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Abstract. In this article, Tikhonov regularization of control-constrained optimal control problems is investi-
gated. Typically the solutions of such problems exhibit a so-called bang-bang structure. We develop a parameter
choice rule that adaptively selects the Tikhonov regularization parameter depending on a posteriori computable quan-
tities. We prove that this choice leads to optimal convergence rates with respect to the discretization parameter. The
article is complemented by numerical results.

Key words. optimal control, bang-bang control, Tikhonov regularization, parameter choice rule

AMS subject classifications.49K20, 49N45, 65K15

1. Introduction. In this article we investigate the regularization and discretization of
bang-bang control problems. The class of problems that we consider can be described as the
minimization of

(1.1)
1

2
‖Su− z‖2Y

over allu ∈ L2(D) satisfying the constraint

(1.2) ua ≤ u ≤ ub a.e. onD.

Here,D is a bounded subset ofRn. The operatorS is assumed to be linear and continuous
from L2(D) to Y with Y being a Hilbert space. The target statez ∈ Y is a given desired
state. Moreover, we assume that the Hilbert space adjoint operatorS∗ of S is a map fromY
toL∞(D).

Problems covered by this general framework include distributed or boundary control
problems subject to elliptic and parabolic equations if onerelaxes the requirements onS∗

to map intoLp(D), p > 2. Due to the appearance of the inequality constraints (1.2),
a solutionu0 to the problem (1.1) often exhibits the so-called bang-bang structure, that
is, u0(x) ∈ {ua(x), ub(x)} for almost allx ∈ D. Hence, the control constraints are active
almost everywhere onD.

It is well-known that the problem (1.1) is solvable with a unique solution ifS is injective.
However, solutions of (1.1) are unstable with respect to perturbations in the problem data
in general. Hence, a regularization of (1.1) is desirable that stabilizes the solutions of the
problem while maintaining a certain accuracy of the discretization method. In this paper,
we will study Tikhonov regularization methods, which are widely used in optimal control
problems as well as in inverse problems; see, e.g., Engl, Hanke, Neubauer [7], Tröltzsch [22].

In order to solve (1.1) numerically, let us introduce a family of linear and continuous op-
erators{Sh}h>0 from L2(D) to Y with finite-dimensional rangesYh ⊂ Y , whereh denotes
the discretization parameter. The regularized and discretized problem now reads: minimize

(1.3)
1

2
‖Shu− z‖2Y +

α

2
‖u‖2L2(D)
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subject to (1.2). This problem is solvable, where we will denote a solution by uα,h in the
sequel. In the case thatS is a solution operator of an elliptic partial differential equation
andYh is spanned by linear finite elements, then (1.3) is a variational discretization of (1.4)
in the sense of Hinze [14]. Corresponding discretization error estimates can be found in [14];
the caseα = 0 is considered in Deckelnick, Hinze [6].

In order to develop an efficient approximation scheme to solve (1.1) by means of succes-
sively solving instances of (1.3), we are faced with two important questions:

1. Given a fixed discretizationh, how should we chooseα = α(h)?
2. Suppose we have solved (1.3) for fixed (α(h), h). How should we refine the dis-

cretization?
Of course, we want to have answers to both questions such thatthe resulting scheme is opti-
mal. Here, we borrow the meaning of “optimal” from the results in linear inverse problems:
choose the regularization parameterα(h) such that the regularization error is of the same size
as the discretization error.

Let us briefly review the available literature. To the best ofour knowledge, there are no
results available concerning adaptive Tikhonov regularization and the discretization of op-
timal control problems with inequality constraints. Much more is known for linear inverse
problems. Parameter choice rules and convergence results for a uniform discretization go
back to Natterer [18] and Engl, Neubauer [8]. Parameter choice rules depending on a posteri-
ori computable quantities can be found for instance in Groetsch, Neubauer [12] and King,
Neubauer [16]. Adaptive wavelet based regularization was studied in Maaß, Pereverzev,
Ramlau, and Solodky [17]. Adaptive discretization methods for parameter estimation prob-
lems based on residual error estimates can be found in Neubauer [19] and Ben Ameur,
Chavent, Jaffŕe [3]. Adaptive refinement using goal-oriented estimators is investigated in
Becker, Vexler [1, 2]. An adaptive regularization and discretization method isdeveloped in
Griesbaum, Kaltenbacher, Vexler [10] and Kaltenbacher, Kirchner, Vexler [15] for linear and
non-linear inverse problems, respectively.

In this paper, we develop and analyze a parameter choice ruleα = α(h); see (2.2) below.
There, the parameterα(h) can be determined solely by a posteriori available quantities. We
will prove that the approximation error‖u0 − uα(h),h‖L1(D) is proportional
to ‖u0 − u0,h‖L1(D), whereu0, u0,h, uα(h),h are the solutions of (1.1), (1.3) with α = 0
and of (1.3) with α = α(h), respectively. That is, the additional error introduced bythe reg-
ularization is of the same size as the discretization error.The relevant estimates for the dis-
cretization error can be found in Proposition1.9. The optimality of the parameter choice rule,
which is the main result of this article, is shown in Theorem2.7. Furthermore, we propose an
adaptive procedure that involves both adaptive regularization and adaptive mesh-refinement;
see Section3.2.

In order to achieve these results, a certain regularity assumption, see Assumption1.4,
has to be fulfilled, which is an assumption on the solution of the continuous, undiscretized
problem (1.1). This assumption guarantees that almost-active sets are small in some sense.
Such a condition is used in Deckelnick, Hinze [6] to prove a priori error estimates for the dis-
cretized but unregularized problem. Moreover, this condition is used in Wachsmuth, Wachs-
muth [24, 25] to prove a priori convergence of the regularization error‖u0 − uα‖L1(D) with
respect toα; cf. Proposition1.5.

1.1. Notation. In the sequel, we will use subscripts to indicate solutions to the optimiza-
tion problems introduced above. That is,u0, uα, anduα,h will denote solutions to (1.1), (1.4)
(see below), and (1.3), respectively. Additionally, we will usey0 := Su0, yα := Suα, etc.
We will work with generic constantsc > 0, which may change from line to line, but which
are independent of the relevant quantities such asα andh.
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1.2. Assumptions and preliminary results. Let (D,Σ, µ) be a given measure space.
The operatorS is assumed to be linear and continuous fromL2(D) to the Hilbert spaceY .
Moreover, we assume that the Hilbert space adjoint operatorS∗ of S maps fromY toL∞(D).
By a result of Grothendieck [13], it follows thatS has a closed range if and only if its range
is finite-dimensional. This implies that the equationSu = z is ill-posed, except for the trivial
case that the range ofS is finite-dimensional. Let us remark that the requirements on S∗

could be relaxed to allowS∗ mapping intoLp(D), p ∈ (2,∞); see [25] and the comments
after Proposition1.5.

The control constraints are specified by functionsua, ub ∈ L∞(D) with ua ≤ ub a.e.
onD. The set of admissible controls is defined by

Uad := {u ∈ L2(D) : ua ≤ u ≤ ub a.e. onD}.

As already introduced, we will work with a family of operators{Sh}h>0, Sh ∈ L(L2(D), Y )
with finite-dimensional ranges. The adjoint operatorsS∗

h are assumed to map from the Hilbert
spaceY toL∞(D). For later reference, let us introduce the regularized (undiscretized) prob-
lem: givenα > 0, minimize

(1.4)
1

2
‖Su− z‖2Y +

α

2
‖u‖2L2(D)

subject to the inequality constraints (1.2). Regarding the existence of solutions of (1.1), (1.4),
and (1.3), we have the following classical result.

PROPOSITION1.1. The problems(1.1) and (1.3) are solvable with convex and bounded
sets of solutions. The problem(1.4) is uniquely solvable forα > 0. The solutions of(1.1) are
unique ifS is injective. The solution of(1.3) is uniquely determined ifα > 0.

While the optimal control of (1.1) and (1.3) may not be uniquely determined, the optimal
statesSu0 andSu0,h are uniquely determined due to the strict convexity of the cost functional
with respect toy.

Throughout the article, we assume the following propertiesof the discrete operatorsSh

andS∗
h.

ASSUMPTION 1.2. There exist functionsδ2(h), δ∞(h) : R+ → R
+, continuous and

monotonically increasing withδ2(0) = δ∞(0) = 0, such that it holds

‖(S − Sh)uα,h‖Y + ‖(S∗ − S∗
h)(yα,h − z)‖L2(D) ≤ δ2(h),

‖(S∗ − S∗
h)(yα,h − z)‖L∞(D) ≤ δ∞(h),

for all h > 0 andα ≥ 0.
In this assumption, the convergence of the discretization depends on the approximation

properties ofdiscrete solutions. This form is especially useful in combination with a posteri-
ori error estimators. We can replace this assumption with anassumption on the approximation
properties of the solution of the continuous problem alone;see the remarks at the end of Sec-
tion 1.5.

1.3. Necessary optimality conditions.Let us recall some standard results on the first-
order necessary optimality conditions.

PROPOSITION1.3. For α ≥ 0, let uα anduα,h be solutions of(1.4) and (1.3), respec-
tively. Let us definepα := S∗(yα − z) andpα,h := S∗

h(yα,h − z). Then it holds that

(αuα + pα, u− uα) ≥ 0 ∀u ∈ Uad,

(αuα,h + pα,h, u− uα,h) ≥ 0 ∀u ∈ Uad.
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Using well-known arguments [22, Lemma 2.26], we have for almost allx ∈ D

uα(x) = proj[ua(x),ub(x)]

(

−
1

α
pα(x)

)

if α > 0

and

(1.5)

u0(x) = ua(x) if p0(x) > 0,

u0(x) = ub(x) if p0(x) < 0,

p0(x) = 0 if ua(x) < u0(x) < ub(x).

Similar relations hold foruα,h andu0,h. Forα = 0, the controlsu0 andu0,h are bang-bang
if p0 6= 0 andp0,h 6= 0 a.e. onD, respectively. Moreover, ifp0 = 0 andp0,h = 0 on sets
of positive measure, then the values ofu0 andu0,h cannot be determined by the respective
variational inequalities.

1.4. Regularization error estimate. We will now briefly investigate the convergence
properties ofuα for α → 0. Since the problem (1.1) reduces to an ill-posed equation if the
control constraints are not active at the solution, it is clear that the convergenceuα → u0

cannot be achieved without any further conditions.
We will rely on the following assumption, which is an assumption about the measure of

the set where the control constraints onu0 are almost active.
ASSUMPTION1.4. Let us assume that there areκ > 0, c > 0 such that

meas {x ∈ D : |p0(x)| ≤ ǫ} ≤ c ǫκ

for all ǫ > 0.
This assumption implies that the set{x : p0(x) = 0} has measure zero, henceu0 is

a bang-bang control by the necessary optimality conditions(1.5). Since the adjoint statep0
is uniquely determined, it is another consequence of this assumption thatu0 is the unique
solution of (1.1).

Let us remark that such a condition is used in [6] to prove discretization error estimates
for ‖u0 − u0,h‖L1(D) and in [9] to investigate stability properties of bang-bang solution
to ODE control problems. Moreover, the assumption implies alocal growth of the cost func-
tion with respect to theL1-norm [24]. In connection with convergence rate estimates for
interior point methods, this assumption was used as a strengthening of the strict complemen-
tarity conditions in [11, 23].

The main purpose of this assumption is to provide convergence rates forα → 0.
PROPOSITION1.5. Let Assumption1.4be satisfied. Letd be defined by

d =

{

1
2−κ if κ ≤ 1,
κ+1
2 if κ > 1.

Then for everyαmax> 0, there exists a constantc > 0 such that

‖y0 − yα‖Y + ‖p0 − pα‖L∞(D) ≤ c αd,

‖u0 − uα‖L2(D) ≤ c αd−1/2,

‖u0 − uα‖L1(D) ≤ c αd−1/2+κ/2min(d,1)

holds for allα ∈ (0, αmax].
For proofs, we refer to [24, 25]. Moreover, it was shown in [26] that Assumption1.4 is

necessary for the convergence ratesd > 1, which corresponds to the caseκ > 1.
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Let us remark thatκ = 1 is the maximal possible value for certain classes of problems.
This is due to the fact thatκ > 1 andκ > 2 imply p0 6∈ C1(D̄) andp0 6∈ H1(D), respectively.
That said, if the range of the operatorS∗S is a subspace ofC1(D̄) or H1(D), then an upper
bound onκ is provided by the smoothing properties ofS andS∗.

REMARK 1.6. In the attainable case, which is the basis for many results in inverse
problems, it holds thatp0 = 0. Thus, the assumption of bang-bang solutions is not valid in
this case, and different techniques have to be used to prove aregularization error estimate;
see [25].

REMARK 1.7. If S∗ is a continuous operator mapping fromY to Lp(D), p ∈ (2,∞),
then the result of Proposition1.9 still remains true with the modified convergence rate

of d = min
(

1+κ
2 , p+κ

p(2−κ)+2κ

)

; see [25, Corollary 3.15].

1.5. Discretization error estimates.Let us first introduce the discretization of (1.1) by

(1.6) min
u∈Uad

1

2
‖Shu− z‖2Y .

We will now prove error estimates with respect to the discretization parameterh. To this end,
let u0,h denote the solution of (1.6) with minimalL2-norm.

PROPOSITION1.8. Let Assumption1.2 be satisfied. Letα > 0. Then there is a con-
stantc > 0 independent ofα, h such that

‖yα − yα,h‖Y + α
1
2 ‖uα − uα,h‖L2(D) ≤ c

(

1 + α− 1
2

)

δ2(h),

‖pα − pα,h‖L∞(D) ≤ c
(

δ∞(h) +
(

1 + α− 1
2

)

δ2(h)
)

holds for allh > 0.
Proof. The result is a consequence of the optimality condition in Proposition1.3as well

as the assumptions on the discretization. Using the necessary optimality conditions we obtain

α‖uα − uα,h‖
2
L2(D) ≤ (pα,h − pα, uα − uα,h)L2(D)

= (S∗
h(yα,h − z)− S∗(yα − z), uα − uα,h)L2(D)

=
(

(S∗
h − S∗)(yα,h − z) + S∗(yα,h − yα), uα − uα,h

)

L2(D)
.

(1.7)

We continue with

(1.8) ((S∗
h − S∗)(yα,h − z), uα − uα,h)L2(D) ≤

α

2
‖uα − uα,h‖

2
L2(D) +

1

2α
δ2(h)

2.

In addition, we estimate

(S∗(yα,h − yα), uα − uα,h)L2(D)

= (yα,h − yα, yα − Suα,h)Y

= −‖yα − yα,h‖
2
Y + (yα,h − yα, (Sh − S)uα,h)Y

≤ −
1

2
‖yα − yα,h‖

2
Y +

1

2
δ2(h)

2.

(1.9)

The estimates (1.7)–(1.9) imply

‖yα − yα,h‖
2
Y + α‖uα − uα,h‖

2
L2(D) ≤

(

1 + α−1
)

δ2(h)
2,
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which proves the first claim. To obtain the second, observe that it holds that

‖pα − pα,h‖L∞(D) ≤ ‖pα − S∗(yα,h − z) + S∗(yα,h − z)− pα,h‖L∞(D)

≤ ‖S∗(yα − yα,h)‖L∞(D) + ‖(S∗ − S∗
h)(yα,h − z)‖L∞(D)

≤ c(‖yα − yα,h‖Y + δ∞(h)),

(1.10)

and the estimate for the errors of the adjoint states is an immediate conclusion.
As can be seen above, these error estimates are not robust with respect toα → 0. This

is again due to the ill-posedness of the underlying equationSu = z. As demonstrated in [6],
Assumption1.4 is sufficient to prove convergence rates forh → 0 in the caseα = 0.

PROPOSITION1.9. Let Assumptions1.2 and 1.4 be satisfied. Letd be as in Proposi-
tion 1.5. Then for everyhmax> 0, there is a constantc > 0 such that

‖y0 − y0,h‖Y ≤ c
(

δ2(h) + δ∞(h)d
)

,

‖p0 − p0,h‖L∞(D) ≤ c
(

δ2(h) + δ∞(h)min(d,1)
)

,

‖u0 − u0,h‖L1(D) ≤ c
(

δ2(h)
κ + δ∞(h)κmin(d,1)

)

holds for allh < hmax.
Proof. The proof for the caseκ ≤ 1 can be found in [6, Theorem 2.2]. We will briefly

sketch the proof to indicate the necessary modifications forthe caseκ > 1. Using the esti-
mates (1.7) and (1.9) with α = 0 in the proof of Proposition1.8, we obtain

(1.11)
1

2
‖y0 − y0,h‖

2
Y ≤ c δ2(h)

2 + ((S∗
h − S∗)(y0,h − z), u0 − u0,h)L2(D).

The second term can be bounded as

((S∗
h − S∗)(y0,h − z), u0 − u0,h) ≤ δ∞(h)‖u0 − u0,h‖L1(D)

≤ c δ∞(h)‖p0 − p0,h‖
κ
L∞(D),

(1.12)

where the last estimate is a consequence of Assumption1.4; see [6, (2.13)]. Using (1.10) to
estimate‖p0 − p0,h‖

κ
L∞(D), we find

(1.13) ‖y0 − y0,h‖
2
Y ≤ c

(

δ2(h)
2 + δ∞(h)‖y0 − y0,h‖

κ
Y + δ∞(h)κ+1

)

.

If κ < 2, then the claim follows by an application of Young’s inequality.
If κ ≥ 2, we proceed as follows. As‖u0−u0,h‖L1(D) is uniformly bounded with respect

to h by the control constraints, the inequality (1.11) implies the non-optimal error bound

1

2
‖y0 − y0,h‖

2
Y ≤ c (δ2(h)

2 + δ∞(h)).

Substituting this in (1.13) yields

‖y0 − y0,h‖
2
Y ≤ c

(

δ2(h)
2 + δ∞(h)δ2(h)

2κ + δ∞(h)κ+1
)

≤ c
(

δ2(h)
2 + δ2(h)

2(κ+1) + δ∞(h)κ+1
)

by Young’s inequality. The estimates of‖p0 − p0,h‖L∞(D) and‖u0 − u0,h‖L1(D) can be
derived as in (1.10) and (1.12), respectively.

As can be seen from these results, the convergence rate of‖p0−p0,h‖L∞(D) with respect
to δ∞(h) saturates at1, which is the rate given by Assumption1.2.
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Let us briefly sketch how to obtain similar results if Assumption 1.2 is replaced by the
following, which is an assumption on the approximation properties of the solutions of (1.1)
and (1.4).

ASSUMPTION1.10. There exist functionsδ′2(h), δ
′
∞(h) : R+ → R

+, continuous and
monotonically increasing withδ′2(0) = δ′∞(0) = 0, such that it holds that

‖(S − Sh)uα‖Y + ‖(S∗ − S∗
h)(yα − z)‖L2(D) ≤ δ′2(h),

‖(S∗ − S∗
h)(yα − z)‖L∞(D) ≤ δ′∞(h)

for all h > 0 andα ≥ 0.
COROLLARY 1.11.Let Assumptions1.4and1.10be satisfied. Then the results of Propo-

sitions1.8and1.9are valid withδ2(h) andδ∞(h) replaced byδ′2(h) andδ′∞(h).
Proof. Let us briefly outline the necessary modifications in the proofs of Propositions1.8

and1.9. The estimate (1.7) has to be replaced by

α‖uα − uα,h‖
2
L2(D) ≤ (S∗

h(yα,h − z)− S∗(yα − z), uα − uα,h)L2(D)

= ((S∗
h − S∗)(yα − z), uα − uα,h)L2(D) − ‖yα − yα,h‖

2
Y

+ (yα,h − yα, (Sh − S)uα)Y .

(1.14)

Now the estimates for‖uα − uα,h‖L2(D) and‖yα − yα,h‖Y in the caseα > 0 are a straight-
forward consequence. TheL∞-error estimates for the adjoint states can be obtained from

‖pα − pα,h‖L∞(D) ≤ ‖pα − S∗
h(yα − z) + S∗

h(yα − z)− pα,h‖L∞(D)

≤ ‖(S∗ − S∗
h)(yα − z)‖L∞(D) + ‖S∗

h(yα − yα,h)‖L∞(D)

≤ c(δ′∞(h) + ‖yα − yα,h‖Y ),

(1.15)

which yields the claim forα > 0. That is, the results analogous to Proposition1.8are proven.
Let us now prove the claimed estimate forα = 0. Here, (1.14) with α = 0 gives

‖y0 − y0,h‖
2
Y ≤ c

(

δ′∞(h)‖u0 − u0,h‖L1(D) + δ′2(h)
2
)

≤ c
(

δ′∞(h)‖p0 − p0,h‖
κ
L∞(D) + δ′2(h)

2
)

,

where we applied Assumption1.10as well as‖u0 − u0,h‖L1(D) ≤ c‖p0 − p0,h‖
κ
L∞(D); see

also the proof of Proposition1.9. Using (1.15) we obtain

‖y0 − y0,h‖
2
Y ≤ c

(

δ′∞(h)‖y0 − y0,h‖
κ
Y + δ′∞(h)κ+1 + δ′2(h)

2
)

.

Arguing as in the proof of Proposition1.9, see the arguments following (1.13), completes the
proof.

2. Parameter choice rule depending on discretization errors. We describe our pa-
rameter choice ruleα(h) that yields optimal convergence rates. Here, we mean by “optimal
rate” that the error introduced by the regularization does not lead to convergence rates worse
than the rates provided by Proposition1.9. That is, for a given discretization parameterh, we
want to chooseα = α(h) in such a way such that

‖y0 − yα(h),h‖Y ≈ ‖y0 − y0,h‖Y ,

‖u0 − uα(h),h‖L1(D) ≈ ‖u0 − u0,h‖L1(D).

This is related to the classical motivation of the discrepancy principle in inverse problems: if
only noisy datazδ are available, then it suffices to solve the ill-posed equationSx = zδ up to
an accuracy that corresponds to the noise level: chooseα(δ) such that‖Sxα(δ) − zδ‖ ≈ δ.
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Similar results about a discrepancy principle for inequality constrained problems can be
found in [25]. However, these results are not applicable here as they deal with perturbations
of the data,zδ ≈ z, while the problem under consideration involves a perturbation of the
operatorSh ≈ S.

Another challenge when devising the parameter choice rule is the fact that the parame-
ter κ is not known a priori. This means that also the optimal convergence rate in Proposi-
tion 1.9 is unknown. Throughout this section, we assume that Assumptions1.2 and1.4 are
satisfied. As we will show, the parameter choice rule will notrely on the actual value ofκ.

Let us start with the observation that it is sufficient to chooseα(h) such that

(2.1)
‖y0,h − yα(h),h‖Y ≈ ‖y0 − y0,h‖Y ,

‖u0,h − uα(h),h‖L1(D) ≈ ‖u0 − u0,h‖L1(D).

Here, the term‖y0,h − yα(h),h‖Y can be estimated numerically without knowing the solu-
tion (y0,h, u0,h) of (1.6).

LEMMA 2.1. Let (u0,h, y0,h, p0,h) and(uα,h, yα,h, pα,h) be solutions of the discretized
unregularized problem(1.6) and regularized problem(1.3) for someα > 0, respectively.
Then it holds that

‖y0,h − yα,h‖
2
Y ≤ (uα,h − u0,h, pα,h)L2(D) ≤ Iα,h

with Iα,h defined as

Iα,h :=

∫

{x: pα,h>0}

(uα,h − ua)pα,h dµ+

∫

{x: pα,h<0}

(uα,h − ub)pα,h dµ.

Proof. The necessary optimality conditions for (1.6) imply

(p0,h − pα,h + pα,h, uα,h − u0,h)L2(D) ≥ 0.

Sincep0,h − pα,h = Sh(y0,h − yα,h), we obtain by transposition

‖yα,h − y0,h‖
2
Y ≤ (uα,h − u0,h, pα,h)L2(D),

which proves the first claim. Replacingu0,h by the suitable control bounds, the upper bound
involving Iα,h is derived.

Let us remark thatIα,h can be written as

Iα,h = (uα,h, pα,h)L2(D) + sup
u∈Uad

(u, −pα,h)L2(D),

where the second addend is the support functional ofUad evaluated at−pα,h.
In order to guarantee (2.1), we would like to chooseα such that the discrepancy mea-

sureIα,h is smaller than the optimal a priori rate given by Proposition 1.9. Sinceκ is not
available, we will overestimate the convergence rate. Thus, we suggest to use

(2.2) α(h) := sup{α > 0 : Iα,h ≤ δ2(h)
2 + δ∞(h)2}.

In the caseκ > 1, the convergence of‖y0,h − y0‖Y is faster thanδ2(h) + δ∞(h), which is
exactly the convergence rate of‖p0,h− p0‖L∞(D). In this sense, (2.2) is an overestimation of
the convergence rate of‖p0,h − p0‖L∞(D).
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As it will turn out, this overestimation will not affect the convergence rate. In particu-
lar, α(h) will not be chosen too small. A lower bound ofα(h) is provided in Corollary2.5.
First, let us prove that under weak assumptions the supremumexists, i.e.,α(h) < +∞.

LEMMA 2.2. Let us assume thatS∗z 6= 0. Moreover, we assume that

‖(S∗ − S∗
h)z‖L2(D) ≤ δ2(h).

Suppose furthermore that there is a numberσ > 0 such thatub(x) > σ and−σ > ua(x) a.e.
onD. Then forh sufficiently small, we haveα(h) < +∞.

Proof. Since0 ∈ Uad, we have forα → ∞ that uα,h → 0 in L2(D). This im-
pliespα,h → −S∗

hz for α → ∞. Arguing as in the proof of [25, Lemma 4.2], we obtain

lim infα→∞Iα,h ≥ σ‖S∗
hz‖L1(D).

Using the assumption in the lemma in order to estimate‖(S∗ − S∗
h)z‖L2(D), we obtain

‖S∗
hz‖L1(D) ≥ c(‖S∗z‖L1(D) − δ2(h)).

Consequently, there must be ah0 > 0 such that the set of allα with Iα,h ≤ δy(h)
2 + δp(h)

2

is bounded for allh < h0, which impliesα(h) < +∞ for h < h0.
Let us show that the assumptionS∗z 6= 0 is not very restrictive. In fact, if this assumption

is violated, then it follows thatu ≡ 0 is a solution of (1.4) for all α ≥ 0.
COROLLARY 2.3. LetS∗z = 0. Thenu0 = 0 is a solution of(1.4) for all α ≥ 0.
Proof. If u = 0, theny := Su = 0 holds as well. The hypothesisS∗z = 0 then implies

that p := S∗(y − z) = 0, which proves thatu = 0 fulfills the necessary optimality condition
of (1.4); cf. Proposition1.3.

In the next step, we will prove thatα(h) > 0 holds. That is, we prove that the discrepancy
principle (2.2) yields a regularization of the discrete problem. To this end, let us first derive
an upper bound onIα,h.

LEMMA 2.4. Suppose that the operatorS∗
h is uniformly bounded, i.e.,

‖S∗
h‖L(Y,L∞(D)) ≤ M

with a constantM > 0 independent ofh. Then there exists a constantc independent ofα
andh such that

Iα,h ≤ c
(

α
(

δ2(h)
κ + δ∞(h)κmin(d,1)

)

+ α
2

2−κ + ακ+1
)

is satisfied for allh > 0, α > 0 provided thatκ < 1. In the caseκ ≥ 1, the estimate is valid
except that the termα

2
2−κ has to be omitted.

Proof. Analogous to [25, Lemma 4.3] we obtain

(2.3) Iα,h ≤ c α(‖p0 − pα,h‖
κ
L∞(D) + ακ).

We estimate‖p0 − pα,h‖L∞(D) using Proposition1.9, the uniform boundedness ofS∗
h, and

Lemma2.1

‖p0 − pα,h‖L∞(D) ≤ ‖p0 − p0,h‖L∞(D) + ‖p0,h − pα,h‖L∞(D)

≤ c
(

δ2(h) + δ∞(h)min(d,1) + ‖y0,h − yα,h‖Y

)

≤ c
(

δ2(h) + δ∞(h)min(d,1) + I
1/2
α,h

)

.
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In the caseκ < 1, we obtain using Young’s inequality

Iα,h ≤ c α
(

δ2(h)
κ + δ∞(h)κmin(d,1) + I

κ/2
α,h + ακ

)

≤ c
(

α(δ2(h)
κ + δ∞(h)κmin(d,1)) + α

2
2−κ + ακ+1

)

.

Now letκ > 1. By Young’s inequality we can estimate

c α I
κ/2
α,h = c α I

κ−1
2

α,h I
1/2
α,h ≤ c α2Iκ−1

α,h +
1

2
Iα,h ≤ c ακ+1 +

1

2
Iα,h,

where in the last step we used that (2.3) implies Iα,h ≤ c α. Summarizing, we obtain the
following inequality

Iα,h ≤ c
(

α(δ2(h)
κ + δ∞(h)κmin(d,1)) + ακ+1

)

,

which proves the claim.
The upper bound ofIα,h provided by the previous lemma yieldslimα→0 Iα,h = 0 for

fixedh > 0. Hence it is clear that the supremum in the parameter choice rule (2.2) is attained
at a positive value ofα(h). Moreover, with the help of this estimate we can prove lower
bounds forα(h).

COROLLARY 2.5. Let the assumptions of Lemma2.4 be satisfied. Letα(h) be given
by (2.2). Then it holds thatα(h) > 0.

In the caseκ ≤ 1, we have the following lower bound

α(h) ≥ min
(

D
4−3κ
4−2κ , D

1
κ+1

)

with D = c(δ2(h)
2 + δ∞(h)2), c > 0. If h is small enough, then

α(h) ≥ c
(

δ2(h)
2 + δ∞(h)2

)

4−3κ
4−2κ .

If κ > 1, then it holds that

α(h) ≥ min
(

D
2−κ
2 , D

1
κ+1

)

,

hence ifh is small enough, then

α(h) ≥ c
(

δ2(h)
2 + δ∞(h)2

)
1

κ+1 .

Proof. First, let us prove the explicit lower bound ifκ ≤ 1. Sinceκ ≤ 1, the result of
Proposition1.3 impliesd = 1

2−κ ≤ 1. Let us fixα := 2α(h) > 0. Then the discrepancy
principle (2.2) implies

δ2(h)
2 + δ∞(h)2 < Iα,h.

Applying Young’s inequality to the estimate of Lemma2.4gives

δ2(h)
2 + δ∞(h)2 ≤ c

(

α
(

δ2(h)
κ + δ∞(h)

κ
2−κ

)

+ α
2

2−κ + ακ+1
)

≤ c
(

α
2

2−κ + α
4−2κ
4−3κ + α

2
2−κ + ακ+1

)

≤ c α
(

α
κ

4−3κ + α
κ

2−κ + ακ
)
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with some constantc > 0 independent ofα, h. As it can be seen, the smallest and largest
exponent ofα in the above estimate is4−2κ

4−3κ andκ + 1, respectively. Using the convexity
of t 7→ αt, we can estimate

δ2(h)
2 + δ∞(h)2 ≤ c

(

α
4−2κ
4−3κ + ακ+1

)

,

which proves the claim.
Second, in the caseκ > 1 we haved = κ+1

2 > 1. Then the estimate of Lemma2.4reads

Iα,h ≤ c
(

α (δ2(h)
κ + δ∞(h)κ) + ακ+1

)

.

Using δ2(h)
2 + δ∞(h)2 < Iα,h, we conclude that eitherα ≥ c

(

δ2(h)
2 + δ∞(h)2

)

2−κ
2

or α ≥ c
(

δ2(h)
2 + δ∞(h)2

)
1

κ+1 holds true.
So far, we proved thatα(h) is non-trivial (i.e., non-zero and finite). This enables us to

prove optimal convergence rates for the errors in the statesy and adjoint statesp.
LEMMA 2.6. Letα(h) be given by(2.2). Then for allhmax> 0, there is a constantc > 0

independent ofh such that

‖y0 − yα(h),h‖Y + ‖p0 − pα(h),h‖L∞(D) ≤ c
(

δ2(h) + δ∞(h)min(d,1)
)

holds for allh < hmax.
Proof. Combining the result of Lemma2.1with the discrepancy principle (2.2) gives

‖y0,h − yα(h),h‖Y ≤ I
1/2
α(h),h ≤ δ2(h) + δ∞(h).

Using the a priori error estimate of Proposition1.9gives

‖y0 − y0,h‖Y ≤ c
(

δ2(h) + δ∞(h)d
)

,

and the claimed estimate for‖y0 − yα(h),h‖Y follows. It remains to derive an upper bound
for ‖p0 − pα(h),h‖L∞(D). Here, we estimate

‖p0 − pα(h),h‖L∞(D) ≤ ‖S∗(y0 − yα(h),h)‖L∞(D) + ‖(S∗ − S∗
h)(yα(h),h − z)‖L∞(D)

≤ c
(

δ2(h) + δ∞(h)min(d,1) + δ∞(h)
)

,

which completes the proof.
This result proves that the parameter choice rule (2.2) maintains the optimal convergence

rates in the sense that‖p0 − pα(h),h‖L∞(D) ∼ ‖p0 − p0,h‖L∞(D). In the caseκ ≤ 1, we
moreover have that‖y0 − yα(h),h‖Y ∼ ‖y0 − y0,h‖Y .

Now, let us prove the main result of this section, which states that the parameter choice
rule (2.2) also leads to optimal convergence rates for‖u0 − uα(h),h‖L1(D) in the caseκ ≤ 1.

THEOREM 2.7. Let α(h) be given by(2.2). If κ ≤ 1, then for allhmax > 0 there is a
constantc > 0 independent ofh such that

‖u0 − uα(h),h‖L1(D) ≤ c
(

δ2(h)
κ + δ∞(h)

κ
2−κ

)

holds for allh < hmax. In the caseκ > 1, we have the estimate

‖u0 − uα(h),h‖L1(D) ≤ c
(

δ2(h)
2κ

κ+1 + δ∞(h)
2κ

κ+1

)

.
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Proof. Let us write for shortα := α(h) throughout the proof. Let us define the following
subset ofD

B := {x ∈ D : pα,h(x) 6= 0, sign(p0(x)) = sign(pα,h(x))}.

The measure of its complement can be bounded using Assumption 1.4. Indeed, onD \B the
signs ofp0 andpα,h are different, which gives|p0| ≤ |p0 − pα,h| a.e. onD \B. Hence using
Assumption1.4and Lemma2.6, we obtain

(2.4) meas(D \B) ≤ c ‖p0 − pα,h‖
κ
L∞(D) ≤ c

(

δ2(h)
κ + δ∞(h)κmin(d,1)

)

.

Let us now investigate theL1-norm ofu0 − uα,h onB. Forǫ > 0 we define the set

Bǫ := B ∩ {x ∈ D : |pα,h(x)| > ǫ}.

Since|p0| ≤ |pα,h|+ |p0−pα,h| ≤ ǫ+ |p0−pα,h| a.e. onB \Bǫ, we have by Assumption1.4
and Lemma2.6

(2.5) meas(B \Bǫ) ≤ c(‖p0 − pα,h‖
κ
L∞(D) + ǫκ) ≤ c(δ2(h)

κ + δ∞(h)κmin(d,1) + ǫκ).

We recall thatα satisfies the discrepancy estimate, cf. (2.2),
∫

{x: pα,h>0}

(uα,h − ua)pα,h dµ+

∫

{x: pα,h<0}

(uα,h − ub)pα,h dµ ≤ δ2(h)
2 + δ∞(h)2.

Here, the integrands in both integrals are positive functions, which allows us to restrict the
integration regions

∫

{x: pα,h>0}∩Bǫ

(uα,h − ua)pα,h dµ+

∫

{x: pα,h<0}∩Bǫ

(uα,h − ub)pα,h dµ

≤ δ2(h)
2 + δ∞(h)2.

Since|pα,h| ≥ ǫ onBǫ, it holds that

∫

{x: pα,h>0}∩Bǫ

ǫ|uα,h − ua|dµ+

∫

{x: pα,h<0}∩Bǫ

ǫ|ub − uα,h|dµ

≤ δ2(h)
2 + δ∞(h)2.

Sincep0 andpα,h have equal signs onBǫ and{pα,h 6= 0} ⊃ Bǫ, we have

ǫ

∫

Bǫ

|u0 − uα,h| ≤ δ2(h)
2 + δ∞(h)2,

which implies

‖u0 − uα,h‖L1(Bǫ) ≤ ǫ−1(δ2(h)
2 + δ∞(h)2).

This together with (2.4), (2.5) gives the estimate

‖u0 − uα,h‖L1(D) ≤ c(δ2(h)
κ + δ∞(h)κmin(d,1) + ǫκ + ǫ−1(δ2(h)

2 + δ∞(h)2)).
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With ǫ :=
(

δ2(h)
2 + δ∞(h)2

)
1

κ+1 we obtain

‖u0 − uα,h‖L1(D) ≤ c(δ2(h)
κ + δ∞(h)κmin(d,1) + δ2(h)

2κ
κ+1 + δ∞(h)

2κ
κ+1 ).

Forκ ≤ 1 we haved = 1
2−κ ≤ 1, hence it holds that

‖u0 − uα,h‖L1(D) ≤ c
((

1 + δ2(h)
κ(1−κ)
1+κ

)

δ2(h)
κ +

(

1 + δ∞(h)
3κ(1−κ)

(2−κ)(1+κ)

)

δ∞(h)
κ

2−κ

)

.

Forκ > 1, we haved = κ+1
2 > 1, hence we obtain in this case

‖u0 − uα,h‖L1(D) ≤ c
((

1 + δ2(h)
κ(κ−1)
1+κ

)

δ2(h)
2κ

κ+1 +
(

1 + δ∞(h)
κ(κ−1)
1+κ

)

δ∞(h)
2κ

κ+1

)

,

which completes the proof.
REMARK 2.8. Analogous results can be obtained when using the modified Assump-

tion1.10instead of Assumption1.2, except thatδ2(h) andδ∞(h) have to be replaced byδ′2(h)
andδ′∞(h) in the above estimates.

3. Application to the optimal control of an elliptic equation. Let us report on the
application of the adaptive parameter choice rule to an optimal control problem subject to an
elliptic equation. The optimal control problem is stated asfollows: minimizeJ(y, u), which
is given by

(3.1) J(y, u) =
1

2
‖y − z‖2L2(Ω)

subject to the elliptic equation

−∆y = u+ f,

y|Γ = 0
(3.2)

and to the control constraints

ua(x) ≤ u(x) ≤ ub(x) a.e. onΩ.

Here,Ω ⊂ R
n, n = 2, 3, is a bounded domain with a polygonal boundaryΓ. Moreover, we

setD = Ω endowed with the Lebesgue measure. In addition,z, f ∈ L2(Ω), ua, ub ∈ L∞(Ω)
are given.

Let us show that this problem fits into the framework developed in the above sections.
Clearly, the partial differential equation (3.2) admits for eachu ∈ L2(Ω) a unique solu-
tion Su := y ∈ H1

0 (Ω). With the choiceY = L2(Ω), we haveS = S∗. Due to Stampac-
chia’s classical result [21], the operatorS∗ is continuous fromL2(Ω) to L∞(Ω). Then the
problem (3.1) is equivalent to the minimization of12‖S(u+ f)− z‖2L2(Ω), and the theory of
the previous sections applies if one setsz := z − Sf .

Let us fix the assumptions on the discretization of (3.2) by finite elements. We will work
with a family of regular meshesF = {Th}h>0, whereT is a regular mesh consisting of
closed cellsT . These meshes are indexed by their mesh sizes, i.e.,h(Th) = h with the
settingh(T ) := maxT∈T hT , hT := diamT . We assume in addition that there exists a
positive constantR such thathT

RT
≤ R hold for all cellsT ∈ Th and allh > 0, whereRT is

the diameter of the largest ball contained inT .
With each meshTh, we associate a finite-dimensional subspaceVh ⊂ H1

0 (Ω) consisting
of functions whose restriction to a cellT ∈ Th is a linear polynomial. The operatorSh is
then defined by the notion of weak solutions: we setShu := yh, whereyh ∈ Vh solves

∫

Ω

∇yh · ∇vh dµ =

∫

Ω

(u+ f) · vh dµ ∀vh ∈ Vh.

Please note, that also in the discrete case we haveSh = S∗
h.
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3.1. A priori error estimates. Let us first discuss the a priori error estimates. In ad-
dition, we assume now thatΩ is convex and thatmax

T∈Th

hT ≤ CM min
T∈Th

hT is satisfied for

all h > 0 with a given constantCM > 1. Then we have the following classical estimates;
see [5, Theorem 5.7.6], [4, p. 87]: there is anh0 > 0 such that

‖(S − Sh)f‖L2(Ω) ≤ c h2 ‖f‖L2(Ω),

‖(S∗ − S∗
h)f‖L∞(Ω) ≤ c h2−n/2 ‖f‖L2(Ω),

holds for allh ∈ (0, h0) andf ∈ L2(Ω) with a constantc > 0 independent ofh andf . Hence,
Assumption1.2is fulfilled with δ2(h) = c h2, δ∞(h) = c h2−n/2. Of course, these rates will
not lead to optimal discretization error estimates since they are limited by the regularity of
the finite element solutions, where in generalyh 6∈ H2(Ω). In order to obtain optimal a priori
rates, we will have to resort to the modified Assumption1.10. Here it turns out that under
additional regularity assumptions, see [6], we getδ∞(h)′ = h2| log h|r(n), with r(2) = 2
andr(3) = 11/4.

3.2. A posteriori error estimates. In addition to relying on a priori rates, we apply the
following reliable and efficient error estimator from [20]. For simplicity, we useL∞-error
estimators for both the state and the adjoint equation. Defineηyα,h,∞ := maxT∈Th

ηT,yα,h,∞

and

ηT,yα,h,∞ := | log hmin|
2

(

h2
T ‖∆yα,h + uα,h + f‖L∞(T ) + hT

∥

∥

∥

∥

[

∂yα,h
∂n

]∥

∥

∥

∥

L∞(∂T\Γ)

)

,

wherehmin := minT∈Th
hT and[v]E denotes the jump of the quantityv across an edgeE.

Then it holds that, cf. [20],

c0‖(S − Sh)uα,h‖L∞(Ω) ≤ ηyα,h,∞ ≤ c1‖(S − Sh)uα,h‖L∞(Ω)

with constantsc0, c1 > 0 depending onΩ, the polynomial degreel, and the shape regu-
larity of the triangulation. Note that convexity ofΩ is not required. Analogously, we de-
fineηpα,h,∞ := maxT∈Th

ηT,pα,h,∞ and

ηT,pα,h,∞ := | log hmin|
2

(

h2
T ‖∆pα,h − yα,h + z‖L∞(T ) + hT

∥

∥

∥

∥

[

∂pα,h
∂n

]∥

∥

∥

∥

L∞(∂T\Γ)

)

,

with the error bound

c0‖(S
∗ − S∗

h)(yα,h − z)‖L∞(Ω) ≤ ηpα,h,∞ ≤ c1‖(S
∗ − S∗

h)(yα,h − z)‖L∞(Ω).

With the help of these error estimators, we used the following parameter choice rule:

(3.3) α(h) := sup
{

α : α = 2−jα0, j ∈ N, Iα,h ≤ τ(η2yα,h,∞
+ η2pα,h,∞

)
}

.

Here,α0 > 0 is an a priori chosen initial regularization parameter. It is not obvious whether
the supremum in (3.3) exists and is non-zero since the termη2yα,h,∞

+ η2pα,h,∞
does depend

onα.
LEMMA 3.1. LetTh be a fixed mesh. Let Assumption1.4be satisfied. Ifz 6= 0, then the

supremum in(3.3) exists andα(h) > 0.
Proof. Let us assume that the supremum in (3.3) does not exist. Then it holds that

Iαj ,h > τ(η2yαj,h
,∞ + η2pαj,h

,∞)
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for all αj := 2−jα0, j ∈ N. Let us abbreviateuj := uαj ,h, yj := yαj ,h, pj := pαj ,h. Due to
the control constraints, the sequence{uj} is uniformly bounded inL∞(Ω). By ellipticity, the
sequences{yj} and{pj} are uniformly bounded inH1

0 (Ω). Since these sequences belong
to the finite-dimensional spaceVh, we get by the equivalence of norms in finite-dimensional
spaces that{yj} and{pj} are bounded inL∞(Ω).

By extracting subsequences if necessary, we haveuj ⇀ ũ in L2(Ω) anduj ⇀∗ ũ
in L∞(Ω). Moreover, it holds thatyj → ỹh = Shũ ∈ Vh andpj → p̃h = S∗

h(ỹh − z) ∈ Vh

with respect to any norm asVh is finite-dimensional. By the lower semicontinuity of norms,
we obtain

η2ỹh,∞
+ η2p̃h,∞

≤ lim infj→∞(η2yj ,∞ + η2pj ,∞),

which implies

η2ỹh,∞
+ η2p̃h,∞

≤ τ−1lim infj→∞Iαj ,h.

By the inequality (2.3), we obtainIαj ,h → 0 asj → ∞ because of the convergenceαj → 0
and the uniform boundedness of{pj} in L∞(Ω). Hence, we findηỹh,∞ = ηp̃h,∞ = 0.
This implies that̃yh andp̃h are affine-linear onΩ. As these functions satisfy homogeneous
Dirichlet-boundary conditions, it holds thatỹh = p̃h = 0. Now,ηỹh,∞ = 0 impliesũ+f = 0,
which in turn gives̃yh = 0. In addition,ηp̃h,∞ = 0 implies ỹh − z = 0, hencez = 0, which
is a contradiction to the assumptions.

The following corollary follows directly from the parameter choice rule (3.3) and
Lemma2.1.

COROLLARY 3.2. Let Assumption1.4 be satisfied withκ ≤ 1. Let α(h) be given
by (3.3). Then for allhmax> 0, there is a constantc > 0 independent ofh such that

‖y0,h − yα(h),h‖Y + ‖p0,h − pα(h),h‖L∞(D) ≤ c
(

ηyα(h),h,∞ + ηpα(h),h,∞

)

holds for allh < hmax.

3.3. Example 1. Let us now show some results using uniform meshes. Let us takethe
following data

Ω = (0, 1)2, ua = −1, ub = +1,

z(x1, x2) = sin(πx1) sin(πx2) + sin(2πx1) sin(2πx2)

f(x1, x2) = − sign
(

sin(2πx1) sin(2πx2)
)

+ 2π2 sin(πx1) sin(πx2).

It is easy to check that (1.1) admits the following unique solution:

u0(x1, x2) = sign
(

sin(2πx1) sin(2πx2)
)

y0(x1, x2) = sin(πx1) sin(πx2)

p0(x1, x2) = −
1

8π2
sin(2πx1) sin(2πx2).

In addition, it turns out that the regularity assumption is satisfied for allκ < 1. This implies
by Proposition1.5thatd = 1 and‖u0 − uα‖L1(D) ≤ c α.

Hence, ifα(h) is chosen as

(3.4) α(h) := sup{α > 0 : Iα,h ≤ δ′2(h)
2 + δ′∞(h)2},

we expect to observe the convergence rates

‖y0 − yα(h),h‖Y + ‖p0 − pα(h),h‖L∞(Ω) + ‖u0 − uα(h),h‖L1(Ω)

≤ c (δ′2(h) + δ′∞(h)) = c h2(1 + | log h|r(n)),

cf. Lemma2.6and Theorem2.7, taken into account Remark2.8.
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TABLE 3.1
Example 1 using a priori rates.

h ‖u0−uα(h),h‖L1(D) ‖y0−yα(h),h‖L2(D) ‖p0−pα(h),h‖L∞(D) α(h)

3.5355 · 10−1 3.7125 · 10−1 5.9522 · 10−2 1.0123 · 10−2 1.9531 · 10−3

1.7678 · 10−1 1.0430 · 10−1 1.4209 · 10−2 3.4092 · 10−3 4.8828 · 10−4

8.8388 · 10−2 2.8239 · 10−2 3.2977 · 10−3 8.7735 · 10−4 1.2207 · 10−4

4.4194 · 10−2 7.5361 · 10−3 7.7452 · 10−4 2.1348 · 10−4 3.0518 · 10−5

2.2097 · 10−2 1.7609 · 10−3 1.8484 · 10−4 5.1677 · 10−5 3.8147 · 10−6

1.1049 · 10−2 4.3913 · 10−4 4.4649 · 10−5 1.2606 · 10−5 9.5367 · 10−7

∼ h2 ∼ h2 ∼ h2 ∼ h2

TABLE 3.2
Example 1 using a posteriori estimates.

h ‖u0−uα(h),h‖L1(D) ‖y0−yα(h),h‖L2(D) ‖p0−pα(h),h‖L∞(D) α(h)

3.5355 · 10−1 3.7125 · 10−1 5.9522 · 10−2 1.0123 · 10−2 1.9531 · 10−3

1.7678 · 10−1 1.0430 · 10−1 1.4209 · 10−2 3.4092 · 10−3 4.8828 · 10−4

8.8388 · 10−2 2.8239 · 10−2 3.2977 · 10−3 8.7735 · 10−4 1.2207 · 10−4

4.4194 · 10−2 6.9357 · 10−3 7.7398 · 10−4 2.1340 · 10−4 1.5259 · 10−5

2.2097 · 10−2 1.7609 · 10−3 1.8484 · 10−4 5.1677 · 10−5 3.8147 · 10−6

1.1049 · 10−2 4.3913 · 10−4 4.4649 · 10−5 1.2606 · 10−5 9.5367 · 10−7

∼ h2 ∼ h2 ∼ h2 ∼ h2

3.3.1. Results using a priori rates and uniform refinement.In our computations, we
did not calculate the supremum in (2.2) or (3.4) accurately. Rather, we choose some initial
valueα0 > 0, and then computedα(h) as

(3.5) α(h) := sup{α : α = 2−jα0, j ∈ N, Iα,h ≤ τh4}

ignoring the logarithmic term inδ′∞(h). Here, τ > 0 is an additional factor. After the
parameterα(h) has been found according to (3.5), the mesh was refined uniformly.

Let us report about the results using the parameter choice rule (3.5), which is based on
a priori convergence rates. We choseα0 = 1 andτ = 0.01. The domainΩ was first divided
into 32 triangles with mesh sizeh = 0.3536. The results are displayed in Table3.1.

As expected, we observed that the errors‖y0 − yα(h),h‖L2(D), ‖p0 − pα(h),h‖L∞(Ω),
and‖u0 − uα(h),h‖L1(Ω) converge at the order ofh2. As can be found in Table3.1, the
parameter choice rule selectsα(h) ∼ h2.

3.3.2. Results using a posteriori estimates and uniform refinement. Let us now re-
port about the results when instead of the a priori error estimates, an a posteriori error estima-
tor is used. We chooseτ = 2 ·10−4 in (3.3) to obtain results which are comparable with those
in Section3.3.1. Using the same data and setup as in Section3.3.1, we obtained the results
as depicted in Table3.2. The errors almost coincide with those of Table3.1. This is due
to the fact that the only difference in the computations is inthe parameter choice rules (3.5)
and (3.3). As both select the same values ofα(h) (except at one discretization level), this is
the expected outcome.
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TABLE 3.3
Example 2 using a posteriori estimates and uniform refinement.

N α(h) Iα(h),h

71 1.5625 · 10−2 8.6100 · 10−4

253 7.8125 · 10−3 2.4128 · 10−4

953 3.9062 · 10−3 6.9901 · 10−5

3697 1.9531 · 10−3 1.9965 · 10−5

14561 9.7656 · 10−4 5.6060 · 10−6

57793 2.4414 · 10−4 4.8650 · 10−7

TABLE 3.4
Example 2 using a posteriori estimates and adaptive refinement.

N α(h) Iα(h),h

71 1.5625 · 10−2 8.6100 · 10−4

99 1.5625 · 10−2 8.5669 · 10−4

165 7.8125 · 10−3 2.2686 · 10−4

377 3.9062 · 10−3 6.7847 · 10−5

721 3.9062 · 10−3 6.5876 · 10−5

1410 1.9531 · 10−3 1.8306 · 10−5

2874 9.7656 · 10−4 5.2227 · 10−6

5557 9.7656 · 10−4 5.1821 · 10−6

11671 4.8828 · 10−4 1.5013 · 10−6

22015 2.4414 · 10−4 4.0858 · 10−7

46428 1.2207 · 10−4 1.0967 · 10−7

3.4. Example 2. Our second example is posed on a convex polygonal domainΩ that
is the interior of the convex hull of the points(0, 0), (2, 0), (2, 2), (1, 2), and(0, 1). The
following data are given

z(x1, x2) = 10
x2
1 − x2

2

x2
2 + 1

, f = 0, ua = −1, ub = +1.

3.4.1. Results using a posteriori estimates and uniform refinement. The discretiza-
tion error was estimated as in Section3.3.2, and we used the parameter choice rule (3.3).
The coarsest mesh was obtained by dividing the domainΩ into 112 triangles. The results for
the computations on a hierarchy of uniformly refined meshes can be observed in Table3.3.
There,N corresponds to the number of nodes of the mesh, which is the number of degrees of
freedom of the state and adjoint variables.

3.4.2. Results using a posteriori estimates and adaptive refinement. Using the same
data as in the previous section, we also performed computations with an adaptive mesh re-
finement. Let us describe the marking strategy, which we usedto mark triangles for re-
finement. Afterα(h) has been found according to (3.3), we refined using the error estima-
tor ηy,∞ + ηp,∞. Here, an elementT was marked for refinement if

ηT,y,∞ + ηT,p,∞ ≥ θ(ηy,∞ + ηp,∞)



ETNA
Kent State University 

http://etna.math.kent.edu

266 D. WACHSMUTH

with θ = 0.5. After refinement, the parameterα(h) is determined on the new mesh according
to the parameter choice rule (3.3).

When comparing the results of the computations with uniform and adaptive refinement,
cf. Tables3.3and3.4, the adaptive method clearly gives better results: for the same number
of degrees of freedom, the discrepancyIα(h),h is roughly four times smaller as in the case
with uniform refinement. Due to Lemma2.1, this implies that the error‖y0,h − yα(h),h‖Y
decays faster with adaptive refinement than with uniform refinement. Hence, our computa-
tional experience suggests to use the fully adaptive algorithm, where the discretization and
regularization is chosen adaptively.
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