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ADAPTIVE REGULARIZATION AND DISCRETIZATION OF BANG-BANG
OPTIMAL CONTROL PROBLEMS *

DANIEL WACHSMUTHT

Abstract. In this article, Tikhonov regularization of control-corahed optimal control problems is investi-
gated. Typically the solutions of such problems exhibit aalbed bang-bang structure. We develop a parameter
choice rule that adaptively selects the Tikhonov reguédian parameter depending on a posteriori computable quan-
tities. We prove that this choice leads to optimal convergeates with respect to the discretization parameter. The
article is complemented by numerical results.
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1. Introduction. In this article we investigate the regularization and ditigation of
bang-bang control problems. The class of problems that wsider can be described as the
minimization of

1
(1.2) 3 15w = 2[I%

over allu € L*(D) satisfying the constraint
(1.2) U, <u<u, a.e.onD.

Here, D is a bounded subset &"*. The operatolS is assumed to be linear and continuous
from L?(D) to Y with Y being a Hilbert space. The target statec Y is a given desired
state. Moreover, we assume that the Hilbert space adjoaratqr.S* of S is a map fromY”

to L>(D).

Problems covered by this general framework include disteith or boundary control
problems subject to elliptic and parabolic equations if oglaxes the requirements it
to map intoL?(D), p > 2. Due to the appearance of the inequality constraifitg),(

a solutionug to the problem 1.1) often exhibits the so-called bang-bang structure, that
i, up(x) € {uq(x),up(x)} for almost allz € D. Hence, the control constraints are active
almost everywhere op.

Itis well-known that the problenil(1) is solvable with a unique solution §f is injective.
However, solutions of1(.1) are unstable with respect to perturbations in the problata d
in general. Hence, a regularization df1) is desirable that stabilizes the solutions of the
problem while maintaining a certain accuracy of the diszagibn method. In this paper,
we will study Tikhonov regularization methods, which aredely used in optimal control
problems as well as in inverse problems; see, e.g., Engkéj&teubauer?], Troltzsch p2].

In order to solve 1.1) numerically, let us introduce a family of linear and contis op-
erators{Sy, } n~o from L?(D) to Y with finite-dimensional range¥, C Y, whereh denotes
the discretization parameter. The regularized and dizegtproblem now reads: minimize

1 «
(1.3) §\|Shu—2||%/+§||u|\%2(p)
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subject to {.2). This problem is solvable, where we will denote a solutigrf 5, in the
sequel. In the case thatis a solution operator of an elliptic partial differentiajuation
andY}, is spanned by linear finite elements, thérd] is a variational discretization of.(4)
in the sense of Hinzelf]. Corresponding discretization error estimates can badadn [14];
the casev = 0 is considered in Deckelnick, Hinzé][

In order to develop an efficient approximation scheme toes(ihvi) by means of succes-
sively solving instances ofi(3), we are faced with two important questions:

1. Given a fixed discretizatioh, how should we choose = «(h)?
2. Suppose we have solvetl.§) for fixed («(h), h). How should we refine the dis-
cretization?
Of course, we want to have answers to both questions sucththagsulting scheme is opti-
mal. Here, we borrow the meaning of “optimal” from the resuit linear inverse problems:
choose the regularization paramet€h) such that the regularization error is of the same size
as the discretization error.

Let us briefly review the available literature. To the besbwf knowledge, there are no
results available concerning adaptive Tikhonov regutdian and the discretization of op-
timal control problems with inequality constraints. Mucloma is known for linear inverse
problems. Parameter choice rules and convergence resulésdniform discretization go
back to Natterer]8] and Engl, NeubaueB]. Parameter choice rules depending on a posteri-
ori computable guantities can be found for instance in GaietNeubauerl?] and King,
Neubauer 16]. Adaptive wavelet based regularization was studied in RjaRereverzev,
Ramlau, and Solodkyl[/]. Adaptive discretization methods for parameter estiomafirob-
lems based on residual error estimates can be found in Neulja®] and Ben Ameur,
Chavent, Jaffe [3]. Adaptive refinement using goal-oriented estimators \&stigated in
Becker, Vexler 1, 2]. An adaptive regularization and discretization methodeseloped in
Griesbaum, Kaltenbacher, Vexldér(] and Kaltenbacher, Kirchner, Vexlet§] for linear and
non-linear inverse problems, respectively.

In this paper, we develop and analyze a parameter choicertlex(h); see 2.2) below.
There, the parameter(h) can be determined solely by a posteriori available quastitiVe
will prove that the approximation errorfjug — uqn)sllzi(py 1S proportional
to |luo — uo,nllz1 (D), Whereug, uo n, uan),, are the solutions ofi(1), (1.3) with o = 0
and of (L.3) with « = a(h), respectively. That is, the additional error introducedhsy reg-
ularization is of the same size as the discretization eifbe relevant estimates for the dis-
cretization error can be found in Propositib®. The optimality of the parameter choice rule,
which is the main result of this article, is shown in Theordm Furthermore, we propose an
adaptive procedure that involves both adaptive regultoizand adaptive mesh-refinement;
see Sectiol.2

In order to achieve these results, a certain regularityrapsan, see Assumptiofi.4,
has to be fulfilled, which is an assumption on the solutionhef ¢continuous, undiscretized
problem (L.1). This assumption guarantees that almost-active setsvaak i some sense.
Such a condition is used in Deckelnick, HinZ{o prove a priori error estimates for the dis-
cretized but unregularized problem. Moreover, this caodits used in Wachsmuth, Wachs-
muth [24, 25] to prove a priori convergence of the regularization eff@§ — w1 (py with
respect tay; cf. Propositionl.5.

1.1. Notation. Inthe sequel, we will use subscripts to indicate solutiorthé optimiza-
tion problems introduced above. Thatisg, v, andu,_; will denote solutions tol(.1), (1.4
(see below), andl(3), respectively. Additionally, we will usgy := Sug, Yo = Sua, €tc.
We will work with generic constants > 0, which may change from line to line, but which
are independent of the relevant quantities such asdh.
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1.2. Assumptions and preliminary results. Let (D, >, 1) be a given measure space.
The operatolS is assumed to be linear and continuous frbAtD) to the Hilbert spacé’.
Moreover, we assume that the Hilbert space adjoint opefdtof S maps fromY” to L*>°(D).

By a result of GrothendiecKL[], it follows that S has a closed range if and only if its range
is finite-dimensional. This implies that the equati®m = = is ill-posed, except for the trivial
case that the range df is finite-dimensional. Let us remark that the requirememisso
could be relaxed to allow$* mapping intoL?(D), p € (2,00); see R5] and the comments
after Propositiorl..5.

The control constraints are specified by functiensu, € L>°(D) with u, < u; a.e.
on D. The set of admissible controls is defined by

Uwa :={u€ L*(D): uy, <u<u, ae.onD}.

As already introduced, we will work with a family of operasdiSy, } -0, S, € L(L?(D),Y)
with finite-dimensional ranges. The adjoint operat®fsare assumed to map from the Hilbert
spaceY to L>°(D). For later reference, let us introduce the regularizedi@onetized) prob-
lem: givena: > 0, minimize

1 «
(1.4) §||SU*ZH§/+§HU||%2(D)

subject to the inequality constraints #). Regarding the existence of solutions b1, (1.4),
and (L.3), we have the following classical result.

PROPOSITIONL.1. The problemg1.1) and (1.3) are solvable with convex and bounded
sets of solutions. The problegih.4) is uniquely solvable for > 0. The solutions of1.1) are
unique ifS is injective. The solution ofl.3) is uniquely determined i > 0.

While the optimal control ofX.1) and (L.3) may not be uniquely determined, the optimal
statesSuy andSuy ;, are uniquely determined due to the strict convexity of thet fnctional
with respect tqy.

Throughout the article, we assume the following propentiethe discrete operators,
ands;.

ASSUMPTION 1.2. There exist functions;(h), (k) : RT — RT, continuous and
monotonically increasing withy (0) = d.,(0) = 0, such that it holds

1S = Sn)ua,nlly +105* = S5)(Ya,n = 2)llL2(0) < d2(h),
15" = 55) (Yo = 2)l| Lo (D) < boo(h),

forall h > 0 anda > 0.

In this assumption, the convergence of the discretizatepedds on the approximation
properties ofliscrete solutionsThis form is especially useful in combination with a poster
ori error estimators. We can replace this assumption wiisaomption on the approximation
properties of the solution of the continuous problem al@ee; the remarks at the end of Sec-
tion 1.5

1.3. Necessary optimality conditions.Let us recall some standard results on the first-
order necessary optimality conditions.

PrRoPOSITIONL.3. For o > 0, letu,, andu, j; be solutions of(1.4) and (1.3), respec-
tively. Let us defing,, := S*(yo — 2) andpa,1, := S} (ya,n — ). Then it holds that

(aua + Da; u_ua) >0 VueUad7
(aua,h +pa,h7 u— uoé’h) Z 0 Vu E Uad.
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Using well-known argument2p, Lemma 2.26], we have for almost alle D

. 1 i
Ug (I) = p1oJ [wa (x),up(x)] (—apo( (I)) o=
and

ug(z) if po(z) >0,
(1.5) up(z) = wp(x) if po(x) <O,
0 if ug(z) < up(z) < up(x).

Similar relations hold fow,, ;, andu ;. Fora = 0, the controls:, anduy j are bang-bang

if po # 0 andpg ;, # 0 a.e. onD, respectively. Moreover, ify, = 0 andpy ;, = 0 on sets
of positive measure, then the valuesugfandu ;, cannot be determined by the respective
variational inequalities.

1.4. Regularization error estimate. We will now briefly investigate the convergence
properties ofu,, for « — 0. Since the problemi(1) reduces to an ill-posed equation if the
control constraints are not active at the solution, it isacliat the convergenee, — ug
cannot be achieved without any further conditions.

We will rely on the following assumption, which is an assuimptabout the measure of
the set where the control constraintswgnare almost active.

ASSUMPTION1.4. Let us assume that there ate> 0, ¢ > 0 such that

meas{x € D : |po(z)| <€} <ce€”

forall e > 0.

This assumption implies that the set : po(x) = 0} has measure zero, hencg is
a bang-bang control by the necessary optimality condit{@rg. Since the adjoint state,
is uniquely determined, it is another consequence of thesraption thatu, is the unique
solution of (.1).

Let us remark that such a condition is used@htp prove discretization error estimates
for [lug — wuonllz1(py @and in P] to investigate stability properties of bang-bang solutio
to ODE control problems. Moreover, the assumption impliescal growth of the cost func-
tion with respect to the.'-norm [24]. In connection with convergence rate estimates for
interior point methods, this assumption was used as a shrenigg of the strict complemen-
tarity conditions in L1, 23)].

The main purpose of this assumption is to provide convergestes foiv — 0.

PROPOSITIONL.5. Let Assumptiori.4 be satisfied. Let be defined by

d:{Qi" if i < 1,

“TH if &K > 1.

Then for everyvmax > 0, there exists a constant> 0 such that

%0 = vally + IPo — PallL=(p) < ca?,

o — tallp2(py < ca®™/2,

||UO _ ua||L1(D) < C0[1171/2+;<;/2min(d,l)
holds for alla € (0, amay-

For proofs, we refer toZ4, 25]. Moreover, it was shown inZ6] that Assumptiorl.4 is
necessary for the convergence rates 1, which corresponds to the case> 1.
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Let us remark that = 1 is the maximal possible value for certain classes of problem
This is due to the fact that > 1 andx > 2imply p ¢ C*(D) andpy ¢ H'(D), respectively.
That said, if the range of the operatstS is a subspace af'* (D) or H'(D), then an upper
bound onx is provided by the smoothing properties$andS*.

REMARK 1.6. In the attainable case, which is the basis for many tesulinverse
problems, it holds that, = 0. Thus, the assumption of bang-bang solutions is not valid in
this case, and different techniques have to be used to prozgutarization error estimate;
see 5.

REMARK 1.7. If S* is a continuous operator mapping frdmto L? (D), p € (2,00),
then the result of Propositiofh.9 still remains true with the modified convergence rate

of d = min (HT”, 1)(23:%) see P5, Corollary 3.15].

1.5. Discretization error estimates. Let us first introduce the discretization df.{) by

o1 2
(1.6) Join 5 [1Spu — 2y
We will now prove error estimates with respect to the diszagion parametek. To this end,
let ug ;, denote the solution ofl(6) with minimal Z2-norm.
PROPOSITION1.8. Let Assumptiori.2 be satisfied. Letv > 0. Then there is a con-
stante > 0 independent ody, 4 such that

1 _1
90 = Yol + 0 e = tanllz2(my < ¢ (1+a7) da(h),

[Pa = PanllLe(p) < ¢ (5oo(h) + (1 + a_%) 62(h))

holds for allh > 0.
Proof. The result is a consequence of the optimality conditionropBsition1.3as well
as the assumptions on the discretization. Using the nagass@mality conditions we obtain
Ot”Ua - u(x,hH%ﬁ(D) < (p(x,h — Pa, U — Ua,h)L2(D)
1.7) = (ShWa,n — 2) = 5" (Ya — 2); Ua — Ua,n)L2(D)
= ((Sh = S5")Warh — 2) + S (Yauh — Ya), Ua — “a,h) LDy’

We continue with

1

L 2
LR

* * a
(1.8) ((Sh - S )(ymh - Z)a U — umh)Lz(D) < §||ua - ua,hHZLQ(D) +
In addition, we estimate

(S* (yoz,h - ya)y Uq — ua,h)L"’(D)

= (ya,h —Yay Ya — Sua,h)Y
(1.9 .

= _”ya - ya,hugf + (ya,h — Yo, (Sh - S)ua,h)Y
1 1
< 5o = vorll} + 5 32(h)*.
The estimatesl(7)—(1.9) imply

”ya - ya,hugf + aHua - ua,h”%ﬂ(D) < (1 + a_l) 52(h)27
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which proves the first claim. To obtain the second, obseratitimolds that

[Pa = PanllLe= (D) < [IPa = S (Ya,n — 2) + S (Ya,n — 2) = PayhllL=(D)
(1.10) < 15" (Wa = ya,p)llLe= () + 1(5* = Sp)(Ya,n — 2)[[L=(D)
< clya = Yanlly + s (h)),
and the estimate for the errors of the adjoint states is areiigte conclusion. 0
As can be seen above, these error estimates are not robhsesjitect tax — 0. This
is again due to the ill-posedness of the underlying equéafior= z. As demonstrated irf],
Assumptionl.4is sufficient to prove convergence rates fior> 0 in the casex = 0.

PrROPOSITION1.9. Let Assumptiong.2 and 1.4 be satisfied. Letl be as in Proposi-
tion 1.5. Then for everyimax > 0, there is a constant > 0 such that

lvo — yo.ully < c(d2(h) + o0 (R)?),
lPo — po,n |L°°(D) <c (52(h) 4 5m(h)min(d,1)) :

||U0 _ UU,hHLl(D) <c (52(h)ﬁ _i_(;oo(h)nmin(d,l))

holds for allh < hmax

Proof. The proof for the case < 1 can be found in§, Theorem 2.2]. We will briefly
sketch the proof to indicate the necessary modificationghi®icase: > 1. Using the esti-
mates {.7) and (L.9) with o = 0 in the proof of Propositiori.8, we obtain

]- * *
(1.11) §||y0 —youll¥ < eda(h)® + ((Sh — S*)(Yo,n — 2), Uo — Uop) L2(D)-
The second term can be bounded as

((Sh = S")(yo,n — 2), ug — uo,n) < doo(h)|luo — wonl L1 (D)

(1.12) .
< ¢ boo(P)[IPo — Po,ullfe (D)

where the last estimate is a consequence of Assumptiprsee B, (2.13)]. Using (.10 to
estimatel|py — p07h||'£x(D), we find

(1.13) o = o.nll3- < ¢ (82(h)* + doc (M)lyo — yo.rlI5 + doc (h)™F1) .

If k < 2, then the claim follows by an application of Young’s inequal
If = > 2, we proceed as follows. ARiy —uo n| £ (p) is uniformly bounded with respect
to h by the control constraints, the inequality. {1) implies the non-optimal error bound

1
3llvo — yonlly < ¢(d2(h)? + doo(h)).
Substituting this in1.13 yields

190 = Yo.ull¥ < ¢ (02(h)? + doc(h)da(h)* + oo (R)*1)
<ec (62(h)2 + O (R)2HD 4 6oo(h)"“+1)

by Young'’s inequality. The estimates §po — po,nllz~(py and |lug — uo,nl/z1(py can be
derived as in1.10 and (.12, respectively. a

As can be seen from these results, the convergence rgg efpo 1. || L (p) with respect
to 6o (h) saturates at, which is the rate given by Assumptidn2.
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Let us briefly sketch how to obtain similar results if Assuimptl.2 is replaced by the
following, which is an assumption on the approximation migs of the solutions ofi(1)

and (L.4).
ASSUMPTION1.10. There exist functions,(h), 0. (h) : Rt — R*, continuous and
monotonically increasing with; (0) = 4/_(0) = 0, such that it holds that

1S = Su)ually + 105" = i) (wa = 2)ll22(0) < S5 (R),
15" = $i) (e = 2lm=(0) < 3L (h)
forall h > 0 anda > 0.
COROLLARY 1.11.Let Assumption$.4and1.10be satisfied. Then the results of Propo-
sitions1.8and1.9are valid withds(h) andd.. (h) replaced by (h) andd’ (h).

Proof. Let us briefly outline the necessary modifications in thefsof Propositiond..8
and1.9. The estimatel(.7) has to be replaced by

allte = vanlZ2(py < (ShYah = 2) = S* (Yo = 2); Ua — Ua,n)L2(D)
(1.14) = ((Sh = 5)(Ya — 2), Ua — ua,h)L2(D) — |y — ya,h”%/
+ Wash — Yo, (Sh — S)ua)y.

Now the estimates fdfu, — ua,ull22(p) @]y — Ya,xlly in the caser > 0 are a straight-
forward consequence. The™-error estimates for the adjoint states can be obtained from

”poz - pa,h||L°°(D) < ||pa - S;(ya - Z) + S}t(ya - Z) — Pa,h |L°°(D)
(1.15) <(S* = Sp)(Ya — 2)l L= (D) + 1S5 (Ya — Ya,n) | L= (D)
< C(déo(h) + ||yoc - y(x,hHY)a

which yields the claim fory > 0. That is, the results analogous to Propositiddare proven.
Let us now prove the claimed estimate for= 0. Here, (L.14) with o = 0 gives

g0 = yo.ull¥ < ¢ (5 (R)lluo — wonllLi(p) + d2(h)?)
< ¢ (S (®)llpo = polli (o) + 83()?)
where we applied Assumptiagh10as well as|uo — uo,n |21 (p) < ¢llpo — po,hH*zx(D); see
also the proof of Propositioh.9. Using (L.15 we obtain
lyo = yo.ull3 < ¢ (3 (Mlyo — yonll§ + 05 () + 85(R)?) .
Arguing as in the proof of Propositidh9, see the arguments following.(3, completes the
proof. 0

2. Parameter choice rule depending on discretization erras. We describe our pa-
rameter choice rule:(h) that yields optimal convergence rates. Here, we mean byriapbt
rate” that the error introduced by the regularization do@dend to convergence rates worse
than the rates provided by Propositibi®. That is, for a given discretization parametefve
want to chooser = a(h) in such a way such that

vo = Yanynlly = lvo — yo.nlly
lluo — ua(h),hHLl(D) ~ |lug — U07h||L1(D)-
This is related to the classical motivation of the discregasrinciple in inverse problems: if

only noisy data® are available, then it suffices to solve the ill-posed equafiz = 2° up to
an accuracy that corresponds to the noise level: chatSesuch that| Sz, s) — 2°|| = 6.
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Similar results about a discrepancy principle for inegyalonstrained problems can be
found in [25]. However, these results are not applicable here as thdydbaperturbations
of the data,2® ~ z, while the problem under consideration involves a pertimbaof the
operatorSy, ~ S.

Another challenge when devising the parameter choice suled fact that the parame-
ter x is not known a priori. This means that also the optimal cogpeece rate in Proposi-
tion 1.9is unknown. Throughout this section, we assume that Assongpt.2 and1.4 are
satisfied. As we will show, the parameter choice rule will redy on the actual value of.

Let us start with the observation that it is sufficient to cbme(h) such that

2.1) lvo.n = Yan),nlly = llyo — yo,nlly,

luo,n — ta(nynllL (D) = luo — vo,nllLr(p)-

Here, the term|yo,n — yan),nlly can be estimated numerically without knowing the solu-
tion (yo,n, uo,n) Of (1.6).

LEMMA 2.1. Let (uo.n, Yo, Po,h) @Nd (Ua 1, Yo b, Pa,k) DE sOlUtions of the discretized
unregularized problen{l.6) and regularized problen(l.3) for somea > 0, respectively.
Then it holds that

lvo,n — Yarlly < (Wa,n — Uo,ns Pa,n)r2(D) < la,n

with 1, j, defined as

Ia,h = / (ua,h - ua)pa,h dlu/ + / (ua,h - Ub)Pa,h d/J/
{x:pa,n>0} {z:pa,n<0}

Proof. The necessary optimality conditions fdr.§) imply

(Po,n = Pa,h + Pa,hs Ua,h — Uo,n)L2(p) = 0.

Sincepo.n — Pa.h = Sh(Yo.n — Ya,n), We obtain by transposition

1Ya.n — Youll¥ < (Ua,n — vo,n, Da,h)L2(D)>

which proves the first claim. Replacing ;, by the suitable control bounds, the upper bound
involving I, 5, is derived. a
Let us remark thaf, ;, can be written as

Ioh = (Ua,hs Pah)r2(D) + SUP (U, —Pa,n)r2(D),
ueUgq
where the second addend is the support functionél,gfevaluated at-p,, .
In order to guarantee?(1), we would like to choose: such that the discrepancy mea-
surel, , is smaller than the optimal a priori rate given by Propositlod. Sincex is not
available, we will overestimate the convergence rate. TWwessuggest to use

(2.2) a(h) :=sup{a > 0: I < 62(h)? + 6 (h)?}.

In the case: > 1, the convergence dfyo., — yolly is faster tharis(h) + do (h), which is
exactly the convergence rate|gfy . — po|| L~ (p). In this sense,A.2) is an overestimation of
the convergence rate @po.» — poll<(p)-
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As it will turn out, this overestimation will not affect theonvergence rate. In particu-
lar, «(h) will not be chosen too small. A lower bound af#) is provided in Corollary?2.5.
First, let us prove that under weak assumptions the supreexists, i.e.(h) < +oc.

LEMMA 2.2.Let us assume that*z # 0. Moreover, we assume that

[(S* = Sh)zllL2(py < d2(h).

Suppose furthermore that there is a numbes 0 such thatu,(z) > o and—o > u,(z) a.e.
on D. Then forh sufficiently small, we have(h) < +oc.

Proof. Since0 € U,q, we have fora — oo thatu,, — 0in L*(D). This im-
pliesp,,n — —S; 2 for ae — co. Arguing as in the proof of45, Lemma 4.2], we obtain

liminfo o lon > 0lShz| L1 (p)-
Using the assumption in the lemma in order to estinfjgt& — S;)z||.2(p), we obtain
15h2llLr(py = e(lS™ 2l L1 (D) — d2(h))-

Consequently, there must bé:@ > 0 such that the set of adt with 7, ;, < §,(h)? + 6,(h)?
is bounded for alh < hg, which impliesa(h) < +oo for h < hy. O

Let us show that the assumptiSiiz # 0 is not very restrictive. In fact, if this assumption
is violated, then it follows that = 0 is a solution of {.4) for all « > 0.

COROLLARY 2.3.LetS*z = 0. Thenuy = 0 is a solution of(1.4) for all « > 0.

Proof. If uw = 0, theny := Su = 0 holds as well. The hypothesit'z = 0 then implies
that p := S*(y — z) = 0, which proves that = 0 fulfills the necessary optimality condition
of (1.4); cf. Propositionl.3. a

In the next step, we will prove that(h) > 0 holds. That is, we prove that the discrepancy
principle 2.2) yields a regularization of the discrete problem. To thid,dat us first derive
an upper bound o#, .

LEMMA 2.4. Suppose that the operatéi; is uniformly bounded, i.e.,

1Shll cevinoe (D)) < M

with a constantl/ > 0 independent of. Then there exists a constantndependent ofv
andh such that

Inpn<c (a (52(h)” Jr(;oo(h)mmin(d,l)) +aﬁ + an+1)

is satisfied for allh > 0, « > 0 provided thats < 1. In the case: > 1, the estimate is valid
except that the term== has to be omitted.
Proof. Analogous to 25, Lemma 4.3] we obtain

(2.3) Ion < calllpo — pa,n

Lo (D) + ).

We estimat€|pg — pa,nll 2 (p) using Propositiori..9, the uniform boundedness 6f, and
Lemma2.1

lPo — Pa,nll LoDy < [P0 — Po,nllLee (D) + [|Po,n — Pa,nll Lo (D)
< ¢ (82() + Foc ()™ 1 lyo, = ynly )

<ec (62(h) + 6o (R)IN(D) 4 Ii/,f) .
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In the case: < 1, we obtain using Young’s inequality
Lo < e a (8(h)" + G () ™52ED 4 122 1 0
<c (a(ég(h)” 4 Joo (R)Rmin(d:)y 4 aTr + oz”“) .

Now letx > 1. By Young's inequality we can estimate

a,h

K1 1 1
cal?=ca Lo I;/,? <c QQIs;Ll + 51‘”‘ Sca™+ ija’}“

where in the last step we used that3) implies I, ;, < ca. Summarizing, we obtain the
following inequality

Inn<c ((X((Sg(h)“ + 6oo(h)“min(d71)) + am—l) 7

which proves the claim. 0O

The upper bound of, ;, provided by the previous lemma yieltisn, ¢ I, = 0 for
fixedh > 0. Hence itis clear that the supremum in the parameter choied2.2) is attained
at a positive value ofv(h). Moreover, with the help of this estimate we can prove lower
bounds fora(h).

COROLLARY 2.5. Let the assumptions of Lemral be satisfied. Letv(h) be given
by (2.2). Then it holds thatv(h) > 0.

In the cases < 1, we have the following lower bound

a(h) > min (D% D%ﬂ)

with D = ¢(d2(h)? + 600 (h)?), ¢ > 0. If h is small enough, then

4—3kK

a(h) > ¢ (62(h)* + boo(R)?) 772~ .
If K > 1, then it holds that
a(h) > min (D%TK, D%ﬂ> ,
hence ifh is small enough, then

a(h) > ¢ (82(h)? + b0 (h)) 7T .

Proof. First, let us prove the explicit lower bound#f< 1. Sincex < 1, the result of

Propositionl.3impliesd = %ﬂ < 1. Let us fixae := 2a(h) > 0. Then the discrepancy

principle @.2) implies ’
2(h)? + 0o (h)? < In p.
Applying Young’s inequality to the estimate of Lemral gives
S2(h)? + 60 (R)? < ¢ (a (2(h)" + 00 ()7 + @757 + a’”‘l)
<c (aﬁ + Qi 4 aTF 4 a““)

Sca(aﬁ% +aﬁ+a“)



ETNA
Kent State University
http://etna.math.kent.edu

ADAPTIVE REGULARIZATION OF BANG-BANG CONTROL PROBLEMS 259

with some constant > 0 independent of, h. As it can be seen, the smallest and largest
exponent ofa in the above estimate i&=2% and« + 1, respectively. Using the convexity
of t — o', we can estimate

S2(h)? + 6 (R)? < c (a% + 0/‘“) ,

which proves the claim.
Second, in the case> 1 we haved = KTH > 1. Then the estimate of Lemn®a4reads

Iop < c(a(82(h)" + 6uo(h)™) + a1

Using 02(h)? + 6s0(h)? < Ia,n, we conclude that either > ¢ (2(h)? + doo(h)?) %
ora > ¢ (62(h) + 0o(h)?) ™7 holds true. 0

So far, we proved thak(h) is non-trivial (i.e., non-zero and finite). This enablesais t
prove optimal convergence rates for the errors in the siatesl adjoint states.

LEMMA 2.6.Leta(h) be given by(2.2). Then for allhmax > 0, there is a constant > 0
independent of such that

%0 = Ya(n).nlly + IPo — Pan),nllL= (D) < ¢ (52(h) + 5oo(h)min(d’1))

holds for allh < hmax
Proof. Combining the result of Lemmz 1 with the discrepancy principl€(2) gives

0.0 = Yoy ally < Tofm p < Ga(h) + doo(h).

Using the a priori error estimate of Propositib® gives

lyo — yoully < c(d2(h) + 6s0(h)?),

and the claimed estimate o — ya(x),» [y follows. It remains to derive an upper bound
for [|po — Pa(n),nllL=(p). Here, we estimate

0 — Pan),nlle 0y < 1S (Yo = Ya(n),w)ll Lo (py + 1(S™ = S5) (Wan),n — 2) L= (D)
< (82(R) + G (W)™ 4 G (R) ),

which completes the proof. 0O

This result proves that the parameter choice r2l8) (maintains the optimal convergence
rates in the sense thibo — pa(n),nllL=(p) ~ [P0 — Po,ullze(py. In the case: < 1, we
moreover have thaltyo — yan),ully ~ l¥o — yo.ully-

Now, let us prove the main result of this section, which stéitet the parameter choice
rule (2.2 also leads to optimal convergence rates|ff@§ — wuqn),»l/ 21 (p) in the cases < 1.

THEOREM 2.7. Leta(h) be given by(2.2). If k < 1, then for allhmax > 0 there is a
constantc > 0 independent ok such that

K

luo = tam)nllnr(py < ¢ (02(h)" + b (R)FF)

holds for allh < hmax In the case: > 1, we have the estimate

[wo = UanynllLipy < c (52(71)"2T~1 + de0(h) “Qfl) :
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Proof. Let us write for shortv := a(h) throughout the proof. Let us define the following
subset ofD

Bi={z € D: pan(z) #0, sign(po(z)) = sign(pa,n(z))}.
The measure of its complement can be bounded using Assumiptiolndeed, ornD \ B the

signs ofpy andp,, ;, are different, which give| < |po — pa,n| @.€. onD \ B. Hence using
Assumptionl.4and Lemma2.6, we obtain

(2.4) meas(D \ B) < c¢||po — pa,h”zm([,) <c <(52(h)"i + 600(]7/)"‘111111(5[71)) .
Let us now investigate the!-norm ofug — u, 5, on B. Fore > 0 we define the set
B.:=BN{z €D: |pan(z) > €}

Sincelpo| < [pa.nl+1P0 —Pa.n| < €+ |po—pa,n| a.e.onB\ B, we have by Assumptioh.4
and Lemm&.6

(2.5) meas(B\ Be) < c(l[po — panllf(p) +€) < c(2(h)" + boo (b)Y 4 ).

We recall thaty satisfies the discrepancy estimate, 2f2),
/ (o~ t)pon O+ [ (e — )P G < Ga(h)? + b ().
{z:pa,n>0} {z:pa,n<0}

Here, the integrands in both integrals are positive fumstiavhich allows us to restrict the
integration regions

/ (uoz,h - U(l)pa,h d,Uf + / (Ua,h - Ub)Pa,h d,U,
{z:pa,n>0}NB. {z:pa,n<0}NB.
< 02(h)? + oo (h)?.

Since|pa n| > € on B, it holds that

/ eltia.n —ua\du—k/ €lup — uq,n|du
{z:pa,n>0}NB. {z:pa,n<0}NB.

< 62(h)? + 600 ()2
Sincep, andp,, », have equal signs oB, and{p, . # 0} D B., we have
e/ [up — ua,n| < 82(R)* + 5o (R)?,
B.
which implies
[uo — tanllLr () < € 1 (02(h)? 4 600 (h)?).
This together withZ.4), (2.5) gives the estimate

HUO _ ua,h”Ll(D) < C((Sg(h)m +6oo(h)mmin(d,1) 4t 4 6_1(62(h)2 + §m(h)2))
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With ¢ = (85(h)? + 60 (h)?) 77 we obtain

”UO — Uq h”Ll(D) < 0(52(h)’i + 00 (h)nmin(d,l) +52(h)h274:1 +5oo(h) N+~1).

Forx < 1we haved = 5= < 1, hence it holds that

o — e nl| 1 () ((1 +62() T ) G (k) + (14 500(/1)%) boc(B) 7).
Forx > 1, we havel = "“—*1 > 1, hence we obtain in this case

luo = e nllL (D) ((1 + 8y(h) “EF )62( )T (1 + 600 (h)“(ﬁ?”) 500(/1)%),

which completes the proof. O

REMARK 2.8. Analogous results can be obtained when using the modN&sump-
tion 1.10instead of Assumptioh.2, except thads (k) andd.. (k) have to be replaced by (h)
andd’_(h) in the above estimates.

3. Application to the optimal control of an elliptic equation. Let us report on the
application of the adaptive parameter choice rule to amwgdtcontrol problem subject to an
elliptic equation. The optimal control problem is stateda®ws: minimize J(y, u), which
is given by

1
(3.1) J(y,u) = §||y—z||%2(9)
subject to the elliptic equation
Ay = + ,
(3.2) y=utf
ylr =0

and to the control constraints
g (z) < u(z) <up(x) a.e.ornfd.

Here,2 C R™, n = 2,3, is a bounded domain with a polygonal boundBryMoreover, we
setD = ) endowed with the Lebesgue measure. In additioi,€ L2(Q), uq, up, € L*°(Q)
are given.

Let us show that this problem fits into the framework devetbjpethe above sections.
Clearly, the partial differential equatior8.¢) admits for eachu € L?(£2) a unique solu-
tion Su := y € H(Q). With the choiceY’ = L?(Q), we haveS = S*. Due to Stampac-
chia’s classical result?]l], the operatoiS* is continuous fronZ.?(Q2) to L>(€2). Then the
problem @.1) is equivalent to the minimization &f||.S(u + f) — z||2L2(Q), and the theory of
the previous sections applies if one sets= z — Sf.

Let us fix the assumptions on the discretization32) by finite elements. We will work
with a family of regular meshe& = {7,},~0, whereT is a regular mesh consisting of
closed cellsT. These meshes are indexed by their mesh sizeshi(&,) = h with the
settingh(7) := maxret hr, hy := diamT. We assume in addition that there exists a
positive constank such thatg < R hold for all cellsT" € 7;, and allh > 0, whereR is
the diameter of the largest ball contained/in

With each meslyy,, we associate a finite-dimensional subspegce- H} (2) consisting
of functions whose restriction to a cdll € 7, is a linear polynomial. The operatét, is
then defined by the notion of weak solutions: we$gt := y;,, wherey;,, € V}, solves

/Vyh-Vvhdu:/(u—i—f)whdu Yoy, € V3.
Q Q

Please note, that also in the discrete case we Have S;.
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3.1. A priori error estimates. Let us first discuss the a priori error estimates. In ad-
dition, we assume now th&? is convex and tha;n%g( hr < Cpy %m%l hr is satisfied for
€Th €Th

all b > 0 with a given constan€’,; > 1. Then we have the following classical estimates;
see b, Theorem 5.7.6],4, p. 87]: there is ahg > 0 such that

1S = Sk) fll2) < ch® 1 fllL2 o).
1(S* = Sp) fllzee ) < ch* ™2 || fll L2 (o)

holds for allh € (0, ko) andf € L?(2) with a constant > 0 independent of, andf. Hence,
Assumptionl.2is fulfilled with 65(h) = ¢ h?, 6 (k) = ¢ h*~"/2. Of course, these rates will
not lead to optimal discretization error estimates sin@y #re limited by the regularity of
the finite element solutions, where in genejakZ H?(2). In order to obtain optimal a priori
rates, we will have to resort to the modified AssumptiohQ Here it turns out that under
additional regularity assumptions, seé®, [we getd(h) = h?|logh|"(™, with r(2) = 2
andr(3) = 11/4.

3.2. A posteriori error estimates. In addition to relying on a priori rates, we apply the
following reliable and efficient error estimator frod(). For simplicity, we useL>-error
estimators for both the state and the adjoint equation. Befin, .. := maxre7;, N7,y, 4,00

and
|:aya,h]
on Lo (9T\I) ,

wherehy, := minye7, hr and{v]g denotes the jump of the quantityacross an edgg.
Then it holds that, cf.40],

NT,ya o0 = |log Pagin|* (h%Aya,h + Uan + flle(r) + b1

col|(S = Sh)ua,nllLe=(Q) < Myan.c0 < C1ll(S = Sh)ta,nllL=(a)

with constantsey,c; > 0 depending orf2, the polynomial degreé and the shape regu-
larity of the triangulation. Note that convexity 6f is not required. Analogously, we de-

flne npa)h,oo = Ina‘XTE,Th, nT-,PocJHOO and
|:apoz,h:|
on Lo (8T\I') ’

col[(S™ = Sp)(Wan = 2l Loe (@) < Mpanoo < €1ll(S™ = Sp)(Warh = 2)ll Lo (@)

T po oo = | 108 hinin|? <h2T|Apa,h = Ya,h + 2l (1) + hr

with the error bound

With the help of these error estimators, we used the follgyparameter choice rule:
(3.3) a(h) := sup {a ca=2"ag, jEN, I, < 7(17;(17)17OO + ngmh,oo)} .

Here,ag > 0 is an a priori chosen initial regularization parameters Ilhot obvious whether
the supremum in3.3) exists and is non-zero since the temjl does depend
onc.

LEMMA 3.1. Let 7, be a fixed mesh. Let Assumptibd be satisfied. It # 0, then the
supremum ir{3.3) exists andv(h) > 0.

Proof. Let us assume that the supremuma3rB) does not exist. Then it holds that

2
,h,O0 + npa,h,oo

2 2
Ia.?vh > T(nyaj,h,-,oo + T]paj.hyOO)
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forall o; :== 277, j € N. Let us abbreviate; := Uy hy Yj °= Yoy by Pj i= Pay,h- DUE TO
the control constraints, the sequereg } is uniformly bounded irL>°(2). By ellipticity, the
sequencegy; } and{p;} are uniformly bounded if{}(f2). Since these sequences belong
to the finite-dimensional spadé,, we get by the equivalence of norms in finite-dimensional
spaces thafy; } and{p,} are bounded id.>(12).

By extracting subsequences if necessary, we hgve~ @ in L*(Q) andu; —* @
in L>°(2). Moreover, it holds thay;, — g, = Spu € Vi, andp; — pp, = S5 (gn — 2) € Vi
with respect to any norm dg, is finite-dimensional. By the lower semicontinuity of norms
we obtain

2 2 o 9 9
nghvoo + nﬁhsoo § hm lnfj—>00(77yg,oo + np]7oo)7
which implies
2 42 <7 Uiminfi el
773/11700 nph,oo — j—oolay,h-

By the inequality 2.3), we obtainl,,; , — 0 asj — oo because of the convergeneg — 0
and the uniform boundedness £f;} in L>(£). Hence, we findyy, -« = 75,00 = 0.
This implies thaty;, andp;, are affine-linear of2. As these functions satisfy homogeneous
Dirichlet-boundary conditions, it holds thgt = p;, = 0. Now,7;, - = 0impliesa+ f =0,
which in turn givesj, = 0. In addition,n;, ~ = 0 impliesg;, — z = 0, hencez = 0, which
is a contradiction to the assumptions. 0O

The following corollary follows directly from the parametehoice rule 8.3) and
Lemma2.1

COROLLARY 3.2. Let Assumptiori.4 be satisfied withx < 1. Let«a(h) be given
by (3.3). Then for allhmax > 0, there is a constant > 0 independent of such that

Hyo,h - ya(h),h”Y + ||p07h - pa(h)thL”(D) <c (nyw(h,),h,xoo + npa(h>,h700>

holds for allh < hmax

3.3. Example 1. Let us now show some results using uniform meshes. Let ustiake
following data

Q=1(0,1)2 ug = —1, up = +1,
2(x1,x9) = sin(mway) sin(mxs) + sin(27wx ) sin(27wxs)
f(z1,22) = —sign (sin(2mz) sin(27z2)) + 27° sin(7zy ) sin(r2s).
It is easy to check thafi(1) admits the following unique solution:
uo(x1, x9) = sign (sin(27rx1) sin(Qﬂ'xQ))

Yo (1, x2) = sin(mxy) sin(mway)

1 . .
po(x1,m2) = ) sin(27xy) sin(27xs).

In addition, it turns out that the regularity assumptionatiied for allx < 1. This implies
by PropositionL.5thatd = 1 and|jug — ua |1 (p) < ¢ o
Hence, ifa(h) is chosen as

(3.4) a(h) :=sup{a > 0: I, < 65(h)% + 6. (h)?},
we expect to observe the convergence rates
lvo — Yanynlly + [P0 — Pan),pll Lo @) + U0 — tam)nllLr @)
< c(8y(h) + 6 () = c h*(1 + [log h|"™),
cf. Lemma2.6and Theoren?.7, taken into account Rema#k8,
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TABLE 3.1
Example 1 using a priori rates.

h lluo—vany,nllppy Wo—vam),nll2(py IPo—Pa(n),nllLee (D) a(h)
3.5355 - 101 3.7125- 1071 5.9522 - 1072 1.0123 - 102 1.9531-1073
1.7678 - 107! 1.0430-107'  1.4209-10"%  3.4092-107%  4.8828-107*
8.8388 - 1072 2.8239 - 1072 3.2977-1073 8.7735-10~% 1.2207-10~*
4.4194-1072 7.5361-1073 7.7452-107% 2.1348 - 104 3.0518 -10~°
2.2097 - 1072 1.7609 - 10~3 1.8484 .10~ 5.1677-107° 3.8147-1076
1.1049-1072  4.3913-10"%  4.4649-107°  1.2606-107°  9.5367-10~"

~ h2? ~ h2 ~ B2 ~ h2

TABLE 3.2
Example 1 using a posteriori estimates.

h llwo—vany,wllLr(py 1Wo—vam)nllz2(py IPo—Pa(n),nllzee (D) a(h)
3.5355 - 1071 3.7125- 1071 5.9522 - 1072 1.0123 - 102 1.9531-1073
1.7678 - 1071 1.0430-107'  1.4209-1072  3.4092-107%  4.8828-1074
8.8388 - 1072 2.8239 - 1072 3.2977-1073 8.7735-10~* 1.2207 - 10~
4.4194 -1072 6.9357 - 1073 7.7398 - 10~ 2.1340-10~% 1.5259 - 107°
2.2097 - 102 1.7609 - 10~3 1.8484 -10~4 5.1677-107° 3.8147-10°6
1.1049 - 1072 4.3913 .10~ 4.4649 - 1075 1.2606 - 10~ 9.5367 - 107

~ h? ~ h? ~ h? ~ h?

3.3.1. Results using a priori rates and uniform refinement.In our computations, we
did not calculate the supremum i8.9) or (3.4) accurately. Rather, we choose some initial
valueay > 0, and then computed(h) as

(3.5) a(h) =sup{a: a=2"a, jEN, I, < Th'}

ignoring the logarithmic term in’_(h). Here,7 > 0 is an additional factor. After the
parameterv(h) has been found according t8.5), the mesh was refined uniformly.

Let us report about the results using the parameter choieg315), which is based on
a priori convergence rates. We chege= 1 andr = 0.01. The domairt? was first divided
into 32 triangles with mesh size = 0.3536. The results are displayed in Tatdel

As expected, we observed that the erws — yan)nll2(p), [P0 — Pan),nllLe (),
and [|uo — ua(n),nllL1 (@) converge at the order df2. As can be found in Tabl&.1, the
parameter choice rule seleeigh) ~ h?.

3.3.2. Results using a posteriori estimates and uniform refement. Let us now re-
port about the results when instead of the a priori erronegtés, an a posteriori error estima-
tor is used. We choose= 2-10~*in (3.3) to obtain results which are comparable with those
in Section3.3.1 Using the same data and setup as in Se@i@nl, we obtained the results
as depicted in Tabl8.2 The errors almost coincide with those of TaBlé. This is due
to the fact that the only difference in the computations ithiparameter choice rule3.9)
and @.3). As both select the same valuescdfh) (except at one discretization level), this is
the expected outcome.
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TABLE 3.3
Example 2 using a posteriori estimates and uniform refinemen
N a(h) Loy n
71 1.5625-1072 8.6100-10~*
253 7.8125-107%  2.4128 1074
953 3.9062-1073 6.9901-107°
3697 1.9531-1072  1.9965-107°
14561 9.7656 - 10~*  5.6060 - 10—
57793 2.4414-107*  4.8650- 1077

TABLE 3.4
Example 2 using a posteriori estimates and adaptive refineme
N a(h) Tony.n

71 1.5625 - 1072 8.6100-10*

99 1.5625 - 1072 8.5669 - 10—+
165 7.8125-107%  2.2686 - 10~*
377 3.9062-1073  6.7847-107°
721 3.9062-1073  6.5876 - 10~°
1410 1.9531-107% 1.8306-107°
2874 9.7656 - 10~* 5.2227-10
5557 9.7656 - 10~* 5.1821-1076
11671 4.8828-10~* 1.5013-106
22015 2.4414-10~* 4.0858 - 107
46428 1.2207-10*  1.0967 - 107

3.4. Example 2. Our second example is posed on a convex polygonal dofahat
is the interior of the convex hull of the point§,0), (2,0), (2,2), (1,2), and(0,1). The
following data are given

2 _ g2
2 f=0,u,=—1, up = +1.

x
L 19) = 1022
z(x1, x2) o]

3.4.1. Results using a posteriori estimates and uniform refement. The discretiza-
tion error was estimated as in Sectidr8.2 and we used the parameter choice rdes)(
The coarsest mesh was obtained by dividing the dofiairto 112 triangles. The results for
the computations on a hierarchy of uniformly refined meslagsbe observed in Tablz3.
There,N corresponds to the number of nodes of the mesh, which is timdeauof degrees of
freedom of the state and adjoint variables.

3.4.2. Results using a posteriori estimates and adaptivefiasement. Using the same
data as in the previous section, we also performed compuotatvith an adaptive mesh re-
finement. Let us describe the marking strategy, which we tisedark triangles for re-
finement. Aftera(h) has been found according t8.8), we refined using the error estima-
tor 1,00 + 1p,00- Here, an element was marked for refinement if

NT,y,00 + NTp,00 = 0(Ty,00 + Mp,co)
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with 0 = 0.5. After refinement, the paramete(h) is determined on the new mesh according
to the parameter choice ruld.g).

When comparing the results of the computations with unifonch adaptive refinement,
cf. Tables3.3and3.4, the adaptive method clearly gives better results: for #mesnumber
of degrees of freedom, the discrepanigyy,) ;, is roughly four times smaller as in the case
with uniform refinement. Due to Lemn1, this implies that the errdfyo. . — Ya(n)nlly
decays faster with adaptive refinement than with uniforrnegfient. Hence, our computa-
tional experience suggests to use the fully adaptive dtgoriwhere the discretization and
regularization is chosen adaptively.
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