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FAST ITERATIVE SOLVERS FOR CONVECTION-DIFFUSION
CONTROL PROBLEMS *

JOHN W. PEARSON AND ANDREW J. WATHEN

Abstract. In this manuscript, we describe effective solvers for thenoalt control of stabilized convection-
diffusion control problems. We employ the Local Projectionlfifization, which results in the same matrix system
whether the discretize-then-optimize or optimize-thermdize approach for this problem is used. We then derive
two effective preconditioners for this problem, the first ® dsed with MNRES and the second to be used with
the Bramble-Pasciak Conjugate Gradient method. The key coamg®nf both preconditioners are an accurate mass
matrix approximation, a good approximation of the Schur compienasad an appropriate multigrid process to enact
this latter approximation. We present numerical resultsitistifate that these preconditioners result in convergence
in a small number of iterations, which is robust with respet¢h&step-sizé and the regularization parametéfor
arange of problems.

Key words. PDE-constrained optimization, convection-diffusion cohtpreconditioning, Local Projection
Stabilization, Schur complement.
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1. Introduction. Convection-diffusion problems describe important phgkprocesses
such as contaminant transport. The numerical solution af guoblems, in particular in the
case of dominating convection, has attracted much atterdiod it is now widely appreci-
ated what role stabilization techniques have to play. Ia thanuscript we consider not the
solution of single convection-diffusion problems (we veidlll this the solution of the forward
problem) but the control of such problems. That is to say, @resier solution methods for
control problems involving the convection-diffusion etjaa together with suitable boundary
conditions. In particular we will describe two preconditéal iterative solution methods for
the fast solution of such control problems.

Control problems, or PDE-constrained optimization proise for various partial dif-
ferential equations have been the subject of much reseseeh {for example, the excellent
book by Tiltzsch R4]), and there has been significant recent interest in preétoniohg and
iterative solvers for such problems; see, for examlé, 21]. In all such problems there
arises the issue of whether to firstly perform discretizatiefore optimization of the result-
ing discrete problem or to construct continuous optimalagditions and then discretize. For
many PDE problems, in particular those which are self-adljdhe two possible approaches
of discretize-then-optimize and optimize-then-disaetjenerally give rise to the same dis-
crete equations—that is to say the two steps commute.

For the convection-diffusion control problem, Heinkerlssk and co-workersg[ 10]
have considered the quite popular SUPG stabilized finitmef method of Hughes and
Brooks [L1] and have shown the significant extra difficulty in the casthefcontrol problem
as opposed to the forward problem. A key issue is consisteoigyst of the forward problem
but also of the adjoint problem. The SUPG method does natfgatiich adjoint-consistency
in general, though for the forward problem it yields an ordeaccuracy ofO(h*/?) when
using bilinear finite elements for instance; s&e Theorem 3.6]. For the control problem
this leads to the issue that the discretize-then-optinjpeaach gives rise to symmetric dis-
crete equations in which the discrete adjoint problem isanmbnsistent discretization of the
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continuous adjoint problem, and the optimize-then-disoeeapproach gives rise to different
and non-symmetric discrete equations which do not thezdfave the structure of a discrete
optimization problem.

Here we employ the adjoint-consistent Local Projectiomitation approach described
in [1, 2, 4], which ensures that the discretize and optimize steps agmnfror this approach
we are able to establish preconditioned iterative solvarshie control problem which have
the attractive feature of giving convergence in a numbetegsindependent of the param-
eters of the problem (including the mesh-size). With an aeppate multigrid process for
the convection-diffusion problem which we describe, tleiads to solvers of optimal com-
putational complexity for PDE-constrained optimizatiaofgems involving the convection-
diffusion problem.

2. Background. In this section, we summarize the theory that we will use wdwning
the convection-diffusion control problem. Firstly, we ldetail a method for solving the
forward problem, that is the convection-diffusion equatigith no optimization. We will
exploit aspects of this method when we wish to solve the obpitoblem. Secondly, we
will detail some properties of ideal preconditioners faddia point systems. The convection-
diffusion control problem has a saddle point structure, asmil show in Sectior3, so we
will need to use the theory of saddle point systems in ordetei@lop preconditioners for
this problem as in Sectiofh

2.1. Solution of the convection-diffusion equation.We first consider the finite element
solution of the convection-diffusion equation with Dirlehboundary conditions

—eViy+w-Vy=g inQ,

2.1) y=f onos,

where the domaif2 C R?, d = 2 or 3, has boundary(?, ¢ > 0 represents viscosity, and
is a divergence-free wind vector (i.¥.- w = 0).

The term—eV2y in the above equation denotes the diffusive element, antethew - Vy
represents convection. As pointed out, for exampleBinChapter 3], convection typically
plays a more significant physical role than diffusion.es& ||w|| for many practical prob-
lems. However this in turn makes the problem more difficubatve B, 17] as the solution
procedure will need to be robust with respect to the diraaicthe windw and any boundary
or internal layers that form.

The finite element representation of the equatidi)(is given by

(2.2) Ky =f,

wherey = {Y;},=1__,, with ¥; denoting the coefficients of the finite element solu-
tion vy, = Z?j{‘f’ Y;¢; with interior finite element basis functions;, ..., ¢, and boundary
basis functions,, 1, ..., ¢n+n,. The matrixk, as stated inZ.2), is defined by

K=¢K+N+T,
K= {hghgmrm kg = [ Voi-96;d0,
N = (o} isrms Ty = /Q(w-wsj)qsi 4.
Here, T is a matrix corresponding to the stabilization strategydusehich depends on the

step-sizeh, a stabilization parametér and an orthogonal projection operatgy). The vec-
tor £ corresponds to the functionsandg (and sometimes the stabilization as well). Note
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that K is astiffness matrixa commonly occurring matrix in finite element problems. We
discuss the definitions @f andf for two different stabilization methods in Sectiril (and
note thatl" = 0 if no stabilization is used).

For the remainder of this section we briefly detail a methogtdbed in B] for solving
the problem 2.2) as we will use aspects of this method in our solvers for thevection-
diffusion control problem in Sectioh

The method discussed i8][for solving (2.1) is a GMRES method preconditioned with
a geometric multigrid process described by Ramagé h [The multigrid process contains
standard prolongation and restriction operators, butthee two major differences between
it and a more typical multigrid routine:

e Construction of the coarse grid operatdn most geometric multigrid algorithms,
the construction of a coarse grid operator is carried outgugie scaled Galerkin
coarse grid operator (that fScoarse= RKfine?, WhereP is the projection operator
and R the restriction operator). However, in the method of Ram#gecoarse grid
operator isexplicitly constructedn all grids on which it is required. This involves
constructing the matrice&’, N, andT" on each sub-grid and incorporates different
stabilization parametersfor each grid.

e Pre- and post-smoothing.he smoothing strategy we employtikbck Gauss-Seidel
smoothingapplied in each direction to take account of all possibledadirections,
that is to say we employ (2 pre- and post-) smoothing steps for a two dimensional
problem ands smoothing steps for a three dimensional problem. Thisesiyais
shown to be effective for a wide range of problems with ounfolation as illustrated
in [8, Chapter 4] and17].

2.2. Saddle point systemsThe convection-diffusion control problem that we introduc
in Section3 is of saddle poinstructure, that is, it is of the form

(2.3) {é ig(TJ] [zj - [Ej ’
1

whered € R™*™ B e RY*™ andC € R?*4, with m > ¢. For an overview of properties
and solution methods for such systems, we refer the read@}. to
In [14], it is demonstrated that two effective preconditionensoare given by

A0 A 0
7)1_|:0 S:|7 7)2_|:B S:|7
where S is the (negativeschur complemerdefined byS = C + BA~'BT. The reason
these preconditioners are so potent is that the specfPa b andP, * A are given by

1

MNP TA) = {2(1 —VB),1, %(1 + \/5)} . AMPyTA) = {13,

in the case wher€ = 0, so long a§>f1A andP{lA are nonsingular3, 14]. In the general
caseC' # 0, the result on\(P; ' A) also holds 12]. We note thatC = 0 in the set-up of the
convection-diffusion control problem that we focus on iistarticle.

Now P; ' A constructed in this way is diagonalizable Bt A is not, so if we apply a
Krylov subspace method witd preconditioned byP; or P», we will achieve termination i
and? iterations, respectivelylf]. Of course the preconditionef® andP, are not practical
preconditioners as the exact inversesiaind.S will need to be enforced in each case (which
is particularly problematic as even whdnand B are sparse$§ is generally dense).
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However, if we were able to construct effective approximmagitoA andsS, AandS say,
and employ the preconditioners

~ A 0 ~ A 0
P: /\7 pu— /\’
"“lo S QB—S]

it is likely that we would obtain convergence of the appraf®iKrylov subspace method
in few iterations. In Sectiod, we derive two preconditioners based Bpn and P, for the
convection-diffusion control problem.

Clearly, these preconditioners will have to be incorpatateo different Krylov sub-
space methods. The block diagonal preconditidheis symmetric positive definite, and so
a natural choice is the MREs algorithm [L5, 19]. By contrast, the block triangular precon-
ditioner P, is neither symmetric nor positive definite, and so the sameréhm cannot be
used. However as described B PO, 23] for example,P; ' A is symmetric positive definite
in the inner product:, )3 defined by(u, v),, = u’ Hv, where

A—A 0

H:
0 S

7

with A, S chosen to ensure that is positive definite. Hence it is possible to use a non-
standard Conjugate Gradient method with #énner product; this is often referred to as the
Bramble-Pasciak Conjugate Gradiemtethod.

3. The convection-diffusion control problem. For the remainder of this paper, we will
be considering the distributed convection-diffusion colproblem

1 12 B 2
min 51y = Gz, + 5 lulz,o

3.1 i
(3.1) st. —eV2y+w-Vy=u inQ,

y=f ondQ,

wherey denotes thestate variablewith 7 some desired state,denotes theontrol variable
andg > 0 is a regularization parameter (sometimes known agitkieonov parametgr
We employ a finite element method to solve the problem, thatisvrite

n+ng n+ngy n+ng

yn=>_ Yiti, un= Y Udi, pn= Y P,
i=1 i=1

i=1

wherep denotes the Lagrange multiplier we use. Note that we diger¢he statey, the
controlu, and the Lagrange multiplier using the same basis functions here. Note also that
the coefficients, 41, ..., Y,,+n, are trivially obtained by considering the specified Dirghl
boundary conditiory = f.

For the rest of this section, we defigeu, andp as follows:

y = {Yi}izl,...,m u= {Ui}izl,...,na p= {H‘}i:l,...,w

3.1. Stabilization of the control problem. One important consideration when solving
the convection-diffusion control problem (or indeed theverction-diffusion equation itself)
is that of stabilizing the problem. It is well known that, tatut any form of stabilization,
accurate solution of the convection-diffusion equatiBni7] and the convection-diffusion
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control problem 2, 10] is compromised due to the formation of layers in the apprate
solution, potentially leading to large errors for small

One popular method for avoiding this problem is by usingStreamline Upwind Petrov-
Galerkin (SUPG) stabilization, which was introduced ] and discussed further in litera-
ture such asq, 10, 18]. For the forward problem, using this stabilization wousult in a
system of the form4.2), with K and N as above, and

T= {Tff,ij}m:l,...,m Tl(z,ij :5/Q<W'V¢i)(w'v¢j)d9
— € 2¢:)(w - V) dQ,
. Z/A(v 6)(w - Vo)
f={fiti=1,. . n: s = i dQ+ 9 -V, df2,
b fi= [ 960045 [ gw-vo

with a stabilization parameteY, and A, denoting thek-th element in our finite element
discretization. Here we have taken zero Dirichlet condgidor illustrative purposes. It is
well recognised that this method is effective for solving forward problem; see, for in-
stance, §, Chapters 3 and 4]. However, for the convection-diffusiontool problem, diffi-
culties arise—the matrix systems that we obtain when we @sgishretize-then-optimizand
optimize-then-discretiZiermulations of Section3.2and3.3do not commutel8, Chapter 6].
This is problematic as we would then have to choose betweleingdhe discretize-then-
optimize matrix system, which would not be strongly coreist(meaning the solutions to
the optimization problem would not satisfy all the optimpalconditions), or the optimize-
then-discretize system, which is non-symmetric and so igheoptimality system for any
finite dimensional problem. Further, the non-symmetry efrtimtrix system that arises when
using the optimize-then-discretize approach means thatweot apply the iterative methods
introduced in Sectio.2to solve it as these methods depend on the matrix being symamet
It is also believed that applying SUPG to the optimal conprablem will guarantee at most
first-order accuracy in the solutiofi()].

To deal with these two problems, we now introduce tueal Projection Stabiliza-
tion (LPS) method, which is discussed ig, [9] for example. Applying this stabilization
to the forward problem again yields a matrix system of thenf@2.2), with K and N as
above and

(3.2) x (w-Va¢; — mp(w-Vo;)) dQ,
f={fiti=1,..n, Ji= /dih‘ ds,

whered is again a stabilization parameter angdan orthogonal projection operator. We have
again taken zero Dirichlet conditions for this definitiorurthermore, as we will demonstrate
in Sections3.2 and 3.3, when this stabilization is applied in the optimal contrettmg, the
discretize-then-optimize and optimize-then-discresiggtems are consistent and self-adjoint,
that is the discretization and optimization steps commute.

There are a number of considerations which need to be takeadeount when applying
this method in the control setting with a uniform grid andrghr basis functions, as we will
do in Sectiorb.
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e Stabilization parametef. We takes to be the following as in7]:

5— 0 if Pe < 1,
= h_ifPe>1,

Iwlly

where the meshétlet number Pe is defined on each element as

_ Pliwl,
.

Pe

Clearly this means that the stabilization depends on théssiee, and if the step-
sizeh is less thaql‘;—lb, then no stabilization procedure will be applied.

e Orthogonal projection operator;. \We require an.,-orthogonal projection opera-
tor defined on patches of the domain that satisfied tha@orm properties specified
in [2, p. 4]. We will proceed by working witlQ1 elements with equally spaced
nodes and divide the domain into patches consisting @&ments in each dimen-
sion. From this, we will taker;, (v) (wherev has support solely on that patch) to be
equal to the integral of over the patch divided by the area of the patch (in 2D this
will be 4h?). This definition will satisfy the required properties inrdarmulation.

e Error of LPS method.lIn [2], it is shown that the LPS stabilization gives a rate of
convergence oD (h?*/?) for problems of the form3.1) for bilinear finite elements.
This further motivates the use of the LPS stabilization rodtfor the remainder of
this manuscript.

3.2. Matrix system obtained: discretize-then-optimize.We now demonstrate that,
when using the LPS method described in Sec8di the matrix systems obtained with the
discretize-then-optimize and optimize-then-discretipproaches are the same. The deriva-
tion of the matrix system when using the former approachragitforward. We first note
that the discretized version of the PDE constraint is given b

Ky — Mu=d,

whered is stated below.

We also note that we may write the functional that we are ¢rytim minimize, that
1 ~12 B 2
is3lly =9l + 5 lull,q as

1 12 By 2 1 p
5 ly = ¥ll7, 0 + B) lullz, @) = §yTMy -b'y+C+ §UTMU7

whereC' is a constant independentpf M denotes thenass matrixdefined by
M ={mi;}tij=1,.n, M = /Q¢i¢j dqQ,
andb is given by
b= {bhir. e b= [ Gosde.

We therefore deduce that the Lagrangian, the stationant pbiwhich we wish to find,
is given by

1 _
(3.3) L(y,u,p) = §yTJVIy —bly+C+ guTMu +pl(Ky — Mu —d).
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Differentiating @.3) with respect tgy, u, andp yields the following system of equations

M 0 KT [y b
(3.4) 0 M —-M| |u| =10},
K —-M 0 o) d

where

n+ng
d={d}ict e di== > Y [ Vo Vo a0

Jj=n+1

This system is of the saddle point form discussed in Se&i@gnWe note that in the above
set-up, we have reduced the matrix systemda & 3n system by eliminating the equations
corresponding to boundary conditions. However, it is pelyepossible to solve instead
a3(n+ ng) x 3(n + ny) system by not eliminating these equations, and this is theoagh
we will follow in our numerical tests of Sectidn

3.3. Matrix system obtained: optimize-then-discretize.To derive the optimize-then-
discretize formulation, as ir?], we need to consider a Lagrangian of the form

1 12 B o2
L(y,u,p,p) = 9 ly — yHLz(Q) + 9 Hu||L2(Q)

+/(—6V2y+w~Vny)de+/ (y— flpds,
Q 00

wherey andu relate to the weak solutions of the forward problem, ang are assumed to
be sufficiently smooth. Note that the second Lagrange niigitip is included in this case as
we are not guaranteed to satisfy the boundary conditionstagtve discretize-then-optimize
approach.

As in [18] for example, we differentiat€ with respect to the statg, the control:, and
the Lagrange multipliers andp and study the resulting equations. Calculating thecRet
derivative with respect tg and applying the divergence theorem and the fundamentahé&em
of calculus of variations along with the assumptign w = 0, as in [L8], yields theadjoint
equation Differentiating with respect ta generates thgradient equatiorand differentiating
with respect to the Lagrange multipligssandp yields thestate equationDiscretizing these
three equations using the stabilizatiéhdj yields the matrix system

M 0 KT [y b
0 BM —-M| |u|=]|0],
d

K -M 0 9]

which is the same saddle point system as that derived usindisiaretize-then-optimize ap-
proach. We therefore consider the solution of this systerthforemainder of this manuscript.

4. Preconditioning the matrix system. In this section, we consider how one might
precondition the matrix systen8.@d) for solving the convection-diffusion control problem
with Local Projection Stabilization. We will use the sadgtent theory of Sectio2.2in this
section.

We first note that we may write3(4) as a sparse saddle point system of the fo2rB)(

. M 0 - .
with A = [0 BM}’ B = [K —M],andC = [0]. By the theory of Sectior2.2,
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we see that we may obtain an effective solver if we have a gppdoaimation of the ma-

trix Hf ﬁ(f)\f] , as well as the Schur complement of the matrix system whigiven by

_ _ 1
S=KM KT + BM.

We therefore start by considering an accurate approximatidhese two matrices. As
discussed in79], the Chebyshev semi-iterative method is effective forragjnating mass
matrices, so in our preconditioners we may approximhts A, where

[f 2]
0 BM

and}M denote<0 steps of Chebyshev semi-iteration applied/fo

To find an accurate approximation of the Schur complemengppty the result of The-
orem4.1 below. This theorem gives us a Schur complement approxamdtir which the
eigenvalues of the Schur complement preconditioned wighaibproximation are bounded ro-
bustly given positive semi-definiteness of the symmetritrinal’ + 17" and skew-symmetry
of the matrix NV (see B, Chapters 3 and 5] for more details) and therefore positrais
definiteness of the symmetric part&f, H := (K + KT). We note that Theorer. 1is an

extension of the result proved iaf], which applies to symmetric operators rather than the
non-symmetric operatdk’ we are considering in this manuscript.

THEOREM 4.1. Suppose that the symmetric partist H := (K + K7T), is positive
semi-definite. Then, if we approximate the Schur complesméent

S = (I_(+\/IBM) M1 <R+\/IBM>T,

we can bound the eigenvalues®f!S as follows:

A§1S) € [;1} .

Proof. We have that the eigenvalugsand eigenvectors of S~ satisfy:
S719x = ux
& (BEMTIKT +M)x=p [BI?M*KT + M+ /BK + RT)} X.

 Itis sufficient to show that the Rayleigh quotieft—= :;gz € [4,1]. To show this, we
write
v [BKM'K" + M| v aTa+b"b

vI [BKM—1KT + M +/B(K + KT)|v  (a+b)T(a+b)’

wherea = (VBEKM~1/2)Tv, b = (M'/?)Tv, and withv # 0.

The upper bound follows from the fact thefsv? (K + K7)v = 2\/BvI Hv > 0 by
the assumption of positive semi-definitenessiofas well as the positivity d”b = v Mv
(which ensures that both the numerator and denominatBrak strictly positive).
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FiG. 4.1.Spectraof5—1S for 8 = 10~2, 8 = 10~4, 3 = 106, and 8 = 10~2 for an evenly spaced grid
onQ = [—1,12withh =273, ¢ = ﬁ, andw = (sin & »cos %)T.

To show thatk > % we proceed as follows noting again thetb > 0:

1 1
R>g«<a’atb’b>ola’atb’bta’b+blal
1
& 3 [aTa—FbTb—aTb—bTa} >0

& (a—b)T(a-b)>0.

As(a—b)T(a—b)=|a— b||§ > 0 is clearly satisfied, the result is proved. 0O

lllustrations of the eigenvalue distribution 6F13 for a variety of values of3 in a
particular practical case are shown in Figdré

Therefore, by Theorem.1, we may obtain an effective Schur complement approxima-

tion if we can find a good way of approximating the matriéés- ﬁM and (f{+ ﬁM)

The method we use for approximating these matrices is thengeiw multigrid process de-
scribed for the forward problem in Secti@ril: with the coarse grid matrices formed explicitly
rather than by the use of prolongation and restriction dpesand with block Gauss-Seidel

smoothing.
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So, as we now have good approximations of the matticesd.S, we can propose two
effective preconditioners of the form

-~ A0 ~ A 0
Py = al = ol
"“lo § 2 B—s]

described in Sectio.2

Unlike the forward problem, the convection-diffusion aaproblem is symmetric with
our (symmetric) stabilization, and 98, is symmetric positive definite. Therefore, our first
method for solving the matrix syster3.f) would be to apply a MNRES method with pre-
conditioner

- M 0 0
(4.1) Pi=1|0 BM 0
0o o0 S

In our preconditiongr]\//f denotex20 steps of Chebyshev semi-iteration to approximate the
mass matrix\/, andS denotes the approximation to the Schur complement disdzs®ve.

Our second method involves applying the Bramble-Pascialugate Gradient method
as described in Sectich2 with preconditioner

M 0o
(4.2) Po=10 pByM 0
K -M -S
and inner product given by
M —~M 0 0
H = 0 3 (M - 71\7) ol,
0 0 3

wherey is a constant which can be chosen a priori to ensurd\tﬁaty]\? is positive definite;
results for a 2DQ1 mass matrix which may be applied to the test problems of Gebtare
provided in RQ].
At this juncture, we make two points about our preconditigrstrategy and its applica-
bility:
1. The matrix system3(4) for the distributed convection-diffusion control protrle
could potentially be reduced to the following system of s by elimination of
the discretized gradient equation

M KT y b

Bl e
We note that our preconditioning strategy could also beiagpb this problem as we
still obtain a saddle point system of the structure disaligs&ection?2.2, so we will
again need to implement a Chebyshev semi-iteration pracegsproximatel/ and
enact the approximation of the Schur complemgntvhich remains the same as for
the systemd.4). We avoid reducing the matrix system in this way here as ve@ vad
keep the system in a form as general as possible—for exarhpleymdary control
problems or problems involving control on a subdomain amsitered, reducing
the matrix system is not as simple. We note that results édaivhen reducing the
matrix system are similar to the case where it is not reduced.
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X, -1 -1 X X, -1 -1
(a) Statey (b) Controlu

FiG. 5.1. Solutions of state and control for Problem 1 usi@dy basis functions witla = ﬁ andg = 1.

X, -1 -1 X X -1 1

(a) Statey (b) Controlu

FiG. 5.2. Solutions of state and control for Problem 2 usi@dy basis functions witla = ﬁ andg = 1.

2. We believe that other similar methods could be devisedbeesthe convection-
diffusion control problem based on the framework discussettis section. For
instance, we see no reason why a preconditioner of the form

[0
T |BA! T

which was discussed in the context of the Poisson contrdllenoin [21], could not
be applied to this problem using our approximatiohand.S.

A BT
B BA-'BT - §

~

n T
Py — A B

0o -S§

)

5. Numerical results. In this section, we provide numerical results to illustrédte ef-
fectiveness of our suggested methods. In our numerica, tegt discretize the staig the
controlu, and the adjoinp usingQ1 finite element basis functions.

The two problems that we consider are stated below with gibtiseir solutions shown
in Figures5.1and5.2, respectively.

*We construct the relevant matrices for our two test problentisérsame way as is done in the Incompressible
Flow & Iterative Solver Software (IFISS) packagg P2].

T All results are generated using a tri-core 2.5 GHz workstati
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TABLE 5.1
Number ofM INRES iterations with the ‘ideal’ block diagonal preconditioné#.1) and Bramble-Pascialkc G
iterations with the ‘ideal’ block triangular preconditia@n (4.2) needed to solve Problem 1. Results are given for
a range of values og (which is equal to the inverse of the number of steps in spaeach coordinate) and,

wheree = Téo and Q1 basis functions are used to approximate the state, contrdlaajoint.
MINRES BPCG
1
€= 350 B B
bl size | 1072 | 107* | 107 | 1078 | 1072 | 107* | 107¢ | 10~®
272 75 13 7 5 3 11 9 6 6
273 243 13 9 5 3 12 10 7 6
24 867 13 11 5 3 12 13 9 7
27° | 3267 13 12 7 3 13 14 10 7
276 | 12675 13 12 7 4 13 14 12 8
27 | 49923 12 11 9 5 13 15 15 10

e PROBLEM 1: We wish to solve the following distributed convectiorffasion con-
trol problem on2 = [—1, 1]?

o1 2 B 2
min o 1Yl17, ) + 3 lullz, 0
st—eViy+w-Vy=uinQ,

[ 1 ondQy = ([0,1] x {—1}) U ({1} x [~1,1)),
y‘{ 0 ondN\oQy,

wherew = (sin 5> cos %)T. This is an optimal control problem involving a constant
wind w; forward problems of this form have previously been consdén literature
such as§, 18].

e PROBLEM 2: We wish to solve the following distributed convectiorffalsion con-

trol problem on2 = [—1,1]?

1 2 ﬁ 2
min o 1917500 + 5 Iz @
st—eVly+w-Vy=uinQ,

[ 1 ondfQy:={1} x [-1,1],
Y=l 0 on 9N\ s,

wherew = (Fx2(1 — z3), — 321 (1 — x%))T andx = (z1,z,)" denotes the spatial
coordinates. This is an optimal control formulation of theuble-glazing problem
discussed ing, p. 119]: a model of the temperature in a cavity with reciatinlg
wind w. We note that we have chosen the wind so that the maximum gélise||,
on(is equal tal.
We first provide a proof-of-concept that our proposed prda@mners are effective ones.
In Table5.1, we present iteration numbers for solving Problem 1 with K}O and a range
of h and 5 using ‘ideal’ versions of our two preconditioners (speaifiz where we in-
vert K + ﬁM and its transpose directly in the preconditioners rathem thsing a multigrid
method). The results shown illustrate that in theory oucenelitioners are highly potent
for a range of parameters. All other results presented aiegbnerated using the geometric

multigrid procedure previously described.
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TABLE 5.2
Number ofM INRES terations with block diagonal preconditioné$.1) needed to solve Problem 1 and compu-
tation times taken to do so (in seconds). Results are givemrfinge of values og (and hence problem size) apd

withe = —= ande = ==, whereQ1 basis functions are used to approximate the state, corgtral,adjoint.

100 500
MINRES Ié;
€= 105 1072 10~ 1076 108
% Size | ITER. | TIME | ITER. | TIME | ITER. | TIME | ITER. | TIME
272 75 13 0.070 7 0.051 5 0.040 3 0.038
23 243 13 0.11 9 0.092 5 0.072 3 0.063
24 867 13 0.20 11 0.17 5 0.078 3 0.064
27% | 3267 13 0.54 12 0.50 7 0.29 3 0.23
26 | 12675 13 2.36 13 2.24 7 1.52 5 1.53
2-7 | 49923 13 14.1 11 12.9 9 11.1 5 8.10
MINRES I}
€= -k 102 10~4 106 108

500

g SizE | ITER. | TIME | ITER. | TIME | ITER. | TIME | ITER. | TIME

272 () 13 0.072 7 0.054 ) 0.044 3 0.038
273 | 243 13 0.13 9 0.098 4 0.066 3 0.060
2=4 | 867 13 0.27 11 0.15 5 0.084 3 0.062
275 | 3267 13 0.58 12 0.52 7 0.42 3 0.27
276 | 12675 13 2.93 12 2.73 7 1.76 4 1.21
277 | 49923 12 15.2 11 15.1 9 10.2 5 9.51

In Table5.2, we present the number ofIMRESiterations and computation times (includ-
ing the time taken to construct the relevant matrices onggids) required to solve Problem 1
with e = -5 ande = -1 using the preconditioneP; to a tolerance of0~C.% In Table5.3
we show how many Bramble-Pasciak CG iterations are reqtoredlve the same problem to
the same tolerance with the preconditiofgerand withy = 0.95.% We observe that both our
solvers generate convergence in a small number of itesaf@mrboth values of the viscosity.
The convergence rate actually improvesiatecreases, probably because our Schur comple-

ment approximation becomes better for smafleas illustrated by Figuré.l. Although we

take the windw = (sin 5, cos g)T and specific values af, we find, in other computations

not presented here, that the results are similar for anytaothwind with vectoR-norm equal
to 1 for a wide range o€. We note that altering the boundary conditions or targettion 3
would not change the matrix within the system being solvedyg solvers seem to be very
robust for problems involving constant winds and value$ afhich are of computational
interest.

In Table 5.4, we present the number of preconditionedNES iterations and CPU

times required to solve Problem 2, a harder problem, to theegalerance, whea = W%O

In our numerical experiments, we set the viscosity to be of #eesorder as for the numerical tests for the
forward problem in 17], however we note that our solvers are often very effectitiene is even smaller.

$We wish to choose reasonably close tb in order that the approximation of tie;, 1)-block is effective but
also far enough away fromto ensure that the inner product we work with is clearly pesitlefinite. We find that
the valuey = 0.95 meets these criteria in practice. Similar issues are disdusgg(] in the context of solving
Poisson control problems.
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TABLE 5.3
Number of Bramble-PasciakG iterations with block triangular preconditiongit.2) needed to solve Prob-
lem 1 and computation times taken to do so (in seconds). Reselgiven for a range of values §f (and hence
problem size) an@ with ¢ = ﬁ ande = ﬁ whereQ1 basis functions are used to approximate the state,
control, and adjoint.

BPCG I6]
€= 15 102 10~* 10— 108
% SizE | ITER. | TIME | ITER. | TIME | ITER. | TIME | ITER. | TIME
272 75 10 0.056 9 0.050 6 0.040 6 0.044
273 243 12 0.11 10 0.11 7 0.084 6 0.075
2-4 | 867 12 0.20 13 0.22 9 0.17 7 0.13
275 | 3267 13 0.60 14 0.62 10 0.46 7 0.38
276 | 12675 13 2.89 15 2.99 12 2.60 9 2.31
27 | 49923 13 14.5 15 16.0 15 15.8 11 11.6
BPCG 153
_ 1 — - - —
€= g5 1072 1074 1076 108

% Size | ITER. | TIME | ITER. | TIME | ITER. | TIME | ITER. | TIME

272 75 11 0.057 8 0.048 6 0.047 6 0.043
273 | 243 12 0.11 10 0.10 7 0.080 6 0.079
274 | 867 12 0.22 13 0.22 9 0.16 7 0.14
27° | 3267 13 0.52 14 0.55 10 0.45 7 0.36
276 | 12675 13 291 14 2.96 12 2.68 8 2.01
277 | 49923 13 13.7 15 14.8 14 14.2 9 10.5

ande = =i5; the number of preconditioned Bramble-Pasciak CG itenatiequired to solve
this problem is shown in Table.5. Once more, for this problem and a wide range of values
of 3, our solvers are effective with convergence achieved imasmall number of iterations.
We find that for this harder problem (with non-constant wjrildg iteration numbers may rise
very slightly for smaller in some cases (see Tabkeg and5.5), however the iteration num-
bers in all cases are very reasonable.

We can see that the IMRES and Bramble-Pasciak CG methods are very competitive,
and the results for both methods are similar. WhereasR¥s tends to converge in fewer
iterations, the Bramble-Pasciak CG method is computdtipolaeaper for a fixed number of
iterations. We note that the computation times for Branitdsciak CG seem to be better for
larger 5 (in particular for smallef) and that the NNRES solver works better for smallet?
due to the lower iteration numbers. We note that whés small compared th, as observed
in Figure4.1, the eigenvalues of the preconditioned Schur complemerttighly clustered—
consequently for smallgt the iteration numbers are particularly low for largesind increase
slightly ash is decreased. However the analysis of Secti@md these results illustrate that
the iteration count should be bounded by a low number fortipesblems aé decreases.

The results in this section illustrate that the solvers weehaoposed are potent ones
for a number of convection-diffusion control problems, assl of problems which, as for
the convection-diffusion equation itself, is fraught witbmerical difficulties. The number
of iterations required to solve these problems is small, thedconvergence of the solvers
improves rather than degrades@s decreased. As observable from the computation times
shown in Table$.2-5.5, the convergence is close to linear with respect to the sizheo
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TABLE 5.4
Number ofM INRES terations with block diagonal preconditioné$.1) needed to solve Problem 2 and compu-
tation times taken to do so (in seconds). Results are givemrfinge of values og (and hence problem size) apd

withe = —= ande = ==, whereQ1 basis functions are used to approximate the state, corgtral,adjoint.

100 500
MINRES Ié;
€= 105 1072 10~ 1076 108
% Size | ITER. | TIME | ITER. | TIME | ITER. | TIME | ITER. | TIME
272 75 13 0.071 7 0.050 4 0.044 3 0.039
23 243 15 0.13 7 0.063 4 0.061 3 0.059
24 867 13 0.19 7 0.13 5 0.076 3 0.065
27% | 3267 13 0.52 9 0.42 5 0.32 3 0.25
26 | 12675 13 2.39 11 2.14 7 1.49 3 1.06
2-7 | 49923 13 13.9 11 13.2 9 10.8 5 8.32
MINRES 153
€= -k 102 10~4 106 1078

g SizE | ITER. | TIME | ITER. | TIME | ITER. | TIME | ITER. | TIME

272 (6] 15 0.074 7 0.053 ) 0.041 3 0.040
273 | 243 21 0.20 7 0.085 4 0.071 3 0.060
24| 867 19 0.35 9 0.17 5 0.085 3 0.064
275 | 3267 12 0.55 9 0.47 5 0.33 3 0.28
276 | 12675 12 2.81 9 2.34 5 2.10 3 1.17
277 | 49923 12 15.4 11 14.7 ) 8.92 3 7.71

matrix system—uwe find that the only part of the solvers thasdu# scale linearly in time is
the construction of matrices on the sub-grids.

6. Conclusions. In this manuscript we have first given an overview of &IRES ap-
proach for solving the convection-diffusion equation, adlwas summarizing some general
properties of saddle point systems and some possible @olotéethods for such systems.

We then introduced the convection-diffusion control pesbland illustrated that, with
a suitable stabilization technique (the Local Projectiteb8ization), the same saddle point
system arises whether the discretize-then-optimize agpror the optimize-then-discretize
approach is used for solving the control problem.

We proposed two effective solvers for solving the convertidfusion control problem:
one involving a MNRES solver with a block diagonal preconditioner and one invaodva
Bramble-Pasciak Conjugate Gradient approach with a blidakgular preconditioner. The
key components of each of these preconditioners are a ggod>amation of the mass ma-
trix, a powerful approximation of the Schur complement @ thatrix system, and a geomet-
ric multigrid process which enables us to enact that Schonptement approximation.

We have shown theoretically that in an ideal case our pretiondrs should be effective
ones. Numerical results given in Sect®imdicate that our solvers do indeed perform well in
practice for the problems we have tested, yielding fast dogkdo linear convergence as the
problem size is increased; this rate of convergence imgraséehe regularization parameter
is decreased. We proved that the convergence rate canne¢nvass is decreased if exact
solves are used within a preconditioner and have illusiratamerically that the Chebyshev
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TABLE 5.5
Number of Bramble-PasciakG iterations with block triangular preconditiongit.2) needed to solve Prob-
lem 2 and computation times taken to do so (in seconds). Reselgiven for a range of values §f (and hence
problem size) an@ with ¢ = ﬁ ande = ﬁ whereQ1 basis functions are used to approximate the state,
control, and adjoint.

BPCG I6]
€= 15 1072 1074 1076 1078
% SizE | ITER. | TIME | ITER. | TIME | ITER. | TIME | ITER. | TIME
272 75 10 0.056 7 0.050 6 0.040 6 0.044
273 243 12 0.10 8 0.097 6 0.078 6 0.077
2-4 | 867 12 0.19 10 0.18 7 0.14 6 0.12
275 | 3267 13 0.58 12 0.52 9 0.44 7 0.38
276 | 12675 13 2.93 15 3.02 11 2.38 8 2.10
27 | 49923 13 14.2 15 15.6 15 15.5 10 10.4
BPCG B
_ 1 _ — _ _
€= g5 1072 1074 1076 108

% Size | ITER. | TIME | ITER. | TIME | ITER. | TIME | ITER. | TIME

272 75 12 | 0.061 7 0.046 6 0.045 6 0.043
273 | 243 16 0.13 8 0.091 6 0.071 6 0.075
2=4 | 867 17 0.25 9 0.16 7 0.13 6 0.13
275 | 3267 13 0.54 11 0.45 7 0.38 6 0.34
2-6 | 12675 13 2.86 13 2.88 9 2.28 7 1.85
2-7 | 49923 | 13 13.6 15 15.4 11 12.7 7 9.14

semi-iteration and multigrid methods used show robustirepsactice. We have observed
that our solution methods work well whether SUPG or LPS §tattion is used. The methods
also work well with no stabilization at all when such an agmto is reasonable; for such
diffusion-dominated problems, it is likely that more stardi methods (including multigrid)
could also be effective. If new stabilization methods ascavered for this problem, we
might predict that our proposed preconditioners will agaiove to be potentially useful for
its solution.
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