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INEXACT AND TRUNCATED PARAREAL-IN-TIME
KRYLOV SUBSPACE METHODS FOR
PARABOLIC OPTIMAL CONTROL PROBLEMS *

XIUHONG DU, MARCUS SARKIS, CHRISTIAN E. SCHAERER, AND DANIEL B. SZYLDY

Abstract. We study the use of inexact and truncated Krylov subspaceadetfor the solution of the linear
systems arising in the discretized solution of the optimaltrabrof a parabolic partial differential equation. An
all-at-once temporal discretization and a reduction apgr@eie used to obtain a symmetric positive definite system
for the control variables only, where a Conjugate Gradi€@@) method can be used at the cost of the solution of
two very large linear systems in each iteration. We proposeséoinexact Krylov subspace methods, in which the
solution of the two large linear systems are not solved exeatld their approximate solutions can be progressively
less exact. The option we propose is the use of the parar¢ghe algorithm for approximating the solution of these
two linear systems. The use of less parareal iterations magessible to reduce the time integration costs and to
improve the time parallel scalability. We also show that tated methods could be used without much delay in
convergence but with important savings in storage. Spelstnahds are provided and numerical experiments with
inexact versions of CG, the full orthogonalization metho®¥B, and of truncated FOM are presented, illustrating
the potential of the proposed methods.

Key words. parabolic optimal control, reduced system, saddle pointlprohinexact Krylov subspace methods,
truncated Krylov subspace methods, parareal approximaattral bounds
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1. Introduction. An important class of problems in many fields including electag-
netic inversion, diffraction tomography, and optimal dgsare solved using optimization
with partial differential equations as constraints. A coomapproach for the solution of this
constrained optimization problem consists of introdudiagrange multipliers and solving
for the stationary point of the Lagrangian. This approaehdg a KKT system with a saddle
point form; see, e.g.3] 4, 13, 14, 15, 21]. In this paper, we consider the solution of a large
saddle point (or KKT) system of the form

K o0 ET y £,
(1.1) 0 G NT ul=1|0|,
E N 0 p fs

where the vectoy is the state, the vectar is the control, ang is a vector of Lagrange mul-
tipliers. We are particularly interested in problems thadlee from time dependent PDE’s
whereE andN are space-time discretizations of some time dependenatmgpsrand the vec-
torsy, u, andp are the discrete space-time solutions. In many of the agjmics mentioned

above, the control is time invariant and thus has a much smdiinension than when it is
time dependent.
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Although it is possible to tackle the KKT system head on, guiees storage for all
space-time vectors. In this case, it is possible to use thecesl Hessian approach (see, e.g.,
[19, 20, 22, 23]) that yields a much smaller linear system

(1.2) Hu = b,

where the matriH := G + NTE-TKE !N is symmetric positive definite, and it is often
referred to as the reduced Hessian.

Other approaches can be used as well (see, e.g., the s@iyelgdwever, here we fo-
cus on the reduced Hessian approach for two reasons. Welalneentioned that the size
of the problem {.1) which comes from a space and time discretization is sudhlleaHes-
sian approach gives a considerable smaller system. Settenteduced Hessian method is
the method of choice for nonlinear problems Sequential @imdProgramming codes (see
[23]) and as such is well developed. We mention that there isitegerk that allows for in-
exactness in the solution of the KKT systed, put the reduced Hessian is still the dominant
approach in nonlinear programming. See algd¢r an additional discussion on the merits
of the reduced Hessian approach and further referencesriher

One important feature of the reduced Hessian approachegialiour problem is that it
leads to a symmetric positive definite system and thus coelldaved using the conjugate
gradient method (CG). However, the main disadvantage ofdédaced Hessian method is
that each matrix-vector product is very expensive. The C@&aah iteration requires only
one matrix-vector product with the matrH. Note however that each of these matrix-vector
products requires the solution of two very large lineareyst, one witlE and one withE”,
say

(1.3) Ez=s and ETw = v,

and traditionally these are expected to be solved accyrafétis means that we need to
solve two discretized time dependent partial differergigiations (PDESs) per CG step, and
since the problem under consideration is large, an iteratigthod has to be employed for the
solution of these two discretized PDEs. In practice, thetsm of the linear systemd (3)
are performed iteratively, using suitable preconditisnap to a certain given tolerance. Thus
an iterative solver is embedded within an outer one (thathis,one used for the solution
of the reduced Hessian system). The cost of these inner datigns, of course, may be
considerable. However, if the calculations are perfornmedtactly, there may be significant
savings in computational effort. In other words, relaxihg aiccuracy of these inner matrix-
vector products would decrease the cost of the overall lons and thus make the reduced
Hessian method attractive.

There are two likely scenarios where solving the Equatidn) @pproximately may
bring considerable computational advantages. The firsesponds to spatial parallelization
and it appears for instance wh&r! andE~7 involve an implicit temporal discretization
and a domain decomposition. The second case, which is theveramalyze in this paper,
comes from a temporal parallelization, where for instamcexact solver is used in each time
step, however, the parareal methdd][is applied in order to speed up total CPU time. We
note that both spatial and temporal parallelization coldd be considered in the inexact and
truncated Krylov subspace framework developed below.

For the approximate solution of (3) we introduce the use of inexact parareal approxima-
tions. The parareal methotild] is a parallel-in-time iterative method for solving an avibbn
based on a decomposition of its time domain. The operalibris andE~7v represent the
discrete forward and reversed in time evolution of the palialequation, and even though the
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time direction seems intrinsically sequential, the corabion of coarse and fine solution pro-
cedures have proven to converge and allow for more rapidisnolif parallel architectures
are available. Due to coarse granularity and time para#iebn of the method, an inexact
parareal with a fixed number of parareal iterations was cemnsd in P2] for constructing a
preconditioner for all-at-once KKT large systems arisingparabolic optimal control prob-
lems. The goal here is different, it is to develop inexactapeal approximations for the
reduced Hessian method. While i8] the main mathematical concern was to establish
condition number estimates of the preconditioned systemg tihe concern is in how to mea-
sure the inexactness in the computation of the Schur conguie(hlessian) systeni ) in
terms of the number of parareal iterations, therefore, meoretical results are required (see
Theorem 3.5).

The natural question that arises then is how inexact thess matrix-vector multiplica-
tions are allowed to be performed in order to ensure the egenee of the outer iterations.
In the context of nonlinear optimization it is a common pi@eto solve the linear equations
at each step of a Newton method inaccurately as long as weaafeom the solution, but
as we get closer, we need to increase the accuracy if we wiabhieve quadratic conver-
gence [L6]. But in the context of linear systems, such as the one witluced Hessian, it
was shown in28] that it is actually beneficial to perform the calculationsain increasingly
inexact way as the iteration progresses; see alsti’ 31, 32]. In fact, in [7] experiments are
shown where increasing the accuracy in the linear systegrades the performance of the
method.

The inexactness introduced when solving the systdn® (p to a certain tolerance can
be understood as performing instead of an exact matrixeveatiltiplicationHv, an inexact
matrix-vector multiplication given by

(1.4) Hv:=H+D)v

whereD is an error (or discrepancy) matrix which usually changemfone iteration to the
next.

Studies of inexact Krylov subspace methods, where mattter products are of the
form (1.4), indicate thaf|/D|| can be allowed to grow as the iterations progress; 53] 31].

In our context this means that the (inner) tolerance withcithe systemsl(3) are solved can
increase, with the associated computational savings. \B&rithe this in detail in SectioB. 1

When using inexact matrix-vector products, the three-texounrence of CG does not
guarantee the orthogonality of the basis of the Krylov sabspIn P5] MINRES is used and
the problem is assumed to maintain symmetry. Furthermbyee iuse different number of
inner iterations or different number of sweeps for the apipnation for the two systemd.(3),
then the resulting matri%{ is not symmetric. In other words, we may gain computational
time, but we lose symmetry, and thus we need a Krylov subspextbod without a three-
term recurrence. In this paper, we use the full orthogoattim method (FOM)Z6, 27, 30,
which reduces to CG when the coefficient matrix is symmetnit @oes not change from one
iteration to the next.

To mitigate the need for additional storage, we explore e truncated FOM (TFOM),
namely we only store the lasir vectors and only orthogonalize new basis vectors with re-
spect to thosenr vectors (two sets afvr vectors are computed and stored, and the approxi-
mate solution can be computed progressively without the t@store the whole basis); see,
e.g., 6, 27, 30]. Usually, the truncated methods have a “delay” in convecge i.e., the
lack of full orthogonality translates into taking more @&ons to converge to the same accu-
racy. The theory developed i29] indicates that the delay experienced in truncated methods
does not have to be significant. This delay in convergende itgitassociated computational
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cost is of course offset by the tremendous storage savig®ite can obtain. Thus, in this
paper we use inexact and truncated FOM (TIFOM) for the smhutif the reduced Hessian
system (.2). We believe that this is the first time that both inexactresd truncation are
used simultaneously. In the special case when enjy= 2 vectors are kept, then TIFOM
is sometimes called inexact CG (ICG). We note thRkxible Conjugate Gradienté~CG)

in [24] uses a different but related approach; it starts from CGamsiders the storage of
additional vectors for further “local orthogonalizatioWVe note that inexact Krylov methods
have also been studied for singular matricgls §nd therefore they can also be applied to
ill-conditioned problems.

In the next section we describe the general parabolic clootoblems that we consider,
and then specify a class of problems on which we illustrateapproach: a classical dis-
tributed control problem. In Sectid®) we discuss the inexactness in the computation of the
Schur complement (Hessian) systein( as well as the conditions on the approximation
of E andE7 for using the parareal approximationBf TKE~!; see Equationi(.2). In Sec-
tion 4, we report numerical experiments using inexact FOM anditsdated variants. The
results show that considerable savings in time and memaopyirements are obtained when
the proposed truncated and inexact methods are used.

2. A parabolic optimal control problem. Let Q c R¢ be an intervald{ = 1) or a
polygonal (d = 2) domain of size ofO(1) and let.A be a coercive map from a Hilbert
spaceL?(to,ts;Y) to L2(to,ty;Y'), whereY' is the dual ofY” with respect to the pivot
spaceH = L?*(). Denote the state variable space as

Y={z¢€L?(to,tp;Y): 2 € L*(to,t5;Y')}.

Giveny, € H, we consider the following state equation @g, ¢ ¢) with z € Y

z+Az = v in zeQ,
(2.1) z = yp onuzeEoi,
2(0) = o

In this paper we consider the following control problem:

The distributed control problem, where the distributedtaain belongs to
an admissible spade=L?(ty,ts; V'), where in our applicatiol’ = L?(12).
We considerd = —A (minus the Laplacian), and without loss of generality
we assume homogeneous Dirichlet boundary conditigns= 0 (equiva-
lently Y = H}(€2)), and we indicate the dependencezain v € V using
the notationz(v).

We mention that many of the considerations we present foaltioge problem can also
be applied to the boundary control problem, which is andlégd inverse problem, and where
the interest consist in recovering the boundary conditiees, e.g.,1, 7].

We describe now our approach. To define an optimal contrddlpno, we consider a
time interval(to, ¢s), a given target functioy in L?(to,ts;Y), parameterse > 0, 8 > 0,
and~ > 0, and we employ the following performance function which vseaciate with the
state equation( 1)

T =5 [ ) - 5t e
(2.2) fo

B . v (Y
+ 510 = Moy + [ ot oy
0
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For simplicity, we assume that € Y andy € L?(to,ts;Y). Following [17], we consider
the optimal control problem for Equatio.(l), which is equivalent to finding a contrel
which minimizeghe cost function4.2).

To discretize the state equatich ) in space, we apply the finite element method to its
weak formulation for each fixede (to,t;). We choose a quasi-uniform triangulati@g(2)
of 2, and employ thé?; conforming finite element spadg, C Y for approximatingz(¢, ),
and thep, finite element spac®, C V for approximating(t, -). Let{¢; ?:1 and{y; f,l
denote the standard basis functions Yarand V},, respectively. Throughout the paper we
use the same notatione Y}, andz € R?, orv € V}, andv € RP, to denote both a finite
element function in space and its corresponding vectoesgmtation, and to indicate their
time dependence, we denote themxanduv, respectively.

A discretization in space of the continuous time linearefatic optimal control problem
will seek to minimize the following quadratic functional

«

I =5 [V OM- D) i

+ 5l — B Malate) ~ 5t + 3 [ OBt e

to

(2.3)

subject to theconstraintthat z satisfies the discrete equation of state:
(2.4) Mpz+ Apz = By, for tg <t <ty; and z(to) = yi.

Here (z — gjh)( t) and (z(ty) — g(ty)) denote the tracking and the final error. The func-
tionsi (t) andy}y belong toY;, and are approximations t(¢) andyy, respectively (for
instance, considek?(2)-projections intoy}). The matrices\/,, A;, € R9%9, B), € RT*P,
andRh € RPXP have entrie$Mh)ij = (¢i7¢j)= (Ah)ij = ((ﬁi,A(ﬁj), (Bh)ij = ((ﬁi,iﬁj),
and(Ry,)i; := (vi,1;), where(-, -) denotes the.?(2) inner product.

To obtain a temporal discretization ¢f.8) and @.4), we partition[to, ¢;] into lAequaI

sub-intervals with time step size= (t; — to)/lA We denote; = to+1 7 for0 < I <. Asso-
ciated with this partition, we assume that the state vagiald continuous ujto, tr] and linear

in each sub-intervak;_q,¢],1 <1 < 1, with associated basis funcuorﬁél}l _,- Denoting
by z; € R7 the nodal representation eft;), we havez(t) = Zz:o z19,(t). The control
variablev is assumed to be time discontinuous and constant in eacim&rial (t;,_1,¢;)
with basis functiong y; }\_,. Denotingv; € R as the nodal representation:gf;, — (7/2))

yieldso(t) = 37—, vixa(b).
The corresponding discretization of the expressif)(yields:

(2.5) Ji(z,v) = % (z—-9)"K(z—-3)+ %VTGV +(z-y)g,

where the block vectors := [2],...,2I" € R andv = [of, ..., oI € R de-
note the state and control variables, respectively, ahalldiscrete times; the discrete target
isy :=[g{,....9]" € R with target error; = (z — ') for 0 < I < 1, wherez := y;
the matrixK := Z+T with z Te R@X(Tﬁ r B diag(0,0, .., M) andZ = aD, @M,

D, e R with entries(D; );; == ftf 94( t)dt,forl <i,j < l and® stands for the

Kronecker product; the matriG = 77[;@ Rh e R and I € RI¥T is an iden-
tity matrix; and the vectog = (¢7,07,...,07)7, whereg; = a%Me, and where we
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have used; = f;’ Jo(t)91(¢)dt. Note thatg; does not necessarily vanish because it is not

assumed thagh = zo.
Employing the backward Euler discretization in time, the:&ipn @.4) takes the form

(2.6) Fiz; = Foz; +mBru; for to <t <ty; and z(ty) = yh,

whereF,, F; € R7*7 are (fixed) matrices given b, := M;, andF, := M, + T Ay. Using
a full discretization in time, Equatior2(4) has the matrix form

2.7) Ez+ Nv =13,

where the input vector if; := [(Foyt)T,07,...,07]T € RI4. The block lower bidiagonal
matrix E € RUD*9) js given by

Iy
Iy B

Iy B

and the block diagonal matriX € R(@> () is given byN = —71; @ By,

3. Inexact Krylov subspace methods for the Schur complemengystem. The La-
grangian functionalj (z, v, q) for minimizing (2.5) subject to the constrain®(7) is

(3.1) Lh(z,v,q) = J(z,v) + q" (Ez + Nv — f3).

To obtain a discrete saddle point formulation 8f1j, we apply the optimality conditions
for £ (-, -,-). This yields the symmetric indefinite linear systelnlf, wheref, := Ky — g
andy = [(7})7.... (#)")" € BT,

Eliminatingy = E~! (f; — Nu) andp = E~7 (f; — Ky) in (L.1) yields thereduced
Schur complement system:

(3.2) Hu:= (G+N’E"TKE 'N)u=b

(see [L9, 21]), whereb := NTE~T (KE~'f3 — f;) is pre-computed. The matril is
symmetric positive definite, and in addition we have that

(v,Gv) < (v,Hv) < u(v,Gv),

wherey is estimated later in3(27). As a result, the (preconditioned) Conjugate Gradient
method can be used to sol\&2), but each matrix-vector product wi requires the solution
of two linear systems, one wifs and one withE™”.

As already stated, our aim is to use inexact Krylov subspaethaods for the approxi-
mation to the solution of3.2). We propose the use of a Truncated Full Orthogonalization
Method (TFOM) and its inexact version, which we call TIFOMgain, we favor the use of
versions of FOM here, since they reduce to CG if the solutminthe two linear systems
in (1.3) are exact.

3.1. The truncated full orthogonalization method. In the FOM algorithm, at each
iteration one would require a matrix-vector product wita thatrixH defined in 8.2), sayHs
with ||s|| = 1. This product would proceed as follows:
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ALGORITHM 1: Matrix-vector producHs

Multiply Ns andGs.
SolveEz = Ns.
Multiply Kz.
SolveE"w = Kz.
ComputeN"w + Gs.

agrwbdE

The idea we are exploring is to replace st@pand4 in Algorithm 1 above using an
approximation (later on in the paper, this approximatiot laé obtained using the parareal
algorithm studied, e.g., inlfl]). We are interested in approximating the solutions of ¢hes
two linear systems using as less accuracy as possible, wiifning a good solution to
(3.2). To that end, we first review some results available in tloemeliterature on inexact
Krylov subspace methods; seB, P8, 31].

We begin by mentioning two results frordg] dealing with inexact FOM and its trun-
cated version (Theorens1 and3.2 below). The Full Orthogonalization Method (FOM) is
a Krylov subspace method for nonsymmetric linear systemsp§the formHu = b with
initial vector ug, which afterm iterations builds an orthogonal basis of the usual Krylov
subspace using the Arnoldi method and collects these weictar matrixV,,,. Then, the ap-
proximationu,, = ug + V,,x,, IS computed, wherg,, is the solution of the linear system

(33) me - ﬂela

with 3 = |[|ro|, ro = b — Hug, H,, = VIHV,, is anm x m upper Hessenberg
matrix, ande; is the first Euclidean vector; see, e., 6, 27, 30] for more details on
FOM. The truncated version of FOM consists of computing asbeallected inV,,, where

the last vectow,, is only orthogonalized with respect to the previoug vectors say. In
this manner, onlynr + 1 vectors are needed to be kept in storage, and the resulting ma
trix H,, = VI HV,, is m x m upper Hessenberg and banded with (upper) semi-band-
width mp — 1*. In the extreme case, ihr = 2 and if H is symmetric positive definite,
FOM reduces to CG, anH,,, is tridiagonal.

As indicated in the introduction, when we refer to the inéx&noldi method, we simply
mean that at thé&th step of the Arnoldi method, the matrix-vector prodii£t;_; is not
exact. Instead we hav@I + Dy)vj_1 for somediscrepancymatrix D, which is usually a
different matrix at each different stép A natural question is how largéD|| is allowed to
grow and how we assure a residual norm below a prescribeciale.

Using the Arnoldi decompositioRlV, = Vk+1ﬁk and since the principal square part
of ﬁk is given byH, = [I}, 0] ﬁk, the next theorem guarantees overall convergence below
a given tolerance.

THEOREM 3.1. [28 Assume thain steps of the inexact Arnoldi method have been
carried out, and let,,, be the solution o3.3). Letr;, = b — Huy = ro — HV;x; be the
true residual, and’, = rg — V1 Hiy, be the computed residual at théh FOM iteration,

*Truncated FOM is called IOM inZ7], and it can be implemented in such a way that = up + VX, is
computed directly fromu,,, 1 without the need to store all the vectors\h,,. This implementation is called DIOM

in [27].
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respectively. Let > 0, and let
(3.4) by = Um(Hm)/Tna

whereo,,,(H,,) is the smallest singular value ®1,,. If for everyk < m,

€
(3.5) IDw]| < b
[Tkl
then,
(36) ||rm - f'm” <e€ and ||V§rm” <e

An equivalent result for the inexact truncated FOM with atration parameten. is shown
in the following theorem.

THEOREM 3.2. [28] Assume thatn steps of the inexact truncated Arnoldi method have
been carried out (with truncation parametetrr). Let the hypothesis of Theoredrl hold,
and let here/,,, be

(37) by = Um(vm)O'm(Hm)/m-

If (3.5 holds for everyk < m, then one has thgB.6) holds.

REMARK 3.3. As mentioned earlier, the advantage of truncated ndstiwthat fewer
vectors need to be kept in storage. The price one pays ishtbahatrixV,,, with the basis
vectors does not have orthogonal columns. In the case of@dM (i.e., with no trunca-
tion) the quantityo,,(V,,) = 1, while in the truncated case it decreases as the truncation
parametern decreases. Therefore, the valuelgfin (3.7) is smaller than that in3(4),
and furthermore the smaller the truncation parameteris, the more restrictive the condi-
tion (3.5 is. In other words, we can allow less inexactness when we hare truncation.

Remark3.3 applies in particular to the extreme casenef = 2, i.e., to inexact CG.
We mention that the convergence bound of FCG2# [Theorem 3.1] is of a different kind
than @3.6), but nevertheless, the essence of Ren3aiklso applies: the smaller the truncation
parametern is, the smaller the discrepancy needs to be to maintain cpenee.

Returning to Algorithnil, we now consider the situation when for the matrix vectodpro
uct Hs, we approximate the solution of each of the linear systenssaps2 and4. We con-
sider that the approximate solutiano Ez = N in step2 is obtained via an iterative method.
In particular, in the next section we describe the pararedhod represented y—= E;}Ns,
whereE,,, corresponds te; applications (or sweeps) of the parareal method.

3.1.1. Parareal approximation E;TIAiE,;l. The parareal method is a parallel itera-
tive method for solving an evolution equation based odeaompositiorof its temporal
domain(ty, ] into k coarsesub-intervals of lengti\7 = (ty — to)/E, setting7y = to
andTy =ty + kAT for1 <k < k; see, e.g.,18]. It determines the solution at the timég
forl <k < P by using amultiple-shootingechnique which requires solving the parabolic
equation on each intervél’,,_1, T} ) in parallel. To speed up the multiple shooting iteration,
the residual equations are “preconditioned” by solving@afse” time-grid discretization of
the parabolic equation using the time st&f{'. o -

We define the matridK = Z + T with Z,T e R+k-DDx((+k-1)a) where
T = Bdiag(0,0,...,M). Here,Z = aD, ® M,, D, := blockdiagD!,... D),
D! € RMX(M) and Dk e R(M+D)x((M+1) for 2 < k < k, are the time mass matri-
ces associated to the sub-intervidls_1, 7], wherem = (T, — Tx—1)/7. Note thatK is a
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block diagonal (in time) matrix, and it is easy to see (ﬁatE— 1)g = mq+ (E— 1)(m+1)q.
Note thatK can be obtained by assembllfgat the timesT},,1 < k < k — 1. In order to
simplify notation, from now on we denote the operatioeh Kz by wTlKz, where the vec-
torsw,z € R(D are mapped to vectors i((+k-19  also denoted by andz, where their
nodal values corresponding to the timBs 1 < k < k: — 1 are duplicated.

In this section we formulate a preconditiorBy, for E based om Richardson itera-
tions of the parareal algorithm; cf3}] where Richardson is used as an outer iteration for
a different Schur complement problem. UsiRg, an application of6, 7KE, ! to a vec-
torv=[vf,...,ol]" € R' can be computed in three steps.

Step |, applyE;, 'v :— 2, usingn applications of the parareal method (described in more
detail below).

Step II, multiply Kzn :— t, (see below).

Step III applyE; Tt,, :— w,, i.e., the transpose &tep .

Letm = (Ty—Ty—1)/7 andji_1 = (Tx—1—Tp)/7. Consider the solutiof;, at timeT},
defined by marching from tim&}_, to time T}, using the backward Euler discretization
scheme on the fine time mesh (characterizedowith an initial dataZ,_, at 7, with

forcing termfv]  .,,...,v] 17 Itis easy to see that

F\ Z), = F§* Zy—1 + Sk,

WhererA : (FOF )m 1F € quq Sk = Zm— (FOFl_l)mim Vj_y+ms Zo = 0,

m=1

and F, and F as in @.6). Imposing continuityF; 7 — FOA Zp_1 — S = 0 at timesTy,
for1 < k <k, yields

Fy Z S1
~-F& Ry Zy So

(3.8) CZ = ) ) ) = ) =:S.
~FA R || 2 S

In this paper we consider the case where the coarse solutignth initial dataZ;,_; € R?
at T, is obtained by applying one coarse time step of the backwanterE
methodG Z;, = Gy Zj_1, where the matrixG, := (M), + A, AT) andGy := M;, € RI*7,

In the parareal algorithm, the following coarse propaga@sed orGy andG, is em-
ployed to precondition the syster®.) via:

Z?—l Zi Gy TR
Zy" Zs ~Go G R}
: - S . . Do
o 3 . . :
. zi Gy & R:

) ) T ~
for 0 < i < n — 1, where the residud’ := { ﬁT,...,RZET} € R*7 in (3.8) is defined

i i i il ;717 kq 0 T T
asR! := S — CZi, whereZi :— [Zl e } € R, andz? := [07,...,07]

We now definez,, := E,'s. Letz, be the nodal representation of a piecewise lin-
ear functionz™ in time with respect to the fine triangulation parameterizgd- on [¢o, ¢ /],
and continuous inside each coarse sub-inteffial ;, 7], i.e., the functiorg,, can be dis-
continuous across the coarse poifils 1 < k < k — 1, thereforez, € RU+k-1a, On

each sub-intervall},_1,T}x], z,, is defined marching from tim&},_, to time T}, using the
backward Euler scheme W|th fine times stepand initial dataZ;’_, atTj, ;.
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3.1.2. Conditions on the approximation ofE~! and E~7. We return to Algorithml
and analyze the situation when for the matrix vector pro#ictwe approximate the solution
of each of the linear systems in stepsnd4. We mention that studies of inexact Krylov
subspace methods such as FOM applied to some standard $atplements (i.e., with only
one inverse) can be found i&§, 32].

Let z be the approximate solution Bz = Ns and letq; = Ez — Ns be its resid-
ual. Now step3 has the formKz. Letw be the approximate solution B'w = Kz
and letq; = E”W — Kz be its residual. Therefore, we have tat= E~'q; + E~'Ns
andw = E-Tqy, + E-TKz. Thus, in stef® we have

N'% =NTE 7q, + N'E"TK (E"'q; + E"!Ns),

— NTE-TRE'Ns + (NTE*TqQ + NTE*TREflql) .
Thus, the inexact matrix-vector produ@ts + N”7w differs from the exact matrix-vector
productGs + N7'w exactly by the discrepancy vector
d=NTETq, + NTE-TKE q;.
Let us define the discrepancy matrix as
(3.9) D :=N"E Tqys” + NTE-TKE 'q;s7,

where||s|| = 1. Our goal is to satisfy a condition of the forr@.f). To that end, observe that
from (3.9), we have

IDI| < INTE™T flqz|| + [INTETTKE™"|| qu||

Therefore, to achieve3(9), it suffices to require that

Y4 € €
(3.10) 2|l <7 = = L) ——
[INTE=T| [[r—1|| [rm—1ll
and that
o, € €
(3.11) laull < (1 =) s

e l”

INTE-TKE~1|| [tm-1ll

foragiven0 < n < 1.
In the expressions3(10 and @.11), the parameten can the fixed (e.gn = 1/2), or it
may vary from one step to the next.

3.1.3. The convergence of inexact pararealWe consider that the approximate solu-
tion z is obtained via an iterative method. In particular, we useghrareal method repre-
sented byz = E; ' Ns as described in Sectioh1.1 In a similar mannerw is obtained
viaw = E;ff(i. Notice thatn; is not necessarily equal t@,. In casen; = no, it sym-
metrizes the matriE;ZTf(E;ll; this property will be explored further. The residual ajpste
of Algorithm 1 in terms of the parareal method is given by

a1 = Ez— Ns = EE;'Ns — Ns
and, correspondingly, the residual in stejs:

a: = E"W - K2 = E (E,TKE; ) Ns - KE;Ns.
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As a result the discrepancy matrix defined in the expres§id@) takes the form
(3.12) D = N”E;"KE, 'Nss” - N'E"TKE 'Nss”.

Theorem3.5 below shows that the norm of the discrepancy mabixconverges ge-
ometrically to zero as we increase the numher= min{n;,ns} of applications of the
parareal method, that i§D|| < Cp, |G| wherep,, < 0.2984256075™. The convergence
rate 0.2984256075 holds when the backward Euler scheme is applied to both tiepss
andAT; see [L0, 21, 22] on how to establish convergence rates for parareal mettBefere
we prove Theorer3.5, we next prove the following intermediate result.

LEmMMA 3.4. Let p,, denote the convergence factor ferapplications of the parareal

method. Then for anw € RID*(@ andz := E~'w with (¢) indicating its time depen-
dence, we have that

k
(313 ((B;' —E)w,K(E;' —~E)w) < (alt; —to) + A)pd D 12(Th) |2(-
k=1

Proof. Let A, and M, be theq x ¢ symmetric positive definite matrices introduced
in (2.4). Let Xy, := [z1,...,z4] and 4, := diag{\1, ..., A3} be the generalized eigenvectors
and eigenvalues ofi;, with respect toM,,, i.e., A, = MhXh/th}jl. Letz := E-'w
with z(t) = 371_, ¢4(t)z, andz, := E;'w with 2, (t) = Zq L b (t)xq. We note thaw)
might be discontinuous across the coarse pdiptsThen

((E,;1 _E Yw,K(E;! - E’l)w)

= allz, = zll72w0.,0200)) + BlZa(ts) = 2(t1) 1720

q
=Y alldy = bqllaige, + BloG(tr) — dalts).

qg=1
First part (Estimation ofa||¢y — qﬁq\\%g(to_tf)). For eacht; € [T},_1,Tx] we have
n _ —1\&=Tr-1)/7 | |n
|65 (t) — dq(t)] = ((1+72g) ") |04 (Thk—1) = ¢q(Th-1)l,
and since\, > 0 implies ((1 + T)\q)‘l)(tl_T’“’l)/T < 1, we obtain

105 = PallZ2(ry ) < ATIGG (Th-1) — dg(Tr—1)|*.

Hence,

165 — allT2(g,e,) < (tr —to) max |y (Th) — bg(T3)[*.
1<k<k

Using [22, Lemma 4.3] withp, (Tp) = 0 and initial value;zsg(Tk) = 0, we obtain

<k<k

k
(3.14) max |7 (Th) — ¢q(Tw) | < p3, max g Ti)|* < p Z
1<k<k k=1
We just have established the upper bound-fii; — ¢q||2L2(tU7tf) given by
k

(3.15) alldy = ballize,) < alty —to)pl Y 16g(Ti)l.
k=1
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Second parfEstimation of3|¢} (t;) — ¢7 (ts)|?). It follows from (3.14) that

k
(3.16) Blgp(ts) — dnte)l* < B2 Y |og(Th)[*-

k=1

Using the expression8 (15 and @.16), and the identity

q
Z; |6a(T)” = l|2(T)l1Z2 (0
o

yields the upper boun®(13.
This completes the proof. 0

THEOREM3.5. Letk = (ty —to)/AT, D be asin(3.12) andp,, the rate of convergence
of the parareal in consideration. Then

@1 D] < 4 - t0)

A A1
s s + 4 (s + pac) ) IG.

Proof. Using

DK, -E)

ni

E;”KE;' -E"KE ' = (E;”

no ny no

—E
+(E,T-ETKE ' +ETK(E,! -E!),

ni
|ssT|| = 1, and the symmetry and positive definitenes&ofve obtain

D]
< INT(E,] - ETK(E, -E) N|'2INT(E,[ - E"K(E, -E")N|'/?

~

+ |NT(E, T - E"TK(E,! - E"Y)N|'/? |INTE-TKE'N||'/
7E7T (E 1

+ INT(E,; T K —E"YH)N|V? INTE-TKEN| /2.

n
ni

Let us first bound the terfiN” E-TKE~N||'/2. Note that if for anyv € RIP
(3.18) (E"'Nv,KE " 'Nv) < A(v, Gv),

then |[NZE-TKE~!N| < A|G|. The next goal is to find an upper bound for As
before, letz = E~'Nv. The continuous version of3(19 can be described as how to
bounda||z||%tf7t0;L2(Q)) + Bll2(tp)l172q) by Mlvll7z(), wherez andv satisfy the state
equation 2.1). This can be obtained by using the energy method, that idtiptyu(2.1)
by z(t), integrate orf2, and use the coerciveness.4fto obtain

1d
(3.19) 5@”»2(75)”%2(9) < (v(t), 2(t)) L2()-

Integrating in time and applying a Young inequality we obtai

1
(3.20) 12120y < 20t — to)1vlIF 220 + mﬂzuéo,t;m(m)’
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and integrating in time again we obtain

(3.21) ||Z||%t7t0;L2(Q)) <A4(t- tO)QHUH%tO,t;Lz(Q))

and

(3.22) 12(D)1 720y < 4t = to)l[v]l7 112 (0))-

We now consider the discrete cougterpartsmn@—(&za to the Qackward Euler scheme.
Letus denote: = [=],..., 21" € R andv = [vf,...,oI]" € R'”, and lett; = to + 7l.

It is easy to show that the counterparts ®2(1) and 3.22) are given by

l l

(3.23) 7Y (2 Myzi) < 4t —t0)*T > (v, Rivy)
i=1 =1
and
l
(324) (Zl,Mth < 4 tl - to TZ vl,thl
=1

We note that

l l
(3.25) 7Y (i, Ryvi) <73 _(vi, Rpvi) = (v, Gv),

i=1 i=1
and using properties of the mass matrix of piecewise lingactfons in time we have

l
(3.26) 120, 2200) < 7D (20 Mizi).

i=1

Hence, using3.23—(3.26) we obtain

Oz(tf — to) + ﬁ

(3.27) (E"'Nv,KE"'Nv) < 4(t — to) (v, Gv).

Similarly, and using Lemma.4, we obtain

(E-' —E"Y)Nv,K(E;! - E—I)Nv)
(3.28) i
< a1 = g v @),
Combining the inequalities3(27) and @3.28 with n = n; orn = nsy, yields the bound3.17).
This completes the proof. 0O
REMARK 3.6. We discuss a variant of the performance functid)( It consists of

modifying its first term to

J(z ZAH )(Te, ) = §(Ths 720
(3.29)

ty
Y B _
t3 /t [o(t, )220 dt + 5 12(0)(ts,) = Gt s, )72
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This means that the discrepancy betweg¢n) and § is measured only at certain specific
pointsTy. In particular we force, although this is not necessaryt tha points7} be in
correspondence with the coarse time mesh of the pararehbohethis simplifies the imple-
mentation of the cost function, and more importantly, adasgvings in memory allocation
is achieved since we do not need to stefe) at all fine time mesh points only at those of
the coarse time mesh. It is not hard to see that LerBm&olds for this case with the same
constant in 8.13. Additionally, Theorem3.5 holds for this case with the same constant
in (3.17.

We end this section with a comment on the practical use of oaditions (.10
and 3.11). While the values of the problem dependent constéptands? canin principle
be computed, this is not computational feasible for our lohgroblems. Therefore, since
we know from Theoren3.5that these constants exist, we try some initial values, neldd
be, we modify them. We mention also that the bounds used iprthefs of Theorems.1
and3.2that give rise to this constants are by no means tight. Thesetis a wide latitude in
choosing these constants.

4. Numerical experiments. In this section, we describe numerical results on tests of an
optimal control problem involving the following 2D-heatwetion:

z—Az = v, x€f, 0<t
z2(t,0) = 0, z€09, 0<t
z(0,2) = 0, x €09,

whereQ) = [0, 1] x [0, 1]. We choose the performance target function:
(4.1) g(x) =x1(1 —21)e” "aa(l —ag)e” ™ fort e [0, 1].

We choose as stopping criterion for the iterative solvers floe outer iteration
€ = |lrmll/||roll < 1076, wherer,, denotes the residual at theth iteration. We imple-
mented inexact FOM (IFOM) and its truncated variant TIF@(). We concentrate on the
inexactness arising from the internal tolerance of thengatanethod. The stopping criteria
for the inner applications of the (parareal scheme) is giweaxpressions3(10 and @.11):
(4.2) ROy I i=1,2.

inner m ’ ’
m—1

Since we want a relative residual below the prescribeddalsse, instead of 4.2), we use

(4.3) P MM, i=1,2.
mner m ||rm71||

REMARK 4.1. The number of applications of the parareal scheme dispem the ex-
pression4.3). As a consequence, the number of inner iterations of thegarmethod need
not be equal from one outer iteration to the next.

Experiment 1. For this experiment, we consider= 1, 3 = 12, v = 10~°. The 2D do-
main( is discretized in a5 x 15 grid (§ = 132, h = 1/14, andp = 14 x 14 x 2 — 2 = 390)
and the time discretization @, 1], 7 = 1/512 (I = 512). In all cases, we use the parareal
method described in Sectidhl.1as a preconditioner with = 32 coarse time intervals.
For this problem the size of the matr® is 199680 x 199680 (almost200000 x 200000)
corresponding tg / = 390 x 512. The matriced®, N are of sizg{132 x 512) x (132 x 512)
and (132 x 512) x (390 x 512), respectively. The results (number of outer iterations and
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TABLE 4.1
Outer (inner)-iterations comparison betwe¢ROM and TIFOM(my). Outer tolerancee = 109,

6 =6? o = 1,8 = 12,4 = 1075, mesh grid size of5 x 15, 7 = 1/512, k = 32, AT/r = 16,
and n.c. means that the algorithm does not convergé (@riterations.

0e IFOM __ TIFOM -

mr =2 mrT =4
Eq. @) Eq. ¢4 [Eq.@1) Eq. ¢4 | Eq. @) Eq. @9
10712 | 15(576) 15(566) | 16(610) 16(600) | 16(608) 16(596)
10710 | 15(482) 15(476) | 17(532) 17(526) | 17(528) 17(524)
105 | 15(388) 15(378) | 17(426) 16(402) | 17(426) 16(400)
1077 | 15(340) 15(328) | 18(394) 18(374) | 17(374) 16(350)
107° | 15(288) 15(284) | 19(340) 17(316) | 19(338) 19(334)
107° | 17(238) 16(222) | 24(298) 22(272) | 21(266) 26(284)
107 | 17(180) 16(174) | n.c. 48(286) | 22(210) 70(406)

/@ mr =8 mr = 12

m € Eq.@.1) Eq.@.4) | Eq. @.1) Eq. @4
10712 15(576) 15(566) | 15(576) 15(566)
10~10 16(504) 16(498) | 15(482) 15(476)
1078 17(420) 17(412) | 15(388) 15(378)
1077 17(368) 17(354) | 15(340) 15(328)
106 18(320) 16(296) | 16(298) 16(294)
1077 19(258) 19(244) | 19(242) 19(244)
10™4 28(254) 20(182) | 20(192) 20(188)

number of applications of the parareal method) corresponth IFOM and TIFOM(nr)
with mr = 2, mr = 8, andmy = 12 orthogonal vectors are presented in the Table
We force the saméﬁ,ﬁ)e for each application of the parareal method, iéé,), = 65,21) in (4.2).
Observe that as expected, in all cases, IFOM converges foréiseribed tolerance in fewer
outer iterations than the truncated versions. Howevee tiwt TIFOM does converge in all
cases with a relatively small increase in the number of it#gdtions, i.e., the delay is small
but with the concomitant savings in storage. This is furttestrated in Figuret.2(a) and (b),
where a fixed outer tolerance t—6 and¢(})e = 105 is considered. Observe that the com-
puted residual converges below the outer toleranemd(!) e = 105 roughly specifies the
accuracy of the true solutian= b — Hu.

Note also that if one compares in Taldle the rows corresponding to ttfé%,)e =101
(closer to exact FOM) with that e = 1075, for example, one can appreciate the sav-
ings of almost 50% in total computational effort. This is si@tent with the savings shown
in [28, 32] for other problems.

In Figure4.1 we show the contour plot of two slices corresponding to tihes 0.5
andt = 1 of the exact ((a) and (d)) and inexact solution ((b) and (ep) &ne difference
between them ((c) and (f)). We use the TIFOM(8) aﬂﬁfde = 10~°. The comparison
between the difference between the exact and inexact aol(gee for example plat.1(f))
reveals that the worst case difference is attainegd=atl being of order ofl0~".

In general, wheriﬁfg)e decreases from0~" to 103, the true residual deteriorates (see
Figure4.2). For the cases reported, the true residual stagnategy beénstagnation point
directly dependent ofi)e. In principle, although reducing the internal toleranceeisom-
mended to save computational time, there are limits. We reparted experiments where we
can not guarantee to satisfy the hypotheses of The@r@mnd therefore no longer possible
guarantee the convergence of the inexact method.
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FiG. 4.1. Contour plot of slice at time¢ = 0.5: (a) exact solution{b) inexact solution, andc) difference
between the exact and inexact solution. Contour plot oégdlictimet = 1: (d) exact solution(e) inexact solution,
and(f) difference between the exact and inexact solution. Trimc@arametern = 8 and outer tolerance 0~
and¢®e = 1075,
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To illustrate the robustness of the proposed method foewdifft smoothness of the target
functions, we run the same experiments with a target funatibich is not smooth in time
like (4.1), namely the following discontinuous in time target functi

(4.4) { glx) =x1(1 —x1)e "ras(l —ao)e *2  for ¢ €]0,0.5],

g(x) =221 (1 — m1)e *tag(1 —zg)e™*2  for € (0.5,1].

The results are shown at Taklel. It can be observed that the conclusions obtained with the
target function 4.1) remain valid with the target functior (4). Therefore, there is no special
bias in performing our numerical tests using the smoottetdignction ¢.1). We do this for

the rest of the paper.

Experiment 2. Scalability. Here we consider the same problem as in Experiment 1 to
study the convergence, mainly the variation in the numbetes#tions with respect to the
discretization parameters E, ‘andg in terms of the strong and weak scalability of TIFOM(8)
when parareal is used I, "KE_ !. The results are summarized at Tabledand4.3,

In Table 4.2 we list the number of outer (inner) iterations required ttvedhe sys-
tem 3.2) varying the values ofg,’;)e to be10~7, 10—, and10~°. Different mesh grid cor-
responding to different space variables, i@+ 62, ¢ = 92, andg = 13? (correspond-
ing to 36, 81 and 169 space variables) and different coanmse stepsAT are tested with
fixedr = 1/512 and parameters = 1, 3 = 12, v = 10~°.Table4.2 shows how the number
of iterations varies with the respect tofor a fixed total problem size. Observe that for a
variety of grid sizes, the number of outer and inner iters&icemain approximately constant
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—
—ICC
oy
ol TEouY L —rvou | |
== TIFOM(8) = TIFOM(12)|
—TIFOM(12)

(@) (b)

FIG. 4.2. (a)Computed residual an¢b) true residual. TIFOM withm = 20 (black), mr = 12 (blue),
mr = 8 (green);mr = 4 (pink), and ICG (red). The outer tolerancelis—6 and ¢\ e = 10-5.

TABLE 4.2
TIFOM(8) number of outer (inner) iterations. The parameters are ptwéerancee = 1076, o = 1,
B = 12, and~y = 10~°. Backward Euler discretization is used with= 1/512 and backward Euler coarse

propagator withk = 1/(AT). 2D — 12 and thet?) ¢ values arel0-7, 106, and10-5.

k 8 16
AT/t 64 32
G=62 | 25(398) 28(396) 31(344)  25(480) 27(434) 44(468)

7=92 | 22(358)22(326) 25(278) 21(416) 22(378) 24(308)
g=13% | 17(286) 17(262) 19(226)  17(354) 17(308) 19(264)
k 32 64
AT/t 16 8
G=62 | 23(466)25(412) 36(380) 23(436) 25(380) 197(1494)
7=92 | 22(436)22(376) 35(384) 21(314) 22(336) 51(434)
g=13% | 17(368) 18(320) 19(258)  17(330) 17(274) 18(226)

if an inner tolerance?g,?e < 107° is used. This indicates that TIFOM(8) when combined
with the parareal method for approximatilg TKE!, i.e.,E; TKE, !, is independent of
the coarse grid discretization if an adequéﬂas is taken.

In Table4.3 we analyze how the number of iterations varies with resmﬁclfor a fixed
problem size, i.e., in this case the number of fine temporainservals inside each coarse
temporal subintervals is set th7/r = 16. Different grid sizes, coarse time stepd,
and ()¢ are tested. Observe that the TIFOM(8) with the parareal aokth robust and
scalable for the.?ﬁfb)e tested when the size of the problem is increased maintafixad the
size of each problem inside each subdomain.

Experiment 3. e #+ ¢Pe. Here we consider the effect of forcing that) #+ Vi
to test the applicability of the method to the case wherewlesystems in1.3) are solved
with different (inner) tolerances, resulting in a nonsyntmeematrix 7. In the experiments
we consider the same problem as in Experiment 1.

In Table4.4 the results of imposing differert’) are shown. We present the number of
outer and inner (number of applications of the parareal owtiterations corresponding to
IFOM, TIFOM(m7) with my = 2, mp = 8, andmy = 12 orthogonal vectors. From these
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TABLE 4.3

TIFOM(8) number of outer (inner) iterations. The parameters are ptéerancee = 1076, a = 1,

B8 =12, andv = 10~>. Backward Euler discretization is used with= 1/[. 65,1) = ZS?L), and theéﬁ,i)e values are

10~7,1076, and10~°. The number of time intervals in each subdomaiAig/~ = 16.

k 8 16 32

i 128 256 512

G=162 | 19(306)23(316) 25(258) 22(424) 27(410) 40(422) 23(466) 25(412) 36(380)
7=92 | 17(274)19(272) 21(228) 21(383) 20(364) 29(318) 22(436) 22(376) 30(384)
g=13% | 14(230) 15(224) 17(202) 16(328) 16(286) 17(242) 17(368) 18(320) 19(258)

TABLE 4.4
Comparison between the IFOM and TIFOM(). Outer tolerances = 109, 65,11)6 #+ 652)5, a =1,
B = 12,andvy = 10~5. Mesh grid size of5 x 15, 7 = 1/512, k = 32, AT /T = 16, andn.c. means that the
algorithm doest not converge for 100 outer iterations.

(e | 1D IFOM TIFOM o-iter. (i-iter.)

o-iter. (i-iter) | mr =2 mr=4 mr=8 mp =12
1077 | 1077 15(340) 18(394) 17(334) 17(368)  15(340)
1077 | 10°¢ 15(340) 19(408) 19(400) 18(382)  15(340)
1077 | 107° 16(352) 22(454)  22(442) 20(404)  17(364)
1077 | 107* 16(354) n.c. 39(656) 20(424)  17(368)
107°% | 1077 15(288) 18(330) 19(338) 17(310)  16(298)
1076 | 107¢ 15(288) 19(340) 19(338) 18(320)  16(298)
107¢ | 107° 16(300) 23(390) 20(346) 19(334)  17(310)
107% | 107* 16(300) 51(710) 37(520) 20(352)  17(310)
107° | 1077 15(234) 19(270) 27(280) 18(254)  21(246)
107% | 107°¢ 15(234) 19(270) 29(284) 18(254)  19(242)
107° | 107° 17(238) 24(298) 21(266) 19(258)  19(242)
1075 | 107* 17(240) 30(334) 31(356) 20(270)  19(244)

experiments, it can be observed that more than two vectenseded to attain convergence,
i.e., in some situations (whemr = 2), the number of storage vectors do not suffice to
guarantee the convergence of the method. In fact, when ffexafice betweerd,(ﬁ)e and
(Peis large, then ICG is not expected to work well. In all casesyéver, the convergence
of TIFOM is attained with storage savings forr = 4, mpr = 8, andmy = 12. Observing
TIFOM, we note that the more asymmetric the matixis, more orthogonal vectors are
required to obtain the same result, ixa4 must be increased.

In Figure 4.3 we report the computed and true residual behavior(fbte = 106
and Eﬁ,%)e = 10~*. The influence of!!2¢ > 55711)6 can be observed since the true residual
stagnates arounﬂf)e = 10—*. Observe also in the computed residual the delay in the con-
vergence of the ICG whefj,.) #+ Vi corroborating the results of Tabled.

In Figure 4.4 we show the contour plot of two slices corresponding to times 0.5
andt = 1 of the exact ((a) and (d)) and inexact solution ((b) and (@) the difference
between them ((c) and (f)). We use the TIFOM(8), ¢ = 10-¢ and¢Pe = 10~4. The
comparison between the difference between the exact arddnsolution (see for example
plot 4.4(f)) reveals that the worst case difference is being of ocdi@n—°.
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FiGc. 4.3. (a) Computed residual and (b) true residual for TIFOM with; = 20 (black), mp = 12
(blue), mr = 8 (green),my = 4 (pink), and ICG (red). The outer tolerance 1®—° and éﬁi)e =106
andé?e = 1074

TABLE 4.5
Comparison betweelfOM and TIFOM(mr). Outer tolerances = 106, Zﬁ,ll)e = Zﬁ)e, functional 8.29),
& =1, 8 = 12, mesh grid sizd5 x 15, 7 = 1/512, k = 32, AT/ = 16, and n.c. means that the algorithm
does not converge for 100 iterations.

_ IFOM TIFOM
e'grzz) € mp = 2
o-iter (i-iter) o-iter (i-iter)

7=10"°5=10"° | 4=10"° 3=10"°
1077 | 5(112) 15(316) 5(112) 17(356)

1076 5(92) 15(162) 5(92) 17(300)
107° 5(74) 17(90) 5(74) n.c.
_ TIFOM
(D¢ mr =4 mr =8
o-iter (i-iter) o-iter (i-iter)

4=1035=10°| 4=10°%4=10"°
1077 5(112) 16(340) 5(112) 17(338)
107° 5(92) 18(310) 5(92) 16(282)
107° 5(74) 27(296) 5(74) 18(230)

Experiment 4. Functional (3.29. Here we are interested in the analysis of the func-
tional (3.29 introduced in Remarld.6. To this end we take the same problem as in the
Experiment 1 but now with the functionad.9 and we perform variations on its parame-
ters@, 3, and5. We first analyze the influence 6fin the solution determined by3(29
since it is associated to the regularization term. In Tablewe taked = 1, = 12, and¥
with values10—2 and10~°. Observe that whefi is reduced, then the number of iterations
increases. This shows the sensitivity of the problenj.torhese results are in accordance
with previous published works related to this problem (s¥%) [and with Theoren8.5.

Tables4.6and4.7show the influence af and3, respectively. It can be observed that the
number of outer iterations almost remains invariant whiésamodified, but the method can be
sensible to converge i e is reduced (to values equal or lowerlto—>) andmy = 2. This
is due to the fact that with the functiona.f9, the condition for convergence established in
Theorem3.2for the TIFOM(2) is no longer satisfied.
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FIG. 4.4. Contour plot of slice at timé = 0.5: (a) exact solution, (b) inexact solution, and (c) diffecerbe-
tween the exact and inexact solution. Contour plot of slidé@et = 1: (d) exact solution, (e) inexact solution, and
(f) difference between the exact and inexact solution. dation parametefn = 8 and outer tolerance = 10~
and?e = 1079 andeP e = 104,

A similar conclusion can be reached for the sensibility dF@M with respect tQ3 in
terms ofﬁﬁ,i)e. In this case, however, TIFOM is more sensitivestdn general we can expect
from TheorenB.5that wheni and3 increases, the number of outer iterations of the TIFOM
is increased.

5. Concluding remarks. We have proposed the use of inexact and truncated Krylov
subspace methods for the solution of the linear systemisiguiis the discretization of para-
bolic control problems. We use the reduced Hessian appyoashlting in a symmetric
positive definite system for which one would normally use @enjugate Gradient (CG)
method. Since the reduced Hessian is expressed as a matiixgbrand two of this matrices
involve solutions of very large linear systems, we only appnate their solution (leading to
inexact methods), thus resulting in a nonsymmetric syst¥mchoose inexact FOM (which
would reduce to CG in the absence of nonsymmetry). The appadion of the large systems
are done with the parareal method.

Our experiments show that the truncated inexact FOM canugedood results while
saving in storage (because of the truncation) and computdtexpense (because of the in-
exactness). Furthermore, the number of (outer) FOM imatremains constant for a large
range of temporal and spacial discretizations, illustgthe robustness and scalability of the
proposed approach.
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TABLE 4.6
Comparison betweeliFOM, and TIFOM(m.r). Outer tolerance: = 106, Aéﬁ,ll) = ZQ, functional 3.29
with 8 = 12 and¥ = 10~5. In addition, the mesh grid size&5 x 15, 7 = 1/512, k = 32, AT/T = 16, and n.c.
means that the algorithm does not converge for 100 iteration

_ IFOM TIFOM
Zsﬁ)e mr =2
o-iter (i-iter) o-iter (i-iter)

a=0 a=1 a=100 a=0 a=1 a=100
1077 | 13(220) 15(316) 15(338) 15(246) 17(356) 17(370)
107% | 13(178) 15(268) 16(174) 16(214) 17(300) 17(340)
107° | 13(154) 15(208) 16(104) 20(146) n.c n.c
TIFOM
Zsjl)e mr =4 mr =8

o-iter (i-iter) o-iter (i-iter)
a=0 a=1 a=100 a=0 a=1 a=100
1077 | 15(248) 16(340) 16(356) 14(232) 17(338) 17(362)
107% | 17(222) 18(310) 19(336) 15(196) 16(282) 17(314)
107° | 19(188) 27(296) 23(280) 15(164) 18(230) 21(282)

TABLE 4.7
Comparison betweeliFfOM, and TIFOM(m). Outer tolerance: = 10~6, 45,1) = 65,21). Functional 8.29
with & = 1 and4 = 10~°. In addition, the mesh grid size5 x 15, 7 = 1/512, k = 32, AT /7 = 16, and n.c.
means that the algorithm does not converge for 100 iteration

‘ IFOM TIFOM
ngl)e mr =2
o-iter (i-iter) o-iter (i-iter)

B=0 B=1 =12 | =0 B=1 B=12
1077 | 3(78) 8(194) 15(316) 3(78) 8(194) 17(356)
107% | 3(70) 8(166) 15(162) 3(70) 9(166) 17(300)
107° | 3(58) 9(136) 17(90)| 3(58) 9(138) n.c.
TIFOM
65,?5 mr =4 mr =8

o-iter (i-iter) o-iter (i-iter)
B=0 B=1 =12 | B=0 B=1 B=12
1077 | 3(78) 8(194) 16(340)| 3(78) 8(194) 17(338)
107% | 3(70) 8(166) 18(310)| 3(70) 8(166) 16(282)
107° | 3(58) 8(136) 27(296)| 3(58) 8(136) 18(230)
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