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PRECONDITIONERS BASED ON STRONG SUBGRAPHS*

IAIN S. DUFFI* AND KAMER KAYA 8

Abstract. This paper proposes an approach for obtaining block didgorhblock triangular preconditioners
that can be used for solving a linear systdm = b, whereA is a large, nonsingular, real, x n sparse matrix.
The proposed approach uses Tarjan’s algorithm for hiei@altih decomposing a digraph into its strong subgraphs.
To the best of our knowledge, this is the first work that usés dfgorithm for preconditioning purposes. We
describe the method, analyse its performance, and comparth ipreiconditioners from the literature suchl dUT
and XPABLO and show that it is highly competitive with them in terms of batkemory and iteration count. In
addition, our approach shares wiXPABL O the benefit of being able to exploit parallelism through asicer that
uses a block diagonal preconditioner.
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1. Introduction. Given a linear system
(1.1) Ax = b,

whereA is a real, large, sparse square matrix of ordene propose a method to construct a
preconditioning matriXM to accelerate the solution of the system when using Krylothme
ods. The proposed method is based on a hierarchical decdiopas the associated digraph
into its strong subgraphs. This decomposition can be ustdda@ permutation of the matrix
to produce a block form that can be used to build either a btbagonal matrix for use as
a block Jacobi preconditioner or a block tridiagonal matoixuse as a block Gauss-Seidel
preconditioner.

The algorithm we use to create the blocks on the diagondl @ a modified version of
Tarjan’s algorithnHD that decomposes a digraph into its strong subgraphs hiecatiy [26].
Tarjan assumed that the edges of the digraph are weighteduodes this weight informa-
tion to create the hierarchical decomposition. HowelBrrequires distinct edge weights if it
is implemented as given ir2f]. In this paper, we propose a slight modificationHid which
allows us to handle digraphs whose edge weights are notsedgslistinct. We make further
modifications to the algorithm to use it for preconditionimgrposes. The strong subgraphs
formed by the modified version 1D correspond to the blocks on the diagonalMf To
the best of our knowledge, this is the first work that usesafesjhierarchical decomposition
algorithm for preconditioning purposes. We call our modifiersionHDPRE.

We should emphasize at this point that this algorithm ofdraig different from the
much better known algorithm for obtaining the strong congrts of a reducible matrix. This
earlier algorithm 24], which we callSCC, is used widely in the solution of reducible systems
and is also called byiD and HDPRE, which can be viewed as extending the earlier work
to irreducible matrices. We use the output fréiDPRE to determine our preconditioners.
This is done bySCPRE that can generate a block diagonal preconditioner or a hlpgler-
triangular one.
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We have conducted several experiments to see the efficiétioy 8CPRE algorithm. We
compare the number of iterations for convergence and the amemequirement of
the GVRES [273] iterative solver when the proposed approach and a setbfT precondi-
tioners R1, 22] are used. We are aware that block based preconditionirfmitees have
been studied before and successful preconditioners sueABISO and its derivatives have
been proposedlfl, 15]. These preconditioners were successfully used for skeveati-
ces [3, 5, 10]. In this paper, we compare our results also WAPABLO[14, 15].

Section2 gives the notation used in the paper and background on TaghgorithmHD.
The proposed algorithm is described in Sectiand the implementation details are given in
Sectiond. Section5 gives the experimental results and Sectiaroncludes the paper.

2. Background. Let A be a large, nonsingulat,x n sparse matrix withn off-diagonal
nonzeros. The digrapfil = (V, F') associated withA hasn vertices,v;,i = 1,...,n, inits
vertex setl” wherew; corresponds to th&h row/column ofA for 1 < i < n, andw;v; is in
the edge sel’ if and only if A;; is nonzero forl < # j < n. Note that we do not consider
self-loops of the formy;v; corresponding to diagonal entries in the matrix. Figikeshows
a simple6 x 6 matrix with 13 nonzeros and its associated digraph.
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FiG. 2.1.A 6 x 6 matrix A with 13 off-diagonal nonzeros on the left and its associated dig@pn the right.
The nonzeros on the diagonal Af are shown withx. Except for these entries, there is an edge in the associated
digraph G for each nonzero oA.

A pathis a sequence of vertices such that there exists an edgedreavery two con-
secutive vertices. A path is calletbsedif its first and last vertex are the same. A verteis
connectedo v if there is a path fromu to v in G. A directed grapld- is strongly connected «
is connected te for all u, v € V. Note that a digraph with a single vertexs strongly con-
nected. A digraplez’ = (V/, E')isasubgraph off if V' C VandE’ C EN(V'xV'). If G
is strongly connected, it is called a strong subgraph (oramgty connected subgraph) 6%
Furthermore, ifG’ is maximallystrongly connected, i.e., if there is no strong subgrégh
of G such that?’ is a subgraph of?”, itis called a strong component (or a strongly connected
component) oiG. If the matrix A cannot be permuted into a block triangular form (BTF)
by simultaneous row and column permutations, i.e., if t®aisted digraph is strongly con-
nected, we say tha\ is irreducible. Otherwise, we call it reducible.

Let G = (V, E) be a digraph an®(V') = {11, V4, ..., V} } define a partition oV into
disjoint sets, i.e.V; N V; = (0 fori # j ande:1 V; =V. LetV = {V;,V»} be a set of two
vertex partitions such that, = P(V') and

v, = |J Pva),

Vievi



ETNA
Kent State University
http://etna.math.kent.edu

PRECONDITIONERS BASED ON STRONG SUBGRAPHS 227

i.e., Vs is a finer partition obtained from partitioning the partsin Hence, for instance,
if Vi = {{1,2,3},{4,5,6}} then), can be{{1},{2, 3}, {4,5}, {6}} but cannot be the par-
tition {{1, 2}, {3,4},{5,6}}. Let no,(v) and na(v) denote the index of the part containing
the vertexv € V for V; andV,, respectively.

Letcondense be an operation which také&s and) as inputs and returns a condensed
digraphcondense(G, V) = GY = (VY2, EY1) where each vertex sé € ), is condensed
into a single vertex; € VY2, For alluv € E, with noy(u) = i and ng(v) = j, there
exists an edge;v; € EY1 if and only if no(u) # no;(v), i.e.,w andv are in different
coarse parts. Note that even thoughs a simple digraph(:¥' can be a directed multigraph,
i.e., there can be multiple edges between two vertices. Efiaitions of connectivity and
strong connectivity in directed multigraphs are the samthase in digraphs. An example
for thecondense operation is given in Figur.2

(b)

FiG. 2.2. An example for theondense operation on the digraph in Figur@.1(b) The vertex parti-
tionsVy = {{1,2,3},{4,5,6}} and V> = {{1},{2,3},{4,5},{6}} are shown in (a). The condensed graph
is shown in (b).

3. A strong subgraph based preconditioner.Our proposed algorithn5CPRE, gen-
erates a preconditionévl with a block diagonal or block upper-triangular structurkene
the size of each block is smaller than a requested maximuaok lsiaembs. For the exper-
iments, we scale and permufefrom (1.1) by Duff and Kostersvic64 with the option that
uses themaximum product transversfll]. The idea used bC64 is due to Olschowska
and Neumaierq0], who propose an algorithm which permutes and scales thexnasuch
a way that the magnitudes of the diagonal entries are onehendhaignitudes of the off-
diagonal entries are all less than or equal to one. Such axnsitalled anl-matrix. For
direct methods, it has been observed that the more domihardiagonal of a matrix, the
higher the chance that diagonal entries are stable enouggrie as pivots for elimination.
For iterative methods, as previous experiments have shewah a scaling is also of inter-
est @4, 11]. We observed a similar behaviour in our preliminary expemts and uselC64
for scaling and permuting the original matrix. From now o, will assume that the diagonal
of A is nonzero since this is the case after this permutation.

SCPRE uses the block structure froMDPRE to determine the diagonal blocks of the
preconditionerM. We then combine some of these blocks if the combination bagif
than mbs rows/columns and the combination is not block diagonal. @iagonal blocks
of the resulting matrix can then be used to precondition téaiive solver using the block
Jacobi algorithm and can exploit parallel architecturethashlocks are independent. If we
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require a block diagonal preconditioner, then we are firdst@therwise SCPRE permutes
the blocks and builds a block upper-triangular precondéio

If A is reducible and the maximum block size in the BTFAfis less than or equal
to mbs, then SCPRE will find this form or will return the diagonal blocks of it if Alock
diagonal preconditioner is desired. The permutation of &iriato its block triangular form
is a well-known technique that has been recently and sultdlysssed by direct and iterative
solvers for circuit simulation matrice9,[27], which can often be permuted to a non-trivial
BTF. For some applications, such as DC operating point aiglthe block triangular form
has many but small block®7]. Such a matrix is usually easy to factorize if we initially
permute it to BTF, so that a direct solver lik&U [9] only needs to factorize the diagonal
blocks. Note that Tarjan’SCC algorithm that has linear complexity in the matrix order and
the number of nonzeros has been widely and successfullyhysdte computational linear
algebra community for obtaining a BTF that is then exploligdubsequent solvers. A code
implementing this algorithm is available B&£13 from HSL [19] and it is also an algorithm
in ACM TOMS [12, 13].

However, when the matrix is irreducible, t8€C algorithm is not applicable. Further-
more, even if the matrix is reducible, we may have little glaom using the BTF because
this form may have one or more very large blocks. This is thse=dar applications like
transient simulation or for circuit matrices with feedbgsckor this reason we propose using
Tarjan’s HD algorithm R6] as an additional tool t&CC. SCPRE usesHDPRE and further
decomposes blocks larger tharbs to make the resulting preconditioner practical. For these
reasons, in our experiments, we only use matrices thatrauicible or have a large block in
their BTF. The details 05CPRE and the algorithms it uses are given in the next section. Note
that since we use a combinatorial algorithm from graph thémrpreconditioning purposes,
we will use terms from graph theory in the following text satttow/columnandvertexare
used interchangeably as well asnzercandedge

3.1. SCPRE: obtaining the block diagonal preconditioner. To obtain a block diagonal
preconditionerSCPRE usesHDPRE and then combines some of these blocks if the size of
the combined block is at mostbs and the combined block is not block diagonal. In this
section, we present the details of these algorithms. Rirstdescribe Tarjan’s hierarchical
decomposition algorithm more precisely.

3.1.1. Tarjan’s algorithm for hierarchical clustering. Let G = (V, F) be the digraph
associated wittA. The weight of an edgev € FE is denoted byw(uv) and is set to the
absolute value of the corresponding off-diagonal nonzéflence, there aren edges and
all of the edges have positive weights. A hierarchical dgmogition of G into its strong
subgraphs can be defined in the following way. bgtbe a permutation of the edges.
For1 <i < m, let oy(i) be theith edge inocy and o, ' (uv) be the index of the edgev
in the permutation for alkv € E. Let Gy = (V,0) be the graph obtained by remov-
ing all the edges frontz. We then add edges one by onedg in the order determined
by 0o. LetG; = (V,{o(j) : 1 < j <i}) be the digraph obtained after the addition of the
firsti edges. Initially inGy, there aren strong components, one for each vertex, and during
the edge addition process, the strong components gradwgalgsce until there is only one,
as we are assuming that is irreducible. Note that if this is not the case, the aldnitwill
be used for the large irreducible blocksAn The hierarchical decomposition 6f into its
strong subgraphs with respect to the edge permutatjoshows which strong components
are formed in this process hierarchically. Note that a gframmponent formed in this edge
addition process is indeed a strong component of some digraut not of G. For G, all
except the last are just strong subgraphs.
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FiG. 3.1. The hierarchical decomposition tree for the digraphand the permutation given by the edge
ordering in Figure2.1(b)

A hierarchical decomposition can be represented by a leigiGal decomposition treg,
whose leaf nodes correspond to the verticeB jmon-leaf nodes correspond to edgedin
and subtrees correspond to the decomposition trees of riiggstomponents that form as
the process proceeds. Note that only the edges that creats stomponents during the
process have corresponding internal node&'inlf o is the ordering determined by the
edge numbers, the hierarchical decomposition tree for igagh in Figure2.1(b)is given
in Figure3.1 As the figure shows, during the edge addition process, #fteaddition of
the3rd and6th edges irv, the sets of vertice§l, 2,3} and{4, 5} form a strong component
of G3 andGg, respectively. These strong components are then combiméoam a larger
one after the addition of thelth edge. In Figur&.1, the root of the tree is labelled witt®.
Hence the firsi2 edges irv are sufficient to construct a strongly connected digraphthe
figures in this paper, we use the labels of the correspondiniices and the, '-values of
the corresponding edges to label each leaf and non-leafafadbkierarchical decomposition
tree, respectively.

Given a digraphG = (V, E) with n vertices andn edges and a permutation, the
hierarchical decomposition trdecan be obtained by first constructitg and executingCC
for each internal digrapldz; obtained during the edge addition process. Note that this is
an O(mn + m?) algorithm sincel < i < m and the cost oSCC is O(n + m) due to
the strong component algorithm of Tarja?¥]. To obtainT" in a more efficient way, Tarjan
first proposed alfD(mlog2 n) recursive algorithmZ5] and later improved his algorithm and
reduced the complexity t®(mlogn) [26]. He assumed that the weights of the edges in
the digraph are distinct, i.ew(uv) # w(u'v") for two distinct edgesiw andu/v’. Here
we modify the description of the algorithm so that it also kgofor the case when some
edges have equal weights. Note that the connectivity of idgp@ph is purely structural and
is independent of the edge weights. The only role that thay jpl Tarjan’s algorithnmHD is
in the preprocessing step that defines a permutatjoof the edges and in determining the
ordering of the edges during the course of the algorithm. \emrate the necessity of this
latter use by avoiding numerical comparisons through jsstgithe indices of the edges with
respect tary. With this slight modification, the algorithm remains catreven when some
edges have the same weight, which is very important as matrycemhave several or many
nonzeros with the same numerical value.

HD uses a recursive approach and for every recursive calltstaydigraphz = (V, E),

a permutatiorv of the edges, and a parametexs inputs such tha¥ is strongly connected
andG; is known to be acyclic, i.e., every vertex is a separate gtommponent46]. For the
initial call, 7 is set to0 and the initial permutation is set tg which is a permutation of all
the edges in the original digraph.

For acall oHX(G = (V, E), 0, 1), thesizeof the subproblem is set t&| — ¢, the number
of edges that remain to be investigated (Tarjan used the t@ninto denote the size of a
subproblem). Note that in the first stei) knows that’z; (that isG) is acyclic, that is, there
are|V| strong components @, one for each vertex. If the subproblem size is one, sfice
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Algorithm 1 T'=HIG = (V, E), 0,4) . For the initial call,c = o andi = 0.
1. if |[E| —i=1then
2. LetT be atree with/ leaves. Root is labelled with, ' (o(|E|))

3 return T

4: end if

5: j = [(i + |EI)/2]

6: if G; = (V,{o(k) : 1 <k < j}) is strongly connectethen
7. return T = HD(G}, 0,1)

8: else

9: for each strong componestC, = (V;, E,) of G; do

10: if [Ve] > 1 then

11: o¢ = the permutation ofs, ordered with respect to
12: if i =0o0r(c ! (uw) > 1, Vuv € E;) then

13: ip=0

14: else

15: ip = max{k : o 1 (oy(k)) < i}

16: end if

17: T, = HD(SC@,O’@,i@)

18: else

19: T, = (Vl, (Z))

20: end if

21:  end for

222 V1 =V, = {V;,: SC,is a strong component @f, }
23: V= {V1, VQ}

24:  GY = condense(G,V) = (VY2 V1)

25: ¢V =the permutation oV ordered with respect to
26:  if (07 (wv) > j, Vuv € EV1) then

27: V=0

28: else

29: i¥ = max{k : 071 (¥ (k)) < j}
30: endif

31 TY =HXGY,o0V,iY)

32:  replace the leaves @f¥ with the corresponding treds
33:  return TV

34: end if

is strongly connected an@; is acyclic, the vertices iV are combined with the addition
of the | E|th edge ino. HenceHD returns a tred’ having a root labelled withry ' (o (| E|))
and|V| leaves. If the subproblem size is not o) performs a binary chop and checks
if G;,5 = [(i+|E|)/2], is strongly connected. If; is strongly connected, then all of the
strong components will be combined before the addition ef(jh+ 1)th edge. Hence the
algorithm callsHXG ;, o, 7). Otherwise, a recursive call is made for each strong cormon
of size larger than one. A detailed pseudo-codEDfs given in Algorithm1.

By the definition ofi, GG;, the subgraph containing the firsedges ofG in o, is known
to be acyclic. Let, be the number of these edges in tiie strong subgrapiC, = (V4, E;)
of Gj, i.e. iy = [{uwv € E; : 07 (uv) < i}|. SinceSC, is a subgraph of7;, G; being
acyclic implies that the subgraph 6%, containing only theseé, edges is also acyclic. In
Algorithm 1, lines12-16, the numbei, is found for each strong componest’,. This value
is then used in the recursive call {6, at line17.
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SinceG; has more than one strong component &id known to be strongly connected,
with the addition of some edge(s) after tji& one, at least two strong componentschf
will be combined. To find this edge, another recursive ¢I(GY, oV, "), is made for the
condensed grapy¥ = (V2, EV1). Since each strong component(@f is reduced to one
vertex inGY, a subgraph of the condensed graph which contains only tiesétbmG'; must
be acyclic. Hence we can find the valilein a similar fashion ta,. But this time instead
of i we usej and set” = |{uv € EY* : 0~ 1(uv) < j}| for the corresponding recursive call
at line31.

We investigate the size of each new subproblem for the codtylanalysis ofHD. At
line 7 of Algorithm 1, the size of the subproblem becomes at nmjost; and for the linesl7
and31, there will be smaller subproblems with sizes at mjast and|E|— j, respectively. By
definition of j, every subproblem has a size at mésif the original problem size (consider
the case when= 0 and|E| = 3). Note that every edge in the original problem corresponds
to an edge in at most one subproblem and, if we do not counethesive calls, the rest of
the algorithm take®) (| E|). Lett(m,r) be the total complexity of a problem with edges
and problem size, andk be the number of recursive calls. Then

Sincezlemi < mandr; < 2r/3, forl < i < k, a simple induction argument shows

thatt(m, r) = O(mlogr). Hence the total complexity of the algorithmd¥mlog m) which

is actuallyO(mlog n) since the original graph is a simple digraph (not a directattigraph).
Let us sketch the algorithm for the digragh= (V, E) in Figure2.1(b) Assume that

is the ordering described in that figure. In the initial cidie 5 of Algorithm 1, the valugj = 7

is computed and it is checkeddf; is strongly connected. As FiguBe2 shows,G; has three

strong components where the first and second are the newaofldms, which are solved

recursively. Since the third strong component containg onk vertexHD does not make a

recursive call for it. An additional recursive call is made the condensed graph. Figuse

displays the graphs for the recursive calls and the retumeed. The number of edges in the

Figures3.3(a) 3.3(b) and3.3(c)are4, 2, and7, whereas the corresponding problem sizes

are4, 2, and6 respectively. Note that andi, are0 for the first two calls and” = 1 for the

last one withG?¥ sinceGY is known to be acyclic becauge= 7 ando¥ (1) = o(7).

5Cy 5C; SCs

FiIG. 3.2.Strong components 67 for the digraphG given in Figure2.1(b)
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Because of the multiple edges between two vertices, thestmed graph in Figur#3(c)
has 7 edges. However, the algorithm still works if we spgiti€ edges of?Y = (VY2 EV1)
and obtain a simple digraph as follows: for an edgec E such thatu € V; andv € V;
andi # j, there exists,;v; € EY if no otheru’v’ € E exists such that’ € V; andv’ € V
ando 1 (u/v') < o~ (uv). That is, for multiple edges betweenandv, we delete all but
the first in the permutation. In Figure3.3(c) these edgess(7) ando(8), are shown in
bold. In [26], Tarjan states that although having less edges in the caedegraphs with this
modification is desirable, in practice the added simplidibgs not compensate for the cost
of the reduction of multigraphs to simple digraphs. Thisls®aalidated by our preliminary
experiments.

; @
7{10,13) 8(9)
3 11 12
f
g @ ® oo =®

(a)Call for SCy (b) Call for SC> (c) Call for the condensed graph
with three vertices

FiG. 3.3. Three recursive calls for the digraphl and o in Figure 2.1(b). Internal nodes in trees are labelled
with theoo’l—value of the corresponding edge. Note that the overalldn@ical decomposition tree is already given
in Figure 3.1

3.1.2. HDPRE: obtaining the initial block structure. As mentioned in Sectio.1.],
Tarjan proposetHD for hierarchical clustering purposes and sorted the edgfesr@spect to
increasing edge weights. Thus,dif is the permutation used for a hierarchical clustering,
it holds thatw(og(i)) < w(oo(4)), fori < j. In this work, we propose using two different
approaches to obtain the permutation: the first solely dépen the weights of the edges
and sorts them in the order of decreasing edge weightswieedefine the permutationm
such thatw(o(i)) > w(o(j)) if i < j. The second uses the sparsity pattern of the matrix.
The reverse Cuthill-McKeeRCM ordering B, 18] is used to find a symmetric row/column
permutation. Then the edges are ordered in a natural, res-aider. That is, an eddgg¢
always comes beforkl if i < kor,i = kandj < /.

The decomposition trég obtained from the output from Tarjart4D algorithm could be
used for preconditioning without modification, but we paostiess this tree to ensure that all
leaf nodes are as large as they can be but still have fewertithamodes. For the decom-
position treeT” in Figure 3.1, the cases fombs = 2 andmbs = 3 are given in Figure3.4.

In T, for the casenbs = 2, the verticesl, 2, and3 cannot be combined since the number
of vertices in the combined component will Bewhich is greater thambs. Hence, there
will be 5 blocks after this phase. However, the vertiteg, and3 can be combined for the
casembs = 3 and the number of blocks will b& Note that for preconditioning, we do not
need to construct the whole treeld. We only need to continue hierarchically decomposing
the blocks until they contain at mostbs vertices. Hence, for efficiency we modify liri®

of HDto check if the current strong component has more than vertices (instead of a sin-
gle vertex). Hence the modified algorithm will make a reawggiall for a strong component
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if and only if the component has more thasbs vertices.

FIG. 3.4. Using the output of théiD algorithm. Two casesnbs = 2 and mbs = 3, are shown for the
decomposition tree in Figur@.1

To obtain denser and larger blocks, we incorporate some mouéfications toHD as
follows: first, we modify the definition o). Note thaty = {V;,V,} for HD, where the
parts inV; = V. are the vertex sets of the strong component& of For preconditioning,
we keep the definition 0f; but use a finer partitiol, that contains the vertex sets of strong
components obtained by hierarchically decomposing trengtcomponents of size larger
thanmbs. For example, in Figur8.2, we have 3 strong components of size2, and 1,
respectively. Hencey; = {{1,2,3},{4,5},{6}}. If mbs = 2, SC; will be further divided
sothat, = {{1}, {2}, {3}, {4,5},{6}}. However, ifmbs = 3, no more decomposition will
occur andV; will be equal toV,. With this modification, the algorithm will try to combine
the smaller strong components and obtain larger ones witloatmbs vertices. Note that
settingy = {V», )V, } tries to do the same but will fail since the only componeng ttan be
formed by this approach will be the same as thosg,inHence, by deleting the edges within
the vertex sets i, , we eliminate the possibility of obtaining the same compsie

A second modification is applied to tlk®ndense operation by deleting the edges be-
tween two vertices;, v; € V1 in the condensed gragh if the total size of the correspond-
ing partsV;, V; € Vs, is larger thanmbs. Note that if we were to retain these edges, they would
only be used to form blocks of size more thams. We call this modifiecondense oper-
ationpcondense. An example of the difference betweenndense andpcondense is
given in Figure3.5.

As Figure3.5 shows, with this last modification, some of the graphs forrémirsive
calls may not be strongly connected. Hence, instead of aendmtomposition tree, we may
obtain a forest such that each tree in the forest, which spards to a strong subgraph in
the hierarchical decomposition, has less thais leaves. The modified algorithidDPRE,
described in Algorithn®, also handles digraphs which are not strongly connectete tiat
for preconditioning, the only information we need is thediatructure information. That is,
we need to know which vertex is in which tree in the forestratie modified hierarchical
decomposition algorithm is performed. Instead of a treea(éorest),HDPRE returns this
information in thescomp array.

The structure of the algorithrADPRE is similar to that ofHD. In addition toG, o,
andi:, HDPRE requires an additional input arrayize which stores the number of vertices
condensed into each vertex Bt For the initial call withG = (V, E), vsize is an array
containing|V'| ones. On the other hand, for the condensed vertices, this véill be equal
to the sum of thevsize-values condensed into that vertex. For the condensedpdigmnar-ig-
ure3.3(c) vsize = {3,2,1} when its vertices are ordered from left to right. To be precis
for a recursive call wittG' = (V, E), the total number of simple vertices}s, ., vsize(v)
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(\a/ 1 12 o o
&

Fic. 3.5. Difference betweercondense and pcondense operations for the strong components
of G7 given in Figure 3.2 Let mbs = 3, so that all of the components have a desired number of
vertices andV; = Vs = {{1,2,3},{4,5},{6}}. Note that the condensed graphs obtained dpndense
and pcondense are the same except that the latter does not have some of s ¢dat the former has. For
this example, the edges 7, 10, 11, and 13 are missing sindettiaize size o6C and SCs is 5, which is greater
thanmbs. As a result, for theondense graph, we obtain 3 blocks of siz8s2, and 1, respectively, whereas for
thepcondense graph, we have 2 blocks of size 3.

and this number is larger thanbs for all recursive calls because of the size check in liie
of Algorithm 2.

For each callHDPRE checks if the problem sizgZ| — ¢ is equal to one. If this is the
case, it finds the strong componet6’, = (4, E,) of G. If a strong componen§Cy
has) .y, vsize(v) > mbs vertices, thetHDPRE considers each vertex i} as a different
strong component. Otherwise, i.e., if the size of a strongpmment is less than or equal
to mbs, this component is considered as a whole. Following thigc|lddDPRE constructs
the scomp array and returns. If the problem sizB| — i is greater thari, as it was done
for HD, HDPRE constructs7; for j = [(i+|E|)/2] and, if itis strongly connected, the search
for the combining edge among the fijstdges starts with the calDPRE(G;, 0, i, vsize). If
not, then for every strong compone$it’, = (V, £,) of G; with » . vsize(v) > mbs, it
makes a recursive calDPRE(SCy, oy, i¢, vsizeg) and updates the strong component infor-
mation for the vertices if,. This update operation can be considered as further diyittie
strong componentC, hierarchically until all of the strong components obtainleding this
process contain at mostbs vertices.

Similarly to HD, at line 33, HDPRE makes one more recursive call for the condensed
graphGY, where the definition of the vertex partition (in line 27) is modified as in Fig-
ure3.5. In HD, each vertex in the condensed graph corresponds to a stwomgonent o
which defines a partitio®;. In HDPRE, these components are further divided until all of
them have a size no larger tharbs. A second partition),, is obtained from these smaller
strong components and = {V;, V,} is defined. After obtaining the condensed gr&ph,
in the algorithmHDPRE it is checked ifGY is acyclic. Note that if¥ = |EY!|, no strong
component with two or more vertices existsGrY, and hence it is acyclic. ¥ # |EY1],
after obtainingscomp”, HDPRE updatesscomyp if a larger strong component is obtained.

For the matrix given in Figurg.1(a) HDPRE generates the blocks for the caselss = 2
andmbs = 3 as shown in Figur&.6(a)and Figure3.6(b) respectively. Fombs = 2, the
condensed graph hawvertices and no edges, hence no combination will occurnfsr= 3,
as shown in Figur8.6(b), the condensed graph has 3 vertices, wResEthem will combine
with the 12th edge inoy.
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Algorithm 2 scomp = HDPRE(G = (V, E), 0,14, vsize) (mbs is global,i = 0 for the ini-
tial call).
1: if |[E| — i =1then
2. find strong components @f
for each strong componeStC, = (V;, E;) of G do
if >, ey, vsize(v) > mbs then
consider each € V; as a strong component
else
Yo € Vi, scomp(v) = ¢
end if
end for
10:  return scomp
11: end if
12: j = [(i + |E))/2]
13: if G; = (V,{o(k) : 1 < k < j}) is strongly connectethen
14:  return scomp = HDPRE(G}, 0, i, vsize)

© N>R ®

N

15: else

16:  for each strong componeSC, = (V;, E;) of G; do

17 if > ey, vsize(v) > mbs then

18: oy = the permutation of, ordered with respect i@
19: computeiy as in Algorithm1

20: vsizer(v) = vsize(v), Vv € V,

21: scompy = HDPRE(SCYy, 0y, ¢, vsizep)

22: updatescomyp according toscomp,

23: end if

24:  end for

25 V; ={V,;: SC,is a strong component @f }

26. Vo ={Vy : SCy = (Vy, Ep) is a strong component istomp}
27: V= {Vl, VQ}

28: GV = pcondense(G,V, mbs) = (VV2, EV1)

29: ¢V =the permutation of2¥* ordered with respect to

30: computei¥ as in Algorithml

31 if i¥ # |EYY| then

32: vsizeY (vp) = > vev,, vsize(v), Ve € Vs
33: scomp? = HDPRE(GY, 0V, iV, vsizeY)

34: updatescomp with respect tascomp”

35:  endif

36: return scomp

37: end if

3.1.3. Combining the blocks. After HDPRE obtains a block diagonal partitioBCPRE
performs a loop on the nonzeros which are not contained ilmekdn the diagonal to see
if it is possible to put more into the block diagonal by conibinoriginal blocks. To do
this, SCPRE first constructs a condensed simple graplwhere the vertices aff correspond
to the diagonal blocks and the inter-block edgeg7ah both directions are combined as a
single edge with a weight that is the sum of the weights of thelined edges.

After H is obtained, its edges are visited in an order corresportdiagpermutationr g .
This permutation is consistent with the original permutato. That is, if the edges of
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123 4 5 6 1 23 45 6
11X 3 1| x :l
211X |4 1137 211 |x|413|7
3 2 | x 10 3 X 10
4 1 X158 4 1 X|5 |8
5 6 9 5 9
6 12| |x 6 12 |x

(@) mbs =2 (b) mbs = 3

FiG. 3.6. Initial block structure of the preconditioner after tHdDPRE algorithm. Two casesyjbs = 2
andmbs = 3, are investigated for the matrix in Figutz1(a)

the original digraph are sorted in descending order witlpgesto the edge weights;y
permutes the edges @&f with respect to descending edge weights. On the other hénd, i
the initial permutation is based on tlREM ordering, we compute thBCM ordering of H,
relabel the vertices off accordingly, and order the edges with respect toRs ordering.
Letvsize(u) be the number of rows/columns in a block corresponding taéngxw.
Assume thaSCPRE constructsr by sorting the edges with respect to decreasing weights.

For the matrix given in Figur&.6(a) if w(2) + w(4) > w(1), then the verticeg and3 are
combined or ifw(2) +w(4) < w(1), then the vertices 1 and 2 are combined. Sinds = 2

and there is no edge between the verticesd6, no further combinations are performed.

3.2. SCPRE: extending to a BTF preconditioner. If the desired structure @¥1 is block
diagonal, SCPRE stops. Otherwise, while preserving the blocks, it triesxieed the block
diagonal preconditioner to a block upper-triangular onenteNthat in this case, the order
of the blocks is important since it changes depending on lwhanzeros are in the upper-
triangular part ofM. By permuting the blocksSCPRE tries to put entries that are larger
in magnitude into the block upper-triangular part. Our jpn@lary experiments confirmed
that having larger and more nonzeros iB@PRE preconditioner increases its effectiveness.
Since the nonzeros in the diagonal blocks stay the same wkiié:nding a block diagonal
preconditioner to a block triangular one, we focus on imprgwthe nonzeros in the block
upper-triangular part.

Let G = (V, E) be the digraph associated with the matrix @nlge the number of diag-
onal blocks. Let, = {V1,V4,..., V;} be a partition oft” such that the vertices ivi; corre-
spond to the rows/columns of thith block. LetY = {V;,V;} andGY = condense(G, V)
be the condensed multigraph. Note thaGi¥ is acyclic, a topological sort i’ gives a
symmetric block permutation such that all of the nonzerabématrix will be in the upper-
triangular part of the permuted matrix. However, this onfppens for a reducible matrix
with blocks having no more thamnbs rows/columns.

The problem of finding a good block permutation which maxesithe number of nonze-
ros in the upper part d¥I can be reduced to the problem of finding the smallest edgE’set

such thalG® = (VVi, EVr \ E') is acyclic. For the weighted version of the problem, i.e., to

maximize the total magnitude in the upper part, we need todinddge sek’ whereG” is
acyclic and the surh . [w(uv)| is minimal. In the literature, the first problem is called
the directed feedback arc sg@iroblem and the second one is called thescted weighted
feedback arc sgiroblem. Both problems are NP-complet&[17].

Our simple heuristic proposed for this problem is a greedpréthm: we first choose
the block row with the largest entries in the off-diagonaldids and remove the correspond-
ing rows/columns in this block. We then do the same with theaieing block matrix to
obtain the second block row and continue in this way untilreylsi block remains. More
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formally, we letGY be the condensed graph described above. For each wertex/”,

let tweight(u) = ), cpv w(uv). The main body of the algorithm is a for-loop where
at thesth iteration, the vertex, with maximaltweight is chosen, and this is assigned as
the ith vertex in the permutation. Them is removed fromV/V, its edges are removed
from EY, and the algorithm continues with the next iteration. Afpermuting the matrix
with SCPRE, we expect that nonzeros with larger magnitudes are moktted in the diag-
onal blocks and some in the upper-triangular part. We dysipla-igures3.7(a)and3.7(b)
the matrixckt11752tr_0 after scaling using/C64 and after the reordering fro®CPRE, re-
spectively. In the reordered matrix of Figuser(b) it is clear that the larger entries are in the
diagonal blocks.

4. Using SCPRE with an iterative solver. The iterative solver we use in our experi-
ments is the right-precondition€aVRES [23] with restarts. A template for this can be found
in[2]. Let A = D + U + L be the scaled and permuted matrix such IbalU, andL are
the block diagonal, upper, and lower parts, respectively.

If the desired structure is block diagonal, which is suigfiolr the exploitation of paral-
lelism,M = D is the preconditioner. If this is not the cadd,= D+ U is the preconditioner
for A. For the latter case, the computatiAdM ~'x becomes

AM 'x=D+U+L)(D+U) 'x=x+L(D + U) x).

Note thatSCPRE tries to maximize the total magnitudeihandU. As a consequence and as
experiments not included here shdwjsually contains much fewer nonzeros thanHence
computing the vectax = Ly usually takes very little time and the main operation is tmeo
putey = (D + U)~!x = M~!x. In our implementation, in addition tA, we store thd.U
factors of the diagonal blocks, i.e., the factérsand U; such thafD; = L;U; whereD; is
the ith diagonal block. We reduce the memory requirements faeHactors by ordering
the blocks using the approximate minimum degr@kl) heuristic [L, 7] before using the
MATLAB sparse factorization. We then solve the upper blogargular systenMy = x
using these factors, starting with the last block, so thabffrdiagonal parUU is only used to
multiply vectors.

4.1. Robustness.The use of thd-matrix scaling viaMC64 helps to reduce the possi-
bility of a singular preconditioneM obtained bySCPRE because all the submatrices on the
diagonal will also be&-matrices. But, although it is very rare, thésmatrices can be singular
and we still find cases in which some of the blocks on the diagofiM are singular.

When using the MATLAB factorization, we guard against thisgmial problem by using
the simple and cheap stability check proposed and usedPBRBLO[14, 15]. That s, ifn; is
the dimension oD;, after computind.; andUj;, we check whether

U; Lt
(41) ]. — |||e|)(| < VEM,
wheree = (1,...,1)T isann; x 1 column vectorx = D;e, ande,, is the machine epsilon. If

a block does not satisfyl(1), XPABLOreplaced; either byU; or L; according to whether

it is solving a block upper- or lower-triangular system,pectively. ForSCPRE, we use
the same test a¥PABLO but always use the factor having the largest Frobenius norm t
replaceD;, where the Frobenius norm of anx n matrix B is given by

IBlle= [ > Byl
1<i,j<n
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(a) After MC64, beforeSCPRE(dec)
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nz = 332807 4

(b) After SCPRE(dec)

FiG. 3.7. The matrix ckt11752r_0 after scaling (a) and afteBCPRE (b), respectively. The nonzeros are
coloured with respect to their magnitudesps is set to5000.
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5. Experiments. All of the experiments are conducted on an IrzelGhz Quad Core
computer, equipped wittdGB RAM with a Fedora Linux operating system. For the exper-
iments, we use matrices from the University of Florida Spadvitrix Collection B]. The
matrices we use come from circuit simulation problems (CS@niconductor device prob-
lems (SDP), electromagnetics problems (EMP), and optiteizaoroblems (OPT). We run
three sets of comparisons using these matrices. The firsca®hins 45 matrices
with m < 2 x 10% nonzeros. For this set, we usebs = 2000 in the experiments. The
second set contains relatively large matrices with > 2 x 10° nonzeros. For this set, we
usembs = 5000 since they are larger. The third set contai@saverage-size optimization
matrices with106 < m < 2.5 x 10% nonzeros. In constructing the sets, we do not use ma-
trices whose largest blocks in their BTF form have less th@a rows/columns. We also
exclude from the tables any matrices on which none of ourgoditioned iterative solvers
converged. The lists of the remainid3@ matrices in the first set,2 matrices in the second
set, ands matrices in the third set are given in Tabld.

In our experiments, we restart@VRES [23] after every 50 iterations. The desired error
tolerance foIGVRES(50) is set tae = 10~2 and the stopping criterion we use 1BVRES is

|JAM~'Z — b||
[Ib|

wherez = MX, with z the computed solution of the preconditioned systemztite com-
puted solution of the original system. After obtaining tidution X to the original system,
we compute the relative erriAX — b||/||b]| to the unpreconditioned system. For all cases,
this error is smaller thah0~" and indeed, for most of the cases it is also smaller than

The maximum number of outer iterations is sety hence the maximum number of
inner iterations isL000. In the tables, we give the inner iteration counts when tbpshg
criterion is satisfied. Otherwise, if the criterion is notised, we put“ — 7 in the table to
denote thaGVRES did not converge. Also, we put the lowest iteration countgfach matrix
in bold font.

To compare the efficiency of the preconditioner, we used amgepreconditionel, LUT,
c.f. [21, 22], from MATLAB 7.11 with two drop tolerancesdtol = 1072 and10~%. In
addition tol LUT, we also compared our results with thoseX®fABLO[14, 15]. For all of
the preconditioners, we ud4-64 and obtain a maximum product transversal by scaling and
permuting the matrix as a preprocessing step.

In the MATLAB implementation of LUT, for thejth column of the incomplete andU,
entries smaller in magnitude thatol x ||A.,;|| are deleted from the factor whejie\., ;|| is
the norm of thejth column of A. However, the diagonal entries &f are always kept to
avoid a singular factor. For theL UT based preconditioners, we ualD before computing
the incomplete factorization of the matrix. PPABLOpreconditioners, we use tlevariant
for the block Jacobi iterations andK and UX variants for the forward and backward block
Gauss-Seidel iterations, respectively, with the parammejwen in [L4, 15. For the maxi-
mum block size oXPABLO, we used the samebs as forSCPRE. We note that the authors
of XPABLOrecommend a value fonbs of 1000 [14], but in our experiments we found the
value 2000 to work better and found that it was necessary for our largeblpms to avoid
failure in XPABLO.

SCPRE will automatically find the BTF for a reducible matrix. To bairfto the other
algorithms that do not detect this form, we use this redlititihnformation also for thé LUT
andXPABL O preconditioners. That is, when usihgt UT (XPABLO) for reducible matrices,
we first compute the BTF form and apdh.UT (XPABLO) only to the blocks on the diago-
nal. For smaller blocks, we compute the complete factorsth#®l use these complete and
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TABLE 5.1
Properties of the matrices used for the experimentss the dimension of the matrixn is the number of
nonzeros, andv; andns are the sizes of the largest and second largest blocks in Titef8rm. Note thatiy = 0
means that the matrix is irreducible, i.e.; = n. The column Type shows the application from which the matrix
arises. The sets are sorted first according to the type of tbielgm and then thein; values.

| Matrix Group | n m_| ni ny | Type
Hamrle2 Hamrle 5952 22162 5952 0
rajat03 Rajat 7602 32653 7500 1
circuit_3 Bomhof 12127 48137 7607 1
coupled IBM _Austin 11341 97193 11293 1
memplus Hamm 17758 99147 17736 1
rajat22 Rajat 39899 195429 26316 7672
onetone2 ATandT 36057 222596 32211 2
onetonel ATandT 36057 335552 32211 2
rajatls Rajat 37261 443573 37243 1
ckt11752tr 0 IBM_EDA 49702 332807 49371 44
circuit_4 Bomhof 80209 307604 52005 7
bcircuit Hamm 68902 375558 68902 0
rajatl8 Rajat 94294 479151 84507 52| CSP
hcircuit Hamm 105676 513072 92144 4927
ASIC 100ks Sandia 99190 578890 98843 2
ASIC.100k Sandia 99340 940621 98843 2
ASIC.680ks Sandia 682712 1693767 98843 2
rajat23 Rajat 110355 555441) 103024 216

SET | twotone ATandT 120750 1206265 105740 6

1 trans5 IBM _EDA 116835 749800 116817 1
dc2 IBM _EDA 116835 766396 116817 1
G2._circuit AMD 150102 726674 150102 0
scircuit Hamm 170998 958936/ 170493 216
transient Freescale 178866 961368 178823 11
Rajl Rajat 263743 1300261] 263571 5
ASIC 320ks Sandia 321671 1316085/ 320926 6
ASIC320k Sandia 321821 1931828 320926 6
utm5940 TOKAMAK 5940 83842 5794 1
dw4096 Bai 8192 41746 8192 0| EMP
Zhaol Zhao 33861 166453 33861 0
ight3 SchenkISEI 10938 130500 10938 0
wang3 Wang 26064 177168 26064 0
wang4 Wang 26068 177196 26068 0
ecl32 Sanghavi 51993 380415 42341 1| SDP
ibmmatrix2  SchenkIBMSDS 51448 537038 44822 1
matrix-new3  SchenkIBMSDS 125329 893984 78672 1
matrix.9 SchenkIBMSDS 103430 1205518 99372 1
ASIC 680k Sandia 682862 2638997 98843 2
G3_circuit AMD 1585478 7660826 181343 0
rajat29 Rajat 643994 3760246 629328 71| CSP
rajat30 Rajat 643994 6175244 632151 0
Hamrle3 Hamrle 1447360 5514242 1447360 0

SET | memchip Freescale 2707524 13343948 2706851 0

2 offshore Um 259789 4242673 259789 0
tmtsym CEMW 726713 5080961 726713 0| EMP
t2em CEMW 921632 4590832 917300 1
tmt.unsym CEMW 917825 4584801 917825 0
para-4 SchenkISEI 153226 2930882 153226 0| SDP
ohne2 SchenkISEI 181343 6869939 181343 0
exdatal GHS.indef 6001 2269500 6001 0
boyd1 GHS.indef 93279 1211231 93279 0

SET | majorbasis QLi 160000 1750416/ 160000 0

3 c-73b SchenkIBMNA 169422 1279274 169422 0| OPT
c-big SchenkIBMNA 345241 2340859 345089 2
boyd2 GHS.indef 466316 1500397 466316 0
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incomplete factors together while computing a matrix ve@imduct usingM—!. Our ex-
periments show that this approach is almost always beter tisingl LUT (XPABLO) in a
straightforward manner in terms of the iteration count. We &ied this approach while using
theJ variant of theXPABL Opreconditioner. Surprisingly, even for the block Jacolsiesahis
approach helps to reduce the iteration counts slightly fostof the reducible matrices. We
call this variant]- r ed in the tables below. Note that for the block Gauss-Seided,oaken
we applyXPABLO (or | LUT) only to the large blocks in the BTF form of a reducible matrix
we keep all of the nonzeros in the preconditioner from thed@fjonal blocks. However, for
block Jacobi iterations, we automatically drop them frompheconditioning matri®dI since
its desired structure is block diagonal, not block triaagul

In addition to the number of iterations required for conegrce, we compare the perfor-
mance of the preconditioners according to the relative nmgmexgjuirement with respect to
the number of nonzeros . Letnz(B) be the number of nonzeros in a matBx Forl LUT,
the relative memory requirement is equal to

nz(L) + nz(U)
nz(A) ’

whereL andU are the incomplete triangular factors Af On the other hand, the relative
memory requirement fdBCPRE and XPABLOis equal to

Sr (nz(La) + nz(Uy))
nz(A) ’

wherek is the number of blocks in the block diagoral andL; and U; are the lower-
and upper-triangular factors of the LU-factorization oé tith block in D. Note that the
relative memory requirements of the preconditioners cag gh idea for the cost of com-
puting M~—'x. Assuming thatc is a dense vector, a precondition€NRES iteration will
require approximately.z(A)(1 4+ memy) operations for the preconditioner generated by the
algorithmX.

There are two parameters for the proposed algorithm: thieidithe maximum block
sizembs, the second is the permutation for the nonzeros denoteth byAs expected, our
experiments (not reported here) show that increasing thebeumbs usually reduces the
iteration counts and increases the relative memory reapaings of the solver.

We conduct some experiments to show the effect of our chdieg on the performance
of our algorithm. Note that itHD, the edges are sorted in increasing order with respect to
their weights. In our implementation, we define the weighaiofedge as the magnitude of
the corresponding nonzero and sort the edges in decreasirg e test our decision by
comparing its effect with that of a random permutation. Ablé&.2 shows, our decision to
sort the edges in decreasing order with respect to the edigbtsenakes the solver converge
more quickly.

memsiryr =

MeMgcprE = MMENXPABLO —

5.1. Experiments with block Gauss-Seidel iterations.Table 5.3 shows the perfor-
mance of SCPRE and XPABLO for block Gauss-Seidel iterations and their comparison
with | LUT. Note that bottfSCPRE(dec) andSCPRE(RCM) are robust, that is, the solvers con-
verge for most of the matrices. Although there are a few mesrfor which theSCPRE(RCM)
preconditioned solver converges more quickly than thatgmrditioned withSCPRE(dec)
(such asASIC 680K and, amongst all preconditioners, ol8¢PRE(RCM converges for ma-
tricesonetonelandonetone2 SCPRE(dec) is almost always better and is our preferred pre-
conditioner.

In general, all the preconditioners work well for the matgan the first set. How-
ever,SCPRE(dec) is the most robust since the preconditioned solver failsaiaverge only
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TABLE 5.2
Effect of the permutatios on the number of iterations. Two options are compared: aelsing order with
respect to the edge weights and a random order. The maximook bize forSCPRE is set t02000 where the
structure ofM is block upper-triangular. For each case, the ratio of theatanagnitude inM to the total magnitude
in A, the relative memory requirement, and the number of inmeaitons for preconditione@VRES are given.

Decreasing Random

Matrix % |‘IXIZZ ‘l memscpre  iters é ‘ll\::j || memscpre  iters

Hamrle2 0.998 2.03 16 0.993 2.05 157
rajat03 0.999 1.07 2 0.997 1.02 5
circuit_3 0.996 1.45 9 0.987 1.23 445
coupled 0.998 1.57 11 0.992 1.58 34
memplus 0.999 1.03 5 0.998 1.03 7
rajat22 0.973 1.20 21 0.962 1.15 -

for 3 out of 37 matrices, whereas the next best result9idy the XPABLO variants.
Thus, SCPRE(dec) is the best block preconditioner on this set of matrices. Wtempar-

ing SCPRE(dec) to | LUT(10~%) on this set, we see that they are comparable in terms of
the number of best performances, butUT(10~4) is less robust, failing to converge fo6
matrices in this set and requiring more memory tB&PRE(dec).

For the second set,LUT(10~%) is the best preconditioner in terms of robustness and
iteration count. For the matrices in this set, tHeUT(10~*) preconditioned solver fails to
converge in only2 out of 12 matrices, whereaSCPRE(dec) does not converge o Al-
thoughl LUT(10~%) is better tharSCPRE(dec) for 10 out of 12 matrices in the second set,
its average relative memory usagedi89 which is almost3 times as much as the relative
memory requirement dBCPRE(dec). Note that for the second set, evehUT(10~2) uses
slightly more memory thaBCPRE(dec). However, it fails to converge chmatrices. Hence,
if memory is the bottleneckSCPRE(dec) may be a suitable choice for preconditioning.

The performance of th8CPRE-based preconditioners depends on the application. For
example, as TablB.3 shows,SCPRE(dec) preconditioned3VRES fails to converge ir8 out
of 7 matrices from electromagnetics applications. On the dtled, it fails to converge on
only 4 of the remainingi2 matrices. Hence its performance is much better for cirauit a
device simulation applications. Note that even though sofrieese matrices are reducible,
they have a large reducible block with a size much larger than. That is, we still have
a large subproblem to deal with. On the circuit simulatiod aemiconductor device matri-
ces,SCPRE works better tharXPABLO, which is another block based preconditioner with a
promising performance in practice for several matrix @asB, 5, 10]. Note that we used
the BTF forms of the reducible matrices for both Ke@ABLO and| LUT preconditioners.
Hence, reducibility alone is not a reason for the good peréorce ofSCPRE-based precon-
ditioners.

5.1.1. Memory usage.As Table5.3shows, the memory usagelof UT(10~%) is much
higher than that oKPABLO and SCPRE. Table5.4 shows the results of additional experi-
ments conducted to further compare the memory usa§€BRE andl LUT preconditioners.
There are optimization matrices in the se8CPRE-based preconditioned solvers converged
for 5 of them. Forl LUT-based solvers with drop tolerant8—2 and 10~4, the numbers
of matrices for which the solver converged drand5, respectively. Hence, on this matrix
set,SCPRE is as robust asLUT. With respect to the number of iteratiomd, UT is much bet-
ter with 7-8 iterations on the average instead6ffor SCPRE. The main reason for such a big
difference is the matrix-73h where theSCPRE preconditioned solver requir@&7 inner it-
erations. On the other hand, the average relative memogets LUT is 11-18 times more
than that of SCPRE. This difference is due to the matrices/3bandc-big, wherel LUT’s
relative memory requirements a28.47 and61.89, respectively. Additionally, for the ma-



ETNA
Kent State University
http://etna.math.kent.edu

PRECONDITIONERS BASED ON STRONG SUBGRAPHS 243

TABLE 5.3
Number of inner iterations foBVRES using XPABLO, | LUT, and SCPRE preconditioners and block Gauss-
Seidel iterations. FOSCPRE and XPABLO, mbs is set t02000 and 5000 for the first and second sets, respectively.
For SCPRE, we give the results using two permutationsd@t based on descending order aR&M For XPABLO,
we give the results for both théX andL X variants. Forl LUT, the drop tolerance is set t—3 and10~4. A~ sign
indicates that the preconditioned solver did not converyeerage relative memory requirements are computed by
taking the averages over the cases when the solvers converge

XPABLO SCPRE | LUT
Matrix UX LX | dec RCM| 10-2 1074
Hamrle2 31 31 16 28 6 4
rajat03 2 2 2 2 2 2
circuit_3 135 137 9 61 - -
coupled 12 12 11 13 6 4
memplus 9 9 5 18 15 9
rajat22 36 37 21 61 36 16
onetone2 - - - 248 - -
onetonel - - - 297 - -
rajatls - - | 120 467 - 33
ckt11752tr 0 | 197 188 19 323 - -
circuit4 100 81 39 346 - -
bcircuit - - 40 620 568 93
rajatl8 - - 11 - 393 54
hcircuit 8 9 9 21 9 5
ASIC100ks 9 10 9 10 4 4
ASIC 100k 9 9 10 10 4 4
ASIC680ks 3 4 3 4 4 4
rajat23 40 41 16 88 47 18
mbs = | twotone - - 25 128 - 48
2000 transb5 9 9 5 7 7 6
dc2 13 12 12 11 10 6
G2_circuit - - | 444 834 124 30
scircuit 741 764 | 317 977 - -
transient - - 33 - - -
Rajl 775 789 | 636 - 269 39
ASIC320ks 4 4 1 4 2 2
ASIC 320k 5 5 2 3 3 3
utm5940 - - - - - 29
dw4096 881 798 13 141 24 10
Zhaol 7 7 4 9 4 3
ight3 29 29 20 17 94 12
wang3 107 105 54 58 18 9
wang4 39 38 21 36 11 6
ecl32 99 99 30 32 32 13
ibm_matrix 2 - 249 10 16 - -
matrix-new3 85 86 30 41 - -
matrix 9 146 90 98 88 - -
Avg. relative memory | 2.95 3.04| 3.36 3.19| 2.12 4.02
ASIC 680k 2 2 27 2 3 3
G3_circuit - - | 357 422 212 81
rajat29 - - 11 - - -
rajat30 12 12 14 15 7 5
Hamrle3 - - - - - 17
mbs = | memchip 26 27 10 20 8 5
5000 | offshore 330 327| 488 451 - 15
tmt.sym - - - - - 69
t2em - - | 876 - 132 38
tmtunsym - - - - - 136
para-4 - - - - - 433
ohne2 - - | 196 - - -

Avg. relative memory | 3.58 3.58| 3.23 2.51| 3.36 9.39
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TABLE 5.4

Number of inner iterations and relative memory usag&dRES usingSCPRE or | LUT preconditioners with
block Gauss-Seidel iterations for optimization matricEsr SCPRE, mbs is set t02000, and o is obtained by
using the descending order. FoILUT, the drop tolerance is set to0—2 and 10~%. The *’ sign indicates that
the memory of our machine (24 GBytes) is not sufficient toihi@ preconditioner. The"sign indicates that the
preconditioner is obtained, but the solver did not conveargéewer than1000 iterations. The average number of
iterations and relative memory requirements are computethking the averages over the cases when the solvers
converge.

SCPRE(dec) I LUT-10—3 I LUT-10—%
Matrix iters  mem | iters mem | ilers mem
exdatal 14 0.60 - - 23 0.47
boyd1 18 0.19 7 0.77 5 1.03
majorbasis 10 2.50 4 1.20 3 1.87
c-73b 127 0.72 10 14.19 5 2847
c-big - - 6 30.39 4  61.89
boyd2 13 1.17 * * * *
Avg. [ 3 1.04] 7 1164 8 1875

trix boyd2 | LUT could not generate a preconditioner since the maximum memailable

in the system24GB, is exceeded. Given that or®gMB is used to stordoyd2 the relative

memory requirement dfLUT is excessive. This shows that althou$EPRE-preconditioned

solvers require more iterations thhh UT-preconditioned one$SCPRE can still be a good
replacement for some matrix classes if the matrices arermigr@emory is the main bottle-
neck.

5.2. Experiments with block Jacobi iterations. The Table5.5 shows the performance
of SCPRE and XPABL O preconditioners for block Jacobi iterationsLUT is not included
here since it does not explicitly give a block diagonal dinee. Similar to the experi-
ments with block Gauss-Seidel iterations, the performaf & PRE(dec) is better than that
of SCPRE(RCM) for the matrices in our sets. FPABLO, applying the preconditioner only
to the blocks in the BTF form, the variadt r ed reduces the number of iterations bhma-
trices. Furthermore, fa¥ of the matrices)- r ed converges, whereasdoes not. Note that
there are32 reducible matrices in the sets ahdr ed differs fromJ only for these matrices.
Although J- r ed required more iterations for convergence for the matrivesrix new 3
andmatrix 9, for the matrices in our experiments, r ed generally performs better than

As Table 5.5 shows, SCPRE(dec) preconditionedGVRES converges foi36 matrices,
whereasXPABLOs J- r ed variant converges for onlg4 matrices. TheXPABLO based
preconditioner has the least number of iterations in onlgs®es, whereas t1®CPRE variants
are better on 35 matrices. The difference in the perform@net due to the relative mem-
ory usage of th&CPRE variants. For the first seBCPRE(dec) uses only8% more memory
thanXPABLQO(J- r ed) on average, and for the second set its memory usage is msgh le

On the right-hand side of Table5, the execution times of th@&\VRES solver are given.
As the table shows, for most of the cases the best solver instef iteration count has
also the best execution time. Note that there are some esnspguch as thenatrix 9,
for which the solver preconditioned §PABLO(J) requires49 iterations fewer than when
preconditioned by8CPRE, but its execution time is slightly more. This is becausetfos
matrix, memypapro(s) = 8.43 andmemsepre(dec) = 3-69, and the cheaper cost of comput-
ing M~!x more than compensates for the difference in iteration uRbr39 matrices,
a SCPRE variant has the best or very close to the best time. In summB&RRE(dec) per-
forms better than th&¥PABL Ovariants in our block Jacobi experiments.

5.3. Cost of generating the preconditioner.lt has been the aim of this paper to es-
tablish the viability of using hierarchical decompositiaim obtain a block preconditioning
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TABLE 5.5

Number of inner iterations and solver times (in seconds@dRES usingXPABL O and SCPRE precondition-
ers and block Jacobi iterations. The maximum block size is set to2000 and 5000 for the first and second sets,
respectively. FOISCPRE, we give the results using two permutations égr, based on descending order aREM
For XPABLO, we give the results for thi variant, which is used with the parameters suggestedh [The J- r ed
variant described in the text, also uses the same parameers sign indicates that the preconditioned solver did
not converge. Average relative memory requirements arepated by taking the averages over the cases when the
solver converges.

# iterations solver time (in secs.)
XPABLO SCPRE XPABLO SCPRE
Matrix J J-red dec RCM J J-red dec RCM
Hamrle2 99 99 31 96 0.32 0.32 0.08 0.30
rajat03 7 3 4 4 0.03 0.01 0.01 0.01
circuit_3 680 327 19 179 3.72 1.81 0.07 0.93
coupled 43 22 21 25 0.22 0.09 0.08 0.11
memplus 17 17 8 33 0.08 0.08 0.03 0.19
rajat22 190 77 42 124 3.03 1.61 0.63 1.88
onetone2 - - - 627 - - - 9.62
onetonel - - - 622 - - - 1495
rajatl5 - - | 265 - - - 4.85 -
ckt11752tr 0 - 776 36 - - 20.28 0.83 -
circuit_4 - 864 | 112 - - 27.48 3.33 -
bcircuit - - 107 - - - 3.06 -
rajat18 - - 16 - - - 0.39 -
hcircuit 16 15 16 40 0.43 0.47 0.43 1.55
ASIC100ks 17 17 16 18 0.46 0.50 0.44  0.50
ASIC 100k 17 16 17 18 0.48 0.52 0.49 0.1
ASIC680ks - 8 - 8 - 0.72 - 0.74
rajat23 203 140 32 208 9.29 7.65 1.17  9.09
twotone - - 49 322 - - 270 1711
trans5 23 16 9 13 0.75 0.47 024 0.36
dc2 76 21 20 20 3.32 0.67 0.64 0.64
G2_circuit - - 833 - - - 56.55 -
scircuit - - 682 - - - 49.25 -
transient - - | 186 - - - 13.60 -
Rajl - - - - - - - -
ASIC320ks 5 6 1 7 0.43 0.70 0.19 054
ASIC 320k 11 9 3 10 0.91 0.85 042 061
utm5940 - - - - - - - -
dw4096 - - 24 - - - 0.11 -
Zhaol 12 12 7 16 0.12 0.12 0.08 0.19
ight3 60 60 32 26 0.52 0.52 0.21 0.17
wang3 263 263 | 140 138 3.26 3.26 1.96 1.78
wang4 91 91 39 79 1.24 1.24 0.54 1.02
ecl32 - - 79 90 - - 250 3.08
ibm_matrix .2 - 344 22 30 - 12.29 0.65 1.09
matrix-new3 184 248 71 95 13.21 20.20 4.64 6.79
matrix.9 208 240 | 257 346 14.85 18.80 | 14.41 21.83
Avg. relative memory | 2.67 310[ 335 3.32]
ASIC 680k - 3 - 3 - 0.54 - 0.54
G3_circuit - - 674 - - - | 516.38 -
rajat29 - - 18 - - - 3.03 -
rajat30 43 22 24 27 11.84 4.59 5.12 6.12
Hamrle3 - - - - - - - -
memchip 41 50 17 38 53.39 74.55| 14.60 38.82
offshore 883 883 - - || 189.98  189.98 - -
tmt.sym - - - - - - - -
t2em - - - - - - - -
tmtunsym - - - - - - - -
para-4 - - - - - - - -
ohne2 - - - - - - - -

Avg. relative memory | 3.58 284 181 0.92H
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TABLE 5.6
Preconditioner generation times for 10 CSP matrices from finst matrix set in seconds. FSCPRE
and XPABLO, mbs is set t02000. For XPABLO, the UX variant is used, and foBCPRE, o is obtained by us-
ing the descending order. FoiLUT, the drop tolerance is set ttD—3. Results are the averageséxecutions.

Matrix XPABLO SCPRE(dec) | LUT-10—3

rajatl5 0.23 5.92 0.71
ckt11752tr_0 0.45 3.97 0.23
circuit_4 0.15 8.13 0.11
bcircuit 0.21 3.95 0.12
rajatl8 0.23 7.31 0.08
hcircuit 0.28 5.03 0.09
ASIC 100ks 0.35 9.65 0.24
ASIC 100k 0.43 9.50 0.19
ASIC680ks 1.40 9.96 0.28
rajat23 0.29 7.64 0.08
twotone 1.02 9.09 12.41

matrix that greatly reduces the number of iterations of Bwy$olvers without requiring too
much additional memory.

However, the cost of obtaining the preconditioning matsiaiso important, especially
if it is being generated for the solution of a single systenme Bnalysis presented in Sec-
tion 3.1.1shows that the complexity of tHdD algorithm isO(m logn) which means that it
scales well as the problem sizes increase. However, we matéhte complexity oKPABLO
is O(m + n), which is thus linear in the order and number of entries inntiagrix and could
be expected to have smaller generation execution timesSGBRE.

A straight comparison of the generation times is not medulras our implementation
is fully in MATLAB without any low-level optimization, whexas forXPABLOwe used the
available implementation i€, for which the compiler directly optimizes the code for the
machine. Itis the intention in future work to develop andmje the implementation, but it
is certainly outside the scope of this present work.

However, there is no doubt that although our algorithm haslgmmplexity bounds, it
is quite complicated, so we did time the generation of SGPRE preconditioner on some
of our test matrices. For example, for t88P matrices of Tablé.1, we found thalSCPRE
took between 2.5 and 9.5 seconds, whe¢@8BLO required between 0.25 and 1.40 sec-
onds. Thus, although our algorithm takes much longer anddwstill be slower with an
efficient C implementation (which we estimate would be aliotiines faster), the times are
not unreasonable and indicate that our approach is feasiblefor one-off solutions. Indeed,
if we look at the total cost, we are still faster thdRABLOon several problems in the one-off
case, and of course the greater robustness of our more postignditioner compensates for
this extra cost.

6. Conclusions and future work. Given a linear systemAx = b, we have proposed
a method to construct generic block diagonal and block gitar preconditioners. The pro-
posed approach is based on Tarjan’s algorittirior hierarchical decomposition of a digraph
into its strong subgraphs. Although our preconditioBEPRE is outperformed by LUT for
electromagnetics matrices, we obtain promising resultsnfany device and circuit simula-
tion matrices, and we suggest using it with these types dflpnes. In future research, the
structure of graphs for different classes of matrices caartadysed to try to understand the
reason for the difference in performance.

There are two main parameters for the algorithm: the periouta, of the edges and
the maximum block size:bs. Foro, we used two approaches: the first sorts the edges in the
order of decreasing weights. With this approach, we wardeddlude nonzeros with large
magnitudes in our preconditioner. The second approachthisegell known reverse Cuthill-
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McKee ordering. We tested this approach since a sparsitgtstie with a small bandwidth
may be useful for putting more nonzeros into the preconu#ioThe permutation decisions
are validated by the experiments which also show that theafigroach is usually better than
the second. In future work, other ways to genetatean be investigated.

The second parametenbs, affects the memory requirement of the matrix significantly
and hence the number of iterations required for convergehioe experiments show that for
the preconditioners LUT, SCPRE, and XPABLO, the memory requirement and the number
of iterations are inversely correlated. For the proposedqmditionelSCPRE, mbs needs to
be set by the user without knowing how much memory will be megliby the solver. In fu-
ture work, we will look for a self-tuning mechanism which eles SCPRE to determinenbs
automatically given the memory available to store the pnd@mner. A straightforward tun-
ing mechanism, which combines the blocks only when suffiae@mory for the factors is
available, can be easily implemented and integratedS@eRE. However, this simple idea
still needs to be enhanced to optimize the execution timeGHRE and further reduce the
number of iterations required for convergence.
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