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Abstract. In this manuscript, we describe effective solvers for the optimal control of stabilized convection-
diffusion control problems. We employ the Local Projection Stabilization, which results in the same matrix system
whether the discretize-then-optimize or optimize-then-discretize approach for this problem is used. We then derive
two effective preconditioners for this problem, the first to be used with MINRES and the second to be used with
the Bramble-Pasciak Conjugate Gradient method. The key components of both preconditioners are an accurate mass
matrix approximation, a good approximation of the Schur complement, and an appropriate multigrid process to enact
this latter approximation. We present numerical results to illustrate that these preconditioners result in convergence
in a small number of iterations, which is robust with respect tothe step-sizeh and the regularization parameterβ for
a range of problems.

Key words. PDE-constrained optimization, convection-diffusion control, preconditioning, Local Projection
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1. Introduction. Convection-diffusion problems describe important physical processes
such as contaminant transport. The numerical solution of such problems, in particular in the
case of dominating convection, has attracted much attention, and it is now widely appreci-
ated what role stabilization techniques have to play. In this manuscript we consider not the
solution of single convection-diffusion problems (we willcall this the solution of the forward
problem) but the control of such problems. That is to say, we consider solution methods for
control problems involving the convection-diffusion equation together with suitable boundary
conditions. In particular we will describe two preconditioned iterative solution methods for
the fast solution of such control problems.

Control problems, or PDE-constrained optimization problems, for various partial dif-
ferential equations have been the subject of much research (see, for example, the excellent
book by Tr̈oltzsch [24]), and there has been significant recent interest in preconditioning and
iterative solvers for such problems; see, for example, [19, 21]. In all such problems there
arises the issue of whether to firstly perform discretization before optimization of the result-
ing discrete problem or to construct continuous optimalityconditions and then discretize. For
many PDE problems, in particular those which are self-adjoint, the two possible approaches
of discretize-then-optimize and optimize-then-discretize generally give rise to the same dis-
crete equations—that is to say the two steps commute.

For the convection-diffusion control problem, Heinkenschloss and co-workers [6, 10]
have considered the quite popular SUPG stabilized finite element method of Hughes and
Brooks [11] and have shown the significant extra difficulty in the case ofthe control problem
as opposed to the forward problem. A key issue is consistencynot just of the forward problem
but also of the adjoint problem. The SUPG method does not satisfy such adjoint-consistency
in general, though for the forward problem it yields an orderof accuracy ofO(h3/2) when
using bilinear finite elements for instance; see [8, Theorem 3.6]. For the control problem
this leads to the issue that the discretize-then-optimize approach gives rise to symmetric dis-
crete equations in which the discrete adjoint problem is nota consistent discretization of the
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continuous adjoint problem, and the optimize-then-discretize approach gives rise to different
and non-symmetric discrete equations which do not therefore have the structure of a discrete
optimization problem.

Here we employ the adjoint-consistent Local Projection Stabilization approach described
in [1, 2, 4], which ensures that the discretize and optimize steps commute. For this approach
we are able to establish preconditioned iterative solvers for the control problem which have
the attractive feature of giving convergence in a number of steps independent of the param-
eters of the problem (including the mesh-size). With an appropriate multigrid process for
the convection-diffusion problem which we describe, this leads to solvers of optimal com-
putational complexity for PDE-constrained optimization problems involving the convection-
diffusion problem.

2. Background. In this section, we summarize the theory that we will use whensolving
the convection-diffusion control problem. Firstly, we will detail a method for solving the
forward problem, that is the convection-diffusion equation with no optimization. We will
exploit aspects of this method when we wish to solve the control problem. Secondly, we
will detail some properties of ideal preconditioners for saddle point systems. The convection-
diffusion control problem has a saddle point structure, as we will show in Section3, so we
will need to use the theory of saddle point systems in order todevelop preconditioners for
this problem as in Section4.

2.1. Solution of the convection-diffusion equation.We first consider the finite element
solution of the convection-diffusion equation with Dirichlet boundary conditions

−ǫ∇2y +w · ∇y = g in Ω,

y = f on∂Ω,
(2.1)

where the domainΩ ⊂ R
d, d = 2 or 3, has boundary∂Ω, ǫ > 0 represents viscosity, andw

is a divergence-free wind vector (i.e.∇ ·w = 0).
The term−ǫ∇2y in the above equation denotes the diffusive element, and thetermw·∇y

represents convection. As pointed out, for example in [8, Chapter 3], convection typically
plays a more significant physical role than diffusion, soǫ ≪ ‖w‖ for many practical prob-
lems. However this in turn makes the problem more difficult tosolve [8, 17] as the solution
procedure will need to be robust with respect to the direction of the windw and any boundary
or internal layers that form.

The finite element representation of the equation (2.1) is given by

K̄y = f ,(2.2)

where y = {Yi}i=1,...,n, with Yi denoting the coefficients of the finite element solu-
tion yh =

∑n+n∂

i=1 Yiφi with interior finite element basis functionsφ1, ..., φn and boundary
basis functionsφn+1, ..., φn+n∂

. The matrixK̄, as stated in (2.2), is defined by

K̄ = ǫK +N + T,

K = {kij}i,j=1,...,n, kij =

∫

Ω

∇φi · ∇φj dΩ,

N = {ñij}i,j=1,...,n, ñij =

∫

Ω

(w · ∇φj)φi dΩ.

Here,T is a matrix corresponding to the stabilization strategy used (which depends on the
step-sizeh, a stabilization parameterδ, and an orthogonal projection operatorπh). The vec-
tor f corresponds to the functionsf andg (and sometimes the stabilization as well). Note
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thatK is a stiffness matrix, a commonly occurring matrix in finite element problems. We
discuss the definitions ofT andf for two different stabilization methods in Section3.1 (and
note thatT = 0 if no stabilization is used).

For the remainder of this section we briefly detail a method described in [8] for solving
the problem (2.2) as we will use aspects of this method in our solvers for the convection-
diffusion control problem in Section4.

The method discussed in [8] for solving (2.1) is a GMRES method preconditioned with
a geometric multigrid process described by Ramage in [17]. The multigrid process contains
standard prolongation and restriction operators, but there are two major differences between
it and a more typical multigrid routine:

• Construction of the coarse grid operator.In most geometric multigrid algorithms,
the construction of a coarse grid operator is carried out using the scaled Galerkin
coarse grid operator (that is̄Kcoarse= RK̄fineP , whereP is the projection operator
andR the restriction operator). However, in the method of Ramage, the coarse grid
operator isexplicitly constructedon all grids on which it is required. This involves
constructing the matricesK, N, andT on each sub-grid and incorporates different
stabilization parametersδ for each grid.

• Pre- and post-smoothing.The smoothing strategy we employ isblock Gauss-Seidel
smoothing, applied in each direction to take account of all possible wind directions,
that is to say we employ4 (2 pre- and2 post-) smoothing steps for a two dimensional
problem and6 smoothing steps for a three dimensional problem. This strategy is
shown to be effective for a wide range of problems with our formulation as illustrated
in [8, Chapter 4] and [17].

2.2. Saddle point systems.The convection-diffusion control problem that we introduce
in Section3 is of saddle pointstructure, that is, it is of the form

(2.3)

[
A BT

B −C

]

︸ ︷︷ ︸
A

[
x1

x2

]
=

[
b1

b2

]
,

whereA ∈ R
m×m, B ∈ R

q×m, andC ∈ R
q×q, with m ≥ q. For an overview of properties

and solution methods for such systems, we refer the reader to[3].
In [14], it is demonstrated that two effective preconditioners for A are given by

P1 =

[
A 0
0 S

]
, P2 =

[
A 0
B −S

]
,

whereS is the (negative)Schur complementdefined byS = C + BA−1BT . The reason
these preconditioners are so potent is that the spectra ofP−1

1 A andP−1
2 A are given by

λ(P−1
1 A) =

{
1

2
(1−

√
5), 1,

1

2
(1 +

√
5)

}
, λ(P−1

2 A) = {1},

in the case whereC = 0, so long asP−1
1 A andP−1

2 A are nonsingular [13, 14]. In the general
caseC 6= 0, the result onλ(P−1

2 A) also holds [12]. We note thatC = 0 in the set-up of the
convection-diffusion control problem that we focus on in this article.

Now P−1
1 A constructed in this way is diagonalizable butP−1

2 A is not, so if we apply a
Krylov subspace method withA preconditioned byP1 orP2, we will achieve termination in3
and2 iterations, respectively [14]. Of course the preconditionersP1 andP2 are not practical
preconditioners as the exact inverses ofA andS will need to be enforced in each case (which
is particularly problematic as even whenA andB are sparse,S is generally dense).
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However, if we were able to construct effective approximations toA andS, Â andŜ say,
and employ the preconditioners

P̂1 =

[
Â 0

0 Ŝ

]
, P̂2 =

[
Â 0

B −Ŝ

]
,

it is likely that we would obtain convergence of the appropriate Krylov subspace method
in few iterations. In Section4, we derive two preconditioners based onP̂1 and P̂2 for the
convection-diffusion control problem.

Clearly, these preconditioners will have to be incorporated into different Krylov sub-
space methods. The block diagonal preconditionerP̂1 is symmetric positive definite, and so
a natural choice is the MINRES algorithm [15, 19]. By contrast, the block triangular precon-
ditioner P̂2 is neither symmetric nor positive definite, and so the same algorithm cannot be
used. However as described in [5, 20, 23] for example,P̂−1

2 A is symmetric positive definite
in the inner product〈·, ·〉H defined by〈u,v〉H = uTHv, where

H =

[
A− Â 0

0 Ŝ

]
,

with Â, Ŝ chosen to ensure thatH is positive definite. Hence it is possible to use a non-
standard Conjugate Gradient method with theH-inner product; this is often referred to as the
Bramble-Pasciak Conjugate Gradientmethod.

3. The convection-diffusion control problem. For the remainder of this paper, we will
be considering the distributed convection-diffusion control problem

min
y,u

1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω)

s.t. − ǫ∇2y +w · ∇y = u in Ω,

y = f on∂Ω,

(3.1)

wherey denotes thestate variablewith ŷ some desired state,u denotes thecontrol variable,
andβ > 0 is a regularization parameter (sometimes known as theTikhonov parameter).

We employ a finite element method to solve the problem, that iswe write

yh =

n+n∂∑

i=1

Yiφi, uh =

n+n∂∑

i=1

Uiφi, ph =

n+n∂∑

i=1

Piφi,

wherep denotes the Lagrange multiplier we use. Note that we discretize the statey, the
controlu, and the Lagrange multiplierp using the same basis functions here. Note also that
the coefficientsYn+1, ..., Yn+n∂

are trivially obtained by considering the specified Dirichlet
boundary conditiony = f .

For the rest of this section, we definey, u, andp as follows:

y = {Yi}i=1,...,n, u = {Ui}i=1,...,n, p = {Pi}i=1,...,n.

3.1. Stabilization of the control problem. One important consideration when solving
the convection-diffusion control problem (or indeed the convection-diffusion equation itself)
is that of stabilizing the problem. It is well known that, without any form of stabilization,
accurate solution of the convection-diffusion equation [8, 17] and the convection-diffusion
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control problem [2, 10] is compromised due to the formation of layers in the approximate
solution, potentially leading to large errors for smallǫ.

One popular method for avoiding this problem is by using theStreamline Upwind Petrov-
Galerkin (SUPG) stabilization, which was introduced in [11] and discussed further in litera-
ture such as [8, 10, 18]. For the forward problem, using this stabilization would result in a
system of the form (2.2), with K andN as above, and

T = {τ δh,ij}i,j=1,...,n, τ δh,ij = δ

∫

Ω

(w · ∇φi)(w · ∇φj) dΩ

− ǫδ
∑

k

∫

∆k

(∇2φi)(w · ∇φj) dΩ,

f = {fi}i=1,...,n, fi =

∫

Ω

gφi dΩ + δ

∫

Ω

gw · ∇φi dΩ,

with a stabilization parameterδ, and∆k denoting thek-th element in our finite element
discretization. Here we have taken zero Dirichlet conditions for illustrative purposes. It is
well recognised that this method is effective for solving the forward problem; see, for in-
stance, [8, Chapters 3 and 4]. However, for the convection-diffusion control problem, diffi-
culties arise—the matrix systems that we obtain when we use thediscretize-then-optimizeand
optimize-then-discretizeformulations of Sections3.2and3.3do not commute [18, Chapter 6].
This is problematic as we would then have to choose between solving the discretize-then-
optimize matrix system, which would not be strongly consistent (meaning the solutions to
the optimization problem would not satisfy all the optimality conditions), or the optimize-
then-discretize system, which is non-symmetric and so is not the optimality system for any
finite dimensional problem. Further, the non-symmetry of the matrix system that arises when
using the optimize-then-discretize approach means that wecannot apply the iterative methods
introduced in Section2.2to solve it as these methods depend on the matrix being symmetric.
It is also believed that applying SUPG to the optimal controlproblem will guarantee at most
first-order accuracy in the solution [10].

To deal with these two problems, we now introduce theLocal Projection Stabiliza-
tion (LPS) method, which is discussed in [2, 9] for example. Applying this stabilization
to the forward problem again yields a matrix system of the form (2.2), with K andN as
above and

T = {τ δh,ij}i,j=1,...,n, τ δh,ij = δ

∫

Ω

(
w · ∇φi − πh(w · ∇φi)

)

×
(
w · ∇φj − πh(w · ∇φj)

)
dΩ,

f = {fi}i=1,...,n, fi =

∫

Ω

gφi dΩ,

(3.2)

whereδ is again a stabilization parameter andπh an orthogonal projection operator. We have
again taken zero Dirichlet conditions for this definition. Furthermore, as we will demonstrate
in Sections3.2 and3.3, when this stabilization is applied in the optimal control setting, the
discretize-then-optimize and optimize-then-discretizesystems are consistent and self-adjoint,
that is the discretization and optimization steps commute.

There are a number of considerations which need to be taken into account when applying
this method in the control setting with a uniform grid and bilinear basis functions, as we will
do in Section5.
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• Stabilization parameterδ. We takeδ to be the following as in [2]:

δ =

{
0 if Pe< 1,
h

‖w‖
2

if Pe≥ 1,

where the mesh Ṕeclet number Pe is defined on each element as

Pe=
h ‖w‖2

ǫ
.

Clearly this means that the stabilization depends on the mesh-size, and if the step-
sizeh is less than ǫ

‖w‖
2

, then no stabilization procedure will be applied.
• Orthogonal projection operatorπh. We require anL2-orthogonal projection opera-

tor defined on patches of the domain that satisfies theL2-norm properties specified
in [2, p. 4]. We will proceed by working withQ1 elements with equally spaced
nodes and divide the domain into patches consisting of2 elements in each dimen-
sion. From this, we will takeπh(v) (wherev has support solely on that patch) to be
equal to the integral ofv over the patch divided by the area of the patch (in 2D this
will be 4h2). This definition will satisfy the required properties in our formulation.

• Error of LPS method.In [2], it is shown that the LPS stabilization gives a rate of
convergence ofO(h3/2) for problems of the form (3.1) for bilinear finite elements.
This further motivates the use of the LPS stabilization method for the remainder of
this manuscript.

3.2. Matrix system obtained: discretize-then-optimize.We now demonstrate that,
when using the LPS method described in Section3.1, the matrix systems obtained with the
discretize-then-optimize and optimize-then-discretizeapproaches are the same. The deriva-
tion of the matrix system when using the former approach is straightforward. We first note
that the discretized version of the PDE constraint is given by

K̄y −Mu = d,

whered is stated below.
We also note that we may write the functional that we are trying to minimize, that

is 1
2 ‖y − ŷ‖2L2(Ω) +

β
2 ‖u‖2L2(Ω), as

1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω) =

1

2
yTMy − bTy + C +

β

2
uTMu,

whereC is a constant independent ofy, M denotes themass matrixdefined by

M = {mij}i,j=1,...,n, mij =

∫

Ω

φiφj dΩ,

andb is given by

b = {bi}i=1,...,n, bi =

∫

Ω

ŷφi dΩ.

We therefore deduce that the Lagrangian, the stationary point of which we wish to find,
is given by

L(y,u,p) = 1

2
yTMy − bTy + C +

β

2
uTMu+ pT (K̄y −Mu− d).(3.3)
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Differentiating (3.3) with respect toy, u, andp yields the following system of equations

(3.4)



M 0 K̄T

0 βM −M

K̄ −M 0





y

u

p


 =



b

0

d


 ,

where

d = {di}i=1,...,n, di = −
n+n∂∑

j=n+1

Yj

∫

Ω

∇φi · ∇φj dΩ.

This system is of the saddle point form discussed in Section2.2. We note that in the above
set-up, we have reduced the matrix system to a3n× 3n system by eliminating the equations
corresponding to boundary conditions. However, it is perfectly possible to solve instead
a3(n+ n∂)× 3(n+ n∂) system by not eliminating these equations, and this is the approach
we will follow in our numerical tests of Section5.

3.3. Matrix system obtained: optimize-then-discretize.To derive the optimize-then-
discretize formulation, as in [2], we need to consider a Lagrangian of the form

L̃(y, u, p, p̃) = 1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω)

+

∫

Ω

(−ǫ∇2y +w · ∇y − u)p dΩ +

∫

∂Ω

(y − f)p̃ ds,

wherey andu relate to the weak solutions of the forward problem, andp, p̃ are assumed to
be sufficiently smooth. Note that the second Lagrange multiplier p̃ is included in this case as
we are not guaranteed to satisfy the boundary conditions as with the discretize-then-optimize
approach.

As in [18] for example, we differentiatẽL with respect to the statey, the controlu, and
the Lagrange multipliersp andp̃ and study the resulting equations. Calculating the Fréchet
derivative with respect toy and applying the divergence theorem and the fundamental lemma
of calculus of variations along with the assumption∇ ·w = 0, as in [18], yields theadjoint
equation. Differentiating with respect tou generates thegradient equationand differentiating
with respect to the Lagrange multipliersp andp̃ yields thestate equation. Discretizing these
three equations using the stabilization (3.2) yields the matrix system



M 0 K̄T

0 βM −M

K̄ −M 0





y

u

p


 =



b

0

d


 ,

which is the same saddle point system as that derived using the discretize-then-optimize ap-
proach. We therefore consider the solution of this system for the remainder of this manuscript.

4. Preconditioning the matrix system. In this section, we consider how one might
precondition the matrix system (3.4) for solving the convection-diffusion control problem
with Local Projection Stabilization. We will use the saddlepoint theory of Section2.2in this
section.

We first note that we may write (3.4) as a sparse saddle point system of the form (2.3),

with A =

[
M 0
0 βM

]
, B =

[
K̄ −M

]
, andC =

[
0
]
. By the theory of Section2.2,
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we see that we may obtain an effective solver if we have a good approximation of the ma-

trix

[
M 0
0 βM

]
, as well as the Schur complement of the matrix system which isgiven by

S = K̄M−1K̄T +
1

β
M.

We therefore start by considering an accurate approximation of these two matrices. As
discussed in [25], the Chebyshev semi-iterative method is effective for approximating mass
matrices, so in our preconditioners we may approximateA by Â, where

Â =

[
M̂ 0

0 βM̂

]
,

andM̂ denotes20 steps of Chebyshev semi-iteration applied toM .
To find an accurate approximation of the Schur complement, weapply the result of The-

orem4.1 below. This theorem gives us a Schur complement approximation for which the
eigenvalues of the Schur complement preconditioned with this approximation are bounded ro-
bustly given positive semi-definiteness of the symmetric matrix ǫK + T and skew-symmetry
of the matrixN (see [8, Chapters 3 and 5] for more details) and therefore positive semi-
definiteness of the symmetric part ofK̄, H := 1

2 (K̄ + K̄T ). We note that Theorem4.1 is an
extension of the result proved in [16], which applies to symmetric operators rather than the
non-symmetric operator̄K we are considering in this manuscript.

THEOREM 4.1. Suppose that the symmetric part ofK̄, H := 1
2 (K̄ + K̄T ), is positive

semi-definite. Then, if we approximate the Schur complementS by

Ŝ =

(
K̄ +

1√
β
M

)
M−1

(
K̄ +

1√
β
M

)T

,

we can bound the eigenvalues ofŜ−1S as follows:

λ(Ŝ−1S) ∈
[
1

2
, 1

]
.

Proof. We have that the eigenvaluesµ and eigenvectorsx of Ŝ−1S satisfy:

Ŝ−1Sx = µx

⇔
(
βK̄M−1K̄T +M

)
x = µ

[
βK̄M−1K̄T +M +

√
β(K̄ + K̄T )

]
x.

It is sufficient to show that the Rayleigh quotientR := v
TSv

v
T Ŝv

∈
[
1
2 , 1

]
. To show this, we

write

R =
vT

[
βK̄M−1K̄T +M

]
v

vT
[
βK̄M−1K̄T +M +

√
β(K̄ + K̄T )

]
v

=
aTa+ bTb

(a+ b)T (a+ b)
,

wherea = (
√
βK̄M−1/2)Tv, b = (M1/2)Tv, and withv 6= 0.

The upper bound follows from the fact that
√
βvT (K̄ + K̄T )v = 2

√
βvTHv ≥ 0 by

the assumption of positive semi-definiteness ofH, as well as the positivity ofbTb = vTMv

(which ensures that both the numerator and denominator ofR are strictly positive).
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FIG. 4.1.Spectra of̂S−1S for β = 10−2, β = 10−4, β = 10−6, andβ = 10−8 for an evenly spaced grid

onΩ = [−1, 1]2 with h = 2−3, ǫ = 1

100
, andw =

(
sin π

6
, cos π

6

)T .

To show thatR ≥ 1
2 , we proceed as follows noting again thatbTb > 0:

R ≥ 1

2
⇔ aTa+ bTb ≥ 1

2

[
aTa+ bTb+ aTb+ bTa

]

⇔ 1

2

[
aTa+ bTb− aTb− bTa

]
≥ 0

⇔ (a− b)T (a− b) ≥ 0.

As (a− b)T (a− b) = ‖a− b‖22 ≥ 0 is clearly satisfied, the result is proved.

Illustrations of the eigenvalue distribution of̂S−1S for a variety of values ofβ in a
particular practical case are shown in Figure4.1.

Therefore, by Theorem4.1, we may obtain an effective Schur complement approxima-

tion if we can find a good way of approximating the matricesK̄+ 1√
β
M and

(
K̄+ 1√

β
M

)T

.

The method we use for approximating these matrices is the geometric multigrid process de-
scribed for the forward problem in Section2.1: with the coarse grid matrices formed explicitly
rather than by the use of prolongation and restriction operators and with block Gauss-Seidel
smoothing.



ETNA
Kent State University 

http://etna.math.kent.edu

ITERATIVE SOLVERS FOR CONVECTION-DIFFUSION CONTROL 303

So, as we now have good approximations of the matricesA andS, we can propose two
effective preconditioners of the form

P̂1 =

[
Â 0

0 Ŝ

]
, P̂2 =

[
Â 0

B −Ŝ

]
,

described in Section2.2.
Unlike the forward problem, the convection-diffusion control problem is symmetric with

our (symmetric) stabilization, and sôP1 is symmetric positive definite. Therefore, our first
method for solving the matrix system (3.4) would be to apply a MINRES method with pre-
conditioner

P̂1 =



M̂ 0 0

0 βM̂ 0

0 0 Ŝ


 .(4.1)

In our preconditioner,̂M denotes20 steps of Chebyshev semi-iteration to approximate the
mass matrixM , andŜ denotes the approximation to the Schur complement discussed above.

Our second method involves applying the Bramble-Pasciak Conjugate Gradient method
as described in Section2.2with preconditioner

P̂2 =



γM̂ 0 0

0 βγM̂ 0

K̄ −M −Ŝ


(4.2)

and inner product given by

H =



M − γM̂ 0 0

0 β
(
M − γM̂

)
0

0 0 Ŝ


 ,

whereγ is a constant which can be chosen a priori to ensure thatM−γM̂ is positive definite;
results for a 2DQ1 mass matrix which may be applied to the test problems of Section 5 are
provided in [20].

At this juncture, we make two points about our preconditioning strategy and its applica-
bility:

1. The matrix system (3.4) for the distributed convection-diffusion control problem
could potentially be reduced to the following system of equations by elimination of
the discretized gradient equation

[
M K̄T

K̄ − 1
βM

] [
y

p

]
=

[
b

d

]
, p = βu.

We note that our preconditioning strategy could also be applied to this problem as we
still obtain a saddle point system of the structure discussed in Section2.2, so we will
again need to implement a Chebyshev semi-iteration processto approximateM and
enact the approximation of the Schur complementS, which remains the same as for
the system (3.4). We avoid reducing the matrix system in this way here as we wish to
keep the system in a form as general as possible—for example, if boundary control
problems or problems involving control on a subdomain are considered, reducing
the matrix system is not as simple. We note that results obtained when reducing the
matrix system are similar to the case where it is not reduced.
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FIG. 5.1.Solutions of state and control for Problem 1 usingQ1 basis functions withǫ = 1

100
andβ = 1.
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FIG. 5.2.Solutions of state and control for Problem 2 usingQ1 basis functions withǫ = 1

100
andβ = 1.

2. We believe that other similar methods could be devised to solve the convection-
diffusion control problem based on the framework discussedin this section. For
instance, we see no reason why a preconditioner of the form

P̂3 =

[
Â BT

B BÂ−1BT − Ŝ

]
=

[
I 0

BÂ−1 I

] [
Â BT

0 −Ŝ

]
,

which was discussed in the context of the Poisson control problem in [21], could not
be applied to this problem using our approximationsÂ andŜ.

5. Numerical results. In this section, we provide numerical results to illustratethe ef-
fectiveness of our suggested methods. In our numerical tests, we discretize the statey, the
controlu, and the adjointp usingQ1 finite element basis functions.∗†

The two problems that we consider are stated below with plotsof their solutions shown
in Figures5.1and5.2, respectively.

∗We construct the relevant matrices for our two test problems inthe same way as is done in the Incompressible
Flow & Iterative Solver Software (IFISS) package [7, 22].

†All results are generated using a tri-core 2.5 GHz workstation.
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TABLE 5.1
Number ofM INRES iterations with the ‘ideal’ block diagonal preconditioner(4.1) and Bramble-PasciakCG

iterations with the ‘ideal’ block triangular preconditioner (4.2) needed to solve Problem 1. Results are given for
a range of values ofh

2
(which is equal to the inverse of the number of steps in space in each coordinate) andβ,

whereǫ = 1

250
andQ1 basis functions are used to approximate the state, control and adjoint.

M INRES BPCG

ǫ = 1
250 β β

h
2 SIZE 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

2−2 75 13 7 5 3 11 9 6 6
2−3 243 13 9 5 3 12 10 7 6
2−4 867 13 11 5 3 12 13 9 7
2−5 3267 13 12 7 3 13 14 10 7
2−6 12675 13 12 7 4 13 14 12 8
2−7 49923 12 11 9 5 13 15 15 10

• PROBLEM 1: We wish to solve the following distributed convection-diffusion con-
trol problem onΩ = [−1, 1]2

min
y,u

1

2
‖y‖2L2(Ω) +

β

2
‖u‖2L2(Ω)

s.t.− ǫ∇2y +w · ∇y = u in Ω,

y =

{
1 on∂Ω1 := ([0, 1]× {−1}) ∪ ({1} × [−1, 1]),
0 on∂Ω\∂Ω1,

wherew =
(
sin π

6 , cos
π
6

)T
. This is an optimal control problem involving a constant

windw; forward problems of this form have previously been considered in literature
such as [8, 18].

• PROBLEM 2: We wish to solve the following distributed convection-diffusion con-
trol problem onΩ = [−1, 1]2

min
y,u

1

2
‖y‖2L2(Ω) +

β

2
‖u‖2L2(Ω)

s.t.− ǫ∇2y +w · ∇y = u in Ω,

y =

{
1 on∂Ω2 := {1} × [−1, 1],
0 on∂Ω\∂Ω2,

wherew =
(
1
2x2(1− x2

1),− 1
2x1(1− x2

2)
)T

andx = (x1, x2)
T denotes the spatial

coordinates. This is an optimal control formulation of thedouble-glazing problem
discussed in [8, p. 119]: a model of the temperature in a cavity with recirculating
windw. We note that we have chosen the wind so that the maximum valueof ‖w‖2
onΩ is equal to1.

We first provide a proof-of-concept that our proposed preconditioners are effective ones.
In Table5.1, we present iteration numbers for solving Problem 1 withǫ = 1

250 and a range
of h and β using ‘ideal’ versions of our two preconditioners (specifically, where we in-
vertK̄ + 1√

β
M and its transpose directly in the preconditioners rather than using a multigrid

method). The results shown illustrate that in theory our preconditioners are highly potent
for a range of parameters. All other results presented are thus generated using the geometric
multigrid procedure previously described.
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TABLE 5.2
Number ofM INRES iterations with block diagonal preconditioner(4.1) needed to solve Problem 1 and compu-

tation times taken to do so (in seconds). Results are given for a range of values ofh
2

(and hence problem size) andβ

with ǫ = 1

100
andǫ = 1

500
, whereQ1 basis functions are used to approximate the state, control,and adjoint.

M INRES β

ǫ = 1
100 10−2 10−4 10−6 10−8

h
2 SIZE ITER. TIME ITER. TIME ITER. TIME ITER. TIME

2−2 75 13 0.070 7 0.051 5 0.040 3 0.038
2−3 243 13 0.11 9 0.092 5 0.072 3 0.063
2−4 867 13 0.20 11 0.17 5 0.078 3 0.064
2−5 3267 13 0.54 12 0.50 7 0.29 3 0.23
2−6 12675 13 2.36 13 2.24 7 1.52 5 1.53
2−7 49923 13 14.1 11 12.9 9 11.1 5 8.10

M INRES β

ǫ = 1
500 10−2 10−4 10−6 10−8

h
2 SIZE ITER. TIME ITER. TIME ITER. TIME ITER. TIME

2−2 75 13 0.072 7 0.054 5 0.044 3 0.038
2−3 243 13 0.13 9 0.098 4 0.066 3 0.060
2−4 867 13 0.27 11 0.15 5 0.084 3 0.062
2−5 3267 13 0.58 12 0.52 7 0.42 3 0.27
2−6 12675 13 2.93 12 2.73 7 1.76 4 1.21
2−7 49923 12 15.2 11 15.1 9 10.2 5 9.51

In Table5.2, we present the number of MINRES iterations and computation times (includ-
ing the time taken to construct the relevant matrices on sub-grids) required to solve Problem 1
with ǫ = 1

100 andǫ = 1
500 using the preconditioner̂P1 to a tolerance of10−6.‡ In Table5.3

we show how many Bramble-Pasciak CG iterations are requiredto solve the same problem to
the same tolerance with the preconditionerP̂2 and withγ = 0.95.§ We observe that both our
solvers generate convergence in a small number of iterations for both values of the viscosity.
The convergence rate actually improves asβ decreases, probably because our Schur comple-
ment approximation becomes better for smallerβ as illustrated by Figure4.1. Although we

take the windw =
(
sin π

6 , cos
π
6

)T
and specific values ofǫ, we find, in other computations

not presented here, that the results are similar for any constant wind with vector2-norm equal
to 1 for a wide range ofǫ. We note that altering the boundary conditions or target function ŷ

would not change the matrix within the system being solved, so our solvers seem to be very
robust for problems involving constant winds and values ofβ which are of computational
interest.

In Table 5.4, we present the number of preconditioned MINRES iterations and CPU
times required to solve Problem 2, a harder problem, to the same tolerance, whenǫ = 1

100

‡In our numerical experiments, we set the viscosity to be of the same order as for the numerical tests for the
forward problem in [17], however we note that our solvers are often very effective whenǫ is even smaller.

§We wish to chooseγ reasonably close to1 in order that the approximation of the(1, 1)-block is effective but
also far enough away from1 to ensure that the inner product we work with is clearly positive definite. We find that
the valueγ = 0.95 meets these criteria in practice. Similar issues are discussed in [20] in the context of solving
Poisson control problems.
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TABLE 5.3
Number of Bramble-PasciakCG iterations with block triangular preconditioner(4.2) needed to solve Prob-

lem 1 and computation times taken to do so (in seconds). Results are given for a range of values ofh
2

(and hence

problem size) andβ with ǫ = 1

100
and ǫ = 1

500
, whereQ1 basis functions are used to approximate the state,

control, and adjoint.

BPCG β

ǫ = 1
100 10−2 10−4 10−6 10−8

h
2 SIZE ITER. TIME ITER. TIME ITER. TIME ITER. TIME

2−2 75 10 0.056 9 0.050 6 0.040 6 0.044
2−3 243 12 0.11 10 0.11 7 0.084 6 0.075
2−4 867 12 0.20 13 0.22 9 0.17 7 0.13
2−5 3267 13 0.60 14 0.62 10 0.46 7 0.38
2−6 12675 13 2.89 15 2.99 12 2.60 9 2.31
2−7 49923 13 14.5 15 16.0 15 15.8 11 11.6

BPCG β

ǫ = 1
500 10−2 10−4 10−6 10−8

h
2 SIZE ITER. TIME ITER. TIME ITER. TIME ITER. TIME

2−2 75 11 0.057 8 0.048 6 0.047 6 0.043
2−3 243 12 0.11 10 0.10 7 0.080 6 0.079
2−4 867 12 0.22 13 0.22 9 0.16 7 0.14
2−5 3267 13 0.52 14 0.55 10 0.45 7 0.36
2−6 12675 13 2.91 14 2.96 12 2.68 8 2.01
2−7 49923 13 13.7 15 14.8 14 14.2 9 10.5

andǫ = 1
500 ; the number of preconditioned Bramble-Pasciak CG iterations required to solve

this problem is shown in Table5.5. Once more, for this problem and a wide range of values
of β, our solvers are effective with convergence achieved in a very small number of iterations.
We find that for this harder problem (with non-constant wind), the iteration numbers may rise
very slightly for smallerǫ in some cases (see Tables5.4and5.5), however the iteration num-
bers in all cases are very reasonable.

We can see that the MINRES and Bramble-Pasciak CG methods are very competitive,
and the results for both methods are similar. Whereas MINRES tends to converge in fewer
iterations, the Bramble-Pasciak CG method is computationally cheaper for a fixed number of
iterations. We note that the computation times for Bramble-Pasciak CG seem to be better for
largerβ (in particular for smallerh) and that the MINRES solver works better for smallerβ
due to the lower iteration numbers. We note that whenβ is small compared toh, as observed
in Figure4.1, the eigenvalues of the preconditioned Schur complement are highly clustered—
consequently for smallerβ the iteration numbers are particularly low for largerh and increase
slightly ash is decreased. However the analysis of Section4 and these results illustrate that
the iteration count should be bounded by a low number for these problems ash decreases.

The results in this section illustrate that the solvers we have proposed are potent ones
for a number of convection-diffusion control problems, a class of problems which, as for
the convection-diffusion equation itself, is fraught withnumerical difficulties. The number
of iterations required to solve these problems is small, andthe convergence of the solvers
improves rather than degrades asβ is decreased. As observable from the computation times
shown in Tables5.2–5.5, the convergence is close to linear with respect to the size of the



ETNA
Kent State University 

http://etna.math.kent.edu

308 J. W. PEARSON AND A. J. WATHEN

TABLE 5.4
Number ofM INRES iterations with block diagonal preconditioner(4.1) needed to solve Problem 2 and compu-

tation times taken to do so (in seconds). Results are given for a range of values ofh
2

(and hence problem size) andβ

with ǫ = 1

100
andǫ = 1

500
, whereQ1 basis functions are used to approximate the state, control,and adjoint.

M INRES β

ǫ = 1
100 10−2 10−4 10−6 10−8

h
2 SIZE ITER. TIME ITER. TIME ITER. TIME ITER. TIME

2−2 75 13 0.071 7 0.050 4 0.044 3 0.039
2−3 243 15 0.13 7 0.063 4 0.061 3 0.059
2−4 867 13 0.19 7 0.13 5 0.076 3 0.065
2−5 3267 13 0.52 9 0.42 5 0.32 3 0.25
2−6 12675 13 2.39 11 2.14 7 1.49 3 1.06
2−7 49923 13 13.9 11 13.2 9 10.8 5 8.32

M INRES β

ǫ = 1
500 10−2 10−4 10−6 10−8

h
2 SIZE ITER. TIME ITER. TIME ITER. TIME ITER. TIME

2−2 75 15 0.074 7 0.053 5 0.041 3 0.040
2−3 243 21 0.20 7 0.085 4 0.071 3 0.060
2−4 867 19 0.35 9 0.17 5 0.085 3 0.064
2−5 3267 12 0.55 9 0.47 5 0.33 3 0.28
2−6 12675 12 2.81 9 2.34 5 2.10 3 1.17
2−7 49923 12 15.4 11 14.7 5 8.92 3 7.71

matrix system—we find that the only part of the solvers that does not scale linearly in time is
the construction of matrices on the sub-grids.

6. Conclusions. In this manuscript we have first given an overview of a GMRES ap-
proach for solving the convection-diffusion equation, as well as summarizing some general
properties of saddle point systems and some possible solution methods for such systems.

We then introduced the convection-diffusion control problem and illustrated that, with
a suitable stabilization technique (the Local Projection Stabilization), the same saddle point
system arises whether the discretize-then-optimize approach or the optimize-then-discretize
approach is used for solving the control problem.

We proposed two effective solvers for solving the convection-diffusion control problem:
one involving a MINRES solver with a block diagonal preconditioner and one involving a
Bramble-Pasciak Conjugate Gradient approach with a block triangular preconditioner. The
key components of each of these preconditioners are a good approximation of the mass ma-
trix, a powerful approximation of the Schur complement of the matrix system, and a geomet-
ric multigrid process which enables us to enact that Schur complement approximation.

We have shown theoretically that in an ideal case our preconditioners should be effective
ones. Numerical results given in Section5 indicate that our solvers do indeed perform well in
practice for the problems we have tested, yielding fast and close to linear convergence as the
problem size is increased; this rate of convergence improves as the regularization parameterβ

is decreased. We proved that the convergence rate cannot worsen asβ is decreased if exact
solves are used within a preconditioner and have illustrated numerically that the Chebyshev
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TABLE 5.5
Number of Bramble-PasciakCG iterations with block triangular preconditioner(4.2) needed to solve Prob-

lem 2 and computation times taken to do so (in seconds). Results are given for a range of values ofh
2

(and hence

problem size) andβ with ǫ = 1

100
and ǫ = 1

500
, whereQ1 basis functions are used to approximate the state,

control, and adjoint.

BPCG β

ǫ = 1
100 10−2 10−4 10−6 10−8

h
2 SIZE ITER. TIME ITER. TIME ITER. TIME ITER. TIME

2−2 75 10 0.056 7 0.050 6 0.040 6 0.044
2−3 243 12 0.10 8 0.097 6 0.078 6 0.077
2−4 867 12 0.19 10 0.18 7 0.14 6 0.12
2−5 3267 13 0.58 12 0.52 9 0.44 7 0.38
2−6 12675 13 2.93 15 3.02 11 2.38 8 2.10
2−7 49923 13 14.2 15 15.6 15 15.5 10 10.4

BPCG β

ǫ = 1
500 10−2 10−4 10−6 10−8

h
2 SIZE ITER. TIME ITER. TIME ITER. TIME ITER. TIME

2−2 75 12 0.061 7 0.046 6 0.045 6 0.043
2−3 243 16 0.13 8 0.091 6 0.071 6 0.075
2−4 867 17 0.25 9 0.16 7 0.13 6 0.13
2−5 3267 13 0.54 11 0.45 7 0.38 6 0.34
2−6 12675 13 2.86 13 2.88 9 2.28 7 1.85
2−7 49923 13 13.6 15 15.4 11 12.7 7 9.14

semi-iteration and multigrid methods used show robustnessin practice. We have observed
that our solution methods work well whether SUPG or LPS stabilization is used. The methods
also work well with no stabilization at all when such an approach is reasonable; for such
diffusion-dominated problems, it is likely that more standard methods (including multigrid)
could also be effective. If new stabilization methods are discovered for this problem, we
might predict that our proposed preconditioners will againprove to be potentially useful for
its solution.
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