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Abstract. We present and analyze ways to apply the Alternating Direction Method (ADM) to bound-constrained
quadratic problems includingℓ1 and ℓ2 regularized linear least-squares problems. The resultingADM schemes
require the solution of two subproblems at each iteration: the first one is a linear system, the second one is a bound-
constrained optimization problem with closed-form solution. Numerical results on image deblurring problems are
provided and comparisons are made with a Newton-based method and a first-order method for bound-constrained
optimization.
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1. Introduction. In this paper we address the solution of bound-constrained quadratic
problems by the Alternating Direction Method (ADM) proposed originally in [10]. The prob-
lems considered are

min
l≤x≤u

1

2
‖Ax− b‖22 +

1

2
α2‖Bx‖22,(1.1)

and

min
l≤x≤u

1

2
‖Ax− b‖22 + α2eTx,(1.2)

whereA, B ∈ R
m×n, m ≥ n, b ∈ R

m, e = (1, . . . , 1)T ∈ R
n, α ∈ R and the dimension

n is large. The vectorsl, u ∈ R
n have finite components and the inequalitiesl ≤ x ≤ u

are meant element-wise. Sincel is finite, without loss of generality we assume it is the zero
vector. Thus (1.2) is equivalent to theℓ1 regularized least-squares problem

min
0≤x≤u

1

2
‖Ax− b‖22 + α2‖x‖1.

The emphasis of our work is on problems whereA andB have a specific structure and
on optimization techniques capable of exploiting the structure. A motivation and relevant
application are recovering images from noisy and blurry observations in image processing. In
fact, (1.1) and (1.2) model image deblurring problems andA andB have structures depending
on the boundary conditions used [23]. Next we assume that the quadratic functions in (1.1)
and (1.2) are strictly convex, thus both problems admit an unique solutionx∗.

Typical examples for our problems are imaging systems whichcapture an imagex and
return degraded datab. A common model of the degradation process is

b = Ax + η,
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whereb ∈ R
m, η ∈ R

m is an additive noise andA is a linear operator; e.g., a convolution
by a blurring kernel followed by a subsampling. Recoveringx from b is usually an ill-posed
inverse problem which should be regularized by using some prior information; this leads to
the minimization problem

min
x

Φfid(x, b) + α2Φreg(x),

whereΦfid(x, b) measures the violation of the relation betweenx and its observationb,
Φreg(x) regularizes the solution by enforcing certain prior constraints onx, andα is a scalar
weight.

In the literature, for the Gaussian noise the common fidelityterm isΦfid(x, b) = ‖Ax−
b‖22/2. The use of Tikhonov regularization yields a minimization problem of the form (1.1),
while anℓ1 regularization, favoring the recovery of a sparse solution, gives rise to the so-
called lassoproblem [28]. Interestingly, Problem (1.1) may also arise in fast total variation
minimization algorithms for image restoration, see; e.g.,[16]. The constraintsl andu onx
represent the dynamic range of the image; for example, in 8-bit gray-scale images the light
intensities lie in a box withl being the zero vector andu = 255 e. We also mention theℓ2-ℓ1
regularization introduced in [34] and note that strict convexity of the objective function in
(1.1) and (1.2) can be enforced by usingℓ2 regularization.

A variety of iterative algorithms have been proposed for theabove problems in both
a general setting and image processing. In the latter context, a practical approach is to first
solve the unconstrained minimization problems, and then toproject or scale the unconstrained
minimizer into the box{x ∈ R

n : l ≤ x ≤ u}. However, in general the resulting images
are of lower quality than those produced by methods which determine the solution of the
constrained problems [7, 20]. This fact motivates the recent growing interest in methods for
constrained optimization which provide fast solvers for image deblurring problems.

Newton-based methods for (1.1) and (1.2) such as primal dual interior point methods,
affine scaling methods, conjugate gradient methods, require the solution of a linear system
at each iteration, see e.g, [2, 17, 21, 19, 20, 26]. An efficient implementation of this linear
algebra phase is an open problem in image restoration. In fact, due to the presence of bounds,
the coefficient matrices of the systems do not preserve the properties ofA andB and this fact
slows down the performance of the solvers [7]. This difficulty can be overcome by gradient-
based methods which avoid the solution of linear systems andare very effective when modest
accuracy is required, see; e.g., [11, 12, 27, 31]. Another option is to use the alternating
direction method which may be competitive with gradient-based methods although it calls for
the solution of linear systems. Recently ADM has been successfully used in image processing
restoration [1, 7, 24, 30, 32, 33].

The goal of this paper is to solve (1.1) and (1.2) by the alternating direction method. We
propose formulations of our problems that can be tackled by ADM and analyze the resulting
schemes, requiring the solution of two subproblems at each iteration. The first subproblem
is a linear system which can be efficiently solved taking advantage of the structure ofA and
B. The second subproblem is a bound-constrained optimization problem with closed-form
solution. As a result, each iteration of the procedures is cheap to perform and modest accuracy
can be achieved effectively. Convergence analysis of the procedures is provided along with
experimental results on image deblurring problems that illustrate the performance of ADM
and compare it with a Newton-based method and a gradient-based algorithm.

The rest of the paper is organized as follows. In Section2, we briefly review the clas-
sical alternating direction method and present its application to reformulations forℓ1 andℓ2
regularized linear least-squares. The convergence analysis of the proposed ADM is given in
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Section3. Experimental results and conclusions are presented in Sections4 and5, respec-
tively.

Throughout this paper then-dimensional box{x ∈ R
n : l ≤ x ≤ u} is also denoted

as [l, u] andP (·) is the projection map onto the box; i.e.,P (x) = min(u,max(x, l)) for
x ∈ R

n. Givenx, y ∈ R
n, 〈x, y〉 denotes the inner productxT y. The superscriptk represents

the iteration number in an algorithm.‖ · ‖ denotes‖ · ‖2, the Euclidean norm.

2. Solving the regularized least-squares problems via ADM.In this section, first we
briefly review the alternating direction method for linearly constrained convex programming
problems with separable structure. Second, we propose reformulations of problems (1.1),
(1.2) that can be tackled via ADM and analyze the resulting procedures.

ADM solves problems of the form

min
x∈X,y∈Y

f1(x) + f2(y), subject to Cx+ Ey = d,(2.1)

whereX ⊆ R
n andY ⊆ R

m are given convex sets,f1 : X → R andf2 : Y → R are
closed proper convex functions,C ∈ R

h×n, E ∈ R
h×m andd ∈ R

h are given, see [10]. The
augmented Lagrangian function for (2.1) is

L(x, y, λ) = f1(x) + f2(y) + λT (Cx+ Ey − d) +
β

2
‖Cx+ Ey − d‖2,

whereλ ∈ R
h is the Lagrangian multiplier to the linear constraints andβ > 0 is the penalty

parameter for the violation of the linear constraints.
Given an initialλ0, the kth iteration of the method of the Lagrangian multipliers for

solving (2.1) has the form

{

(xk, yk) = argmin
x∈X,y∈Y

L(x, y, λk),

λk+1 = λk + β(Cxk + Eyk − d),

wherek ≥ 0 and the superscripts are the iteration counters. The updateof xk andyk requires
a joint minimization of the Lagrangian function with respect to x andy, while the update of
the Lagrangian multiplier is performed by using the dual ascent method [14, 25]. In the rest
of the section we will keepβ fixed, but it is known that varying the penalty parameter through
the iterations improves the convergence in practice.

In order to exploit the nice separable structure emerging inboth the objective function
and the constraint of (2.1), ADM minimizes the objective function with respect tox by fixing
y and vice versa. More specifically, giveny−1 ∈ Y andλ0, thekth iteration of ADM consists
of the following steps















xk = argmin
x∈X

L(x, yk−1, λk),

yk = argmin
y∈Y

L(xk, y, λk),

λk+1 = λk + β(Cxk + Eyk − d).

with k ≥ 0.
In many applications, the optimization problems providingxk andyk in ADM are either

easily solvable or have closed-form solution. Therefore ADM iterations can be performed at
a low computational cost. Taking into account that ADM can bevery slow to achieve high
accuracy but often provides approximate solution of modestaccuracy in a limited number of
iterations, ADM is attractive for many applications such asstatistical and machine learning,
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signal and image processing [5]. A very recent result establishes that ADM is convergent
with theO(1/N) rate, whereN denotes the iteration number [13].

In order to apply ADM to our problems, we introduce an auxiliary variablez ∈ R
n and

cast Problems (1.1), (1.2) into the form

min
1

2
‖Ax− b‖2 +

1

2
α2‖Bx‖2, subject to z − x = 0, x ∈ R

n, l ≤ z ≤ u,(2.2)

min
1

2
‖Ax− b‖2 + α2eT z, subject to z − x = 0, x ∈ R

n, l ≤ z ≤ u,(2.3)

respectively. The augmented Lagrangian functions for the above problems are

L(x, z, λ) =
1

2
‖Ax− b‖2 +

1

2
α2‖Bx‖2 + λT (z − x) +

β

2
‖z − x‖2,(2.4)

L(x, z, λ) =
1

2
‖Ax− b‖2 + α2eT z + λT (z − x) +

β

2
‖z − x‖2,

and, givenz−1 ∈ [l, u] andλ0, thekth ADM iteration becomes

xk = argmin
x∈Rn

L(x, zk−1, λk),(2.5)

zk = argmin
l≤z≤u

L(xk, z, λk),(2.6)

λk+1 = λk + β(zk − xk).(2.7)

By the strict convexity of (1.1) and (1.2), the two problems (2.5) and (2.6) are strictly convex
and admit unique solution. We now provide details on their solution.

Algorithm 2.1: ADM FOR PROBLEM (1.1)

Given the scalarβ > 0, z−1 ∈ [l, u] andλ0 ∈ R
n.

Fork = 0, 1, 2, . . .
Compute the solutionxk to Problem (2.5),

(ATA+ α2BTB + βI)xk = AT b+ βzk−1 + λk.(2.8)

Compute the solutionzk to Problem (2.6),

zk = P

(

xk −
λk

β

)

.(2.9)

Setλk+1 = λk + β(zk − xk).

The algorithm for ADM applied to theℓ2 regularized problem is sketched in Algorithm
2.1. The solutionxk to Problem (2.5) solves the shifted linear systems (2.8), whereATA +
α2BTB is the Hessian of the quadratic function in (1.1) andI denotes the identity matrix of
dimensionn. The solutionzk to (2.6) has the closed-form (2.9), since

zk = argmin
l≤z≤u

L(xk, z, λk) = argmin
l≤z≤u

‖z − xk +
λk

β
‖2 = P

(

xk −
λk

β

)

,

with P being the projection map onto the box[l, u]. Proceeding analogously for (2.3), Algo-
rithm 2.2is obtained.
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Algorithm 2.2: ADM FOR PROBLEM (1.2)

Given the scalarβ > 0, z−1 ∈ [l, u] andλ0 ∈ R
n.

Fork = 0, 1, 2, . . .
Compute the solutionxk to Problem (2.5),

(ATA+ βI)xk = AT b+ βzk−1 + λk.(2.10)

Compute the solutionzk to Problem (2.6),

zk = P

(

xk −
α2e

β
−

λk

β

)

.

Setλk+1 = λk + β(zk − xk).

The major computational effort of the sketched algorithms is the solution of the linear
systems (2.8), (2.10) at each iteration. This task can be efficiently performed both in a gen-
eral setting and for a specific problem at hand. In a general setting, if a direct method is
used, then a factorization of the coefficient matrix can be evaluated and cached as long asβ
does not change. If an iterative solver is used, say the Preconditioned Conjugate Gradient
method [15], and a factorized preconditioner forATA+α2BTB (orATA) is available, then
a preconditioner for each shifted system can be cheaply computed by updating techniques
[3, 4].

In the context of image restoration, depending on the boundary conditions, matrices
ATA+α2BTB andATA have specific structures and can be diagonalized by fast transforms
[23]. Then, such diagonalizations can be reused through different iterations. For example,
if A models out-of-focus blur,B is the gradient matrix and Neumann boundary conditions
are used, thenATA + α2BTB is a block-Toeplitz-plus-Hankel matrix with Toeplitz-plus-
Hankel blocks and it can be diagonalized via Fast Cosine Transform inO(n logn) operations
[23]. For doubly symmetric point spread function,ATA can be diagonalized by 2D Discrete
Cosine Transform. On the other hand, if the point spread function is not doubly symmetric,
thenATA can still be diagonalized by 2D Discrete Fourier Transform using the periodic
boundary conditions. The matrixBTB is diagonalizable, too.

We conclude this section with two remarks. The first one concerns formulations of (1.1)
alternative to (2.2). Very recently Chan et al. [7] proposed to apply ADM to the reformulated
problem

min
1

2
‖Ax− b‖2 +

1

2
α2‖Bz‖2, subject to z − x = 0, x ∈ R

n, l ≤ z ≤ u.(2.11)

In this case, computing the iteratezk amounts to solving a bound-constrained quadratic prob-
lem which admits closed-form solution only ifB = I. For this reason, we consider Problem
(2.2) computationally more convenient than (2.11).

Finally we remark that, forℓ1 andℓ2 regularization, our procedures can be viewed as a
generalization of the Split Augmented Lagrangian Shrinkage Algorithm given in [1] to the
case where the unknown is subject to bound constraints.

3. Convergence analysis.In this section, we show the convergence properties of the
procedures proposed and use the saddle-point problem for the augmented Lagrangian func-
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tionL:

Find (x∗, z∗, λ∗) ∈ R
n × [l, u]× R

n, such that

L(x∗, z∗, λ) ≤ L(x∗, z∗, λ∗) ≤ L(x, z, λ∗), ∀(x, z, λ) ∈ R
n × [l, u]× R

n.(3.1)

Here we report the results for theℓ2 regularization. The same results hold for theℓ1 case,
and can be derived proceeding along the lines of the proofs given below. The results obtained
parallel those obtained in [32].

In the rest of this section, we letq denote the quadratic function

q(x) =
1

2
‖Ax− b‖2 +

1

2
α2‖Bx‖2,

and〈x, y〉 denotes the inner product inRn. The relation between Problems (2.2) and (3.1) is
stated in the following theorem.

THEOREM 3.1. LetL be the function in (2.4). The vector(x∗, z∗) ∈ R
n × [l, u] solves

(2.2) if and only if there existsλ∗ ∈ R
n such that(x∗, z∗, λ∗) solves (3.1).

Proof. Suppose that(x∗, z∗, λ∗) is a solution of (3.1). From the first inequality in (3.1),
we havez∗ = x∗. This relation, together with the second inequality in (3.1), gives

q(x∗) ≤ q(x) + 〈λ∗, z − x〉+
β

2
‖z − x‖2, ∀ (x, z, λ) ∈ R

n × [l, u]× R
n.(3.2)

Takingx = z ∈ [l, u] in (3.2), it follows thatx∗ is the solution of (1.1), and accordingly,
(x∗, z∗) is the solution of (2.2).

Let us now suppose that(x∗, z∗) solves (2.2). The first inequality in (3.1) trivially fol-
lows. To complete the proof, we first note that the first-orderoptimality condition for Problem
(1.1) is

〈(ATA+ α2BTB)x∗ −AT b, z − x∗〉 = 〈∇q(x∗), z − x∗〉 ≥ 0, ∀z ∈ [l, u].(3.3)

Then Problem (2.2) admits a unique solution(x∗, z∗) such that

(ATA+ α2BTB)x∗ −AT b− λ∗ = 0,(3.4)

〈λ∗, z − z∗〉 ≥ 0, ∀z ∈ [l, u],(3.5)

z∗ − x∗ = 0,

with λ∗ ∈ R
n. To show this fact, note that byx∗ = z∗, inequality (3.5) becomes

〈λ∗, z − x∗〉 ≥ 0, ∀z ∈ [l, u],

and using (3.4) we obtain (3.3).
Let nowλ∗ ∈ R

n be the vector in (3.4). The functionL(x, z, λ∗), with (x, z) ∈ R
n ×

[l, u], is strictly convex and any stationarity point(x̃, z̃) ∈ R
n × [l, u] satisfies

(ATA+ α2BTB + βI)x̃ = AT b+ βz̃ + λ∗,

〈λ∗ + β(z̃ − x̃), z − z̃〉 ≥ 0, ∀z ∈ [l, u].

Since(x∗, z∗) satisfies these conditions, the proof is completed.
The next lemma establishes conditions for finite termination of ADM.
LEMMA 3.2. If

zk = zk−1 and xk = zk,(3.6)
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thenxk = x∗ wherex∗ is the unique solution of (1.1).
Proof. By (2.5) and the convexity ofL(x, zk−1, λk), we have

q(x) − q(xk) + 〈−λk + β(xk − zk−1), x − xk〉 ≥ 0, ∀ x ∈ R
n,(3.7)

see also [9, p. 170], while by (2.6) it follows

〈λk + β(zk − xk), z − zk〉 ≥ 0, ∀ z ∈ [l, u].(3.8)

Then, lettingx∗ be the solution to (1.1), (3.6) gives

q(x∗)− q(xk) + 〈−λk, x∗ − xk〉 ≥ 0,

〈λk, x∗ − xk〉 ≥ 0;

i.e.,q(x∗) − q(xk) ≥ 〈λk, x∗ − xk〉 ≥ 0. Hence,xk ∈ [l, u] andq(xk) ≤ q(x∗) shows that
xk = x∗.

The main convergence results is given below.
THEOREM 3.3. LetL be the function in (2.4) and (x∗, z∗, λ∗) be a saddle-point ofL.

Then the sequence(xk, zk) generated by Algorithm2.1satisfies

lim
k→∞

(xk, zk) = (x∗, z∗).

Proof. Let us definēxk, z̄k andλ̄k as

x̄k = xk − x∗, z̄k = zk − z∗, λ̄k = λk − λ∗.

Then (2.7) givesλ̄k+1 = λ̄k + β(zk − xk) and consequently

‖λ̄k‖2 − ‖λ̄k+1‖2 = −2β〈λ̄k, zk − xk〉 − β2‖zk − xk‖2.(3.9)

Since(x∗, z∗, λ∗) is a saddle-point ofL(x, z, λ), by Theorem3.1 we havez∗ = x∗.
Moreover by [9, p. 170] we have the following characterization of(x∗, z∗),

q(x)− q(x∗) + 〈−λ∗, x− x∗〉 ≥ 0, ∀ x ∈ Rn(3.10)

〈λ∗, z − z∗〉 ≥ 0, ∀z ∈ [l, u](3.11)

Takingx = xk in (3.10), z = zk in (3.11), x = x∗ in (3.7) andz = z∗ in (3.8), we obtain by
addition

〈λ̄k, zk − xk〉+ β‖xk − zk‖2 + β〈zk − zk−1, x̄k〉 ≤ 0.

Then by (3.9)

‖λ̄k‖2 − ‖λ̄k+1‖2 ≥ β2‖zk − xk‖2 + 2β2〈zk − zk−1, x̄k〉.(3.12)

We now provide a lower bound for〈zk − zk−1, x̄k〉 in (3.12) using the equation

〈zk − zk−1, x̄k〉 = 〈zk − zk−1, xk − zk−1〉+ 〈zk − zk−1, z̄k−1〉.(3.13)

First we note that by using (2.7) we get

〈zk − zk−1, xk − zk−1〉 = 〈zk − zk−1, (xk −
λk

β
)− (xk−1 −

λk−1

β
)〉.
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By the definition ofzk in (2.9) and of the projection mapP , we have

〈zk−1 − zk, xk −
λk

β
− zk〉 ≤ 0,

〈zk−1 − zk, zk−1 − xk−1 +
λk−1

β
〉 ≤ 0,

and summing these inequalities, we have

‖zk−1 − zk‖2 ≤ 〈zk − zk−1, (xk −
λk

β
)− (xk−1 −

λk−1

β
)〉.

Thus, (3.13) takes the form

〈zk − zk−1, x̄k〉 ≥ ‖zk−1 − zk‖2 + 〈zk − zk−1, z̄k−1〉

= ‖z̄k−1 − z̄k‖2 +
1

2
(‖z̄k‖2 − ‖z̄k−1‖2 − ‖z̄k − z̄k−1‖2)

=
1

2
(‖z̄k‖2 − ‖z̄k−1‖2 + ‖zk − zk−1‖2),(3.14)

and (3.12) and (3.14) yield

(‖λ̄k‖2 + β2‖z̄k−1‖2)− (‖λ̄k+1‖2 + β2‖z̄k‖2) ≥ β2‖zk − xk‖2 + β2‖zk − zk−1‖2.

Lemma3.2indicates that‖zk − xk‖2 + ‖zk − zk−1‖2 > 0, unlessxk = zk = x∗. Then the
sequence{‖λ̄k‖2+β2‖z̄k−1‖2} is monotonically decreasing and bounded below and we can
conclude that it is convergent. Moreover, the sequences{λk} and{zk} are bounded and

lim
k→∞

‖zk − xk‖ = 0, lim
k→∞

‖zk − zk−1‖ = 0.(3.15)

Now since(x∗, z∗, λ∗) is a saddle-point ofL(x, z, λ), by the second inequality in (3.1)
we have

q(x∗) ≤ q(xk) + 〈λ∗, zk − xk〉+
β

2
‖zk − xk‖2.(3.16)

Further, summing (3.7) with x = x∗ and (3.8) with z = z∗ we obtain

q(x∗) ≥ q(xk) + 〈λk, zk − xk〉+ β‖zk − xk‖2 + β〈zk − zk−1, x̄k〉.(3.17)

Hence, by takinglim inf in (3.16), lim sup in (3.17) and using (3.15) we have

lim inf
k→∞

q(xk) ≥ q(x∗) ≥ lim sup
k→∞

q(xk),

which leads tolimk→∞ q(xk) = q(x∗). Sinceq(x) is continuous and has a unique minimizer
in [l, u], we have lim

k→∞
xk = x∗. Then (3.15) gives lim

k→∞
zk = z∗ which completes the proof.

4. Overview of the algorithms used for the comparison.The remainder of this paper
is devoted to test Algorithms2.1 and2.2 and to consider their effectiveness with respect to
algorithms from other classes of procedures for bound-constrained optimization.

The alternating direction method was compared with three algorithms. The first, denoted
Projection (P) method, solves the least-square problem dropping the constraints and then
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projects the unconstrained solution onto the box[l, u]. The second solver is the Reduced
Newton (RN) method proposed and tested on image restorationproblems in [20]. The third
method is the Affine Scaling Cyclic Barzilai-Borwain (ASCBB) method proposed and tested
on image restoration problems in [11].

RN and ASCBB methods belong to the framework of the affine scaling methods for
bound-constrained optimization and generate strictly feasible iterates throughout the process.
For simplicity, we will review the methods when applied to Problem (1.1) but the applica-
tion to (1.2) can be easily derived. A detailed description of RN and ASCBB and of their
theoretical properties can be found in [20] and [11].

Let g(x) = AT (Ax − b) + α2BTBx be the gradient of the objective function in (1.1),
gi(x) andxi represent theith component ofg andx, respectively. The first-order optimality
condition for (1.1) can be formulated as

D(x)g(x) = 0,(4.1)

whereD(x) = diag(d1(x), . . . , dn(x)) has entries

di(x) = ui − xi, if gi(x) < 0,

di(x) = xi − li, if gi(x) > 0,

di(x) = min{xi − li, ui − xi} otherwise.

Let xk be a strictly feasible iterate; i.e.,l < xk < u, k ≥ 0. Applying the Newton method
to (4.1) requires solving one linear system at each iteration. At the kth iteration the linear
system takes the form

(D(xk) (ATA+ α2BTB) + E(xk))pk = −D(xk)g(xk),(4.2)

where the coefficient matrix is obtained by formal application of the product rule andE is a
diagonal positive semidefinite matrix.

Clearly, handling the bounds makes the solution of (4.2) difficult. In fact, the matrix
D(xk) (ATA + α2BTB) + E(xk) does not preserve the structure ofA andB. Moreover,
if xk approaches a degenerate solution of the problem, this matrix tends to become singular.
On the other hand, the following linear system equivalent to(4.2),

M(xk)pk = −g(xk), M(xk) = ATA+ α2BTB +D(xk)−1E(xk),(4.3)

tends to become singular asxk approaches a nondegenerate solution of (1.1).
The RN method considers (4.3) and exploits an active set strategy to overcome the above

mentioned problems and to reduce the dimension of the system. In particular, at each iteration
RN identifies the active set by checking the closeness ofxk to the boundary. Then, for the
component ofxk in the active set, the step to the nearest bound is taken whilethe linear
system (4.3) restricted to the inactive components ofxk is solved. Given the inactive setIk at
xk, the coefficient matrix(M(xk))IkIk

of the system to be solved is the submatrix ofM(xk)
with elements having row and column index inIk. This submatrix is symmetric and positive
definite, it is better conditioned thanM(xk), its inverse is uniformly bounded for anyk, and
its dimension may be considerably smaller than the originalsystem. Finally, strict feasibility
of the iterates is enforced projecting the step onto the box and taking a large fraction of it. The
RN method is locally quadratic convergent to the solutionx∗ of (1.1) even in the presence of
degeneracy and shown to be reliable in the solution of image restoration methods.

Basically the computational cost of RN in each iteration amounts to the solution of one
linear system of dimension equal to the cardinality ofIk. The matrices(M(xk))IkIk

are
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typically smaller than the matrices used in ADM but they do not preserve their structure.
Such loss of structure may result in loss of efficiency in the solution of the linear systems
with respect to ADM.

The ASCBB method is a first-order method and avoids the solution of linear systems.
In (4.2) it replaces the coefficient matrix by the diagonal matrix(µkD(xk) + E(xk)), where
µk is a positive scalar computed by a Quasi-Newton rule. Thus, the ith component(pk)i of
the steppk is given by

(pk)i = −

(

1

µk + |gi(xk)|/di(xk)

)

gi(x
k).

The positive scalarµk is computed using a cyclic version of the Barzilai-Borwein (BB) step-
size rule. Specifically, letµBB

0 = max(µ̄, ‖g(x0)‖∞) and

µBB
k = argmin

µ≥µ̄
‖µsk−1 − yk−1‖ = max

{

µ̄,
(sk−1)T yk−1

(sk−1)T sk−1
,

}

, k ≥ 1

whereµ̄ is a fixed positive parameter,sk−1 = xk − xk−1, yk−1 = g(xk) − g(xk−1). The
cyclic BB strategy consists of re-using the BB stepsize for several iterations. Namely, letting
c ≥ 1 be the cycle length andl ≥ 0 be the cycle number, the value of the scalarsµk is
assigned by the ruleµcl+i = µBB

cl+1, i = 1, . . . , c.

Oncepk is computed, the ASCBB method generates a new iterate of the formxk+1 =
xk + ζkp

k, where the stepsizeζk ∈ (0, 1] is computed by a non-monotone line-search strat-
egy. The generated sequence is strictly feasible and converges R-linearly to a nondegenerate
solution of (1.1).

The computational effort of ASCBB at thekth iteration amounts to one gradient eval-
uation and to a number of objective function evaluations equal to the number of backtracks
performed. Hence the computational cost can be monitored bythe total number of iterations
and backtracks performed.

5. Experimental results. In this section, we show the performance of procedures P,
RN, AS CBB and Algorithms2.1, 2.2. Computations were performed in double precision
using MATLAB 7.12.0.635 (R2011a) on an Intel(R) Core(TM) i7-2600 CPU @3.40 GHz,
4.00 GB RAM.

Eight 256-by-256 gray-scale images shown in Figure5.1were considered.. The Satellite
image is from the US Air Force Phillips Laboratory and it is contained in the image restoration
software package [22]; the Clock image is taken from the USC-SIPI image database [29], the
remaining images are from the Berkeley Segmentation Dataset [18]. The dimensions of the
least-squares problems arem = n = 65536 and the constraints arel = (0, . . . , 0)T and
u = (255, . . . , 255)T .

We choose the blurring matrixA to be the out-of-focus blur with radius 3 and the reg-
ularization matrixB to be the gradient matrix. Thus,BTB is the two-dimensional discrete
Laplacian matrix. For both matrices, we employed Neumann boundary conditions, which
usually gives less artifacts at the boundary. Hence,ATA + α2BTB (or ATA) is a block-
Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel blocks and the multiplication of this
structured matrix times a vector can be done via fast Cosine transform inO(n log n) opera-
tions [23]. The observed image was defined asb = Ax+ ηr, wherex is the true image,r is a
random vector with elements distributed as standard normalandη is the level of noise. Four
levels of noise,η = 1, 3, 5, 7 were tested.
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FIG. 5.1.The true images.

The peak signal-to-noise ratio (PSNR) [6] is used to give quantitative performance mea-
sures

PSNR= 10 log10
2552

1

n

n
∑

i=1

(x̃i − xi)
2

,

wherex̃i andxi denote the pixel values of the restored image and the original image, respec-
tively. The regularization termα in (1.1) and (1.2) is fixed by trial and error along with the
parameterβ in ADM, which is kept constant through the iteration process.

Concerning the implementation of the algorithms compared,the parameters in RN and
AS CBB methods are set as suggested in [20] and [11]. The initial guessx0 for RN and
AS CBB is the same; sincex0 must be strictly feasible, it is formed by projecting the noise
imageb onto the box[e, 254e]. For a fair comparison, in ADM we setz−1 = x0, λ0 =
(0, . . . , 0)T . The linear systems in RN are solved by the Conjugate Gradient method and the
structure ofA andB is exploited in the computation of matrix-vector products.On the other
hand, the ADM implementation fully exploits the propertiesof the coefficient matrices; the
matrixATA + BTB (or ATA) is diagonalized by the discrete cosine transform matrix and
this diagonalization is reused through the iterations.

A maximum number of500 iterations are allowed for RN, ASCBB and ADM. Further,
the iterations of RN and ASCBB are terminated when the distance between two successive
iterations is below the fixed relative toleranceτ = 10−4; i.e.,

‖xk+1 − xk‖ ≤ τ‖xk+1‖.

The accuracy requirement on the feasible iteratezk generated by ADM is

‖xk − zk‖ ≤ τ‖zk‖.

A first set of experiments was conducted solving (1.1) by the P, RN, ASCBB and ADM
algorithms. In Table5.1we report the PSNR values of the observed images and of the images
recovered by the four algorithms tested. In Table5.2 we show the elapsed times in seconds
required by the procedures compared.
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TABLE 5.1
PSNR values of the observed images and of the images recovered by P, RN, ASCBB and ADM algorithms

applied to Problem (1.1).

PSNR
Image η Observed Image P RN ASCBB ADM
Satellite 1 25.24 30.38 34.58 34.75 34.71

3 25.06 27.78 30.05 30.06 30.06
5 24.73 26.92 28.37 28.38 28.38
7 24.29 26.62 27.68 27.69 27.69

Church 1 25.18 30.06 30.64 30.87 31.01
3 25.01 27.41 27.41 27.96 28.28
5 24.69 26.51 26.98 26.99 27.46
7 24.23 26.06 26.50 26.52 26.93

Eagle 1 29.17 32.50 33.73 34.19 34.70
3 28.76 30.09 31.14 31.15 32.55
5 28.02 29.45 30.43 30.45 31.68
7 27.09 28.71 29.51 29.53 30.98

Bridge 1 21.15 27.29 28.08 28.02 28.31
3 21.07 23.79 24.44 24.49 24.60
5 20.93 23.07 23.52 23.52 23.70
7 20.74 22.37 22.69 22.68 22.91

Clock 1 25.36 29.53 29.54 29.93 30.23
3 25.19 26.89 26.90 26.96 27.59
5 24.84 26.04 26.05 26.05 26.99
7 22.37 25.62 25.62 25.64 26.50

Surf 1 22.70 28.41 29.53 29.48 29.71
3 22.59 25.36 25.88 25.89 26.13
5 22.42 24.29 24.79 24.81 25.02
7 22.16 23.99 24.28 24.29 24.56

Zebra 1 19.64 26.30 26.51 26.21 26.59
3 19.59 22.80 22.87 22.88 22.96
5 19.49 21.93 21.96 21.96 22.06
7 19.36 21.10 21.12 21.12 21.31

Bear 1 20.39 27.20 27.69 27.37 27.83
3 20.34 23.67 23.88 23.88 24.07
5 20.21 22.88 23.08 23.09 23.23
7 20.05 22.10 22.24 22.45 22.45

The results in Table5.1show that RN, ASCBB and ADM algorithms produce images of
higher quality than those obtained by using the P method. Enforcing the bounds throughout
the iterations offers a significant advantage over the P method since an increase of 1dB in the
PSNR value translates roughly to 10% reduction in the relative error between the true and
restored images. ADM achieves the highest restored qualityin 27 tests out of 32 but in 17
runs the gain over RN and ASCBB is within0.3dB.

From Table5.2 we observe that ADM is much faster than RN in all runs. Moreover,
comparing to ASCBB the execution time of ADM is more than halved for 27 problems
while AS CBB is the winner in two runs.

Let us now make some comments on the good performance of ADM. ADM shows a
slower convergence rate than RN and consequently requires ahigher number of linear sys-
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TABLE 5.2
Execution times of RN, ASCBB and ADM algorithms applied to Problem (1.1).

Algorithm
Image η RN AS CBB ADM
Satellite 1 27.67 10.28 0.80

3 19.25 6.76 1.29
5 14.87 3.49 1.58
7 15.97 4.56 0.42

Church 1 28.83 4.32 0.21
3 12.58 3.19 0.17
5 8.65 1.58 0.19
7 8.84 1.16 0.32

Eagle 1 16.89 2.93 0.32
3 8.43 1.38 0.19
5 8.40 1.42 0.19
7 9.66 1.34 1.18

Bridge 1 29.06 6.93 0.40
3 21.38 4.82 3.23
5 12.67 6.78 0.34
7 14.13 5.55 0.89

Clock 1 20.75 3.00 0.04
3 11.80 3.36 0.07
5 7.39 1.83 3.31
7 7.87 1.87 0.09

Surf 1 29.52 5.76 0.39
3 12.64 3.17 0.34
5 13.52 3.35 0.30
7 9.30 1.52 0.34

Zebra 1 22.22 7.11 0.34
3 20.42 6.25 0.30
5 12.00 3.45 0.52
7 12.15 4.06 0.34

Bear 1 32.82 7.30 0.35
3 13.29 3.06 7.35
5 14.68 3.81 3.28
7 9.40 1.88 0.26

tems solves. However, this disadvantage is alleviated by the fact that the diagonalization of
the coefficient matrix in ADM is reused through different iterations and the numerical re-
sults confirm that the overhead of RN in the linear algebra phase is not compensated by fast
convergence.

The computational overhead of ASCBB depends on the number of iterations and func-
tion evaluations required. In order to compare the number ofiterations of ASCBB and ADM,
in Figure5.2 we display the performance profile [8]. The performance profile is defined as
follows. Consider the 32 tests performed and the two solversADM and AS CBB. For each
testt solved by the solvers, let Is,t denote the number of iterations required and letĨt be the
smallest number of iterations required by the two solvers inthe solution of testt. Then, the

ratio is,t =
Is,t

Ĩt
, measures the performance on testt by solvers with respect to the better
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FIG. 5.2.Performance profile: number of ASCBB and ADM iterations for Problem (1.1).

performance on such test and the performance profile of solver s is defined as

πs(τ) =
no. of tests s.t. is,t ≤ τ

total no. of tests
, τ ≥ 1.

The performance profile is given in Figure5.2; the left side of the plot gives the percent-
age of test problems for which the solver is the more efficient. It shows that ADM requires
a lower number of iterations than ASCBB in 80% of the runs and that ASCBB is within a
factor 5 with respect to ADM for 90% of the tests.

Besides the fact the ADM outperforms ASCBB in terms of iterations, we also point out
that, in all runs, the number of quadratic function evaluations required by ASCBB varies
between a factor 1.2 and 2.2 with respect to the number of iterations. Since performing one
iteration of ADM is very cheap, the above analysis supports the effectiveness of ADM in
terms of computational time.

We conclude giving results obtained by using the regularized Problem (1.2) and ADM on
images: Satellite, Eagle, and Clock. The results reported in Table5.3show that ADM solves
(1.2) efficiently. In Figure5.3 we show the satellite images recovered by ADM applied to
Problems (1.1) and (1.2).

6. Conclusions.We have proposed the solution ofℓ1 andℓ2 as bound-constrained linear
least-squares problems by ADM. The procedures proposed allow us to exploit the specific
structure of the matrices appearing in the problems and are suitable for recovering images
from noisy and blurry observations in image processing. Experiments on image deblurring
problems show that ADM is effective in terms of quality of therestored images and speed, and
compares favorably to existing procedures for large bound-constrained linear least-squares
problems.
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TABLE 5.3
Computational results for ADM applied to Problem (1.2).

ADM
Image η PSNR Observed Image PSNR Time
Satellite 1 25.24 34.75 0.82

3 25.06 30.28 0.99
5 24.73 28.50 1.11
7 24.29 27.63 1.11

Eagle 1 29.17 34.33 0.29
3 28.76 31.72 0.28
5 28.02 30.25 0.31
7 27.09 28.84 0.33

Clock 1 25.36 29.55 0.09
3 25.19 27.14 0.11
5 24.84 26.23 0.11
7 22.37 25.41 0.15
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[19] J. J. MORÉ AND G. TORALDO, On the solution of large quadratic programming problems with bound con-
straints, SIAM J. Optim., 1 (1991), pp. 93–113.



ETNA
Kent State University 

http://etna.math.kent.edu

372 J. ZHANG AND B. MORINI

[20] B. MORINI, M. PORCELLI, AND R. H. CHAN, A reduced Newton method for constrained linear least-
squares problems, J. Comput. Appl. Math., 233 (2010), pp. 2200–2212.

[21] S. MORIGI, L. REICHEL, F. SGALLARI , AND F. ZAMA , An iterative method for linear discrete ill-posed
problems with box constraints, J. Comput. Appl. Math., 198 (2007) pp. 505–520.

[22] J. G. NAGY, K. PALMER , AND L. PERRONE, Iterative methods for image deblurring: a Matlab object
oriented approach, Numer. Algorithms, 36 (2004), pp. 73–93.

[23] M. NG, R. CHAN , AND W. TANG, A fast algorithm for deblurring models with Neumann boundary condition,
SIAM J. Sci. Comput., 21 (1999), pp. 851–866.

[24] M. NG, P. WEISS, AND X. Y UAN, Solving constrained total-variation image restoration and reconstruction
problems via alternating direction methods, SIAM J. Sci. Comput., 32 (2010), pp. 2710–2736.

[25] M. J. D. POWELL, A method for nonlinear constraints in minimization problems, in Optimization: Sympo-
sium of the Institute of Mathematics and Its Applications, University of Keele, R. Fletcher, ed., Academic
Press, New York, 1969, pp. 283–298.

[26] M. A. SAUNDERS, PDCO, Primal-Dual interior method for Convex Objectives, Stanford Dept. of Manage-
ment Science and Engineering, Stanford.
http://www.stanford.edu/group/SOL/software/pdco.html

[27] T. SERAFINI, G. ZANGHIRATI , AND L. ZANNI , Gradient projection methods for quadratic programs and
applications in training support vector machines, Optim. Methods Softw., 20 (2005), pp. 353–378.

[28] R. TIBSHIRANI, Regression selection and shrinkage via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996),
pp. 267–288.

[29] USC,The USC-SIPI Image Database, Signal and Image Processing Institute, USC, Los Angeles.
http://sipi.usc.edu/database/

[30] Y. WANG, J. YANG, W. YIN , AND Y. ZHANG, A new alternating minimization algorithm for total variation
image reconstruction, SIAM J. Imaging Sci., 1 (2008), pp. 248–272.

[31] S. WRIGHT, R. NOWAK , AND M. FIGUEIREDO, Sparse reconstruction by separable approximation, IEEE
Trans. Signal Process., 57 (2009), pp. 2479–2493.

[32] C. L. WU AND X.C. TAI , Augmented Lagrangian method, dual methods, and split Bregman iteration for
ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), pp. 300–339.

[33] J. YAN , W. YIN , Y. ZHANG, AND Y. WANG, Fast algorithm for edge-preserving variational multichannel
image restoration, SIAM J. Imaging Sci., 2 (2009), pp. 569–592.

[34] H. ZOU, T. HASTIE, AND R. TIBSHIRANI,Sparse principal component analysis, J. Comput. Graph. Statist.,
15 (2006), pp. 265–286.

http://www.stanford.edu/group/SOL/software/pdco.html
http://sipi.usc.edu/database/

