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IMPLICIT-EXPLICIT PREDICTOR-CORRECTOR METHODS COMBINED
WITH IMPROVED SPECTRAL METHODS FOR PRICING EUROPEAN STYLE
VANILLA AND EXOTIC OPTIONS *

EDSON PINDZA!, KAILASH C. PATIDAR T, AND EDGARD NGOUNDA!

Abstract. In this paper we present a robust numerical method to solveadypes of European style op-
tion pricing problems. The governing equations are desdriie variants of Black-Scholes partial differential
equations (BS-PDEs) of the reaction-diffusion-advectype. To discretise these BS-PDEs numerically, we use
the spectral methods in the asset (spatial) direction angledhem with a third-order implicit-explicit predictor-
corrector (IMEX-PC) method for the discretisation in the tidieection. The use of this high-order time integration
scheme sustains the better accuracy of the spectral methoadifth they are well-known. Our spectral method
consists of a pseudospectral formulation of the BS-PDEs byymeban improved Lagrange formula. On the other
hand, in the IMEX-PC methods, we integrate the diffusion tampicitly whereas the reaction and advection terms
are integrated explicitly. Using this combined approachfivet solve the equations for standard European options
and then extend this approach to digital options, buttegdhgad options, and European calls in the Heston model.
Numerical experiments illustrate that our approach is higleiurate and very efficient for pricing financial options
such as those described above.
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1. Introduction. In this paper we consider a class of European style optiossrited
by Black-Scholes equationg][ In general, closed-form analytical solutions of somehefse
Black-Scholes PDEs do not exist and therefore one has tetresaumerical methods in
order to solve them. In the literature, the following fouriméamilies of methods have been
developed and extensively used for Black-Scholes PDEB&dahethods]0, 21, 32], Monte
Carlo simulations}, 13, 41, 45, finite difference (FD) methodsl[, 42, 59, and analytical
approximations 70, 27, 35]. The first two are classified as stochastic simulation natho
since they approximate the underlying process directlye dther two methods are usually
performed on the Black-Scholes PDEs with appropriate agmate boundary conditions.

Popular techniques such as lattice methods can be veryeeffitor valuing simple
calls and puts, however, they become less efficient wheringalmore complicated options.
FD methods are more desirable over binomial (or trinomra¢ because the transition from
a differential equation to a difference equation is easikenvthe grid/mesh is simple and
regular. This offers more flexibility as compared to thei¢atimethods. However, it is well
known that the kink at the strike price in the payoff functmauses lower-order convergence
when higher-order FD schemes are applied to solve thesengpticing PDES.

Numerous ideas have been proposed to enhance the converjéfia methods. Clarke
and Parrott 19 used a coordinate transformation, stretched the regiooral the strike
price where there is a discontinuity in the first derivatifethe final condition, and found
that the accuracy of their implicit FD method was improvednother way of obtaining
more grid points around the discontinuity is to use adapiié points as in Persson and
von Sydow fi4]. Recently, Oosterlee et al43] obtained a fourth-order accurate solution
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for European options using the grid stretching transfoiongftc2] in combination with the
fourth-order spatial discretisation based on a five-pdemal and the fourth-order backward
differencing formula (BDF4) for time discretisation. Maiecently, Tangman et al5({)] con-
sidered the higher-order compact (HOC) schemes and usétistrgtching that concentrates
the grid nodes at the strike price for the European options.

In this paper we will explore spectral methods to discretigeoption pricing problems
in the asset (spatial) direction. Spectral methods aresa ofsapproximation methods that are
well known for the task of solving partial differential edigas [L7]. For smooth enough solu-
tions, they are exponentially convergent in the number ofgreles of free-
dom [16, 24, 49]. Although widely used in fields such as fluid mechanics,rthee in option
pricing have been rare. The main drawback for their direpliegtion to option pricing is
that the payoff functions for typical options or the initimnditions in the governing PDEs
are nonsmooth. Thus, the collocation approximations afeced to low-order accuracy,
making them not competitive with existing finite differencethods. The literature is rich
in ideas for overcoming this problem. One approach is tolegge the initial condition as
proposed by Greenber@{]. Suh 47, 48] used the Broadie-Detempléq] approach and
obtained a significant improvement of the pseudospectréhadeover the finite difference
methods (FDM) while solving PDEs and PIDEs (partial intedifferential equations) in fi-
nance. Tangman et ab]] presented a new approach which consists in dividing th@fset
Chebyshev points into two at the strike pri€e To this end, the new set of points will cluster
the grid nodes not only at the boundaries but also at the irigulocated at the strike price
for a European option. Using such a strategy, the Chebysbleacation method achieved
fourth-order accuracy. Zhé()] proposed a spectral element method based on the regularisa
tion approach of Greenbergd] to price European options with and without jumps in one and
two dimensions. He successfully recovered the exponeatt@iracy of spectral methods.

To discretise the problem in time direction, we use a clagmpficit-explicit (IMEX)
methods. These methods have been used in conjunction veititrapmethods]6] to solve
problems involving different types of PDEs. Ascher et d].donstructed families of first-,
second-, third-, and fourth-order IMEX multistep methaalsalve convection-diffusion equa-
tions. Ruuth #6] used IMEX multistep methods and efficiently solved reattififfusion
problems in pattern formation. Recently, Hundsdorfer anaitR [34] extended the con-
struction of IMEX multistep methods with general monotdtyi@and boundedness proper-
ties to hyperbolic systems with stiff source or relaxatienmts. IMEX multistep methods
also appear in the field of option pricing. In particular, famp-diffusion PIDE, Almendral
and Oostelee] proposed a second-order backward differentiation foenfBDF). Feng and
Linetsky [22] proposed an extrapolation approach in combination wigfitist-order accurate
IMEX-Euler scheme. Their experiments show that the extiefmm method improved signif-
icantly over the first-order IMEX-Euler scheme in solving flamp-diffusion PIDE. Another
family of IMEX schemes is based on Runge-Kutta methods. @seh al. B] constructed
IMEX Runge-Kutta methods for solving convection-diffusiceaction problems. De Fru-
tos [25, 26] introduced IMEX-RK methods as an alternative to other taxistime integration
methods for pricing options. We refer the interested reattef3, 8, 14, 15, 25, 36] for recent
developments on IMEX-RK methods.

The class of IMEX methods that we will be using belongs to timify of IMEX-PC
schemes. These are successfully applied to solve stiff PDBe main idea is to split the
basic multistep IMEX into predictor-corrector (PC) schesmeCash 18] used this idea to
construct a new class of multistep methods. By splittingBbé-, he obtained a new BDF
which has considerably better stability than the standddé Bvhile maintaining the same
accuracy. Voss and Caspér] used a split version of the Adams-Moulton formulae as a
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novel family of PC schemes for stiff ODEs. Voss and Khalig][considered thé@-methods
in a linearly implicit form as the predictor and derived arpimit second-order PC scheme
for reaction-diffusion problems. Recently, Li et adl(] adopted the strategy found id][
to construct a family of higher-order IMEX-PC schemes fonliveear parabolic differential
equations. Their numerical results show that these IMEXAR&hods have a significant
better stability than those found id][ More recently, Grooms and Julie@q] derived a
fourth-order IMEX-PC scheme. Their method used the foortfer total variation IMEX
scheme found in34] as a predictor and the fourth-order BDF scheme as a correlidhe
best of our knowledge, IMEX-PC methods have not been usedide financing options,
except in B7] where a second-order IMEX-PC scheme is used to price Ameigptions.

In this paper we present a spectral method based on the ieghiloagrange formula
to compute European, digital, and butterfly spread optiddsr method is coupled with a
third-order IMEX-PC for time integration. The reason foingshigher-order IMEX-PC is
that we expect our spectral method to provide exponent@lracy, which is usually affected
by lower-order temporal schemes. We then extend this apprmesolve a two-dimensional
option pricing problem described by the Heston model.

The rest of this paper is organised as follows: in Secfiowe describe the formulation
of the option pricing problem in the Black-Scholes framekvoln Section3, the spatial
approximations of the pricing equations using spectrahodt are considered. In Sectién
we review the IMEX-PC methods for solving the semi-discr&tstem resulting from the
spatial discretisation. The overall method is analysedeictiBn5. Numerical experiments
are conducted in Sectioh The extension of the proposed approach to a two-dimerisiona
case is given in Sectioi. Finally, in Section8 we present some concluding remarks and
scope for future research.

2. The mathematical model. Consider the financial market model given by the follow-
ing tuple M = (Q,}', P, (Fr) ;>0 (ST)T>0) where(2 is the set of all possible outcomes of
the experiment known as the sample spagés the set of all events, i.e., permissible com-
binations of outcome® is a mapF — [0, 1] which assigns a probability to each eveht,
is a natural filtration, and’; is a risky underlying asset price process. The tripletF, P)
is defined as a probability space. L&t be alP-Brownian motion,c > 0 the volatility of
the underlying assef; > 0 the expected rate of return,> 0 the interest rate, andl > 0
the continuous dividend yield. Without loss of generaljity,s, r, and¢é are assumed to be
constant. Then under the equivalent martingale me&3uitiee stochastic process of the asset
price S, is assumed to follow the geometric Brownian motion

ds,
S,

(2.1) = pdt + odZ,.

Now, consider a portfolio that involves short selling of amét of a European call option and
long holding of A units of the underlying asset. The portfolio vallléS.., 7) at timer is
then given by

(2.2) O=-V+A,S,,

whereV = V (S, 7) denotes the value of the option. The jump in the value of th&qm
in one time step is

dll = —dV + A.dS-.
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Note thatA, changes with timer, reflecting the dynamic nature of hedging. Sinces a
stochastic function of ., we apply Ito’s lemma to compute its differential, whichegv
8V ov n 0282 9?°V

or as, 7 2 052

(2.3) dv =

Substituting 2.1) and @.3) into (2.2) and simplifying, we obtain
oV QSE 0?V v o

The cumulative financial gain on the portfolio at timés given by

24)  GUI(S,, 7)) = / _dV + / A.dS.
0 0
AV 0282 0%V av
_ v u A — ]
/0 [ 2 asg+< u as)“*g“] du

v ov
+/0 (Au 95, )oS dZ,.
The stochastic component of the portfolio gain stems froerstibcond term ofX(4).

Suppose we adopt the dynamic hedging strategy by chooding= g—;/u at all
timesu < 7. Then the financial gain becomes deterministic at all timBg.virtue of no
arbitrage, the financial gain should be the same as the gaxim iffivesting on the risk free
asset with a dynamic position whose value equdls+ S . The deterministic gain from
this dynamic position of the riskless asset is given by

~ v oV
GT = /0 <—TV + (T — 5)SUM) du.

By equating these two deterministic gaifi$l1(S,, 7)) andG,, we have

“65‘

v 0282 09%V ov
T 853(7V+(T5) uaSu), 0<u<rm,

which is satisfied for any asset prisef V (.S, 7) satisfies the equation

v 025%2 9%V ov
— 4+ — — V= T.
o +— 352 + (r 5)505, rV=0, 0<7<
The above partial differential equation is called the Bf&aholes equatiory].
Now, by a change of variableés= T" — 7 (T is the time of expiration), we can rewrite
the above equation as

ov 1 2 , OV ov
ot~ 27 S U 5>Sas v

The boundary and the final conditions make the differencevdet American and Euro-
pean style options as well as between puts and calls andtgfiesy of options. In this article,
we consider European vanilla, binary, and spread optioh®se final and boundary con-
ditions are given in Sectiof, where we provide numerical results. We then, in Secfion
extend this approach to solve a two-dimensional optionimiproblem described by the
Heston model.

(2.5)
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3. Spectral method for the discretisation in space.ln our spectral discretisation in
space, we will be using a class of Lagrange interpolatiomédae. This interpolation is
theoretically very powerful and deplored mainly for nunsafipractice as reported in many
textbooks of numerical analysig][ With slight modifications, the Lagrange formula is in-
deed of great practical use. This has been noted by severarapincluding Henrici 30]
and Werner $8]. Berrut and Trefetheng] modified the Lagrange polynomial through the
formula of barycentric interpolation and proposed an imptbLagrange formula. In this
section, we review the improved Lagrange formula and prepospatial dicretisation of the
option pricing problems discussed in earlier sections.

3.1. Lagrange interpolation. We would like to find the polynomiapy (z) from the
vector space of all polynomials of degree at maysthat interpolates the datg at distinct
interpolation points;;, j =0,..., N, i.e.,

pn(zj) =f;, 7=0,...,N.

Recall that the Lagrange form pfy (x) is ([39)])

N N
(3.1) pn() = fiti(@), @)= [[ =,
=0 k=0kj T Tk

where the Lagrange polynomiéf corresponding to the nods has the property

Li(zy) = {1 =k,

0 otherwise.

The drawbacks of the Lagrange formufal) are
1. IttakesO(N?) additions and multiplications for each evaluatiorpaf(z).
2. A new computation from scratch has to be performed if we adtew pair of
data(zy 1, fv+1)-
3. Instability may be present in numerical computation.
It would be advantageous to modify the formuBalj in order to overcome the above short-
comings.

3.2. A modified Lagrange formula. Following [6], the Lagrange formula3(1) can be
rewritten in such a way thaiy (z) is computed inO(N) operations. We defin&(z), the
numerator o¥; in (3.1), as

1 N

Uz) = [ = 0.

T — T
J k=0

In addition, if we define the barycentric weight by
1

v TTico ke (@5 = 78) IO
i.e.,w; =1/¢(x;), then¢; in (3.1) becomes
0i(x) = ax)xfijxj.
Consequently, the Lagrange formutal) becomes
N
(3.2) p(e) = @) 30 .

=0
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3.3. Barycentric formula. The formula 8.2) can be written in a more elegant way. If
we represent the constant functiff) = 1, we obtain

N N
_ ) _ wij

(3.3) 1_24(9;)_ x)zxﬂj.

j=0 3=0
Dividing (3.2 by (3.3), we get the barycentric formula fpry

Z 0 z—ux, fJ
(3.4) pn(T) = J]Viwj
ZQ—O T—x;

This is the most used form of Lagrange interpolation in pcactWe see that the formula.d)
is special case of3(2).

A significant advantage of the spectral collocation methastll on the modified barycen-
tric Lagrange interpolation is that after the transformatithe derivatives in the underlying
differential equation do not have to be transformed cowedmgly as it is usual in other
spectral collocation methods. More details regarding trevergence and stability properties
of the modified Lagrange formula are extensively discussé@,i33, 57].

3.4. Calculation of the component matrices.Suppose that the solutianof the semi-
discrete version of the PDR ) is represented in the Lagrange form

N
(3.5) u(x) = Zujﬂj(x)
7=0

Then the first and the second derivatives.@re given by

N
(3.6) u'(z) = uily(), Zuje”
j=0

The barycentric formula of; is given by

(3.7) l(z) = ———.
Yho 72

Multiplying both sides of 8.7) by  — x; and simplifying, we get

T — T —
(3.8) E W L= w; .
T — Tk T —

k=0

Let

T — 1
r—x
k=0 ke

Then the first and the second derivatives2 8| yield the following equations

(3.9) 05(@)s(x) + £(2)s (x) = w; <£ - l)

.’17—5[7]‘
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T — T 1
(3.10) 0 (x)s(x) + 205(2)s' () + £;(x)s" (x) = w, (m — xi) :

To find the entries of the first and second differentiationrioes, we solve3.9) and 3.10
atx = x;. This gives

N
s(xi) = wi, ' (xg) = Z wi/(z; — xp), — 9 Z wi/ (x5 — 2x)>.
k=0,k7i k=0,k#i
Wheni # j we obtain
I ? i 1
Gixi) =0, C(w) = /W , () = _QM wk/w
Ty — Ty Ty — Ty i — Tk T —

Wheni = j we obtain

0 (x5) ZZ’ i), L (x)) ZZ" ;).

i#] i#]

The above can be used for the entries of the first- and seocaled-differentiation matri-
cesD(M and D) which are given by
DY) = t(w:), D =0} (x,).

3.5. Chebyshev grid transformations. Spectral methods are exponentially accurate for
smooth problems but in option pricing problems the initiahdition is typically not differen-
tiable and may be discontinuous. It is known (see, e5§) that local grid refinements may
improve the accuracy near a region of singularity and hempedve the overall accuracy of
the numerical method. Therefore, a local grid refinement tleanon-differentiable or dis-
continuous payoff condition seems to be a logical choicetain a satisfactory accuracy. In
this paper we use an analytic coordinate transformatiotrétch grids around strike prices.
Following [53], we use the transformation

Q1) 2= gle) =t g s (152 52 -t (152) 157

wherea is the point of singularity in the Chebyshev doméirl, 1], 5 is a parameter that
determines the stretching rate aroundandz;, = cos(wk/N) are the Chebyshev-Gauss-
Lobatto (CGL) collocation points.

In the case of multiple regions of singularity, it is possitd combine maps with a single
point of singularity in order to concentrate points arouhdse regions. Suppose that we

have a collection of mapis;(z), ¥ = 1,...,n, which cluster points around regions of rapid
change,, with distribution parameters;.. We define such maps by

(3.12) G(z) = H '(2),

where

Zakh Zak—l ag > 0.
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In the case of butterfly spread options, we have three siriataand therefore we will have
(3.13) H(2) = arhy*(2) +axhy '(2) +ashz '(2), a1 +az+az =1, aj,as,a3 > 0.
Maps such as3(12 are nonlinear and have to be solved numerically using genenlinear
equation solvers.

3.6. Application to the Black-Scholes PDE.The Black-Scholes PDE(5) is discret-
ized in the asset (space) direction by means of a modifiedcbatsic Lagrange colloca-
tion (BLC) approach. Let: = g(z;) be the transformed Chebyshev points. Then the first
step is to transform € [—1, 1] into S € [S,,,, Sis] that better suits the option at hand. We do
this throughe = (25 — (Sym — Sw))/(Swm + Si) whereS,,, andS)y, are the minimal and
the maximal values of the underlying asset. Now writii¢S, ¢t) = u(z,t), the PDE 2.5
together with its initial and boundary conditions yield

up = p()uge + q(x)uy + ru,
U(LL‘,O)ZUO, -1<2<1,8, <5< Sy,
u(—=1,t) = ug, u(l,t) =upn, 0<t<T,

where

p(x) = Los? (SMme) o) = -9 (525 ).

Substituting 8.5) and (.6) yields the following system of nonlinear ODEs
N N N
ur(,1) = p(x) D u ()l (@) + q(x) D un(®)f(x) + 7Y un(t)ln(w),
(3.14) k=0 j=0 k=0
up =u(—1,t), uy =u(l,t).

In order to write 8.14) in matrix form, we introduce the following matrix and vectwmtation

u=[ur,ug,... ,UN71]Ta
by _ (D W _ .
w>_@%), DY = (@), i ji=1,...,N—1,
2 2 '’ ..
‘U”:(DO), DP = ¢ (x,), ij=1,...,N 1,
P = diag(p(z;)), Q = diag(q(z;)), i=1,...,N—1,

moreover] denotes aiiN — 1) x (N — 1) identity matrix. P and@ are diagonal matrices
whose entries arg(z;) andg(z;),i = 1,2,..., N — 1, respectively. Consequenty3.(4
can be expressed as an initial value problem of the form

(3.15) L autgtw), u(0) =,

where
A=pPD®?
g(t,w) = [QDWu—rru+ (p(e) DG +a(@) D +rlo) uo

A2 Ao _ T
+ p(%)DiN JFQ(%)DZ'N +rLin)un| -



ETNA
Kent State University
http://etna.math.kent.edu

276 E. PINDZA, K. C. PATIDAR, AND E. NGOUNDA

4. Implicit-explicit predictor-corrector method for the d iscretisation in time. The
system of ODEs3.15 can be solved by means of standard ODE time integrators mtie
challenge when dealing with this type of problems is thatieigime integrators are inad-
equate because the diffusion term is typically stiff andessttates excessively small time
steps. On the other hand, the use of stiffly accurate impiiic# integrators which are uncon-
ditionally stable is practically time consuming. In orderavoid these problems, it could be
interesting to separate non-stiff and stiff terms. The stiffiterm has to be solved explicitly
whereas the stiff term has to be integrated implicitly. Stioke integrators are known as
implicit-explicit (IMEX) time integrators and have beenedkfor the time integration of spa-
tially discretised PDEs of reaction-diffusion typ&q]. In this article, we use IMEX-PC meth-
ods to integrate the system of ODEs obtained after a spasi@ladisation of the PDE2(5)
mentioned above.

Let us consider the system of ODES15

du

- = A =
dt U+g(t,u), U(to) Uo,

and letk be the time step-size angl the approximation of the solutiongt = kn. Following
the strategy of4], we may write the generatstep IMEX method when applied to the system
of ODEs @.15 as

s s s—1
(4.1) D gty =k bjAun; + kY id(tatg, tny ),
j=0 j=0 j=0

wherea, # 0. Following [40], the split form of @.1) yields the following IMEX-PC

s—1
(4.2) (as] — kboA)itnts =Y (—ajtnij + kbjAunij + kejQ(tntj, ungs)),  Predictor
j=0

s—1
asl — kbgA) s = —@iUpai + kb Atp i + kbi0(tnr i, Una
(4'3) ( s ) n+ JZ:%( J¥ntj J n+j ]g( 1+ n+])) Corrector
+ kbsg(tn+sa an-ﬁ-S)-

The above IMEX-PC uses the IMEX off] as the predictor and implicit schemes as the
corrector. Only the non-stiff term is corrected; the cotwedreats the stiff term implicitly.
This significantly reduces the computational cost compavitil general implicit methods.
As compared to the PC used i87 55|, the present strategy does not require the use of
iterative solvers such as Newton’s method.
We denote by IMEX-PCs, m) the s-step implicit-explicit predictor-corrector of order.
IMEX-PC(1,m): the IMEX-PQ1,m) is a family of 1-step, one-parametey) (IMEX-
PC schemes of orden and can be written as follows:

(I —vkA) pyr = [T+ (1 —Y)kA] up, + kQ(tn, un), Predictor

(I = vkA) gy = [T+ (1 = y)kA]up + (1 = 7)kg(tn, un)
+’7kg(tn+1v ﬂnJrl)»

Corrector

where the paramet@r< v < 1 prevents large truncation errors. The chojce 1 yields an
IMEX-PC(1,1) scheme.
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IMEX-PC(2,m): the IMEX-PQ2,m) is a family of 2-step, two-parametet @nd c)
IMEX-PC schemes of order. and can be written as follows:

[(v+3) I = (v +§) kA] i
=291+ (1 -y —c)kAJun + [(53 —7) I + §kA]u,—y  Predictor

+<'7 + 1)kg(ﬁna Un) - ’Yk?g(tn,]_, un71>7

(v +3) I = (v+§) kAt

= [271 + (1 -7 C)kA]un + [(% - '7) I+ %kA] Un—1
Corrector
+(v + %)kg(thrlv Upy1) + (L= — )kg(tn, un)

+5kQ(tn—1, Un—1).

Choosing(v, ¢) = (0, 1) we obtain an IMEX-PC(2,2) scheme.

IMEX-PC(3, m): the IMEX-PQ3, m) is a family of 3-step, three-parameter, ¢, andc)
IMEX-PC schemes of ordern. and can be written as follows:

(G 4 +0) 1= (B 4 ) ka] s

(372 + 20— 3 40) T+ (1% 3+ B0) kA uy

(=37 =7+ 1) T+ (552 + 3 - 30) kA ups

1o 5. Predictor
(27 6)I+(129 C) kA] Up—2

[
+[
(52 14 B0) kgt un) — (72 + 27 + £0) k9(tu-1,un1)

+ (72;7 + 1%9) kQ(tn—2,Un—2),

(%724_27_%4_9)] +(1—72—3c+%9)k14]un
(=302 =7+ )+ (5 o+ 3e — 36) kA wy
(

12— D)1+ (30 —c) kA] up—s Corrector

[
[
+ (152 + €) kQ(tns1, fins + (1= 52 = 3c+ 30) kg(tn, un))
— (52 + 3= 26) kolta—1, u1)

+ (20 — ¢) kQ(tn—2, Up—2).
The choice(y, 0, ¢) = (1,0, 0) yields an IMEX-PC(3,3) scheme.

5. Analysis of the method. In [4(], Li et al. gave stability and convergence results
for IMEX-PC methods for solving stiff problems. We brieflycadl some of them and as-
sociate these with our option pricing problems. Then we a@maphe stability regions of
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these IMEX-PC methods to those of the existing IMEX meth@dsThe order of accuracy
of the present IMEX-PC is given by the following theorem.

THEOREM5.1 ([40Q]). Let us suppose that thestep IMEX predictor scheme4.p) are
of orderp and that the corrector scheme$.8) have orderg. Then the resulting IMEX-PC is
of ordermin{p + 1, ¢}.

We would like to analyse the stability of the IMEX-PC schenis) and @.3) when
applied to the PDE problen2(5). It is beneficial to transform this PDE into one with constan
coefficients by considering the transformation= log(S/E), whereE is the strike price.
Therefore the problen2(5) becomes
oV oV ov

a— —cV, —oo<zx<oo, 0<t<T,

(5-1) ot 02 ox

whereb = 0% a = —(r — § — 302), ¢ = r, V denotes the value of the European op-
tions,t = T' — 7 is the time to expiry, and’ is the expiration (maturity) time.

The first step is to find a spectral representation of thislprobTo this end, we consider
the following change of variables

(5.2) V(x,t) = e“Tu(t).
The substitution off.2) into (5.1) yields the scalar test equation
(5.3) v = H(Eu(t) + G(&)u(t)

where H(§) = —b¢? andG(¢) = —iaé — c. By applying the IMEX-PC methodst(2)
and @.3) to the scalar test equatioB.B) with step size:, we obtain

s—1
(5.4) (as = KH()bs)iings = Y _[—a; + EH(E)b; + kG(&)e;]ust,
j=0
and
s—1
(55) (a’s - kH(g)bs)un-‘rs = Z[_aj + k‘lH(§>b7 + kG(g)bj]us-‘rj + kG(g)bs'an-i-s .
=0

Substituting the variables = kH (), w = kG(&), and R™ = u,, into the Equations(4)
and 6.5) and plugging in%.4) into (5.5) yields the following characteristic equation

s—1
—a; + zb; + wb; wb .
5.6 R;z,w) = R® — J J A 2 —a; + zb; +we;) | R.
(5:6) ) jz::o (as — zbs) (as — zbS)Q( ! ! i)

Note that the IMEX-PC is linearly stable when all the rootstlud characteristic polyno-
mial (5.6) have modulus less than or equal to one. In other word2Jet, w) be the roots
of the characteristic polynomial far= 1,2, ...,s. Then we define the stability regidh of
the method as

S ={(z,w) € C*: |R;(z,w)| < 1,Vi}.
The root of the characteristic polynomial of the IMEX-PQ)lmethod is given by

1 — vz + 2+ 222 — 22 + w + yw?
)= =P |
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whereas the root of the characteristic polynomial of the-Grder IMEX method §] is given
by

l4+z—vz+4+w

R(z,w) = [

For higher-order PC methods we do not provide general ekphpressions of their charac-
teristic polynomials. We rather confine our study to spetdales. The choidgy, ¢) = (1,0)
gives the following characteristic polynomial

3\ 2 4w + 4w? 1w+ 2uw?
-2 o4 T VR (-4 22T ) =
(’Z 2>R +( T3 )R <2+ 522, )%

whereas the root of the characteristic polynomial of theosdeorder IMEX method4] is

given by
3 9 1
5% R*— (24 2w)R+ §+w =0.

Similarly, the choice, 0, ¢) = (1,0, 0) for the 3-step PC gives

11 3 6w(3+3w)\
(6 z)R <3+ ki )R

3 6w(—3—6w) 1 2w(l+3w))
_(_2+ 22 — 122 )R_<3+ T A

whereas the root of the characteristic polynomial of thedtiorder IMEX method4] is given

by
(161—z)RB—(S—&—?’w)RQ—&-(g—&-w)R—(;—i—w) =0.

Figure 5.1 shows the stability region of the IMEX schemé.l) and the IMEX-PC
schemes4.2) and @.3) in the (z,w)-plane. Figures.1 (top) represents the region of sta-
bility of the IMEX(1,2) and IMEX-PC(1,2) schemes with= 3. Figure5.1 (left bottom)
shows the stability region of the IMEX(2,2) and IMEX-PC(RrRethods with~, ¢) = (1, 0),
and Figures.1(right bottom) shows the stability region of the IMEX(3,3)dcaAlMEX-PC(3,3)
methods with(, ¢, 8) = (1,0, 0). Clearly, we observe that in all cases the stability region o
the IMEX schemed] is included in the stability region of the proposed IMEX-BEheme.
This show that the proposed IMEX-PC methods have largeilisyategions and therefore
are more stable than the IMEX methods suggested]in [

6. Numerical experiments. In this section, we present some numerical results that we
obtained using the proposed approach. We consider Euramghrput, digital call, and
butterfly spread options. Further extensions will be disedsn Sectior.

6.1. European call options. A European call option gives the holder the right to ex-
ercise the option at maturity tinfE. To buy the underlying asset at maturity tirhemakes
sense if the asset price is higher than the exercise pfice E) because one can buy the
asset forE’ and sell it immediately on the market f6t If this is not the case, then the option
is worthless. The value of a European call option can be ohitted by solving equatior2(5)
subject to the initial condition

(6.1) V(S,0) = max(S — F,0),
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¥ IMEX-PC(1,2)|
IMEX(1,2) i

* Il‘\IIEXfF'C(3,3)
*  IMEX(33)

*  IMEX-PC(2,2)||

IMEX(2,2)

-4

IMEX(1,2) and IMEX-

FIG. 5.1. Absolute stability regions of the IMEX () and IMEX-PC §.2—-(4.3):
(1,0) (bottom left), and IMEX(3,3) and

PC(1,2) withy

1
2
IMEX-PC(3,3) with(v, ¢,6) = (1,0, 0) (bottom right).

(top), IMEX(2,2) and IMEX-PC(2,2) wittry, c)

whereF is the strike price of the optioli. The boundary conditions are
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Scholes equati@rb) for European call options is

The analytic solution of the Black

known [7, 59] and expressed as

(6.3)

)

da

(

V(S,t) = Se%'N(d,) — Ee "N

where

dy *U\/%,

o ) "
’ d2 =
andN (+) is the cumulative probability distribution function for @adardised normal variable

oVt

ln(%)+(r—5+

dy =

(6.4)

(6.5)

0.5, 1, and2 years as maturity times witb,;, = 0

Numerical results are obtained with

and Sy ax

200 with strike priceE = 45. The number of space mesh pointsNs= 80,

and the other parameters are as indicated in the Téhle§.5. The accuracy of the present

method was measured by means of the maximum error

=maX=1,. nlu; — Vi

Lo
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TABLE 6.1
Comparison of European call option valuation using baryderLagrange collocation (BLC) with Chebyshev-
Gauss-Lobatto (CGL) points and the finite difference me{R@) with uniform grid points.

T=0.5 T=1 T=2
Lo Lo Lo Lo Lo Lo
Parametersr = 0.05, ¢ =0.2, § =0.00
FD 1.9265(-3) 7.5269(-3) 1.7084(-3) 6.2297(-3) 1.591B(-3%.4520(-3)
BLC 1.8753(-3) 9.3260(-3) 1.5087(-3) 6.3006(-3) 1.1892(- 4.1491(-3)
Parametersr = 0.07, o = 0.04, § = 0.03
FD 7.2924(-3) 6.1838(-2) 1.1283(-2) 7.2901(-2) 1.350B(-28B.5026(-2)
BLC  8.2255(-3) 6.1964(-2) 4.8242(-3) 4.4339(-2) 3.058)(- 2.2628(-2)
Parametersr = 0.1, 0 =0.3, 6 =0.05
FD 1.4858(-3) 4.5463(-3) 1.2127(-3) 3.2754(-3) 9.776B(-£2.3725(-3)
BLC  1.4758(-3) 5.8705(-3) 1.1751(-3) 3.9176(-3) 9.308P(- 2.4952(-3)

Schemes

TABLE 6.2
Comparison of European call option valuation using barytderLagrange collocation (BLC) with transformed
Chebyshev-Gauss-Lobatto (CGL) points and the finite diffez method (FD) with non-uniform grid points.

T =0.5 T=1 T=2
Lo Lo Lo Lo Lo Lo
Parametersr = 0.05, ¢ = 0.2, § = 0.00
FD 6.8107(-4) 1.4774(-3) 1.2556(-3) 2.6516(-3) 2.311P(-34.5751(-3)
BLC 3.0696(-9) 8.8089(-9) 4.6061(-9) 1.3591(-8) 1.00BB(- 3.6679(-8)
Parametersr = 0.07, o =0.04, 6 =0.03
FD 1.9240(-3) 8.2068(-3) 2.3690(-3) 7.6678(-3) 3.382R(-37.1610(-3)
BLC 4.0924(-8) 1.7177(-7) 6.9650(-8) 3.2579(-7) 1.57Z%(- 6.5362(-7))
Parametersr = 0.1, ¢ =0.3, § =0.05
FD 4.2991(-4) 8.1881(-4) 7.2360(-4) 1.3072(-3) 1.113B(-31.8128(-3)
BLC 2.8688(-9) 1.1267(-8) 6.1628(-9) 2.5323(-8) 8.179H(- 3.8962(-8)

Schemes

and the root mean square error

1 N
Ly = N;(Ui—‘@)27

where NV is the number of points used in the discretisation in oneiqdar direction,V;
is the exact solution of the Black-Scholes equation giverf®§), andu; is the numerical
approximation to the exact solution of the Black-Scholasatign. For comparison purposes,
we present the absolute, maximum, and root mean squares.erkwever, we also add
the relative errors to get a better idea of the performancauofmethod. We evaluate the
value of a European option by finite differences (FD) usingarm grids, and barycentric
Lagrange collocation (BLC) using the Chebyshev-Gaussattol{CGL) points for various
option parameters. The results are displayed in Talile

Although in theory and for a range of practical problems, ltigher accuracy of gen-
eral spectral methods over finite difference meth&l238, 24] has been shown and demon-
strated, one can observe from Tabléthat the BLC has a moderately smaller error than that
of the FD. Numerically, higher-order methods, in particidpectral methods, have difficul-
ties in accurately approximating the solution in the regidsingularity, i.e., the region of
dramatic change. In fact, spectral collocation methodsadegjuate for problems involving
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TABLE 6.3
Comparison of European put option valuation using barydehiagrange collocation (BLC) with transformed
Chebyshev-Gauss-Lobatto (CGL) points and the finite difflee method (FD) with uniform grid points.

T =05 T=1 T=2
Lo Loo Lo Loo Lo Lo
Parametersr = 0.05, 0 =0.2, § =0.00
FD 1.8853(-4) 3.9139(-4) 3.6984(-4) 9.5309(-4) 7.851y(-42.1599(-3)
BLC 3.4402(-9) 9.4734(-9) 2.8691(-9) 1.0938(-8) 6.74Q)(- 3.6676(-8)
Parametersr = 0.07, o = 0.04, § = 0.03
FD 1.7707(-3) 7.7987(-3) 1.8909(-3) 7.4343(-3) 2.073p(-37.4714(-3)
BLC  4.0791(-8) 1.7180(-7) 6.9573(-8) 3.2570(-7) 1.572p(- 6.5359(-7)
Parametersr = 0.1, 0 =0.3, § = 0.05
FD 2.8525(-4) 5.9174(-4)) 5.0501(-4) 1.3007(-3) 8.114)(- 2.2758(-3)
BLC  2.6238(-9) 8.3153(-9) 6.0125(-9) 1.1213(-8) 6.179H(- 1.4678(-8)

Schemes

TABLE 6.4
Comparison of European digital call option valuation usibgrycentric Lagrange collocation (BLC) with
transformed Chebyshev-Gauss-Lobatto (CGL) points anfirttie difference method (FD) with uniform grid points.

T=0.5 T=1 T=2
L2 Loo L2 Loo L2 Loo
Parametersr = 0.05, ¢ = 0.2, 6 = 0.00
FD 6.6648(-3) 2.9135(-2) 5.4136(-3) 1.9930(-2) 4.278p(-3L.3269(-2)
BLC 9.6328(-6) 1.3466(-5) 8.0988(-6) 1.1035(-5) 4.98BB(- 6.6544(-6)
Parametersr = 0.07, o =0.04, 6 = 0.03
FD 2.5120(-2) 2.4646(-1) 1.9574(-2) 1.5775(-1) 1.446)(-2L.1473(-1)
BLC 3.2479(-5) 6.2697(-5) 1.9218(-5) 4.2730(-5) 9.6869(- 2.7942(-5)
Parametersr = 0.1, ¢ =0.3, § =0.05
FD 5.2655(-3) 1.8233(-2) 4.2214(-3) 1.2180(-2) 3.236B(-37.7694(-3)
BLC 6.0569(-6) 8.1388(-6) 1.9365(-6) 2.5231(-6) 3.2008Y(- 1.6415(-5)

Schemes

smooth initial conditions. In the present case, the firsivdéve of the initial condition is dis-
continuous at the strike pridé. As a result, the BLC method cannot be significantly superior
to FD as far as the accuracy is concerned.

In order to improve the accuracy of the BLC method, we useluésa grids in the
region of dramatic change. We utilise the transformati®i ) to increase the number of
points in the region around the strike priSe= E. Therefore, from Tablé.2, we observe
a significant improvement of the BLC method when concemtgatinore grid points near the
strike price, while with the FD method the improvement is m@de. This is because high
resolution grids in the region of singularity Atallow the BLC to capture the rapid change
in the option price, while in the region of low change, the Biréthod gives very accurate
results with a small number of grid points.

In Figure6.1, we illustrate the trade-off between computational time @re accuracy as
the time step is refined for the IMEX-PC(1,1) and IMEX(1,1)thwals with the choice = 1,
for the IMEX-PC(2,2) and IMEX(2,2) methods with the choigg ¢) = (1,0), and for the
IMEX-PC(3,3) and IMEX(3,3) methods with the choi¢e, 0, ¢) = (1,0,0) at timeT = 0.5.
The following parameters are usefiin = 0, Smax = 200, 7 = 0.2, 0 = 0.3, 6 = 0.0,
E =45, N = 100, and$ = 0.5 x 10~%. In all cases for two methods of the same order,
the IMEX-PC schemes show better results as compared to tBXI8¢hemes. One observes
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TABLE 6.5
Comparison of European butterfly spread option valuatiangibarycentric Lagrange collocation (BLC) with
transformed Chebyshev-Gauss-Lobatto (CGL) points andinite difference method (FD) with non-uniform grid
points.

T =0.5 T=1 T=2
LQ Loo L2 Loo L2 Loo
Parametersr = 0.05, ¢ =0.2, 6 = 0.00
FD 1.0574(-2) 4.3091(-2) 8.6844(-3) 3.1513(-2)) 6.409y(- 1.9811(-2)
BLC 2.3652(-6) 5.2302(-6) 2.0773(-6) 3.8961(-6) 2.57%2(- 1.3077(-4)
Parametersr = 0.07, o = 0.04, 6 =0.03
FD 3.2409(-2) 2.8985(-1) 3.1689(-2) 2.1213(-1) 3.350R(-21.7927(-1)
BLC 1.0341(-6) 3.4514(-6) 7.1643(-6) 3.9076(-6) 6.236%(- 2.4926(-4)
Parametersr = 0.1, ¢ = 0.3, § = 0.05
FD 8.0303(-3) 2.8515(-2) 6.0627(-3) 1.7545(-2) 2.579P(-2.2620(-2)
BLC 4.6265(-6) 2.4136(-5) 1.1158(-6) 5.6118(-6) 2.126%(- 9.2620(-5)

o k\r
.

Schemes
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Fic. 6.1. Performance of different IMEX-PC against IMEX methods fdcipg European call options
with N = 100, = 0.1,0 = 0.2,6 = 0.0, E = 45, andB = 0.5 x 1075 at T = 0.5.

that IMEX-PC(3,3) has the best convergence compared to atbéhods. Therefore in the
remainder of this paper, we use IMEX-PC(3,3) as time inti@gganethod.

Figure 6.2 illustrates the convergence of the mapped BLC method fderdifit values
of 5. It can be observed that the mapped BLC converges much lestiethe FD method.
Different values of the parametgrleads to different accuracy. The choige= 0.5 x 10~*
shows the worst accuracy but is still very satisfactory carag to the FD method. The
smaller the value of3, the better is the accuracy because then more points arereds
near the strike pricds. However, we find tha = 0.5 x 10~ gives better accuracy
than3 = 0.5 x 10~°. The main reason is that there are not enough points left fwaythe
region of regularity and thereforg= 0.5 x 10~* seems to be the optimal choice for valuing
European call and put options. In the experiments belowherefore chosg = 0.5 x 1074,

In addition, we investigate the tradeoff between compaitei time and the accuracy as the
asset grid space is refined. Clearly the BLC method is fasséerthe FD method and achieves
spectral convergence as expected.

Figure6.3 represents the numerical solution for a European call npgigether with its
Delta (A), Gamma I), and the numerical error. All these results are very sattsfy and
free of oscillations.
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FiG. 6.2. Convergence of the mapped BLC method for European callmptiothk = 5.10~4, Spin = 0,
Smax = 200,7=0.1,06 = 0.2, = 0.0, E =45,T = 0.5.

6.2. European put options. Given the value of a call option, it is possible to compute
the value of the corresponding put option via the put-catitg [38]. However, puts and calls
do not always share the same properties. Therefore, we edwage European put options
by our approach.

The value of a European put can be computed numerically hyingpthe PDE 2.5
subject to the initial condition

V(S,0) = max(E — S,0),
and the boundary conditions

V(0,t) = Be™ ",

V(S,t)=0 as S — .

The benchmark used to validate our numerical scheme is #lgtemsolution of the Black-
Scholes equatior2(5) given by

Ee "'N(—dy) — Se °'N(d,),

whered;, ds are defined inq.4) and N is the cumulative normal distribution defined ).
We use the same set of parameters as in the valuation of Earr@adl options. The re-

sults are presented in Talie3. It can be seen that the conclusions are similar to thosééor t

European call options. Therefore, our approach is comgiskéence, the approach using the
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FIG. 6.3. Valuation of the European call options (top left), its eroop right), A (bottom left), and” using
the barycentric Lagrange collocation (BLC) method with= 80, k = 0.001, S;, = 0, Spy = 200, r = 0.1,
0=0.2,6=0.0,E=45T=0.5.
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FiG. 6.4. Valuation of the European digital call options (top left error (top right),A (bottom left), and”
using the barycentric Lagrange collocation (BLC) methothwV = 80, £ = 0.001, S, = 0, Sps = 200,
r=0.1,0 =0.2,6§ =0.0, E =45,T = 0.5.
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grid refinement at the strike price is found to perform sigaifitly better than the FD method
in terms of accuracy for valuating European option pricingigems.

Now, we investigate the utility of our approach to price twpds of exotic options,
namely European digital call options and butterfly spreaebop.

6.3. European digital call options. Another type of option that we are dealing within
this paper is the digital call option. This option belongdhe class of exotic options. Such
contracts are traded between a financial institution (e.pank) and a customer and not at
exchanges. A digital call option, also known as cash-ohingtcall or binary option, is an
option with payoff zero before the strike price and one (or faxed amount) after the strike
price. As an example of these options, we solve the Blaclol@siPDE model4.5) with the
payoff function given by

1 for S>F,

V(5,0) = {0 for S < E,

with the following boundary conditions

V(0,t) =0,
V(S,t)=e" as S — cc.

The analytic solution for the digital option is
V(S,t) = e "' N(dy),

whereds is in defined in 6.4). The discontinuous initial conditions for digital opt®iare
susceptible to cause numerical oscillations of the Gredlenvtime integrators such as the
Crank-Nicolson method are used. However, our approachupesda non-oscillatory be-
haviour of the Greeks. Figu®4 represents the numerical solution for the digital call opti
together with its Delta4), GammaT’), and the numerical error. All these results are very
satisfactory and free of oscillations. We also investiglagemaximum error and the root mean
square error for different maturity times and differentgraeters as chosen in the previous
experiments. The results are presented in Téble Our approach (BLC) using the grid re-
finement at strike price is found to perform significantlytbethan the FD method in terms
of accuracy for valuating European digital call option précproblems, although the results
are less accurate than in the case of European calls andTgsnain reason resides in the
smoothness of the initial conditions. While the Europeaharad put has a discontinuity in
the first derivative of the payoff, the digital options havscontinuities in the payoff itself,
i.e., the digital options, which are less smooth than thegean vanilla options, produce less
accurate results compared to those of the European vapiilans for the same grid stretch-
ing parameter. This is consistent with the convergence eftsal methods, which relies on
the smoothness of the initial conditions.

6.4. Butterfly spread options. The butterfly spread is a combination of four options.
Two long position calls with exercise pricE; and F5 and two short position calls with
exercise pricél, = (E; + E3)/2. The value of a European butterfly spread call option can
be determined by solving Equatiop.p) subject to the initial condition

V(S,0) = max(S — Fy) — 2max(S — F3) + max(S — FEj3),
and the boundary conditions

V(S,t)=0 asS —0, V(S,t)=0 as S — cc.
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FiG. 6.5. Valuation of butterfly spread options by the barycentric lzexge collocation (BLC) method with
N =80,k =0.001, Sy =0,Sy =200, =0.1,0 =0.2,§ = 0.0, By =45, E3 =80,7 = 0.5.

In this particular case, we need to stretch the grid pointisrae different strike prices in
order to improve the accuracy of the BLC method. The suitaide is chosen from3(13
with a; = as = az = 1/3, and the grid stretching parameters gre= = 33 = 0.5x 1073,

Figure 6.5 displays the numerical values of the butterfly spread optogether with
its A, I', and its error withV = 80, Simin = 0, Smax = 200, 7 = 0.1, 0 = 0.2, § = 0.0,

Ey =45, B3 = 80 atT = 0.5. To ensure that the error is dominated by the spatial dis-
cretisation, we choose the time step= 0.001. All the results are satisfactory and free of
oscillations. To further investigate the accuracy of th@pe BLC method for pricing butter-
fly spread options, we compare the results with those olddigeising the FD method. The
results are presented in Taltlé. We observe that the results obtained with the mapped BLC
method are more accurate than those of the FD method. Vewyaecresults are obtained
for different values of option parameters for different iexpimes.

7. Extension of the proposed approach to solve the Heston meld The stochastic
volatility model of Heston31] is one of the most popular equity option pricing models.sThi
model is an extension of the Black-Scholes PDE to two-dirioeas form. Before we explain
the extension of the proposed approach, we describe thiglmod

Let V (S, v,t) denotes the value of the option if at tirfie— ¢ the underlying asset price
equalsS and its variance equals Heston’s stochastic volatility mode3]] implies thatV’
satisfies the two-dimensional parabolic PDE

1 1
V, = 5521/‘/55 + 502VVW + poSvVs, +1SVs + k(n —v)V, —rV,

foro0 <t <T,S > 0,v > 0. The parameter > 0 is the volatility mean-reversion
rate,n > 0 is the long-term meany is the volatility of the variancep € [—1,1] is the
correlation between the underlying asset and the variamh; is the interest rate.
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The initial condition for a call option is
(71) V(S7V7O):maX(S_E7O)7 OSSSSA{,OSVSV]W,

where[L is the strike price of the option. Boundary conditions aregiby

V(0,v,t) =0, 0<t<T, 0<v <y,
(SM,Vt):SM—Ee_Tt7 0<t<T, 0<v<uwyy,
V., (S,0,t) =0, 0<t<T, 0<85<8y,
V,(S,var,t) =0, 0<t<T, 0<8<Sy.

LetV(S,v,T) = Y(S,t) + C(S,v,t), whereY satisfies the Black-Scholes equatiéh5
for a call option 6.1)—(6.2). Then the Heston model can be written in termg&’adis

1 1
Cy = 5521/055 + §U2VO,,V + poSvCs, +1rSCs + k(n —v)Cy, —rC + F,

where

1
F(S,v,t) = poSvYs, + 5021/YW + r(n—1v)Y,.

The change of variables
S = Eel? v =nel2 and c¢(z,w,t) = C(S,v,t) on (z,w) =[-1,1] x [-1,1]

yields the Heston PDE of the form

I
ct = ~vL%Con +

1 1
5 7021/_1L2720ww + po*Lfnglcw + (r — 21/) Lflcx

(7.2) 2

1
’ ch’z B “”) " } Ly'e, —re+ BTUF(Eeh net, 1),
The initial condition is
(7.3) c(z,w,0) = 0.

Boundary conditions are given by

o(-Lw,t)=0, 0<t<T, —1<w<]1,
7. c(Lwt)=0, 0<t<T, —-1<w<l,
ez, —1,t)=0, 0<t<T, -1<z<]1,
c(z,1,t) =0, 0<t<T, —1<z<1.

In order to discretise the two-dimensional problen?—(7.4), we introduce the two-dimen-
sional version of the approximatioB.4), viz.,

RS Dribi 0 T=r 3 to—ory U@k, wi)
w45 w
e Tt ed=an

wherew;, forj =0, ..., N, andwy, fork = 0,..., V., are the barycentric weights defined
by wo = 1/2, wy = (=1)"= /2, andw; = (-1)7,j =1,...,N, — 1.

u(z,w) = ,
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FiG. 7.1.Values of European call options in the Heston model usingtt@ method withV = 30, £ = 100,
T =05#k=2mn=001p=057r=0.1,L =In(2),In(8),Bs =0.5x 1073 andB, = 10~2 (grid
stretching parameters if-, v- directions, respectively) &' = 0.5.

In this article, our extension of the BLC to two dimensionpe&eds on the utilisation of
the Kronecker product for matrices denoted I3y’ We explain the notation as per below.

Let A be anm x n matrix andB ap x ¢ matrix. The Kronecker or tensor productAf
andB is the matrix

aB  appB -+ a1,B

a21B  axpB -+ a,B
A®RB=

amlB amZB T amnB

The interested reader can find a review of the propertieseoKtbhnecker product ing4].

We utilise the Kronecker product notation because it prewifbr a clear separation of
operators in multiple dimensions. For instance, we comsfaediscretisation of the first- and
second-order derivative operators in two dimensions /sl

(
(
(7.5) col@,w) — (LE ® DV
(
(

where I, and I, are the identity matrices im andw directions, respectively, anp{?

and Df}’” are the first- and second-order differentiation matrices andw directions, re-
spectively. Denoting = x ® 15 , Q2 = 15, ® wT, C = ¢(X,Q,t), V = diag(ne’>?)
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FIG. 7.2. Performance of the BLC against the FD method for pricing pen call options in the Heston
model withE = 100, T = 0.5,k = 2,7 = 0.01, p = 0.5, 7 = 0.1, L1 = In(2), andIn(8).

and substituting4.5) into (7.2) yields
~_lyr2 (p@ 1 oy-1p-2 @
€= 3VL; (P® e L) c+ S0V (oD@ c
1
+poLy Ly! (D;U ® Dg})) C+ (r - 2V> Lt (D;” ® Iw) C

+ {(102 - my) + n} Lyt (Iz ® D§}>) C

(7.6)
2
— 7 (I, ® 1,) C + E7'F(EeX nel2 1),

Equation {.6) can be written in the form of a global matrix as
(7.7) C = AC +¢(C, 1),
where

A= %VL;2 (D;2> ® Iw) C+ %an_lLQ_Q (Iw ® D53>) C,
is the stiff part of the PDE7.2) and

1
g(C,t) = poLy'Ly" (Di” ® Dfﬁ) C+ (r — 2V) Lyt (D;“ ® Iw) C

1
+ {(202 - m]) + K:l Ly! (Ia; ® DU(})) C—r(l,®I,)C
+ E7'F (B X net 1),

is the non-stiff part. We next apply the IMEX-PC(3,3) defire&ection4 to solve the system
of ODEs (7.7).

We compare the performance of the BLC method against thaedfD method to com-
pute the European call option prices under the Heston mddha.parameter values used in
the simulation aréZ = 100, T = 0.5, kK = 2,7 = 0.01, p = 0.5, r = 0.1, L; = In(2),
andIn(8). Figure7.1represents the value of the option plotted at the final filme 0.5 using
the BLC method coupled with IMEX-PC(3,3) with time step= 0.001. Here a non-uniform
grid is applied in both directions and v such that many points lie in the neighborhood
of S = K andv = 0, respectively. This is motivated by the fact that the ihidandi-
tion (7.1) possesses a discontinuity in its first derivativeSat E and that forv ~ 0, the
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Heston PDE is advection-dominated. The results obtainesl dre in good agreement with
the analytical solution proposed i&]]. In Figure7.2 (left), we plot the relative error against
the number of spatial grids in the asset direction. In FiguB(right), the relative error is
plotted against the computational time. For this probldra,BLC method is faster than the
FD method and achieves a spectral convergence as expected.

8. Concluding remarks and scope for future research.In this paper, we have consid-
ered a spectral approach based on a barycentric Lagrangetiiation in space and com-
bined it with a third-order IMEX-PC time marching method faricing European vanilla,
digital, and butterfly spread options. The method was firsigihed for one-dimensional
problems and then extended to two-dimensional problemse prbposed method is also
analysed for stability. Extensive comparisons are cawigdand presented in form of tables
and figures. It can be seen from these comparative resultwéechieve high-order accuracy
using coordinate transformations that stretch the poitgral the strike price. These results
show that our method is very accurate and reliable in pritiegclass of options indicated in
this paper. Currently, we are exploring the utility of thigpaoach to solve other classes of
option pricing problems.
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