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CONVERGENCE ANALYSIS OF GALERKIN POD FOR LINEAR SECOND

ORDER EVOLUTION EQUATIONS∗

SABRINA HERKT†, MICHAEL HINZE‡, AND RENE PINNAU§

Abstract. In this paper, we investigate the proper orthogonal decomposition (POD) discretization method for

linear second order evolution equations. We present error estimates for two different choices of snapshot sets, one

consisting of solution snapshots only and one consisting of solution snapshots and their derivatives up to second

order. We show that the results of [Numer. Math., 90 (2001), pp. 117–148] for parabolic equations can be extended

to linear second order evolution equations, and that the derivative snapshot POD method behaves better than the

classical one for small time steps. Numerical comparisons of the different approaches are presented, illustrating the

theoretical results.
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1. Introduction. Simulation of industrial problems like flow or heat transfer often

requires the solution of large linear or nonlinear systems consisting of tens of thousands

of degrees of freedom [9]. Problems of such high dimensions can be handled by using

powerful computers with large storage capabilities. Additionally, in some applications, these

simulations need to be repeated several times with slightly different input, like in general

controller design problems or in the durability simulation of wind turbines [8]. Often even

real-time simulation is required, like in multibody dynamics with hardware-in-the-loop or

human-in-the-loop systems. In these cases, simulation time becomes an important issue.

Over the years, various methods of model reduction for both linear and nonlinear systems

have been developed [11]. These methods allow the construction of low-dimensional reduced

models that conserve the essential properties and features of the large model. Whereas the

most popular reduction methods such as balanced truncation, moment matching, or analysis

of eigenforms only seem to be suitable for linear problems, the method of proper orthogonal

decomposition (POD) can also be applied to nonlinear systems. Its flexibility in application

is based on analyzing a given data set to provide the reduced model, as described in Section 2

of this paper. Originating from fluid dynamic applications including turbulence and coherent

structures [2], the method has also proved useful for certain problems in optimal control [5]

and in circuit simulations [14].

To justify the method mathematically, Kunisch and Volkwein [6, 7] proved error bounds

for POD-Galerkin approximations of linear and nonlinear parabolic equations, respectively.

Guided by their numerical analysis, they proposed to also include derivative information in

the snapshot set, and proved the superiority of this modified POD approach over the classical

one both theoretically and numerically. In [5], the second author and Volkwein extended this

analysis to optimal control problems using POD-surrogate models.

In Section 3 of this work, we derive error estimates for POD-Galerkin approximations to

linear second order evolution equations based on time discretization with Newmark’s scheme.

Similar to [6] and [7], we show that convergence can be guaranteed for the derivative approach

and for the classical method if the time step size and the dimension of the POD subspace

are coupled appropriately. Our numerical experiments with the wave equation, described in
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Section 4, show that the error behavior of both methods strongly depends on the eigenvalues

of the correlation matrix.

2. POD for linear second order evolution equations. The linear wave equation is a

simple example of a partial differential equation of second order. In this section, we outline

the mathematical framework required to handle such problems. Furthermore, we describe the

discretization by Newmark’s method and the POD scheme.

2.1. Problem description. Let V and H be real, separable Hilbert spaces for which we

require [4, 6]

V →֒ H = H ′ →֒ V ′,

where V ′ denotes the dual of V . Each embedding is assumed to be dense and continuous.

Further, let a : V ×V → R be a continuous, coercive and symmetric bilinear form, i.e., there

exist constants β, κ ≥ 0 such that

‖a(φ, ψ)‖ ≤ β ‖φ‖V ‖ψ‖V ,(2.1)

κ ‖φ‖2V ≤ a(φ, φ),(2.2)

for all φ, ψ ∈ V .

As a simple example of a second order evolution equation, we chose the linear wave

equation expressed in weak form:

〈ẍ(t), φ〉H +D〈ẋ(t), φ〉H + a (x(t), φ) = 〈f(t), φ〉H(2.3a)

for all φ ∈ V and t ∈ [0, T ],

〈x(0), ψ〉 = 〈x0, ψ〉H for all ψ ∈ H,(2.3b)

〈ẋ(0), ψ〉 = 〈ẋ0, ψ〉H for all ψ ∈ H,(2.3c)

where f(t) ∈ H is a given external force and x(t) ∈ V denotes the unknown deformation

over time t ∈ [0, T ]. Note that (2.3) incorporates a damping term that corresponds to a

Rayleigh-type damping matrix C which is D times the mass matrix [3, 4].

Concerning the existence of a unique solution, the following result is available [3].

PROPOSITION 2.1. For f ∈ L2((0, T );H) and x0, ẋ0 ∈ H , the weak form problem (2.3)

admits a unique solution.

2.2. POD-Newmark scheme. We discretize (2.3) in time using Newmark’s scheme [4];

that is, we partition the time interval [0, T ] into m subintervals of equal size ∆t = T/m, and

we seek a sequence (Xk) ⊂ V , k = 0, . . . ,m, that satisfies the following equations for each

time tk = k ·∆t:

〈∂∂Xk, φ〉H +D〈∂Xk, φ〉H + a (Xk, φ) = 〈f(tk), φ〉H(2.4a)

for all φ ∈ V and k = 1, . . .m,

〈X0, ψ〉 = 〈x0, ψ〉H for all ψ ∈ V,(2.4b)

〈∂X0, ψ〉 = 〈∂x0, ψ〉H for all ψ ∈ V.(2.4c)

Here we use the derivative approximations

∂Xk+1 =
2

∆t
Xk+1 −

2

∆t
Xk − ∂Xk,(2.5a)

∂∂Xk+1 =
4

∆t2
Xk+1 −

4

∆t2
Xk − 4

∆t
∂Xk − ∂∂Xk,(2.5b)
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for k = 1, . . . ,m.

REMARK 2.2. The initial deformation X0 and velocity ∂X0 in the Newmark prob-

lem (2.4) are determined by the initial conditions x0 and ∂x0 from (2.3). The equilibrium

equations then yield the acceleration ∂∂X0.

Like any Galerkin-type method, proper orthogonal decomposition is a spatial discretiza-

tion scheme approximating the solution Xk by a linear combination of basis vectors ϕi ∈ V ,

(2.6) Xk =

l∑

i=1

ϕi · pi(tk) for k = 1 . . .m,

where pi denotes the time-dependent participation factor of the basis vector i in the solution.

Setting V l = span{ϕ1, . . . , ϕl} ⊂ V , the POD-Newmark scheme for the wave equation

involves finding a sequence {Xk}k=0,...,m ⊂ V l that satisfies

〈∂∂Xk, φ〉H +D〈∂Xk, φ〉H + a (Xk, φ) = 〈f(tk), φ〉H(2.7a)

for all φ ∈ V l and k = 1, . . . ,m,

〈X0, ψ〉 = 〈x0, ψ〉H for all ψ ∈ V l,(2.7b)

〈∂X0, ψ〉 = 〈∂x0, ψ〉H for all ψ ∈ V l.(2.7c)

The unique solvability of these equations follows from the following result [3].

PROPOSITION 2.3. Under the above assumptions there exists a unique solutionXk ∈ V l

to problem (2.7) for each time level k = 1, . . . ,m.

The essential step of the snapshot POD method [12] is the construction of the subspace

V l. In the usual snapshot POD approach, we take snapshots Xk, k = 1, . . . ,m, of the

previously computed solution of problem (2.4). The subspace V l is chosen to be the

best approximation of the snapshot set {Xk} in a least squares sense [10]. In this paper

we consider POD subspaces built from two different snapshot sets: set I consisting of

deformation snapshots {x(tk)} at all time instances, and set II consisting of deformations

and derivative approximations {x(tk), ∂x(tk), ∂∂x(tk)}. These sets yield the snapshot

matrices YI and YII defined by

YI = [x(t0), . . . , x(tm)] and(2.8)

YII = [x(t0), . . . , x(tm), ∂x(t1), . . . , ∂x(tm), ∂∂x(t1), . . . , ∂∂x(tm−1)].(2.9)

Note that the derivative approximations ∂x(tk) and ∂∂x(tk) are elements of the space V .

Furthermore, their inclusion does not change the dimension of the snapshot set, since they

can be expressed as linear combinations of the deformation snapshots

∂Xk+1 + ∂Xk =
2

∆t
(Xk+1 −Xk) ,

∂∂Xk+1 + 2∂∂Xk + ∂∂Xk−1 =
4

∆t2
(Xk+1 − 2Xk +Xk−1) .

We write YI,II = [y0, . . . , yd] with either d = m or d = 3m − 1. In both cases, we follow

the regular POD recipe [13]:

1. Construct the correlation matrix C from scalar products of the snapshots yi in the

space X = V or the space X = H:

Cij = 〈yi, yj〉X , i, j = 1, . . . d.
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2. Solve the eigenvalue problem

Cvk = λkv
k.

3. Define the POD basis vectors by

φk =
1√
λk
Y · vk.

Each of the orthonormal eigenvectors vk of the correlation matrix defines a basis vector ϕk

of the POD subspace. Depending on the number of basis vectors used for the subspace

V l = span{ϕ1, . . . , ϕl}, the projection error for

P ly :=
l∑

j=1

〈y, ϕj〉X · ϕj

can be expressed as

(2.10)
1

m

m∑

k=1

∥∥∥∥∥∥
yk −

l∑

j=1

〈yk, ϕj〉X · ϕj

∥∥∥∥∥∥

2

X

=

d∑

j=l+1

λj .

The integer d < n denotes the dimension of the snapshot set Y and l < d is the number of

POD basis vectors used for the projection.

The “optimal basis” consists of the eigenvectors corresponding to the l largest eigenval-

ues and spans the subspace V l with the smallest projection error of all possible l-dimensional

subspaces V̂ l ⊂ V . This set of basis vectors is often called the Karhunen-Loève basis [11].

3. Error estimates. The error of the POD-Newmark scheme is defined as the difference

between the numerical solution X(t) of (2.7) and the analytical solution x(t) of (2.3). Our

goal is to prove a bound for the H-norm of the solution difference.

THEOREM 3.1. Let x(t) be the regular solution of (2.3) and Xk, k = 1, . . . ,m, be the

solution of (2.7) at each time step tk. Let the POD subspace V l be constructed from snapshot

set YI or YII , respectively. Then there exist constants CI and CII depending on T , D, x(3)

and x(4), but not on ∆t, m or l, such that for ∆t ≤ 1,

1

m

m∑

k=1

‖Xk − x(tk)‖2H ≤

CI

(
∥∥X0 − P lx(t0)

∥∥2
H
+
∥∥X1 − P lx(t1)

∥∥2
H
+∆t

∥∥∂X0 − P lẋ(t0)
∥∥2
H

+∆t
∥∥∂X1 − P lẋ(t1)

∥∥2
H
+∆t4 +

(
1

∆t4
+

1

∆t
+ 1

) d∑

j=l+1

λIj

)
(3.1)

for snapshots constructed via YI , and

1

m

m∑

k=1

‖Xk − x(tk)‖2H ≤

CII

(
∥∥X0 − P lx(t0)

∥∥2
H
+
∥∥X1 − P lx(t1)

∥∥2
H
+∆t

∥∥∂X0 − P lẋ(t0)
∥∥2
H

+∆t
∥∥∂X1 − P lẋ(t1)

∥∥2
H
+∆t4 +

d∑

j=l+1

λIIj

)
(3.2)
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for snapshots constructed via YII .

REMARK 3.2. These estimates are constructed in a similar way to the estimates given in

[6] and [7]. In analogy to [6, Lemma 2] we have: For all x ∈ V ,

‖x‖H ≤
√
‖M‖2 · ‖K−1‖2 · ‖x‖V for all x ∈ V l,(3.3)

‖x‖V ≤
√

‖K‖2 · ‖M−1‖2 · ‖x‖H for all x ∈ V l,(3.4)

with Mij = 〈Φi,Φj〉H , Kij = 〈Φi,Φj〉V ,(3.5)

where ‖·‖2 denotes the spectral norm for symmetric matrices. M and K are called the

system’s mass matrix and stiffness matrix, respectively.

These inequalities allow us to set up an error estimate in the H-norm and also to control

the error in the V -norm as long as ‖M‖2,
∥∥M−1

∥∥
2
, ‖K‖2 and

∥∥K−1
∥∥
2

are bounded. Hence,

we restrict ourselves to the H-norm in the following.

REMARK 3.3. Note that the eigenvalues λIj and λIIj are not identical. The weighting of

snapshots is changed by inclusion of the derivative approximations, which leads to different

choices of basis vectors for the subspaces V l
I and V l

II . In both cases, the snapshot correlation

matrix C is generally not invertible, so the sum of the eigenvalues remains finite.

Proof. Recall that Xk is the solution of the POD system (2.7) at times tk = k · ∆t,
k = 0, . . . ,m, and x(tk) is the corresponding solution of the original system (2.4). In order

to estimate

(3.6)
1

m

m∑

k=1

‖Xk − x(tk)‖2H

we decompose the local error into a projection part ρ and a part ϑ arising from the numerical

discretization procedure:

(3.7) Xk − x(tk) = Xk − P lx(tk)︸ ︷︷ ︸
=:ϑk

+P lx(tk)− x(tk)︸ ︷︷ ︸
=:ρk

,

which yields

(3.8)
1

m

m∑

k=1

‖Xk − x(tk)‖2H ≤ 2

m

m∑

k=1

‖ϑk‖2H +
2

m

m∑

k=1

‖ρk‖2H .

For an estimate of ‖ρk‖2H we use the error bound (2.10). Case I is constructed in the

“classical” way and simply yields the POD projection error [13]

(3.9)
1

m+ 1

m∑

k=0

∥∥∥∥∥∥
xk −

l∑

j=1

〈xk, φj〉X · φj

∥∥∥∥∥∥

2

X

=

d∑

j=l+1

λIj .

Here, xk denotes the snapshot x(tk).
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For later use we derive

m−1∑

k=1

∥∥∥∥∥∥
∂ (xk+1 + 2xk + xk−1)−

l∑

j=1

〈∂ (xk+1 + 2xk + xk−1) , φj〉X · φj

∥∥∥∥∥∥

2

X

=

m−1∑

k=1

1

∆t4
∥∥xk+1 − 2xk + xk−1 − P lxk+1 + 2P lxk − P lxk−1

∥∥2
X

≤ 4

∆t2

m−1∑

k=1

2
(∥∥xk+1 − P lxk+1

∥∥2
X
+
∥∥xk−1 − P lxk−1

∥∥2
X

)

≤ 16

∆t2

m∑

k=0

∥∥xk − P lxk
∥∥2
X

≤ 16

∆t2
(m+ 1)

d∑

j=l+1

λIj(3.10)

and

m−1∑

k=1

∥∥∥∥∥∥
∂∂ (xk+1 + 2xk + xk−1)−

l∑

j=1

〈∂∂ (xk+1 + 2xk + xk−1) , φj〉X · φj

∥∥∥∥∥∥

2

X

=

m−1∑

k=1

16

∆t4
∥∥xk+1 − 2xk + xk−1 − P lxk+1 + 2P lxk − P lxk−1

∥∥2
X

≤ 16

∆t4

m−1∑

k=1

4
(∥∥xk+1 − P lxk+1

∥∥2
X
+
∥∥2xk − 2P lxk

∥∥2
X
+
∥∥xk−1 − P lxk−1

∥∥2
X

)

≤ 384

∆t4

m∑

k=0

∥∥xk − P lxk
∥∥2
X

≤ 384

∆t4
(m+ 1)

d∑

j=l+1

λIj .(3.11)

For the second case, the POD error is analogously defined for the sum over all snapshots

(solution x and derivatives ∂x and ∂∂x):

1

3m

m∑

k=0

∥∥∥∥∥∥
xk −

l∑

j=1

〈xk, φj〉X · φj

∥∥∥∥∥∥

2

X

+

+
1

3m

m∑

k=1

∥∥∥∥∥∥
∂xk −

l∑

j=1

〈∂xk, φj〉X · φj

∥∥∥∥∥∥

2

X

+

+
1

3m

m−1∑

k=1

∥∥∥∥∥∥
∂∂xk −

l∑

j=1

〈∂∂xk, φj〉X · φj

∥∥∥∥∥∥

2

X

=
d∑

j=l+1

λIIj ,(3.12)
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which yields

1

m

m∑

k=1

‖ρk‖2X =
1

m

m∑

k=1

∥∥∥∥∥∥
xk −

l∑

j=1

〈xk, φj〉X · φj

∥∥∥∥∥∥

2

X

≤ 3 ·
d∑

j=l+1

λIIj ,

1

m

m∑

k=1

∥∥∥∥∥∥
∂xk −

l∑

j=1

〈∂xk, φj〉X · φj

∥∥∥∥∥∥

2

X

≤ 3 ·
d∑

j=l+1

λIIj ,

1

m

m−1∑

k=1

∥∥∥∥∥∥
∂∂xk −

l∑

j=1

〈∂∂xk, φj〉X · φj

∥∥∥∥∥∥

2

X

≤ 3 ·
d∑

j=l+1

λIIj .

Hence, we get the estimate

m−1∑

k=1

∥∥∥∥∥∥
∂ (xk+1 + 2xk + xk−1)−

l∑

j=1

〈∂ (xk+1 + 2xk + xk−1) , φj〉X · φj

∥∥∥∥∥∥

2

X

≤ 24
m−1∑

k=1

∥∥∥∥∥∥
∂xk −

l∑

j=1

〈∂xk, φj〉X · φj

∥∥∥∥∥∥

2

X

≤ 72m ·
d∑

j=l+1

λIIj ,(3.13)

and an analogous estimate holds for the second derivatives

m−1∑

k=1

∥∥∥∥∥∥
∂∂ (xk+1 + 2xk + xk−1)−

l∑

j=1

〈∂∂ (xk+1 + 2xk + xk−1) , φj〉X · φj

∥∥∥∥∥∥

2

X

≤ 24

m−1∑

k=1

∥∥∥∥∥∥
∂∂xk −

l∑

j=1

〈∂∂xk, φj〉X · φj

∥∥∥∥∥∥

2

X

≤ 72m ·
d∑

j=l+1

λIIj .(3.14)

For an estimate of ‖ϑk‖2H =
∥∥Xk − P lx(tk)

∥∥2
H

, we state the following identity:

〈∂∂ϑk, ψ〉H +D〈∂ϑk, ψ〉H + a (ϑk, ψ)

= 〈∂∂Xk, ψ〉H − 〈∂∂P lx(tk), ψ〉H +D · 〈∂Xk, ψ〉H −D · 〈∂P lx(tk), ψ〉H
+ a (Xk, ψ)− a

(
P lx(tk), ψ

)

= 〈f(tk), ψ〉H − a
(
P lx(tk), ψ

)
− 〈∂∂P lx(tk), ψ〉H −D〈∂P lx(tk), ψ〉H

= 〈f(tk), ψ〉H − a (x(tk), ψ)− 〈∂∂P lx(tk), ψ〉H −D〈∂P lx(tk), ψ〉H
= 〈ẍ(tk), ψ〉H +D〈ẋ(tk), ψ〉H − 〈∂∂P lx(tk), ψ〉H
= 〈

(
ẍ(tk)− ∂∂P lx(tk)

)
+D

(
ẋ(tk)− ∂P lx(tk)

)
, ψ〉H

=: 〈vk, ψ〉H ,(3.15)
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which holds for all ψ ∈ V l.

Hence, the sequence ϑk can be regarded as the solution of a linear, damped wave equation

with the “force term” vk. In analogy to the centered scheme described in [4], the Newmark

scheme for this equation can be written as

1

∆t2
〈ϑk+1 − 2ϑk + ϑk−1, ψ〉H +

2D

∆t
〈ϑk+1 − ϑk−1, ψ〉H+

+
1

4
a (ϑk+1 + 2ϑk + ϑk−1, ψ) =

1

4
〈vk+1 + 2vk + vk−1, ψ〉H .

For convenience, we define γk = vk+1 + 2vk + vk−1. Choosing ψ = ϑk+1 − ϑk−1 ∈ V l as

a test function in (3.15), we get

1

∆t2
〈ϑk+1 − 2ϑk + ϑk−1, ϑk+1 − ϑk−1〉H

︸ ︷︷ ︸
=:T1

+
2D

∆t
‖ϑk+1 − ϑk−1‖2H

︸ ︷︷ ︸
=:dk≤0

+

+
1

4
a (ϑk+1 + 2ϑk + ϑk−1, ϑk+1 − ϑk−1)
︸ ︷︷ ︸

=:T2

=
1

4
〈γk, ϑk+1 − ϑk−1〉H
︸ ︷︷ ︸

=:Wk

.

Further, it holds that

T1 =
1

∆t2
〈ϑk+1 − 2ϑk + ϑk−1, ϑk+1 − ϑk−1〉H =

=
1

∆t2
〈(ϑk+1 − ϑk)− (ϑk − ϑk−1), (ϑk+1 − ϑk) + (ϑk − ϑk−1)〉H =

=
1

∆t2

(
‖ϑk+1 − ϑk‖2H − ‖ϑk − ϑk−1‖2H

)

and

T2 =
1

4
a (ϑk+1 + 2ϑk + ϑk−1, ϑk+1 − ϑk−1) =

=
1

4
a ((ϑk+1 + ϑk) + (ϑk + ϑk−1), (ϑk+1 + ϑk)− (ϑk + ϑk−1))

=
1

4
[a (ϑk+1 + ϑk, ϑk+1 + ϑk)− a (ϑk + ϑk−1, ϑk + ϑk−1)] .

This yields

Ek+1 + dk = Ek +W k

with Ek+1 :=

∥∥∥∥
ϑk+1 − ϑk

∆t

∥∥∥∥
2

H

+
1

4
a (ϑk+1 + ϑk, ϑk+1 + ϑk) .

Due to the coercivity of the bilinear form a we have

(3.16)

∥∥∥∥
ϑk+1 − ϑk

∆t

∥∥∥∥
2

H

≤ Ek+1
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and

Ek+1 + dk = E1 +

k∑

i=1

W i = E1 +
1

4

k∑

i=1

〈γi, ϑi+1 − ϑi−1〉H

= E1 +
1

4

k∑

i=1

〈γi, (ϑi+1 − ϑi) + (ϑi − ϑi−1)〉H

= E1 +
1

4

k∑

i=1

〈γi, ϑi+1 − ϑi〉H +
1

4

k∑

i=1

〈γi, ϑi − ϑi−1〉H

= E1 +
1

4

(
k−1∑

i=1

〈γi, ϑi+1 − ϑi〉H + 〈γk, ϑk+1 − ϑk〉H
)

+

+
1

4

(
k−1∑

p=1

〈γp+1, ϑp+1 − ϑp〉H + 〈γ1, ϑ1 − ϑ0〉H
)

= E1 +
1

4
〈γk, ϑk+1 − ϑk〉H +

1

4
〈γ1, ϑ1 − ϑ0〉H

+
1

4

k−1∑

i=1

〈γi+1 + γi, ϑi+1 − ϑi〉H .

Using Young’s inequality and ∆t ≤ 1, we get

∥∥∥∥
ϑk+1 − ϑk

∆t

∥∥∥∥
2

H

≤ E1 +
∆t

32
‖γ1‖2H +

∆t

2

∥∥∥∥
ϑ1 − ϑ0

∆t

∥∥∥∥
2

H

+
∆t

32
‖γk‖2H +

∆t

2

∥∥∥∥
ϑk+1 − ϑk

∆t

∥∥∥∥
2

H

+

+

k−1∑

i=1

∆t

32
‖γi+1 + γi‖2H +

k−1∑

i=1

∆t

2

∥∥∥∥
ϑi+1 − ϑi

∆t

∥∥∥∥
2

H

≤ E1 +
∆t

32
‖γ1‖2H +

∆t

2

∥∥∥∥
ϑ1 − ϑ0

∆t

∥∥∥∥
2

H

+
∆t

32
‖γk‖2H +

1

2

∥∥∥∥
ϑk+1 − ϑk

∆t

∥∥∥∥
2

H

+

+

k−1∑

i=1

∆t

32
‖γi+1 + γi‖2H +

k−1∑

i=1

∆t

2

∥∥∥∥
ϑi+1 − ϑi

∆t

∥∥∥∥
2

H

.

This yields

∥∥∥∥
ϑk+1 − ϑk

∆t

∥∥∥∥
2

H

≤ 2 · E1 +
∆t

16
‖γ1‖2H +∆t

∥∥∥∥
ϑ1 − ϑ0

∆t

∥∥∥∥
2

H

+
∆t

16
‖γk‖2H +

+

k−1∑

i=1

∆t

16
‖γi+1 + γi‖2H +

k−1∑

i=1

∆t

∥∥∥∥
ϑi+1 − ϑi

∆t

∥∥∥∥
2

H

≤ 2 · E1 +∆t

∥∥∥∥
ϑ1 − ϑ0

∆t

∥∥∥∥
2

H

+

k∑

i=1

∆t

4
‖γi‖2H +

k−1∑

i=1

∆t

∥∥∥∥
ϑi+1 − ϑi

∆t

∥∥∥∥
2

H

.
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We use the discrete Gronwall lemma [1], which yields

k∑

i=1

∆t

∥∥∥∥
ϑi+1 − ϑi

∆t

∥∥∥∥
2

H

≤

≤ (1 + ∆t)
k

k∑

i=1

(1 + ∆t)
−i


2 · E1 +∆t

∥∥∥∥
ϑ1 − ϑ0

∆t

∥∥∥∥
2

H

+
i−1∑

j=1

∆t

4
‖γj‖2H




≤ eT ·
(
2 · E1 +∆t

∥∥∥∥
ϑ1 − ϑ0

∆t

∥∥∥∥
2

H

)
+

k∑

i=1

∆t

4
‖γi‖2H +

k∑

i=2

i−1∑

j=1

∆t

4
‖γj‖2H

≤ eT ·
(
2 · E1 +∆t

∥∥∥∥
ϑ1 − ϑ0

∆t

∥∥∥∥
2

H

)
+

k∑

i=1

∆t

4
‖γi‖2H +

∆t

4

k∑

i=2

(k − i) ‖γi‖2H

≤ eT ·
(
2 · E1 +∆t

∥∥∥∥
ϑ1 − ϑ0

∆t

∥∥∥∥
2

H

+
∆t

4

k∑

i=1

‖γi‖2H

)
.

Therefore,

∆t

m∑

i=1

∥∥∥∥
ϑi+1 − ϑi

∆t

∥∥∥∥
2

H

≤ eT ·
(
2 · E1 +∆t

∥∥∥∥
ϑ1 − ϑ0

∆t

∥∥∥∥
2

H

+
∆t

4

m∑

i=1

‖γi‖2H

)
,

which depends only on the initial conditions ϑ0 and ϑ̇0 and on the sequence (γk).
Further, we have

‖ϑk+1‖2H ≤
∥∥∥∥∥ϑ1 +

k−1∑

i=1

(ϑi+1 − ϑi)

∥∥∥∥∥

2

H

≤ 2 ‖ϑ1‖2H + 2k

k∑

i=1

‖ϑi+1 − ϑi‖2H

≤ 2 ‖ϑ1‖2H + 2m∆t
m∑

i=1

∥∥∥∥
ϑi+1 − ϑi

∆t

∥∥∥∥
2

H

≤ 2 ‖ϑ1‖2H + 2TeT

(
2 · E1 +∆t

∥∥∥∥
ϑ1 − ϑ0

∆t

∥∥∥∥
2

H

+
∆t

4

m∑

i=1

‖γi‖2H

)
,

which yields for the averaged sum

1

m

m∑

k=0

‖ϑk‖2H ≤ 2 ‖ϑ1‖2H + 2TeT

(
2 · E1 +∆t

∥∥∥∥
ϑ1 − ϑ0

∆t

∥∥∥∥
2

H

+
∆t

4

m∑

i=1

‖γi‖2H

)
.

In the following, we construct a bound for the right hand side terms which are dominated

by the sum over ‖γk‖2H . Again, this sequence ‖γk‖2H = ‖vk+1 + 2vk + vk−1‖2H is separated

into two terms, a “projection” and a “discretization” part:

vk = ẍ(tk)− ∂∂P lx(tk) +D
(
ẋ(tk)− ∂P lx(tk)

)

= ẍ(tk)− ∂∂x(tk)︸ ︷︷ ︸
=:wk

+ ∂∂x(tk)− ∂∂P lx(tk)︸ ︷︷ ︸
=:zk

+D


ẋ(tk)− ∂x(tk)︸ ︷︷ ︸

=:w̃k

+ ∂x(tk)− ∂P lx(tk)︸ ︷︷ ︸
=:z̃k


 ,
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yielding finally

‖γk‖2H ≤ 4 ‖wk+1 + 2wk + wk−1‖2H + 4 ‖zk+1 + 2zk + zk−1‖2H +

+ 4 ‖w̃k+1 + 2w̃k + w̃k−1‖2H + 4 ‖z̃k+1 + 2z̃k + z̃k−1‖2H .

Due to Taylor’s theorem, we have

‖wk+1 + 2wk + wk−1‖2H
= ‖ẍ(tk+1) + 2ẍ(tk) + ẍ(tk−1)− (∂∂x(tk+1) + 2∂∂x(tk) + ∂∂x(tk−1))‖2H

=

∥∥∥∥ẍ(tk+1) + 2ẍ(tk) + ẍ(tk−1)−
4

∆t2
(x(tk+1)− 2x(tk) + x(tk−1))

∥∥∥∥
2

H

≤ K∆t4,

where K is independent of ∆t, m, and l, which leads to

m−1∑

k=1

‖wk+1 + 2wk + wk−1‖2H ≤ K∆t3.

Accordingly, we find for w̃

m−1∑

k=1

‖w̃k+1 + 2w̃k + w̃k−1‖2H ≤ K∆t3,

where K > 0 is independent of ∆t, m and l. The estimates for zk = ∂∂x(tk)− ∂∂P lx(tk)
and z̃k = ∂x(tk) − ∂P lx(tk) depend on the particular choice of the POD subspace; see

equations (3.10)–(3.11) and (3.13)–(3.14) for case I and II , respectively. For case I ,

m−1∑

k=1

‖zk+1 + 2zk + zk−1‖2X ≤ 24

∆t4
(m+ 1)

d∑

j=l+1

λIj

and

m−1∑

k=1

‖z̃k+1 + 2z̃k + z̃k−1‖2X ≤ 16

∆t2
(m+ 1)

d∑

j=l+1

λIj .

For case II ,

m−1∑

k=1

‖zk+1 + 2zk + zk−1‖2X ≤ 72m ·
d∑

j=l+1

λIIj

and

m−1∑

k=1

‖z̃k+1 + 2z̃k + z̃k−1‖2X ≤ 72m ·
d∑

j=l+1

λIIj .

Combining the estimates for zk , z̃k, wk, and w̃k, we have

‖γk‖2H = ‖vk+1 + 2vk + vk−1‖2H
≤ 4 ‖wk+1 + 2wk + wk−1‖2H + 4 ‖zk+1 + 2zk + zk−1‖2H +

+ 4D ‖w̃k+1 + 2w̃k + w̃k−1‖2H + 4D ‖z̃k+1 + 2z̃k + z̃k−1‖2H .
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We get for case I

m∑

i=1

‖γi‖2H ≤ K1∆t
2 +K2

m+ 1

∆t4

d∑

j=l+1

λIj ,

and for case II

m∑

i=1

‖γi‖2H ≤ K3∆t
3 +K4m

d∑

j=l+1

λIIj .

In conclusion, the error estimate for case I can be written as

1

m

m∑

k=1

‖Xk − x(tk)‖2H ≤

≤ 4
d∑

j=l+1

λIj + 4 ‖ϑ1‖2H +

+ 4TeT


2 · E1 +∆t

∥∥∥∥
ϑ1 − ϑ0

∆t

∥∥∥∥
2

H

+K∆t4 +

(
12

∆t3
+

4D

∆t

)
(m+ 1)

d∑

j=l+1

λIj


 .

The term E1 contains the expression (ϑ1 − ϑ0)/∆t, which can be regarded as an extended

initial condition for the velocities (∂ϑ1 + ∂ϑ0)/2 due to Newmark’s scheme (2.5a). Hence,

we get

1

m

m∑

k=1

‖Xk − x(tk)‖2H ≤

≤ CI

(
∥∥X0 − P lx(t0)

∥∥2
H
+
∥∥X1 − P lx(t1)

∥∥2
H
+∆t

∥∥∂X0 − P lẋ(t0)
∥∥2
H

+∆t
∥∥∂X1 − P lẋ(t1)

∥∥2
H
+∆t4 +

(
1

∆t4
+

1

∆t
+ 1

) d∑

j=l+1

λIj

)
,

with CI independent of ∆t and m.

Case II yields the estimate

1

m

m∑

k=1

‖Xk − x(tk)‖2H ≤

≤ 6

d∑

j=l+1

λIIj + 4 ‖ϑ1‖2H +

+ 4TeT


2 · E1 +∆t

∥∥∥∥
ϑ1 − ϑ0

∆t

∥∥∥∥
2

H

+K∆t4 + 36T (1 +D) ·
d∑

j=l+1

λIIj


 ,
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which can similarly be interpreted as

1

m

m∑

k=1

‖Xk − x(tk)‖2H ≤

≤ CII

(
∥∥X0 − P lx(t0)

∥∥2
H
+
∥∥X1 − P lx(t1)

∥∥2
H
+∆t

∥∥∂X0 − P lẋ(t0)
∥∥2
H

+∆t
∥∥∂X1 − P lẋ(t1)

∥∥2
H
+∆t4 +

d∑

j=l+1

λIIj

)
,(3.17)

where CII is independent of ∆t and m.

In both cases, we find terms that are independent of the time step ∆t. Both cases also

contain terms that depend on ∆t in the numerator. These terms vanish as ∆t goes to zero.

In case I , which only uses the deformation snapshots, the error estimate additionally

contains a term that carries ∆t in the denominator. For this particular choice of the POD

subspace the error bound tends to infinity with ∆t→ 0. This means that convergence cannot

be assured formally if a snapshot set consisting of deformations only is used. If velocities and

accelerations are added into the set, convergence can be deduced from (3.17).

FIGURE 4.1. Decay of eigenvalues of the snapshot

correlation matrix, for ai = 1.

FIGURE 4.2. Decay of eigenvalues of the snapshot

correlation matrix, for ai = 1 + rand.

4. Numerical results. For a numerical comparison of the different POD techniques

discussed above, a simple test model was set up in MATLAB. The example shows a one-

dimensional linear wave equation on the interval Ω = (0, L) with homogeneous Dirichlet

boundary conditions, which can be regarded as a vibrating string fixed at both ends.

Mathematically, our model problem is described by the initial-boundary value problem

µ · ẍ(s, t)− S · x′′(s, t) = f(s, t) in (0, L)× (0, T ),(4.1a)

x(s, 0) = x0 in (0, L),(4.1b)

ẋ(s, 0) = ẋ0 in (0, L),(4.1c)

x(s, t) = 0 on ∂Ω = {0, L} for all t ∈ (0, T ).(4.1d)

We chose L = 1, S = 1, µ = 1, and T = 2, and the initial deformation x0 is a weighted sum

of sinusoidal shapes

x0 = x(t0) =

n∑

i=1

ai · sin
(
i · π s

L

)
,
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FIGURE 4.3. Error norms for deformation snap-

shot set, ai = 1.

FIGURE 4.4. Error norms for derivative snapshot

set, ai = 1.

FIGURE 4.5. Error norms for deformation snap-

shot set, ai = 1 + rand.

FIGURE 4.6. Error norms for derivative snapshot

set, ai = 1 + rand.

with weights ai ∈ R. Furthermore, we set the external force f(t) to zero, yielding the

analytical solution and its derivatives:

x(s, t) =

n∑

i=1

ai · sin
(
iπ
s

L

)
· cos

(
iπ
c

L
t
)
,(4.2)

ẋ(s, t) =

n∑

i=1

−ai · sin
(
iπ
s

L

)
· sin

(
iπ
c

L
t
)
· iπ c

L
,(4.3)

ẍ(s, t) =

n∑

i=1

−ai · sin
(
iπ
s

L

)
· cos

(
iπ
c

L
t
)
· i2π2 c

2

L2
, with c =

√
S

µ
.(4.4)

The POD method was realized using snapshots at m+1 uniformly distributed points in time.

To observe the error behavior with decreasing time step, we investigate three different step

sizes dividing the interval into m = 400, 2000, and 20000 subintervals. We use Newmark’s

method for the time integration, and discretize in space using 500 linear finite elements.

For the first case, in which only displacements are included in the POD set,

the snapshots are simply {x(tk)}k=0,...,m. In the second case, where deforma-

tions, velocities and accelerations were taken into account, the snapshot set was
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FIGURE 4.7. Initial condition for the linear wave

equation.

FIGURE 4.8. Decay of eigenvalues for the POD

snapshot sets, ∆t = 10−3.

FIGURE 4.9. Error norms for POD and eigenmode

analysis, H-norm, ∆t = 10−3.

FIGURE 4.10. Error norms for POD and eigen-

mode analysis, V -norm, ∆t = 10−3.

x(t0), . . . , x(tm), ẋ(t0), . . . , ẋ(tm), ẍ(t0), . . . , ẍ(tm).

REMARK 4.1. When using unweighted snapshots, the eigenvalues of the derivative set

differ from those from the deformation set by a factor of 108 (Figure 4.1). This is due to

the fact that the velocities and accelerations are about 2, respectively 3, orders of magnitude

larger than the deformations. This difference leads not only to large eigenvalues but also to

an overrating of the derivatives in the correlation matrix. For this reason, the first and second

derivative snapshots were divided by their respective maxima over space and time.

Furthermore, to investigate the influence of the eigenvalues of the correlation matrix,

we compare two different initial conditions: one with uniformly weighted sinusoidal shapes

(ai = 1), and one with randomly varying weights (ai = 1 + rand, max(rand) = 0.05). The

former yields a nearly constant distribution of eigenvalues up to the dimension of a, whereas

the eigenvalues for the latter set decay linearly (Figures 4.1 and 4.2). Note that for problems

including damping, the eigenvalues usually decay exponentially.

Figures 4.3 and 4.4 compare the norms of the relative global errors for the case ai = 1. In

this setup, the classical snapshot POD method shows no improvement with decreasing time

step size, whereas the one which uses derivative snapshots performs significantly better.

In the case of a random distribution of sinusoidal weights, both methods show a

diminishing error for smaller time steps (Figures 4.5 and 4.6). One possible reason is the
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influence of the eigenvalue decay on the error norm which dominates the error in this case.

REMARK 4.2. In all cases mentioned above, the absolute values of the error norms are

still high (> 10%). The dimension of the model corresponds to the dimension of a (here:

dim(a) = 21). As soon as a larger number of POD vectors is used, the error drops instantly.

This behavior is also seen in the eigenvalue distribution, yielding λi = 0 for i > dim(a).
Therefore, a setup with such a weighting of modes actually forces the user to work with all

occurring eigenvalues, as every neglected basis vector still has a considerable influence on

the solution. In this case, dimension reduction is risky and the example shall only be seen as

a constructed model to demonstrate the error behavior.

As a second example, we use a non-smooth initial condition u0 (Figure 4.7) in the

same setup as above and compare the POD methods with the classical eigenmode method

frequently used for linear systems. Furthermore, we set the damping factor d = 10. In

the case of high damping, we get an exponential decay of eigenvalues (Figure 4.8). A

fast eigenvalue decay leads to a small error in subspace approximation of the snapshot set

(see (2.10)). This yields a better condition for the POD method than in the example above.

Figure 4.9 shows a comparison of the relative global errors of both POD and the eigenmode

methods. The errors are computed in the H-norm 1
m

∑m
k=1 ‖Xk − x(tk)‖2H . In this case,

the derivative POD method performs slightly worse than the classical one. The errors for the

eigenmode method range between the ones of both POD methods. If we measure the error in

the V -norm, both POD methods perform better than the eigenmodes (Figure 4.10).

5. Conclusion. We study the POD method for the linear wave equation and compare

two choices of snapshot sets: set I consists of deformation snapshots, and set II additionally

contains velocities and accelerations. As for parabolic problems, there is no convergence

guarantee for simple deformation snapshots. Only the incorporation of additional derivative

snapshots yields an error bound that diminishes with diminishing time steps.
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