves that all Hermitian
matrices contained inX are positive definite using an approach by Rump [40]. Our algo-
rithm will also be computationally efficient in theory and practice: In many cases its total
cost is of the same order as the cost for obtaining the approximate solutionX̌, i.e.,O(n3).
Moreover, the algorithm almost exclusively uses matrix-matrix operations, a crucial feature
for time efficient machine interval arithmetic since it avoids most of the otherwise very costly
switchings of rounding modes.

Verified stability analysis based on the Lyapunov matrix equationAX +XA∗ = −I has
already been considered in [8, Ch. 4] and [9, 33]. The details on how the Lyapunov equation
is solved are not available in [8, 9, 33], the reported numerical examples only include2 × 2
matrices. Moreover, in these publications2n−1 “corner” matrices had to be used to verify
positive definiteness of interval matrices, employing a method by Alefeld [1].

Another approach to verify stability of a matrix based on interval arithmetic was pursued
by Gross [15]; see also the comments in [22]. Here, the problem of verified stability analysis
of A is firstly converted into the problem of verified Schur stability (all eigenvalues have mod-
ulus less than 1) of an interval matrix enclosing the Möbius transformS(A) = I+2(A−I)−1.
The so-called Cordes algorithm [7] is then applied to the enclosure ofS(A). The Cordes al-
gorithm checks whether for a certain exponentm ∈ N the spectral radius of an interval matrix

ETNA
Kent State University

http://etna.math.kent.edu

VERIFIED STABILITY ANALYSIS 189

containing the set{Y |Y = Ãm, Ã ∈ S(A)} is less than 1, using Geršgorin’s theorem, e.g.,
[43]. It is important to avoid the wrapping effect as much as possible which is why the Cordes
algorithm considers only exponentsm which are powers of two in a recursive manner and,
in addition, uses Lohner’s idea [27] of representing parallelepipeds in a factorized form. This
approach has also been extended for an interval input matrixA by applying a partitioning
process on non-degenerate interval elements ofA at the risk of ending up with exponential
complexity.

1.2. Interval arithmetic and Intlab. (Machine) interval arithmetic is the basic mathe-
matical tool in verified numerical computing [17]. Detailed investigations of the mathematical
properties of interval arithmetic can be found in, e.g., [2, 29, 30]. Here, we only review those
basic properties needed in our methods. A real compact interval can be represented via its
two endpoints or via its midpoint and radius. Generalizing this to the set of complex numbers
yields two different concepts of complex intervals: rectangular intervals, characterized by a
lower left and upper right corner in the complex plane, and circular intervals, characterized
again by midpoint and radius. More precisely, a rectangularcomplex intervala is the closed
rectanglea = {x + iy : x ∈ x, y ∈ y} with x andy real compact intervals, also denoted
a = x + iy, while a circular complex intervala is a closed circular disk of radiusrad (a)
and centermid (a), i.e.,a = 〈mid (a), rad (a)〉 = {z ∈ C : |z − mid (a)| ≤ rad (a)}.

An arithmetic operation◦ ∈ {+,−, ∗, /} between two intervals can, in principle, be de-
fined in the set theoretic sense. For reasons of a practical implementation, however, one wants
these operations to be closed in the given interval format, and the characterizing parameters
should be easy to compute. So, for example, the standard arithmetic for circular complex
interval argumentsa, b is defined as follows:

〈mid (a), rad (a)〉 ± 〈mid (b), rad (b)〉 = 〈mid (a) ± mid (b), rad (a) + rad (b)〉,

〈mid (a), rad (a)〉 ∗ 〈mid (b), rad (b)〉 =

〈mid (a)mid (b), |mid (a)|rad (b) + |mid (b)|rad (a) + rad (a)rad (b)〉,

1/〈mid (a), rad (a)〉 = 〈1/mid (a), 1/(|mid (a)| − rad (a))〉,

〈mid (a), rad (a)〉/〈mid (b), rad (b)〉 = (1/〈mid (b), rad (b)〉) ∗ 〈mid (a), rad (a)〉.

Herein, the operations+ and− coincide with the set theoretic definition; see, e.g., [2] for
details. For all operations◦ we have the fundamental enclosure relation

a ◦ b ⊇ {a ◦ b : a ∈ a, b ∈ b}.(1.4)

The enclosure property (1.4) carries over to expressions: Ifr(x1, . . . , xn) is an arithmetic
expression in the variablesx1, . . . , xn, then its interval arithmetic evaluationr(x1, . . . ,xn),
an interval, contains the range ofr for x1 ∈ x1, . . . , xn ∈ xn.

When interval arithmetic is implemented on a computer, the parameters defining the
result interval are computed in floating point arithmetic from the parameters defining the
interval operands. For the enclosure property to hold for such amachine interval arithmetic
it is mandatory to use directed roundings appropriately; see, e.g., [31]. Intlab [39] is an open
source Matlab toolbox that provides such a reliable machineinterval arithmetic. It is freely
available for non-commercial use fromhttp://www.ti3.tu-harburg.de/˜rump/
intlab/ . A crucial ingredient to the efficiency of Intlab is the fact that it allows to use
implementations of (interval) matrix-matrix and matrix-vector operations in the midpoint-
radius format in a way that the number of switches of the rounding mode is independent of
the dimension of the matrices/vectors. On today’s computerarchitectures this allows much
(up to 1000 times) faster execution times than an interval code in which rounding modes

ETNA
Kent State University

http://etna.math.kent.edu

190 A. FROMMER AND B. HASHEMI

would be switched anew for each operation with scalar operands [38]. A similar approach is
also available for the C++ package C-XSC; see [19, 23].

We used Intlab1 [39] to implement the algorithms for verifying stability of a matrix de-
veloped in the present paper. In order to make these implementations efficient, we seek to
formulate as much of the computational work as possible in terms of matrix-matrix opera-
tions.

We end this introduction by explaining some of our notation.For a complexn×n matrix
N , the matrixM := NT represents the transpose ofN . The notationN∗ for the Hermitian

transposeN∗ = N
T

was already used earlier; see (1.1).
For two matricesA ∈ C

m×m and B ∈ C
n×n, A ⊗ B (see, e.g., [20]) denotes the

Kronecker product ofA andB, soA⊗B is a matrix of sizemn×mn. By vec we denote the
operation of stacking the columns of a matrix in order to obtain one long vector. Sovec(A) is
a vector of lengthm2. Ford = [d1, . . . , dn]T ∈ C

n, the matrixDiag (d) denotes the diagonal
matrix in C

n×n whosei-th diagonal entry isdi. We extend this to matrices: ForD ∈ C
n×m

we putDiag (D) = Diag (vec(D)) ∈ C
nm×nm. By ./ we mean the Hadamard (pointwise)

division.
The following lemma will turn out to be useful. For part a), see, e.g., [20]; part b) is

trivial.
LEMMA 1.2. For any three (real or) complex matricesA,B, and C with compatible

sizes we have
a) vec(ABC) = (CT ⊗ A)vec(B).
b) Diag (A)−1vec(B) = vec(B./A).

The remaining part of this paper is organized as follows. In Section2, we give the details
of our algorithms for verified stability analysis. Section3 contains the results of a series of
numerical experiments, and some conclusions are given in Section4.

2. Verified solution of the Lyapunov equation via (block) diagonalization. In this
section we describe in detail our verification algorithm forcomputing enclosures for the solu-
tion of a Lyapunov equation along with the test for positive definiteness. The approach relies
on a Krawzcyk-type method which we present first.

Krawczyk’s method is a classical method for computing an enclosure for the solution of
a general, unstructured, non-singular linear system

Px = c, P ∈ C
m×m, x, c ∈ C

m.(2.1)

Given an approximate solutioňx of the linear system, computed by some floating point linear
system solver, and given an approximate inverseR of P, again computed by some floating
point algorithm, Krawczyk’s method [24] in its improved version by Rump [37] uses machine
interval arithmetic (including outward rounding) to checkwhether

k := R(c − Px̌) + (Im −RP)z ⊆ int (z).(2.2)

Here,Im denotes the identity inCm andint (z) denotes the topological interior of the (closed)
interval vectorz. If (2.2) holds we know that the solution of (2.1) is contained iňx + z due
to the following result from [37]; see also [12].

THEOREM 2.1. [12, 37] Let z be an interval vector. If

K := {R(c − Px̌) + (Im −RP)z : z ∈ z} ⊆ int (z),(2.3)

1More precisely, we used Intlab V6. The latest (end 2012) release Intlab V7 represents a major update where
several algorithms have been modified.

ETNA
Kent State University

http://etna.math.kent.edu

VERIFIED STABILITY ANALYSIS 191

thenP andR are non-singular, and the solution of (2.1) is contained iňx + K ⊆ x̌ + z.
Note thatK ⊆ k due to the enclosure property of interval arithmetic. The enclosure

method we will present for the Lyapunov equations also relies on Theorem2.1, but it uses
interval arithmetic in a different manner than in (2.2) to compute an enclosure forK.

The Lyapunov equation (1.1) can be written using thevec and⊗ notations in the form of
the following system of linear equations [20, 45]

Px = c, whereP = In ⊗ A + A ⊗ In, x = vec(X) andc = vec(C).(2.4)

Note that by Lemma1.2we havevec(XA∗) = (A ⊗ In)vec(X).
In order to apply Krawczyk’s method to (2.4), we need to compute an approximate in-

verseR,

R ≈ P−1 = (In ⊗ A + A ⊗ In)−1 ∈ C
n2×n2

,

which is anO(n6) process if we use Gaussian elimination and do not try to take advantage
of the sparsity structure ofP. But even ifR were computed more efficiently, we still need to
computeI −RP. If A is a dense (non-sparse) matrix we must expectR to be a dense matrix,
too. Since each column ofP then contains (at most)2n − 1 nonzero entries andR is an
n2 × n2 matrix, computingRP has a complexityO(n5). Therefore, the cost for computing
k in (2.2) is at leastO(n5) which is prohibitively high for larger values ofn.

The Lyapunov equation is a special case of the Sylvester matrix equationAX+XB = C
with B = A∗. We have shown in [12] how the complexity of an enclosure method for the
solution of the Sylvester equation can be reduced toO(n3) if A andB are diagonalizable.
While [12] expicitly relies on interval arithmetic, the recent paper[28] extends the approach
of [12] in a way that it is sufficient to check certain inequalities using (IEEE standard compli-
ant) floating point operations. We now recall the approach of[12] specialized to the case of
the Lyapunov equation. To expose the central idea on how to reduce the complexity toO(n3),
we first discuss the idealized situation where all arithmetic operations are done exactly. The
modification to be applied in practice using machine interval arithmetic to completely control
all roundings will be discussed thereafter.

If A is diagonalizable we have the (exact) spectral decomposition

V A = DV with V,D ∈ C
n×n,D = diag(λ1, . . . , λn).(2.5)

Here,V is a matrix of left eigenvectors ofA. SoX is an exact solution of the Lyapunov
equation (1.1) if and only if

(V AV −1)(V XV ∗) + (V XV ∗)(V AV −1)∗ = V CV ∗.

Therefore,Y = V XV ∗ is the solution of the linearly transformed Lyapunov equation

DY + Y D∗ = G,(2.6)

whereG = V CV ∗. The Lyapunov equation (2.6) is equivalent to the linear system of equa-
tions

Q y = g,(2.7)

where

Q = In ⊗ (V AV −1) + (V AV −1) ⊗ In,(2.8)

y = (V ⊗ V)x,

g = (V ⊗ V)c.

ETNA
Kent State University

http://etna.math.kent.edu

192 A. FROMMER AND B. HASHEMI

Since we temporarily assume thatV is a matrix of exact eigenvectors, we have, of course,
thatV AV −1 = D, which shows thatQ is diagonal. This means that an approximate inverse
R for Q can be computed very cheaply at costO(n2), and the same holds for the product
RQ. This shows that diagonalization bears the potential of substantially reducing the com-
putational cost in a Krawczyk-type enclosure method.

Let us now turn to the realistic setting, where instead of exact arithmetic we use floating
point and machine interval arithmetic. We assume thatV andD in the diagonalization of
A are computed via a floating point algorithm. Then (2.5) will hold only approximately, but
we still have that the solutionY of the transformed Lyapunov equation (2.6) is related to the
solutionX of the original Lyapunov equation (1.1) via Y = V XV ∗ if in (2.6) we replaceD
with the matrixV AV −1, which is now only approximately diagonal. But sinceV AV −1 is
close toD, we also have that the diagonal matrix

∆ = I ⊗ D + D̄ ⊗ I,(2.9)

is close to the matrixQ from (2.8) (which asV AV −1 is not exactly diagonal any more). This
shows that the inverse of the diagonal matrix∆ can be taken as the approximate inverseR
in a Krawczyk-type enclosure method. This is crucial to the efficiency of a Krawczyk-type
method, since because∆ is diagonal the computation of∆−1Q has complexityO(n3) only,
given thatQ has (at most)2n − 1 non-zero entries in each of itsn2 rows.

While the matricesV andD are available as the result of a floating point algorithm, the
matrix V −1 is not. Working just with an approximation forV −1, obtained by some floating
point algorithm, is not sufficient for our purposes, becausethen the relationY = V XV ∗

between the original solutionX and the solutionY of the transformed system (2.7) would
hold only approximately. We therefore work with an enclosure IV for V −1, i.e., with an
interval matrixIV known to contain the exact inverseV −1. Such an interval matrixIV

can be obtained using Krawczyk’s method for the functionV X − I. An implementation is
available through the Intlab functionverifylss .

Let now X̌ be an approximate solution for the Lyapunov equation (1.1), obtained by
some floating point algorithm and letS := AX̌ + X̌A∗ − C be its residual. Then the error
T := X − X̌ with respect to the exact solution solves

AT + TA∗ = −S.

The idea is now to use the transformations described so far toobtain an efficient Krawczyk-
type method to compute an enclosure forT .

Let B andF be interval matrices that containV AV −1 andV (AX̌ + X̌A∗ −C)V ∗, re-
spectively. If we can compute an interval matrixE that contains all solutions of all equations

BE + EB∗ = −F,(2.10)

for every B ∈ B and everyF ∈ F , then X̌ + IV EI∗
V will contain the exact solution

X = X̌ + T of the original Lyapunov equation (1.1). To obtain suchE, we wish to apply
a Krawczyk-type method based on Theorem2.1. Converting matrices into vectors using the
vec operator, this means that we have to compute an enclosure forthe set

K(e) := {∆−1(−f + (∆ − (In ⊗ B + B ⊗ In))e, f ∈ f , B ∈ B, e ∈ e},(2.11)

wheref = vec(F), e = vec(E). Using machine interval arithmetic to evaluate the expres-
sion definingF , an enclosure for{−f + (∆− (In ⊗B + B ⊗ In))e, f ∈ f , B ∈ B, e ∈ e}
can be computed in matrix terms asvec(G) where

G := −F + (D − B)E + E(D − B)∗.

ETNA
Kent State University

http://etna.math.kent.edu

VERIFIED STABILITY ANALYSIS 193

Also, in matrix instead of vector terms, the multiplicationwith the diagonal matrix∆−1 is
a pointwise division by the matrixd · l∗ + l · d∗, whered ∈ C

n×1 is a vector containing
the diagonal entries ofD and l∗ = [1, · · · , 1] ∈ R

1×n. Note that the(i, j)-entry di + d̄j

of this matrix cannot be computed exactly in floating point arithmetic, but machine interval
arithmetic yields a matrixL ⊇ d · l∗ + l · d∗. Using Theorem2.1and writing everything in
matrix terms we have that if

K(E) = (−F + (D − B)E + E(D − B)∗)./L ⊆ int (E),

thenK := K(E) contains all solutions of (2.10), and the exact solutionX of the original
Lyapunov equation (1.1) is contained inX̌ + IV KI∗

V .
In Algorithm 1, we explicitly “symmetrize” a computed interval matrixA when we

know that the exact, non-interval matrices of interest contained inA are Hermitian. In prin-
ciple, symmetrization would mean that we replace an entryaij of A by aij ∩ āji, show-
ing that this operation works towards making the entries ofA more narrow. In midpoint-
radius format, the intersection of two intervals is not a disk any more. Intlab therefore
has to use a relatively sophisticated algorithm to obtain a disk containing this intersection.
Interestingly, the Intlabintersect operator doesnot fulfill a commutativity relation of
the kind intersect (a, b) = intersect (ā, b̄). As a result, an interval matrix com-
puted as the entrywise intersection ofA and A∗ is not necessarily “Hermitian”. Instead
of intersect (A,A∗) we therefore use a symmetrization operatorH implemented via the
following Matlab-Intlab commands:

H=intersect (A,A∗);
H(A) := tril(H,-1)+diag(real(diag(H)))+tril(H,-1) ∗; .

Here,tril(H,-1) is the Matlab command which returns the strictly lower triangular part
of H. Note thatH(A) contains indeed all Hermitian (point) matricesA ∈ A.

The interval hull operator2(0,U) used in Step 10 of Algorithm1, produces an interval
matrix each entry of which is the smallest compact interval containing0 and the respective
entry of the interval matrixU .

2.1. Checking positive definiteness of interval matrices.Determining the positive
definiteness of symmetric interval matrices plays an important role in several applications
ranging from stability analysis of matrices, global optimization problems and solution of lin-
ear interval equations over semi-definite programming problems, to the representation theory
of Lie groups [10, 41]. Rohn [35] showed that the problem of determining the positive def-
initeness of a real symmetric interval matrix is NP-hard. Shao and Hou [41] proved that an
n × n Hermitian interval matrixA is positive definite if and only if4n−1(n − 1)! specially
chosen Hermitian vertex matrices are positive definite; seealso [18, 36]. Rump [40] pre-
sented a computationally simple and fast sufficient criterion implying positive definiteness
of a symmetric or Hermitian interval matrix. His method is based on a single floating-point
Cholesky decomposition of the midpoint matrix, its backward stability analysis and a per-
turbation result. More recently, Domes and Neumaier [10] proposed a so-called directed
Cholesky factorization that can also be used for verifying positive definiteness.

In Step 17 of Algorithm1 we need to check the positive definiteness of the exact solution
X of the Lyapunov equation (1.1). We did so using the Intlab functionisspd which is based
on [40]. We also tested the alternative approach to prove positivedefiniteness from [10],
where the code was kindly made available to us by the authors and observed very similar
results. We thus stayed withisspd from Intlab in the present paper.

Since the exact solutionX is contained inX = X̌ + IV KI∗
V , our first option to be

implemented in Step 17 is as follows
Option 1: Apply isspd to H(X), i.e., the Hermitian part ofX.

ETNA
Kent State University

http://etna.math.kent.edu

194 A. FROMMER AND B. HASHEMI

Algorithm 1 If successful this algorithm obtains an interval matrixW such thatX̃+ W

contains the unique Hermitian solutionX of the Lyapunov equation (1.1) and checks the
positive definiteness ofX.

1: Use a floating point algorithm to get an approximate solutionX̌ of the Lyapunov equation
(1.1). Then, replacěX by its Hermitian partH(X̌).

2: ComputeV andD in the spectral decomposition (2.5) using a floating point algorithm.
3: Compute ann × n interval matrixL s.t.L ⊇ d · l∗ + l · d∗. {L is an interval matrix due

to outward rounding}
4: Let L = H(L). {vec(L) ⊇ diag(∆) from (2.9)}
5: Compute an interval matrixIV containingV −1.
6: ComputeF = V · (AX̌ + (AX̌)∗ − C) · V ∗ using interval arithmetic and let

F = H(F).
7: ComputeB = (V A)IV using interval arithmetic everywhere.
8: ComputeE = −F ./L, putj = 1. {Prepare loop}
9: repeat

10: PutE = 2(0,E · [1 − ε, 1 + ε]), incrementj. {ε-inflation}
11: ComputeN = (D − B)E.
12: ComputeM = −F + (N + N∗). {M is Hermitian}
13: ComputeK = M ./L. {K is Hermitian}
14: until (K ⊆ int E or j = jmax)
15: if K ⊆ int E then {successful termination}
16: ComputeW = (IV K)I∗

V . {solutionX of (1.1) is in H(X̌ + W)}
17: Check for positive definiteness ofH(X̌ + W). {2 options available}
18: else
19: Output “verification not successful”.
20: end if

On the other hand, we know that

X = X̌ + V −1EV −∗ = V −1(Y̌ + E)V −∗, with Y̌ = V X̌V ∗ andV −∗ = (V −1)∗.

So, the matrixX is positive definite if and only ifY = Y̌ + E is positive definite. We know
thatY is contained inY̌ + K whereY̌ = (V X̌)V ∗. Therefore, an alternative approach is
to show that every Hermitian matrix contained in an intervalmatrix Y ⊇ Y̌ + K is positive
definite. Our second option is therefore as follows
Option 2: Apply isspd to H(Y), whereY is given as(V X̌)V ∗ + K with (V X̌)V ∗

computed using machine interval arithmetic to account for floating point roundings in the
evaluation of the products.

Option 2 is likely to be superior to option 1 since the interval entries ofY can be expected
to be narrower than those ofX andY is often (slightly) better conditioned thanX.

2.2. Block diagonalization. The approach presented may fail at two places: The variant
of Krawczyk’s method may fail to verify the crucial condition K ⊆ int E in Step 14 of
Algorithm 1, or the test for positive definiteness may fail in Step 17. Thechances for failures
increase as the condition number of the left eigenvector matrix V increases. Due to the
wrapping effect, the radii of the entries of the various interval matrices to be computed in
Algorithm 1 will then tend to become very large so that the conditionK ⊆ intE in Step 14
will not hold any more.

We therefore also present a variant of our algorithm where weuse theblock diagonaliza-
tion of Bavely and Stewart [3] to control the condition number ofV at the expense of having

ETNA
Kent State University

http://etna.math.kent.edu

VERIFIED STABILITY ANALYSIS 195

D with (hopefully small) blocks along the diagonal. The blockdiagonal factorization can be
written as

A = V −1DV,(2.12)

whereD is blockdiagonal with each diagonal block being triangular.
We now formally defineQ exactly as in (2.8) and its approximation∆ as in (2.9), i.e.,

∆ = In ⊗ D + D ⊗ In. Of course,∆ is not diagonal any more. It is block diagonal with
upper triangular diagonal blocks. We refer to [12] for further details.

The following modifications need to be applied to Algorithm1. In Step 2, the matrices
V andD will be obtained from the block diagonal factorization (2.12). Since the matrix
D is not diagonal any more we have to modify Steps 8 and 13 where we used pointwise
division by the interval matrixL. For the block modification, Steps 3 and 4 will not be
needed and instead of Step 8 we use forward substitution to solve ∆vec(E) = −vec(F)
for E and letE = H(E). Similarly, instead of Step 13, we solve∆vec(K) = vec(M)
for K using forward substitution and letK = H(K). It must be noted that these two
modifications destroy the matrix-matrix operation paradigm, so that the modified algorithm
will be substantially more time consuming in Steps 8 and 13 asbefore. Note that this modified
algorithm will have complexityO(n3) only if the sizes of the blocks inD are bounded by a
constant.

We refer to [12] for a discussion of why a standard Schur decomposition ofA, i.e.,
an orthogonal reduction to (full) triangular form, is not a viable approach for an enclosure
method based on machine interval arithmetic due to the exponentially growing accumulation
of outward roundings.

3. Numerical results. All our numerical examples focus on proving the stability ofa
given matrixA. So, in view of Theorem1.1, we apply Algorithm1 to compute an enclosing
interval matrix for the solution of the Lyapunov matrix equation

AX + XA∗ = −I,(3.1)

and then runisspd on the thus computed enclosure forX (option 1) orY = V XV ∗

(option 2).
In our tables, we wish to report indicators on the quality of the computed enclosure

matrices. These indicators will be based on therelative precisionof an intervala given as

rp(a) := min(relerr (a), 1),

whererelerr is defined as

relerr (a) =

{

rad (a)
|mid (a)| , 0 /∈ a,

rad (a), 0 ∈ a,

available as an Intlab function. Loosely speaking,− log10(rp(a)) can be regarded as the
number of known correct digits of an “exact” value containedin a. For an interval matrix
X we will report two indicatorsmrp andarp based on the relative precisionrp(Xij) of its
entriesXij , defined as

mrp(X) := max{rp(Xij) | i, j = 1, . . . , n},(3.2)

arp(X) :=





∏

i,j=1,n

(rp(Xij))





1/n2

.(3.3)

ETNA
Kent State University

http://etna.math.kent.edu

196 A. FROMMER AND B. HASHEMI

So− log10(mrp(X)) and− log10(arp(X)) represent the minimum and average number of
known correct digits, respectively.

The following notation is used in all our tables: Under the headline “problem info” we
summarize basic information about the Lyapunov equation considered. The first column
refers to the name under which the test matrix is known from the literature or to our choice
of parameters ifA is from a parametrized family of test matrices. The second column gives
important basic information aboutA, namely, theℓ2-condition number of its (approximate)
eigenvector matrixV from (2.5). For smaller problem sizes we also reportκ(P), the ℓ2-
condition number of the matrixP from (2.4) and the separation “sep” ofA and−A∗, i.e., the
smallest singular value ofP. As was suggested by one of the referees, whenA is the Jacobian
of a system of ODEs, the quotient of the largest and smallest modulus of the eigenvalues of
A is a customary measure for the stiffness of the system of ODEs; see, e.g., [21, pp. 56]. We
therefore also report thisstiffness ratiors for all our examples.

The third column contains information about the computation of the floating point ap-
proximationX̌. This matrix is obtained using the commandlyap from the Matlab Control
System Toolbox. We report the timetfl required bylyap in seconds as well as the qual-
ity of the approximate solutioňX as given by the Frobenius norm of the residual matrix
AX̌ + X̌A∗ + I.

We report numerical results for both options available for Algorithm 1. Here,X andY

stand for the (symmetrized) interval matrices computed by Algorithm 1 with option 1 and 2,
respectively. The columns namedspd(X) andspd(Y) show the result of Intlab’sisspd
function for checking positive definiteness. Here, 1 means that every Hermitian matrixX ∈
X has been verified byisspd to be positive definite, while 0 means that no verified result
could be obtained byisspd , and similarly forY . In a second column we give information
on the quality of the computed enclosing matrix by reportingthe values of the indicators
mrp andarp defined in (3.2) and (3.3). The valuek is the number of sweeps through the
repeat loop of Algorithm 1. We setjmax = 9. If the algorithm is successful in computing an
enclosure, it very often is so in the first sweep,k = 1. In the fourth column, “time” stands for
the total time required by Algorithm1 followed by one call toisspd , andκ(mid (X)) and
κ(mid (Y)) stand for the condition number of the midpoint of the computed enclosures as a
hint on the condition of the respective exact solution.

It remains to explain the meaning of the parameter “res. prec.”. The success of a Krawczyk
type method crucially depends on the precision we obtain when evaluating the residual, i.e.,
the radii of the components of the computed interval matrixF ∋ V · (AX̌ + X̌A∗−C) ·V ∗.
Note thatF is an interval matrix since we have to account for all floatingpoint roundings
when evaluating the residual. In our tables, “res. prec.” refers to the effort we invested
into getting “tighter” enclosures for the residual. More precisely, “res. prec. = double” in
the fourth column corresponding to option 1 means that no special effort is made, i.e.,F is
obtained by performing all matrix operations using the standard interval arithmetic opera-
tions (based on rounded IEEE double precision operations),starting with the point matrices
V,A, X̌ andC. Similarly, for option 2 “res. prec. = double” means that we compute an enclo-
sure forỸ = (V X̌)V ∗ in Y using standard interval arithmetic with the point matricesV and
X̌. If the algorithm is not successful with these standard choices, we use an improved method
from [32] for computing an interval enclosureB for the productAX̌. We then use standard
double precision to evaluate the sumB +B∗−C and the subsequent multiplications withV
andV ∗. This option is indicated as “res. prec. = impr.” in the fourth column corresponding
to option 1, and similarly in option 2 where it means that we use this improved multiplication
just for the factorV X̌ when computing̃Y = V X̌V ∗.

If the algorithm is still not successful, we turn to “res. prec. = quad.”, where now the ma-

ETNA
Kent State University

http://etna.math.kent.edu

VERIFIED STABILITY ANALYSIS 197

trix productAX̌ is evaluated using simulated quadruple precision based on error-free trans-
formations. This option is available as a choice in Intlab, but it should be noted that its
computation speed is orders of magnitudes slower, since nowrounding modes are switched
for each scalar operation. For this option, as a side effect,we actually also obtain a “tighter”
enclosureIV for the inverse of the matrixV (see line 5 of Algorithm1). We always obtain
V via the Intlab functionverifylss . This function computes an interval enclosure for a
linear system and allows for block right hand sides (rhs), sothat an enclosure for the inverse
is obtained when choosing rhs as the identity matrix. When Intlab is required to work with
simulated quadruple precision,verifylss for a block rhs actually does not use (simulated)
quadruple precision everywhere, but rather uses just an improved precision implementation
of the functionlssresidual which is called fromverifylss .

Our first set of tests is from Example 4.1 of the CTLEX benchmark [25]. This is an aca-
demic example which has the advantage that we can chose several parameters to control the
conditioning ofP as well as the dimensionn, thus enabling, in particular, a scaling study. We
report our numerical results in Tables3.1and3.2. n, r, s are parameters in Example 4.1 from
the CTLEX benchmark [25]. For the smaller examples in Table3.1we also report results ob-
tained with the functionVERMATREQNof the software package Versoft [34] for comparison.
Versoft is a collection of Intlab programs, computing enclosures for the solutions of various
numerical problems. For the Lyapunov equation,VERMATREQNbasically uses Krawczyk’s
method for the large system (2.4). It has the advantage of not having to diagonalize or block
diagonalizeA at the disadvantage of a computational complexity beyondO(n3).

TABLE 3.1
Numerical results for different tests from Example 4.1 of the CTLEX benchmark [25].

problem info. Versoft [34] Alg. 1 with option 1 Alg. 1 with option 2
n κ(V) tfl spd mrp(X) time spd mrp(X) k time spd mrp(Y) time
r κ(P) rs (X) arp(X) (X) arp(X) res. prec. (Y) arp(Y) prec. (Ỹ)
s sep ||res|| κ(mid X) κ(mid Y)

10 3.1E3 1.9E-3 0 9.2E-5 3.1E-2 0 3.4E-4 1 1.5E-2 1 7.6E-4 2.4E-2
3.1 3.4E12 2.6E4 9.1E-5 2.4E-4 double 1.1E-4 double
2.5 6.5E-6 1.4E-3 3.9E10 1.2E5
10 1.5E-3 3.3E-2 1 8.7E-11 1 4.5E-2 1 4.7E-7 3.7E-2
3.1 6.1E-11 impr. 8.8E-9 double
2.5
50 1.2E2 1.1E-2 0 8.6E-1 3.2E2 0 1.2E-2 8 2.7E-1 1 4.1E-2 2.9E-1
1.8 3.2E15 3.2E12 1.5E-2 2.5E-5 quad. 2.6E-6 double
1.1 1.6E-2 9.5E-2 2.4E15 1.1E13

The following observations can be made from Tables3.1 and3.2: Option 2 in Algo-
rithm 1 allows to prove stability more often than option 1. This can be attributed to the fact
that the condition number of the matrixmid (Y) is often significantly smaller than that of
mid (X) and that, at least on the average, the relative width of the interval entries ofY from
option 2 is smaller than forX from option 1. The right part of Figure3.1 depicts this fact
graphically.

When the condition number ofP is very high (beyond inverse machine precision), stan-
dard double precision arithmetic is not sufficient. However, switching to improved or quadru-
ple precision often helps. Forn = 50, the Versoft functionVERMATREQNalready needs
almost a factor of 1000 more time than Algorithm1, andisspd is never successful on the
results computed with Versoft. It should be noted, however,that we could not adapt the pre-
cision in Versoft as we did in Algorithm1 to be successful for the problems considered in

ETNA
Kent State University

http://etna.math.kent.edu

198 A. FROMMER AND B. HASHEMI

TABLE 3.2
Numerical results for larger tests from Example 4.1 of the CTLEX benchmark [25].

problem info. Alg. 1 with option 1 Alg. 1 with option 2
n κ(V) tfl spd mrp(X) k time spd mrp(Y) time
r κ(P) rs (X) arp(X) res. prec. (Y) arp(Y) prec. (Ỹ)
s sep ||res|| κ(mid X) κ(mid Y)

70 7.7E2 1.7E-2 0 2.0E-1 9 3.9E-1 0 2.5E-1 4.1E-1
1.5 1.5E18 1.4E12 2.0E-4 quad. 1.4E-5 double
1.1 5.4E-4 2.1E1 2.9E16 7.2E12
70 1.6E-2 0 2.2E-1 3 1.5E-1 1 1.9E-3 2.0E-1
1.5 2.2E-4 impr. 3.3E-6 impr.
1.1
250 1.9E1 5.0E-1 0 4.6E-1 1 1.9 1 5.2E-1 1.9
1.1 - 2.0E10 8.8E-5 double 2.4E-5 double
1.01 - 3.9E-5 4.5E11 1.3E11
500 3.5E2 4.6 0 1.0 1 1.6E1 1 8.4E-1 1.6E1
1.05 - 3.7E10 2.5E-3 double 1.3E-4 double
1.01 - 1.9E-3 2.9E13 1.4E12
700 2.7E3 1.4E1 1 4.5E-4 1 4.5E1 1 1.4E-6 4.4E1
1.005 - 3.3E1 5.8E-10 double 2.8E-12 double
1.01 - 1.2E-9 4.2E5 1.8E5
1000 5.1E4 4.3E1 0 1.2E-2 1 1.4E2 1 3.9E-3 1.4E2
1.005 - 1.5E2 1.6E-7 double 3.6E-10 double
1.01 - 1.2E-6 6.6E8 5.9E7

Table3.1.
The results from Table3.2 also illustrate the scaling behavior of Algorithm1. Remark-

ably, the computation of the interval enclosure and the testfor positive definiteness, i.e., the
total run time of Algorithm 1 is consistently only about 3 to 4times as large as the time spent
in lyap , i.e. the time needed to obtain the approximate solution. Graphically, this fact is
reported in the left part of Figure3.1, thus illustrating itsO(n3) complexity as well as the
efficiency of Intlab and of the matrix-matrix operation approach of Algorithm 1.

FIG. 3.1. Time versus dimension (left) and the average relative precision(arp) versus dimension (right) for
different tests from Example 4.1 of CTLEX withr = 1.005, s = 1.01

Table3.3reports results for some “real world examples” taken from [6]. TheCDplayer
example refers to the problem of finding a low-cost controller that can make the servo-system
of a CD player faster and less sensitive to external shocks [6]. The corresponding model con-

ETNA
Kent State University

http://etna.math.kent.edu

VERIFIED STABILITY ANALYSIS 199

tains 60 vibration modes and both options of Algorithm1 were successful to verify stability
of the matrixA. Theheat-cont example comes from a dynamical system corresponding
to the heat diffusion equation [6] and we were again successful in proving stability of the
matrixA. Theiss example is a structural model of component 1r (Russian service module)
of the International Space Station (ISS). Here, both our approaches were successful to verify
stability of the matrixA. Thebeam example is the clamped beam model obtained by spatial
discretization of a partial differential equation [6]. The eady example comes from a model
of atmospheric storm track. We refer to [5] for details. Note that the condition number of the
eigenvector matrixV for theeady example has a condition number of approximately10+9.

In the examplesCDplayer andheatcont the matrixA is actually normal (with non-
real eigenvalues), so that the condition of the eigenvectormatrixV is 1. In the other examples,
the matrixA is non-normal and we see that the “difficulty” to prove stability increases with
the condition ofV . Exampleeady is particularly interesting because it is the only example
in which option 2 failed while option 1 was successful (usingsimulated quadruple precision).
We attribute this to the high condition number ofV which affects the width of the computed
interval enclosure forV X̌V ∗. Indeed, this is the only example where the average precision
in Y is less than that inX.

It can also be noted that in these examples the execution timefor the whole verified
computation can be up to 100 times more than for the floating point computation of the
approximate solutioňX. There are two main reasons for this deterioration as compared to
the examples of Table3.3. On the one hand our Algorithm1 sometimes needs more than
one sweep through the repeat loop. On the other hand, the floating point computation of
X̌ via Matlab’s functionlyap can take advantage of sparsity of the matrixA, whereas our
Algorithm 1 always works with dense matrices. This applies particularly to the examples
CDplayer andiss in which the matrixA is sparse, so that the computation ofX̌ is orders
of magnitude faster than it would be with a dense matrixA of the same size.

Our final numerical results deal with situations where instead of a full diagonalization
a block diagonalization should be performed. Our first test comes from Example 4.2 in the
CTLEX benchmark [25]. This is a45×45 matrix having just one Jordan block. So the matrix
is not exactly diagonalizable, and the computed eigenvector matrixV has a condition number
of 1017, approximately. Here, Algorithm1 fails because it was impossible to obtain the matrix
IV , an interval enclosure forV −1. Usingbdschur to obtain a block diagonalization with
a requested bound of108 for the condition ofV results in just one block of size45, i.e., we
have the classical reduction to Schur form. Our algorithm with block diagonalization, termed
Algorithm 2 in Table3.4, is now successful. This is actually an exceptionally luckysituation
to be attributed to the fact that all elements in the triangular matrix have the same sign so
that the accumulation of outward roundings does not cause too much harm when we perform
forward substitution in interval arithmetic. The execution time increases substantially due to
the fact that the backward substitution for the triangular matrix ∆ cannot be cast into matrix-
matrix operations.

We note that for this example the functionVERMATREQNfrom Versoft is successful in
computing an enclosure, which, in addition, is verified to bepositive definite byisspd .
The computed enclosureX by Versoft was obtained after 160s withmrp andarp equal to
5 · 10−11 and1.4 · 10−13, respectively.

The matrixA in our second test comes from Example 5.27 in [14, p. 110]. We multiply
the matrixA given there by−1 to make it stable. The matrix is10× 10 and is both, defective
and derogatory. Algorithm1 again fails because it attempts to diagonalizeA, obtaining a
matrix V with condition numberκ(V) = 2.5 · 1018 so that it is impossible to compute an
interval enclosure for its inverse. On the other hand, a block diagonal factorization of the

ETNA
Kent State University

http://etna.math.kent.edu

200 A. FROMMER AND B. HASHEMI

TABLE 3.3
Numerical results for tests from [6].

problem info. Alg. 1 with option 1 Alg. 1 with option 2
n κ(V) tfl spd mrp(X) k time spd mrp(Y) time
name κ(P) rs (X) arp(X) res. prec. (Y) arp(Y) prec. (Ỹ)

sep ||res|| κ(mid X) κ(mid Y)

120 1 4.0E-2 1 1.5E-13 3 3.6 1 2.9E-12 2.9
CDplayer 1.8E6 3.3E4 5.5E-15 double 1.4E-14 double

4.9E-2 2.4E-14 3.3E4 3.3E4
200 1 1.6E-1 1 2.0E-8 1 6.8E-1 1 1.0 6.4E-1
heat-cont 2.4E4 1.6E4 2.5E-11 double 2.5E-12 double

1.9E-1 6.3E-11 2.0E+4 1.6E4
270 6.1E1 1.8E-1 1 5.6-9 3 2.6E1 1 3.1E-13 1.9E1
iss 2.3E7 9.8E1 3.5E-12 double 3.7E-14 double

3.3E-4 8.4E-12 3.8E3 9.9E1
348 3.6E2 9.4E-1 0 8.0E-1 1 1.1E1 1 8.3E-1 1.1E1
beam - 1.0E5 1.3E-5 double 5.6E-5 double

- 2.0E-5 1.4E10 5.1E5
598 1.1E9 4.8 0 1.0 1 5.3E1 0 2.9E-5 5.4E1
eady - 4.2E1 6.7E-4 double 1.2E-10 double

- 1.8E-9 4.6E5 1.1E18
598 4.7 1 1.5E-3 3 2.9E2 0 3.6E-6 2.9E2
eady 1.7E-12 quad. 7.6E-12 double

1.8E-9 4.6E5 7.4E17

matrix A computed withbdschur results in one block of size 5, one block of size 4 and
one block of size 1 with a condition number forV of approximately102. The second row
of Table 3.4 contains results for this example with this block-diagonalization, where now
our algorithm is again successful. As before,Versoft is also successful for this example.
It takes 0.5s and obtains an enclosure forX with mrp and arp equal to1.2 · 10−11 and
3.3 · 10−12, respectively.

TABLE 3.4
Numerical results using ”Alg. 2.“, i.e., the variant of Algorithm 1 which uses block diagonalization. The first

test is from Example 4.2 from the CTLEX benchmark [25], while the second is from Example 5.27 in [14].

problem info. Alg. 2 with option 1 Alg. 2 with option 2
n κ(V) tfl spd mrp(X) k time spd mrp(Y) time
λ κ(P) rs (X) arp(X) res. prec. (Y) arp(Y) prec. (Ỹ)
s sep ||res|| κ(mid X) κ(mid Y)

45 1.0 6.9E-3 1 6.1E-3 1 5.8E1 1 1.4E-6 5.8E1
-1.1 3.4E5 2.3 9.1E-6 double 3.7E-11 double
1.1 4.1E-17 8.0E-12 2.1E4 1.9E4
10 1.8E2 2.1E-1 1 3.9E-10 1 6.7E-1 1 7.1E-12 6.7E-1
- 5.3E4 3.0 3.3E-11 double 3.3E-12 double
- 5.6E-16 2.8E-11 7.2E3 9.4E4

We conclude this section with some more general comments. Algorithm 1 consists of
three critical parts: The computation of the floating point appoximationX̌, which should
be accurate, the computation of the enclosureK which should be narrow, and the check
for positive definiteness, which should be successful. For the first part, we can take the

ETNA
Kent State University

http://etna.math.kent.edu

VERIFIED STABILITY ANALYSIS 201

best floating point algorithm available. Obtaining a good floating point approximation will
be particularly hard if the problem is very stiff, i.e., if the value ofrs reported in all our
tables is large. Computing the enclosureK crucially depends on the condition number of the
eigenvector matrixV . If this condition number is too large, we will not succeed incomputing
an enclosure, and we then have to use the block method (which tries to bound the condition
number ofV) instead. If a small condition number forV can only be obtained with relatively
large blocks, the approach of (the block version of) Algorithm 1 will fail as a whole because
the interval quantities computed in the forward substitution process induced by the blocks will
yield interval quantities which become too large. Computing K can also fail just becausěX
is not accurate enough. Finally, the success of checking positive definiteness usingisspd
onH(X) or H(Y) depends on the condition ofmid (X(X)) or mid (H(Y)), respectively,
and the radii of the entries ofX andY . The method is more likely to succeed when the
interval entries are narrow, i.e. when we have tight enclosures, and whenmid (H(X)) or
mid (H(Y)) is well conditioned. The latter property, in principle, depends on the choice of
the matrixC, which we always took to be−I in our examples. As a rule, we would also
expect the matrices to be less well conditioned when the stiffness ratiors of the matrixA is
large.

Note that we can also fail to obtain an enclosure because the computed approximate
solutionX̌ is not accurate enough.

4. Conclusions.We presented a verified numerical method to prove stability of matrices
by computing interval enclosures for the solution of a Lyapunov equation and subsequently
showing that this solution is positive definite. If our algorithm is successful, it is proved in a
mathematically rigorous manner that the matrix is stable. If the algorithm is not successful,
we do not have a mathematically rigorous result, i.e., we do not know whether the matrix is
stable or not. We presented two options for the task of proving the positive definiteness, where
the one which works with the interval enclosure for the transformed solutionY = V XV ∗

usually yields better enclosures and is successful in more cases. Due to an implementation
oriented towards matrix-matrix operations, the algorithmis time efficient when implemented
in Intlab. In its basic version our method requires the matrix to be diagonalized numerically,
but it can be generalized to use a block diagonalization in cases where the eigenvector matrix
is too ill conditioned. Larger blocks, however, will usually prevent our algorithm from being
successful since we then suffer from the accumulation effect in outward roundings during the
forward substitution process.

Let us finally note that Algorithm1 can be adapted to the case where the input matrixA
is an interval matrixA. This situation arises when one wants to model uncertainties in the
input dataA. In Algorithm 1 we then compute the approximate solutionX̌ andV,D with
respect to the midpoint ofA, while all other occurencies ofA in Algorithm 1 have to be
replaced byA. Numerical tests show that this approach gives good enclosures as long asA
has narrow interval entries. As is to be expected, this approach is faster thanVERMATREQN
from theVERSOFTlibrary while the enclosures obtained are (slightly) larger than those from
VERMATREQN.

REFERENCES

[1] G. ALEFELD, Inclusion methods for systems of nonlinear equations—the interval Newton method and mod-
ifications, in Topics in Validated Computations (Oldenburg, 1993), J. Herzberger, ed., vol. 5 of Stud.
Comput. Math., North-Holland, Amsterdam, 1994, pp. 7–26.

[2] G. ALEFELD AND J. HERZBERGER, Introduction to Interval Computations, Academic Press, New York,
1983.

ETNA
Kent State University

http://etna.math.kent.edu

202 A. FROMMER AND B. HASHEMI

[3] A. BAVELY AND G. STEWART, An algorithm for computing reducing subspaces by block diagonalization,
SIAM J. Numer. Anal., 16 (1979), pp. 359–367.

[4] P. BENNER AND T. DAMM , Lyapunov equations, energy functionals, and model order reduction of bilinear
and stochastic systems, SIAM J. Control Optim., 49 (2011), pp. 686–711.

[5] Y. CHAHLAOUI AND P. VAN DOOREN, A collection of benchmark examples for model reduction of linear
time invariant dynamical systems, Tech. Rep. SLICOT Working Note 2002-2., 2002.

http://www.icm.tu-bs.de/NICONET/REPORTS/SLWN2002-2. ps.gz
[6] , Benchmark examples for model reduction of linear time-invariant dynamical systems, in Dimension

Reduction of Large-Scale Systems, P. Benner, D. C. Sorensen,and V. Mehrmann, eds., vol. 45 of Lect.
Notes Comput. Sci. Eng., Springer, Berlin, 2005, pp. 379–392.

[7] D. CORDES, Verifizierter Stabiliẗatsnachweis f̈ur Lösungen von Systemen periodischer Differentialgleichun-
gen auf dem Rechner mit Anwendungen., Ph.D. Thesis, Department of Mathematics, University of
Karsruhe, 1987.

[8] N. DELANOUE, Algorithmes nuḿeriques pour l’analyse topologique: Analyse par intervalles et th́eorie des
graphes, PhD thesis, Laboratoire d’Ingénierie des Systèmes Automatiśes, Universit́e d’Angers, 2006.

http://lisa.univ-angers.fr/THESES/TheseDelanoueNico las.zip
[9] N. DELANOUE, L. JAULIN , AND B. COTTENCEAU, Stability analysis of a nonlinear system using interval

analysis, preprint, Laboratoire d’Inǵenierie des Systèmes Automatiśes, Universit́e d’Angers, 2006.
193.49.146.171/˜delanoue/article/delanoue.pdf

[10] F. DOMES AND A. NEUMAIER, Rigorous enclosures of ellipsoids and directed Cholesky factorizations,
SIAM J. Matrix Anal. Appl., 32 (2011), pp. 262–285.

[11] F. W. FAIRMAN , Linear Control Theory: The State Space Approach, John Wiley & Sons, New York, 1998.
[12] A. FROMMER AND B. HASHEMI, Verified error bounds for solutions of Sylvester matrix equations, Linear

Algebra Appl., 436 (2012), pp. 405–420.
[13] Z. GAJIĆ AND M. QURESHI, Lyapunov Matrix Equation in System Stability and Control, Dover, New York,

2008.
[14] R. GREGORY AND D. KARNEY, A Collection of Matrices for Testing Computational Algorithms, Wiley-

Interscience, New York, 1969.
[15] B. GROSS, Verification of asymptotic stability for interval matricesand applications in control theory, in

Scientific Computing with Automatic Result Verification, E. Adams and U. Kulisch, eds., Academic
Press, New York, 1993, pp. 357–395.

[16] S. J. HAMMARLING , Numerical solution of the stable, nonnegative definite Lyapunov equation, IMA J. Nu-
mer. Anal., 2 (1982), pp. 303–323.

[17] R. HAMMER , M. HOCKS, U. KULISCH, AND D. RATZ, Numerical Toolbox for Verified Computing. Volume
I: Basic Numerical Problems. Theory, Algorithms, and Pascal-XSC Programs., Springer, Berlin, 1993.

[18] D. HERTZ, The extreme eigenvalues and stability of Hermitian interval matrices, IEEE Trans. Circuits
Systems-I: Fund. Theory Appl., 39 (1992), pp. 463–466.

[19] W. HOFSCHUSTER ANDW. KRÄMER, C-XSC 2.0 – a C++ library for extended scientific computing, in
Numerical Software with Result Verification, R. Alt, A. Frommer, R. Kearfott, and W. Luther, eds.,
vol. 2991 of Lecture Notes in Computer Science, Springer, Berlin, 2004, pp. 15–35.

[20] R. A. HORN AND C. R. JOHNSON, Topics in Matrix Analysis, Cambridge University Press, Cambridge,
1994.

[21] A. I SERLES, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press,
New York, 1996.

[22] R. B. KEARFOTT, Interval computations: Introduction, uses, and resources, Euromath Bulletin, 2 (1996),
pp. 95–112.

[23] R. KLATTE , U. W. KULISCH, A. WIETHOFF, C. LAWO, AND M. RAUCH, C-XSC. A C++ Class Library
for Extended Scientific Computing, Springer, Berlin, 1993.

[24] R. KRAWCZYK, Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken, Computing, 4
(1969), pp. 187–201.

[25] D. KRESSNER, V. MEHRMANN, AND T. PENZL, CTLEX - A collection of benchmark examples for
continuous-time Lyapunov equations, Tech. Rep. SLICOT Working Note 1999-6., 1999.

http://www.slicot.org/REPORTS/SLWN1999-6.ps.gz
[26] A. J. LAUB, Matrix Analysis for Scientists & Engineers, SIAM, Philadelphia, PA, 2005.
[27] R. LOHNER, Einschliessung der L̈osung geẅohnlicher Anfangs-und Randwertaufgaben und Anwendungen,

PhD thesis, Universität Karlsruhe, 1988.
[28] S. MIYAJIMA , Fast enclosure for solutions of Sylvester equations, Linear Algebra Appl., to appear, 2012.
[29] R. E. MOORE, R. B. KEARFOTT, AND M. J. CLOUD, Introduction to Interval Analysis, SIAM, Philadelphia,

2009.
[30] A. NEUMAIER, Interval Methods for Systems of Equations, no. 37 in Encyclopedia of Mathematics and its

Applications, Cambridge University Press, Cambridge, 1990.
[31] M. L. OVERTON, Numerical Computing with IEEE Floating Point Arithmetic, SIAM, Philadelphia, 2001.

http://www.icm.tu-bs.de/NICONET/REPORTS/SLWN2002-2.ps.gz
http://lisa.univ-angers.fr/THESES/TheseDelanoueNicolas.zip
193.49.146.171/~delanoue/article/delanoue.pdf
http://www.slicot.org/REPORTS/SLWN1999-6.ps.gz

ETNA
Kent State University

http://etna.math.kent.edu

VERIFIED STABILITY ANALYSIS 203

[32] K. OZAKI , T. OGITA , AND S. OISHI, Tight and efficient enclosure of matrix multiplication by using optimized
BLAS, Numer. Linear Algebra Appl., 18 (2011), pp. 237–248.

[33] A. RAUH , J. MINISINI , E. HOFER, AND H. ASCHEMANN, Robust and optimal control of uncertain dy-
namical systems with state-dependent switchings using interval arithmetic, Reliab. Comput., 15 (2011),
pp. 333–344.

[34] J. ROHN, VERSOFT: Verification software in MATLAB/INTLAB.
http://uivtx.cs.cas.cz/˜rohn/matlab

[35] , Checking positive definiteness or stability of symmetric interval matrices is NP-hard, Comment.
Math. Univ. Carolin., 35 (1994), pp. 795–797.

[36] , Positive definiteness and stability of interval matrices, SIAM J. Matrix Anal. Appl., 15 (1994),
pp. 175–184.

[37] S. M. RUMP, Solving algebraic problems with high accuracy, in A New Approach to Scientific Computation,
W. Miranker and E. Kaucher, eds., vol. 7 of Comput. Sci. Appl. Math., Academic Press, New York, 1983,
pp. 51–120.

[38] , Fast and parallel interval arithmetic, BIT, 39 (1999), pp. 534–554.
[39] , INTLAB – INTerval LABoratory, in Developments in Reliable Computing, T. Csendes, ed., Kluwer

Academic Publishers, Dordrecht, 1999, pp. 77–104.
[40] , Verification of positive definiteness, BIT, 46 (2006), pp. 433–452.
[41] J. SHAO AND X. HOU, Positive definiteness of Hermitian interval matrices, Linear Algebra Appl., 432 (2010),

pp. 970–979.
[42] H. L. STALFORD AND C. H. CHAO, A necessary and sufficient condition in Lyapunov robust control, J.

Optim. Theory Appl., 63 (1989), pp. 191–204.
[43] R. S. VARGA, Geřsgorin and His Circles, Springer, Berlin, 2004.
[44] D. S. WATKINS, Fundamentals of Matrix Computations, Second ed., Pure and Applied Mathematics, Wiley-

Interscience, New York, 2002.
[45] A. WEINMANN , Uncertain Models and Robust Control, Springer, Vienna, 1991.

http://uivtx.cs.cas.cz/~rohn/matlab

