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SOLVING REGULARIZED LINEAR LEAST-SQUARES PROBLEMS BY THE
ALTERNATING DIRECTION METHOD WITH APPLICATIONS TO IMAGE
RESTORATION *
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Abstract. We present and analyze ways to apply the Alternating Daddethod (ADM) to bound-constrained
quadratic problems including; and ¢s regularized linear least-squares problems. The resuhiblyl schemes
require the solution of two subproblems at each iteratiba:first one is a linear system, the second one is a bound-
constrained optimization problem with closed-form santi Numerical results on image deblurring problems are
provided and comparisons are made with a Newton-based thetimb a first-order method for bound-constrained
optimization.
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1. Introduction. In this paper we address the solution of bound-constrainedmtic
problems by the Alternating Direction Method (ADM) propds®iginally in [L0]. The prob-
lems considered are

: 1 2 1 2 2
(1) min 2[4z — b+ 50| BalB,
and
: 1 2 2. T
(1.2) énwlgugﬂfla:fbHQJra ez,
whereA, B € R™" m >n,be R™, e=(1,...,1)7 € R*, a € R and the dimension

n is large. The vectorg « € R™ have finite components and the inequalities = < u
are meant element-wise. Sintes finite, without loss of generality we assume it is the zero
vector. Thus1.2) is equivalent to thé; regularized least-squares problem

1
min —

a2 2
min Az = b3 + oz

The emphasis of our work is on problems whelr@and B have a specific structure and
on optimization techniques capable of exploiting the strree A motivation and relevant
application are recovering images from noisy and blurryeolstions in image processing. In
fact, (1.1) and (L.2) model image deblurring problems addand B have structures depending
on the boundary conditions use?fj]. Next we assume that the quadratic functionsZiriy
and (L.2) are strictly convex, thus both problems admit an uniquetsmi «*.

Typical examples for our problems are imaging systems wbagdture an image and
return degraded data A common model of the degradation process is

b= Ax +n,
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whereb € R™, n € R™ is an additive noise and is a linear operator; e.g., a convolution
by a blurring kernel followed by a subsampling. Recovetirfgom b is usually an ill-posed
inverse problem which should be regularized by using sorie jmformation; this leads to
the minimization problem

min (I)fid(iﬂ, b) + Oézq)reg (l‘),

where @ 4;4(x,b) measures the violation of the relation betweemnd its observatiomn,
®,.., () regularizes the solution by enforcing certain prior caaistis onz, andc is a scalar
weight.

In the literature, for the Gaussian noise the common fid&ityn is® ;4 (z, b) = || Az —
b||3/2. The use of Tikhonov regularization yields a minimizatioogem of the form {.1),
while an/; regularization, favoring the recovery of a sparse solytgives rise to the so-
calledlassoproblem p§]. Interestingly, Problem1(.1) may also arise in fast total variation
minimization algorithms for image restoration, see; €.46]. The constraint$ andu on z
represent the dynamic range of the image; for example, iit §-ay-scale images the light
intensities lie in a box with being the zero vector and= 255 e. We also mention thé,-¢,
regularization introduced in3f¢] and note that strict convexity of the objective function in
(1.1) and (L.2) can be enforced by usirfg regularization.

A variety of iterative algorithms have been proposed for @abeve problems in both
a general setting and image processing. In the latter coragractical approach is to first
solve the unconstrained minimization problems, and th@ndject or scale the unconstrained
minimizer into the box{z € R™ : | < = < u}. However, in general the resulting images
are of lower quality than those produced by methods whiclkrdghe the solution of the
constrained problem§[20]. This fact motivates the recent growing interest in methfmt
constrained optimization which provide fast solvers foage deblurring problems.

Newton-based methods fot.(@) and (L.2) such as primal dual interior point methods,
affine scaling methods, conjugate gradient methods, redi@ solution of a linear system
at each iteration, see e.@,[L7, 21, 19, 20, 26]. An efficient implementation of this linear
algebra phase is an open problem in image restoration. indfae to the presence of bounds,
the coefficient matrices of the systems do not preserve thepties ofA and B and this fact
slows down the performance of the solverk [This difficulty can be overcome by gradient-
based methods which avoid the solution of linear systemsesndery effective when modest
accuracy is required, see; e.gll] 12, 27, 31]. Another option is to use the alternating
direction method which may be competitive with gradiensdzdmethods althoughiit calls for
the solution of linear systems. Recently ADM has been sstelgused in image processing
restoration [, 7, 24, 30, 32, 33].

The goal of this paper is to solvé.() and (L.2) by the alternating direction method. We
propose formulations of our problems that can be tackled bivlAand analyze the resulting
schemes, requiring the solution of two subproblems at etechtion. The first subproblem
is a linear system which can be efficiently solved taking atlhge of the structure of and
B. The second subproblem is a bound-constrained optimizatioblem with closed-form
solution. As a result, each iteration of the proceduresésiptio perform and modest accuracy
can be achieved effectively. Convergence analysis of thegalures is provided along with
experimental results on image deblurring problems thastithte the performance of ADM
and compare it with a Newton-based method and a gradieegltzgorithm.

The rest of the paper is organized as follows. In Sectiowe briefly review the clas-
sical alternating direction method and present its apptinado reformulations fo¢; and/,
regularized linear least-squares. The convergence asalythe proposed ADM is given in
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Section3. Experimental results and conclusions are presented itioBed and5, respec-
tively.

Throughout this paper the-dimensional boXz € R" : | < z < u} is also denoted
as[l,u] and P(-) is the projection map onto the box; i.€?(x) = min(u, max(z,l)) for
xr € R™, Givenz,y € R, (z,y) denotes the inner product y. The superscript represents
the iteration number in an algorithii- || denoteg| - ||2, the Euclidean norm.

2. Solving the regularized least-squares problems via ADMIn this section, first we
briefly review the alternating direction method for lingacbnstrained convex programming
problems with separable structure. Second, we proposemafations of problemsi(1),
(1.2 that can be tackled via ADM and analyze the resulting prooes!

ADM solves problems of the form

(2.1) ;cEr)r(l,lz?EY fi(x) + f2(y), subjectto Cuz+ Ey=d,

whereX C R™ andY C R™ are given convex setg; : X — Randf; : Y — R are
closed proper convex functionS, € R"*", E ¢ R"*™ andd € R" are given, seel[l]. The
augmented Lagrangian function fa.{) is

L(a,9,0) = f1(2) + foly) + AT (Cx + By —d) + )|Cw + By — dl?,

where) € R” is the Lagrangian multiplier to the linear constraints @ngd 0 is the penalty
parameter for the violation of the linear constraints.

Given an initial \°, the k*" iteration of the method of the Lagrangian multipliers for
solving @.1) has the form

rzeX,yeY

ML = \F 1 B(Cx® + Ey* — d),

wherek > 0 and the superscripts are the iteration counters. The upflateandy” requires
a joint minimization of the Lagrangian function with respezz andy, while the update of
the Lagrangian multiplier is performed by using the duakasenethod 14, 25]. In the rest
of the section we will keep fixed, but it is known that varying the penalty parameter tigto
the iterations improves the convergence in practice.

In order to exploit the nice separable structure emergingpith the objective function
and the constraint oP(1), ADM minimizes the objective function with respecttdy fixing
y and vice versa. More specifically, given' € Y and\’, thek*" iteration of ADM consists
of the following steps

z*F = argmin L(z,y* ™1, \F),
zeX

y* = argmin L(z*, y, \F),
yey
Nt = \F 4 B3(Cak + Ey* — d).

with & > 0.

In many applications, the optimization problems providifigandy* in ADM are either
easily solvable or have closed-form solution. ThereforéVAiferations can be performed at
a low computational cost. Taking into account that ADM carvbey slow to achieve high
accuracy but often provides approximate solution of modestiracy in a limited number of
iterations, ADM is attractive for many applications suchstsistical and machine learning,
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signal and image processing][ A very recent result establishes that ADM is convergent
with the O(1/N) rate, whereV denotes the iteration numbérd].

In order to apply ADM to our problems, we introduce an auxjligariablez € R™ and
cast Problemsl(1), (1.2 into the form
1 1 .
(2.2) min §|\Aaz —b|* + §a2||B:r||2, subjectto z —z =0,z R", [ <z<u,
1 .
(2.3) min §||Am —b||* + el 2, subjectto z —2 =0,z R", [ <z <u,
respectively. The augmented Lagrangian functions for bowva problems are
1 2 1 2 2 T 6 2
24) Lz, 2,A) = Sl Az = bl + o[ Bl + A7 (2 — 2) + S|l — 2|,
1
L(z,z,\) = 5HAJc — bl + etz + N (2 — ) + §||z — |,

and, giverz ! € [I,u] and\?, thek'™ ADM iteration becomes

(2.5) 2% = argmin L(z, 2771, \F),
zERn

(2.6) 2% = argmin L(z"®, 2, \¥),
1<z<u

(2.7) MFL — Ak B(F — 2b).

By the strict convexity of{.1) and (L.2), the two problems4.5) and @.6) are strictly convex
and admit unique solution. We now provide details on thdirtgmn.

Algorithm 2.1: ADM FORPROBLEM (1.1)

Given the scalag > 0, 27! € [I,u] and)\? € R".
Fork=0,1,2,...
Compute the solution” to Problem 2.5),

(2.8) (ATA+ o®BTB + BI)a* = ATb+ BzF=1 + Ak,
Compute the solution”* to Problem 2.6),

(2.9) =P (:ck — %;) .

SetA\F Lt = \F 4 B(2F — 2F).

The algorithm for ADM applied to thé, regularized problem is sketched in Algorithm
2.1 The solutionz* to Problem 2.5) solves the shifted linear systen%sg), whereA” A +
o?BT B is the Hessian of the quadratic function in1) andI denotes the identity matrix of
dimensiom:. The solutionz* to (2.6) has the closed-forn2(9), since

Ak Ak
2% = argmin L(z*, 2, \¥) = argmin ||z — 2" + = | = P (xk - —) ,
1<z<u 1<z<u B ﬂ

with P being the projection map onto the b@xu|. Proceeding analogously fa2.@), Algo-
rithm 2.2is obtained.
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Algorithm 2.2: ADM FOR PROBLEM (1.2)

Given the scalag > 0, z~! € [I,u] and\’ € R™.
Fork=0,1,2,...
Compute the solutiom” to Problem 2.5),

(2.10) (ATA+4 BI)zk = AT+ B2F=1 4 Ak

Compute the solution* to Problem 2.6),

rerfe--2)

SetA\F L = 2k 4 g2k — o).

The major computational effort of the sketched algorithmthe solution of the linear
systems?2.8), (2.10 at each iteration. This task can be efficiently performet o a gen-
eral setting and for a specific problem at hand. In a genettahgeif a direct method is
used, then a factorization of the coefficient matrix can teuated and cached as long/as
does not change. If an iterative solver is used, say the Rd#tmned Conjugate Gradient
method [L5], and a factorized preconditioner fd’ A + o2 BT B (or AT A) is available, then
a preconditioner for each shifted system can be cheaply atedby updating techniques
[3, 4].

In the context of image restoration, depending on the boyndanditions, matrices
AT A+ a?BT B andA™ A have specific structures and can be diagonalized by fasfftrans
[23]. Then, such diagonalizations can be reused through diftaterations. For example,
if A models out-of-focus blurB is the gradient matrix and Neumann boundary conditions
are used, them” A + o2 BT B is a block-Toeplitz-plus-Hankel matrix with Toeplitz-gH
Hankel blocks and it can be diagonalized via Fast Cosinestoam inO(n log n) operations
[23]. For doubly symmetric point spread functioa” A can be diagonalized by 2D Discrete
Cosine Transform. On the other hand, if the point spreadtfomés not doubly symmetric,
then AT A can still be diagonalized by 2D Discrete Fourier Transforsing the periodic
boundary conditions. The matri2” B is diagonalizable, too.

We conclude this section with two remarks. The first one come®rmulations of {.1)
alternative to 2.2). Very recently Chan et al7] proposed to apply ADM to the reformulated
problem

1 1 . )
(2.11) min§||Am —b|1% + 5042||Bz||27 subjectto z—x =0,z €R", I <z <u.

In this case, computing the iterat& amounts to solving a bound-constrained quadratic prob-
lem which admits closed-form solution onlyfif = I. For this reason, we consider Problem
(2.2 computationally more convenient thah 11).

Finally we remark that, fof; and/, regularization, our procedures can be viewed as a
generalization of the Split Augmented Lagrangian ShrirkAgyorithm given in [] to the
case where the unknown is subject to bound constraints.

3. Convergence analysisln this section, we show the convergence properties of the
procedures proposed and use the saddle-point problemda@uhmented Lagrangian func-
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tion L:

Find (2%, z*,\") € R" x [l,u] x R", such that
(3.1) L(z*, 2%, ) < L(x*, 2", \*) < L(x, 2, \*), V(x,z,A) € R" x [I,u] x R".
Here we report the results for the regularization. The same results hold for thecase,
and can be derived proceeding along the lines of the proeéndielow. The results obtained

parallel those obtained ir3f].
In the rest of this section, we lgtdenote the quadratic function

1 1
a(w) = 514z — b]]* + Sa?|Baf?,

and(z, y) denotes the inner product&". The relation between Problena®) and @.1) is
stated in the following theorem.

THEOREM 3.1. Let L be the function inZ.4). The vector(z*, z*) € R™ x [I, u] solves
(2.2 if and only if there exist3* € R™ such that(z*, z*, A\*) solves 8.1).

Proof. Suppose that:*, z*, A*) is a solution of 8.1). From the first inequality in3. 1),
we havez* = x*. This relation, together with the second inequality3rl), gives

(3.2) qz") <gqlx)+ (\',z—2x)+ gHz —2||?, V (x,2,)) € R" x [I,u] x R"™.

Takingz = z € [l,u] in (3.2, it follows thatz* is the solution of {.1), and accordingly,
(z*, z*) is the solution of 2.2).

Let us now suppose thét*, z*) solves 2.2). The first inequality in .1) trivially fol-
lows. To complete the proof, we first note that the first-om®mmality condition for Problem
1.Dis

(3.3) (ATA+a?B'B)a* — ATb, 2 — %) = (Vq(z*),z —2*) >0, Vz € [l,ul.
Then ProblemZ.2) admits a unique solutiofx:*, z*) such that
(3.4) (ATA +a’BTB)z* — ATh — \* =0,
(3.5) (A,z—2")>0, Vzell,u,
Zf—at =0,
with A* € R™. To show this fact, note that by* = 2*, inequality 3.5 becomes
(Nyz—2") >0, Vzell,u,

and using 8.4) we obtain 8.3).
Let now\* € R™ be the vector in&.4). The functionL(z, z, A*), with (z, z) € R™ x
[, u], is strictly convex and any stationarity poift, Z) € R™ x [I, u] satisfies
(ATA+o?BTB + )i = ATb + Bz 4+ \*,
N +B(Z2—-%),2—2)>0, Vzell,ul
Since(x*, z*) satisfies these conditions, the proof is completed. O

The next lemma establishes conditions for finite termimatibADM.
LEMMA 3.2.If

(3.6) 2K =21 and 2F =2F,



ETNA
Kent State University
http://etna.math.kent.edu

362 J. ZHANG AND B. MORINI

thenz® = 2* wherex* is the unique solution ofl(1).
Proof. By (2.5 and the convexity of.(z, z*~1, A\¥), we have

(3.7) q(z) — q(z®) + (=N 4+ 82" — 2PN,z —2F) >0, Vo eR™,
see also9, p. 170], while by 2.6) it follows

(3.8) N4 B(2% —ak), 2z =27 >0, Vzel,u].

Then, lettingz* be the solution toX.1), (3.6) gives

q(z*) = q(a®) + (=N 2" —2*) > 0,
(AF z* — 2Ry > 0;

i.e.,q(z*) — q(z¥) > (V¥ 2* — 2%) > 0. Hencex* € [I,u] andq(z*) < q(z*) shows that

k= o*. a

The main convergence results is given below.
THEOREM 3.3. Let L be the function in4.4) and (z*, z*, \*) be a saddle-point of.
Then the sequende”, »*) generated by Algorithr@. 1 satisfies

lim (2%, 2%) = (z*, 2*).
k— o0

Proof. Let us definer®, 2% and\* as
A A AP LA LI L
Then @.7) gives\*+1 = \* + g(zF — 2*) and consequently
(3.9) [AR]2 = [INFFH2 = —28(NF, 2% — 2¥) — g2||2% — oF|1%.

Since(z*, z*, \*) is a saddle-point of.(x, z, \), by Theorem3.1 we havez* = x*.
Moreover by P, p. 170] we have the following characterization(of, z*),

(3.10) q(z) —q(z") + (A", 2 —2") >0, Vz € R"
(3.11) (Nz—2") >0, Vz € [l,u]

Takingz = 2% in (3.10, z = 2* in (3.11), z = 2* in (3.7) andz = z* in (3.8), we obtain by
addition

(NF 28— 2Ry 4 Bllah — 252 + B(F — 241 ) <o,
Then by (8.9
(312) H;\kHQ o ||5\k+1H2 Z ﬁQsz o kaQ + 2ﬂ2<2k o Zk_l,fk>.
We now provide a lower bound fde* — 2%~ z*) in (3.12) using the equation

(3_13) <Zk . Zk_l,.fk> _ <Zk o Zk_l,ajk o Zk—l) + <Zk o Zk_l,ik_1>.

First we note that by usin@(7) we get

<Zk o Zkflvxk o Zk71> _ <Zk o Zlcfl’ (:Ck o _) o (xkfl o
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By the definition ofz* in (2.9) and of the projection map, we have

1o A k
(" =2t — — = 2F) <0,

B

R e )\k_1> <0
) B — Y
and summing these inequalities, we have
)\k )\kfl
1257 = 2P| < (2% = 257 (2* - F) — (2"~ 3 ))-

Thus, @.13 takes the form
<Zk _ Zk_l,.fk> > sz—l _ Zk||2 + <Zk _ Zk_l,,?k_1>
1
= 12570 = 217 4 P = 2P = 1128 = 2

Lo ke _
SUZRI = IR H 127 = 22 H2),

(3.14)
and 8.12 and (3.14) yield
(INFIZ + B2 HIZ) = (NP + 82)128)1%) = 612" — 2|1 + 521" — 27112,

Lemma3.2indicates thaf{z" — z*||* 4 ||zF — 2*~1||> > 0, unless” = 2* = 2*. Then the
sequencé||\*||2 + 82| |zF~1||?} is monotonically decreasing and bounded below and we can
conclude that it is convergent. Moreover, the sequefiaé$ and{z*} are bounded and

(3.15) |2F — 2% =0, lim ||z% — 271 = 0.
k—o00

lim
k— o0

Now since(z*, z*, \*) is a saddle-point of.(x, z, A), by the second inequality irB(1)
we have

B

(3.16) a(@*) < qla®) + (7, 2F = af) + Sl — k).

Iz
Further, summing3.7) with x = z* and @3.8) with z = z* we obtain

(3:17)  qla*) 2 q(a®) + (A", 2" —a®) + Bll2" — aF|P + B(F — 2 at).
Hence, by takindgim inf in (3.16), lim sup in (3.17) and using 8.15 we have

liminf g(z*) > ¢(z*) > limsup g(z"),

k—oo k— o0

which leads tdimy, . ¢(z*) = g(z*). Sinceg(x) is continuous and has a unique minimizer
in [1,u], we haveklim z¥ = z*. Then 8.19 givesklim 2" = 2* which completes the proof.
—> 00 — 00

O

4. Overview of the algorithms used for the comparison.The remainder of this paper
is devoted to test Algorithm8.1and?2.2 and to consider their effectiveness with respect to
algorithms from other classes of procedures for boundcainged optimization.

The alternating direction method was compared with thrgerghms. The first, denoted
Projection (P) method, solves the least-square problemppilng the constraints and then
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projects the unconstrained solution onto the figx:]. The second solver is the Reduced
Newton (RN) method proposed and tested on image restonataiems in 20]. The third
method is the Affine Scaling Cyclic Barzilai-Borwain (ASBB) method proposed and tested
on image restoration problems ih1].

RN and ASCBB methods belong to the framework of the affine scaling washfor
bound-constrained optimization and generate strictlgifda iterates throughout the process.
For simplicity, we will review the methods when applied toBlem (L.1) but the applica-
tion to (1.2) can be easily derived. A detailed description of RN and@&B and of their
theoretical properties can be found &0] and [11].

Let g(z) = AT (Ax — b) + o®> BT Bx be the gradient of the objective function ih.{),
gi(x) andx; represent théth component of; andz, respectively. The first-order optimality
condition for (L.1) can be formulated as

(4.1) D(z)g(z) = 0,

whereD(z) = diag(di(x), ..., d,(x)) has entries

di(x) = u; —xy, if gi(z) <0,
di(z) = min{x; — l;, u; — x;} otherwise

Let 2* be a strictly feasible iterate; i.d.,.< ¥ < u, k > 0. Applying the Newton method
to (4.1) requires solving one linear system at each iteration. At iteration the linear
system takes the form

(4.2) (D(a") (ATA+ a®BYB) + E(a"))p* = —D(a")g(2"),

where the coefficient matrix is obtained by formal applicatof the product rule and’ is a
diagonal positive semidefinite matrix.

Clearly, handling the bounds makes the solutionh®)(difficult. In fact, the matrix
D(x*) (AT A + o®BT B) + E(*) does not preserve the structuredfand B. Moreover,
if % approaches a degenerate solution of the problem, thisxmatrils to become singular.
On the other hand, the following linear system equivaleltg),

4.3) M(z*)pF = —g(2®), M(@*) = ATA+o?BTB + D(2") ' E(2"),

tends to become singular 2% approaches a nondegenerate solutiori.df)

The RN method considerg.(3) and exploits an active set strategy to overcome the above
mentioned problems and to reduce the dimension of the systgparticular, at each iteration
RN identifies the active set by checking the closenessg‘db the boundary. Then, for the
component ofc* in the active set, the step to the nearest bound is taken wieldinear
system £.3) restricted to the inactive componentsidfis solved. Given the inactive s& at
z*, the coefficient matrixM (z*))z, 7, of the system to be solved is the submatrix\éfz")
with elements having row and column indexZip. This submatrix is symmetric and positive
definite, it is better conditioned thav (z*), its inverse is uniformly bounded for arty and
its dimension may be considerably smaller than the origigsiem. Finally, strict feasibility
of the iterates is enforced projecting the step onto the bdxaking a large fraction of it. The
RN method is locally quadratic convergent to the solutidrof (1.1) even in the presence of
degeneracy and shown to be reliable in the solution of imag®ration methods.

Basically the computational cost of RN in each iteration anis to the solution of one
linear system of dimension equal to the cardinalityZpf The matrice§ M (z*))z, 7, are
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typically smaller than the matrices used in ADM but they do pieserve their structure.
Such loss of structure may result in loss of efficiency in tbkitson of the linear systems
with respect to ADM.

The ASCBB method is a first-order method and avoids the solutioneflr systems.
In (4.2) it replaces the coefficient matrix by the diagonal matfix D(z*) + E(z*)), where
. is a positive scalar computed by a Quasi-Newton rule. Thgsith componentp®); of
the step” is given by

oo 1
¥"): (Mk g @)/ di()

The positive scalati;, is computed using a cyclic version of the Barzilai-BorwesB] step-
size rule. Specifically, letF? = max(ji, ||g(x°)| ) and

)gi@?k)-

BB . k=1 _ k-1 _(sF)TyR !
M :al"ginzlfil”ﬂs -y |maX{#a Wa}; k>1

whereji is a fixed positive parameter® =1 = zF — 2F=1 yk=1 = g(2%) — g(2*~1). The
cyclic BB strategy consists of re-using the BB stepsize évesal iterations. Namely, letting
¢ > 1 be the cycle length and > 0 be the cycle number, the value of the scalajsis
assigned by the rule.,;, = p5%,, i=1,... c

Oncep” is computed, the ASBB method generates a new iterate of the fafim! =
x* + ¢.p*, where the stepsiz@, € (0, 1] is computed by a non-monotone line-search strat-
egy. The generated sequence is strictly feasible and cges&-linearly to a nondegenerate
solution of (L.1).

The computational effort of ASBB at thek'" iteration amounts to one gradient eval-
uation and to a number of objective function evaluationsabtpithe number of backtracks
performed. Hence the computational cost can be monitoredédotal number of iterations
and backtracks performed.

5. Experimental results. In this section, we show the performance of procedures P,
RN, AS_CBB and Algorithms2.1, 2.2 Computations were performed in double precision
using MATLAB 7.12.0.635 (R2011a) on an Intel(R) Core(TM)2800 CPU @3.40 GHz,
4.00 GB RAM.

Eight 256-by-256 gray-scale images shown in Figudenvere considered.. The Satellite
image is from the US Air Force Phillips Laboratory and it istained in the image restoration
software packagep]; the Clock image is taken from the USC-SIPI image databagethe
remaining images are from the Berkeley Segmentation Data8e The dimensions of the
least-squares problems are = n = 65536 and the constraints ate= (0,...,0)” and
u=(255,...,255)T.

We choose the blurring matri® to be the out-of-focus blur with radius 3 and the reg-
ularization matrixB to be the gradient matrix. Thug&” B is the two-dimensional discrete
Laplacian matrix. For both matrices, we employed Neumanmbary conditions, which
usually gives less artifacts at the boundary. HenteA + o?B” B (or AT A) is a block-
Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankdbbks and the multiplication of this
structured matrix times a vector can be done via fast Cosamsform inO(nlogn) opera-
tions [23]. The observed image was definethas Ax + nr, wherez is the true image; is a
random vector with elements distributed as standard nocamay is the level of noise. Four
levels of noisep = 1, 3, 5, 7 were tested.
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FIG. 5.1.The true images.

The peak signal-to-noise ratio (PSNR]J [s used to give quantitative performance mea-
sures

2 2
PSNR= 10log,y ———22

% ;(fi — )’

wherez,; andx; denote the pixel values of the restored image and the otigiveaye, respec-
tively. The regularization term in (1.1) and (L.2) is fixed by trial and error along with the
parametegs in ADM, which is kept constant through the iteration process

Concerning the implementation of the algorithms compatteel parameters in RN and
AS_CBB methods are set as suggestedaf] fand [11]. The initial guesst® for RN and
AS_CBB is the same; since” must be strictly feasible, it is formed by projecting thes®i
imageb onto the boXe, 254¢]. For a fair comparison, in ADM we set ! = 29, \? =
(0,...,0)T. The linear systems in RN are solved by the Conjugate Gradiethod and the
structure ofA and B is exploited in the computation of matrix-vector produs the other
hand, the ADM implementation fully exploits the propert@she coefficient matrices; the
matrix AT A + BT B (or AT A) is diagonalized by the discrete cosine transform matrk an
this diagonalization is reused through the iterations.

A maximum number 0600 iterations are allowed for RN, AEBB and ADM. Further,
the iterations of RN and A€BB are terminated when the distance between two successive
iterations is below the fixed relative tolerance- 1074; i.e.,

[ s Ea
The accuracy requirement on the feasible iterAtgenerated by ADM is
Iz — 2F|| < 7|2*].

A first set of experiments was conducted solviadl) by the P, RN, ASCBB and ADM
algorithms. In Tabl&.1we report the PSNR values of the observed images and of thgena
recovered by the four algorithms tested. In Tabl2we show the elapsed times in seconds
required by the procedures compared.
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TABLE 5.1
PSNR values of the observed images and of the images reddwer@ RN, ASCBB and ADM algorithms
applied to Problem1.1).

PSNR
Image 7 | Observed Image P RN ASBB ADM
Satellite 1 25.24 30.38 34.58 34.75 34.71
3 25.06 27.78 30.05 30.06 30.06
5 24.73 26.92 28.37 28.38 28.38
7 24.29 26.62 27.68 27.69 27.69
Church 1 25.18 30.06 30.64  30.87 31.01
3 25.01 27.41 27.41 27.96 28.28
5 24.69 26.51 26.98 26.99 27.46
7 24.23 26.06 26.50 26.52 26.93
Eagle 1 29.17 32,50 33.73 34.19 34.70
3 28.76 30.09 31.14  31.15 32.55
5 28.02 29.45 30.43 30.45 31.68
7 27.09 28.71 29.51 29.53 30.98
Bridge 1 21.15 27.29 28.08 28.02 28.31
3 21.07 23.79 2444  24.49 24.60
5 20.93 23.07 23.52 23.52 23.70
7 20.74 22.37 22.69 22.68 22.91
Clock 1 25.36 29.53 29.54  29.93 30.23
3 25.19 26.89 26.90 26.96 27.59
5 24.84 26.04 26.05 26.05 26.99
7 22.37 25.62 25.62 25.64 26.50
Surf 1 22.70 28.41 29.53 29.48 29.71
3 22.59 25.36 25.88 25.89 26.13
5 22.42 24.29 24.79 24.81 25.02
7 22.16 23.99 24.28 24.29 24.56
Zebra 1 19.64 26.30 26.51 26.21 26.59
3 19.59 22.80 22.87 22.88 22.96
5 19.49 21.93 21.96 21.96 22.06
7 19.36 21.10 21.12 21.12 21.31
Bear 1 20.39 27.20 27.69 27.37 27.83
3 20.34 23.67 23.88 23.88 24.07
5 20.21 22.88 23.08 23.09 23.23
7 20.05 22,10 2224  22.45 22.45

The results in Tabl&.1show that RN, ASCBB and ADM algorithms produce images of
higher quality than those obtained by using the P methodoréimfg the bounds throughout
the iterations offers a significant advantage over the P ogetince an increase of 1dB in the
PSNR value translates roughly to 10% reduction in the redatiror between the true and
restored images. ADM achieves the highest restored quali@y tests out of 32 but in 17
runs the gain over RN and AGBB is within 0.3dB.

From Table5.2 we observe that ADM is much faster than RN in all runs. Morepve
comparing to ASCBB the execution time of ADM is more than halved for 27 probde
while AS_CBB is the winner in two runs.

Let us now make some comments on the good performance of ADDM Ahows a
slower convergence rate than RN and consequently requineghar number of linear sys-
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TABLE 5.2
Execution times of RN, ASBB and ADM algorithms applied to Problerh.{).

Algorithm
Image 7| RN ASCBB ADM
Satellite 1| 27.67 10.28 0.80
3| 19.25 6.76 1.29
5| 14.87 3.49 1.58
7| 15.97 4.56 0.42
Church 1| 28.83 4.32 0.21
3| 12.58 3.19 0.17
5| 8.65 1.58 0.19
7| 8.84 1.16 0.32
Eagle 1| 16.89 2.93 0.32
3| 8.43 1.38 0.19
5| 8.40 1.42 0.19
7| 9.66 1.34 1.18
Bridge 1| 29.06 6.93 0.40
3| 21.38 4.82 3.23
5| 12.67 6.78 0.34
7| 14.13 5.55 0.89
Clock 1| 20.75 3.00 0.04
3| 11.80 3.36 0.07
5| 7.39 1.83 3.31
7| 7.87 1.87 0.09
Surf 1] 29.52 5.76 0.39
3| 12.64 3.17 0.34
5| 13.52 3.35 0.30
7| 9.30 1.52 0.34
Zebra 1| 22.22 7.11 0.34
3| 20.42 6.25 0.30
51 12.00 3.45 0.52
7| 12.15 4.06 0.34
Bear 1| 32.82 7.30 0.35
3| 13.29 3.06 7.35
5| 14.68 3.81 3.28
7| 9.40 1.88 0.26

tems solves. However, this disadvantage is alleviated éyatt that the diagonalization of
the coefficient matrix in ADM is reused through differentrédons and the numerical re-
sults confirm that the overhead of RN in the linear algebraehsnot compensated by fast
convergence.
The computational overhead of ASBB depends on the number of iterations and func-

tion evaluations required. In order to compare the numbiéecdtions of ASCBB and ADM,

in Figure5.2we display the performance profil8][ The performance profile is defined as
follows. Consider the 32 tests performed and the two solk&s! and AS CBB. For each
testt solved by the solves, let I, ; denote the number of iterations required anddie the
smallest number of iterations required by the two solvethénsolution of test. Then, the

. 1 .
ratiosis ; = %’t, measures the performance on tesly solvers with respect to the better
t
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AS_CBB iterations
— - — ADM iterations

1 1 1 1
5 10 15 20

F1G. 5.2.Performance profile: number of ASBB and ADM iterations for Problend (1).

performance on such test and the performance profile of seligedefined as

no.of tests sit.igy < T

7s(T) = , T>1.

total no. of tests

The performance profile is given in FiguseZ; the left side of the plot gives the percent-
age of test problems for which the solver is the more effici#trghows that ADM requires
a lower number of iterations than AGBB in 80% of the runs and that AGBB is within a
factor 5 with respect to ADM for 90% of the tests.

Besides the fact the ADM outperforms ASBB in terms of iterations, we also point out
that, in all runs, the number of quadratic function evaluasi required by ASCBB varies
between a factor 1.2 and 2.2 with respect to the number @ftiters. Since performing one
iteration of ADM is very cheap, the above analysis suppdrésdffectiveness of ADM in
terms of computational time.

We conclude giving results obtained by using the reguldriz®blem {.2) and ADM on
images: Satellite, Eagle, and Clock. The results reportd@ble5.3show that ADM solves
(1.2 efficiently. In Figure5.3 we show the satellite images recovered by ADM applied to
Problems {.1) and (L.2).

6. Conclusions. We have proposed the solution@fand/, as bound-constrained linear
least-squares problems by ADM. The procedures proposed al$ to exploit the specific
structure of the matrices appearing in the problems anduwatabée for recovering images
from noisy and blurry observations in image processing. €xpents on image deblurring
problems show that ADM is effective in terms of quality of tiestored images and speed, and
compares favorably to existing procedures for large boeovistrained linear least-squares
problems.
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TABLE 5.3
Computational results for ADM applied to Probletn ).

ADM
Image | n | PSNR Observed Image PSNR Time
Satellite | 1 25.24 34.75 0.82
3 25.06 30.28 0.99
5 24.73 28,50 1.11
7 24.29 27.63 1.11
Eagle 1 29.17 34.33 0.29
3 28.76 31.72 0.28
5 28.02 30.25 0.31
7 27.09 28.84 0.33
Clock 1 25.36 29.55 0.09
3 25.19 27.14 0.11
5 24.84 26.23 0.11
7 22.37 25.41 0.15
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