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INEXACT AND TRUNCATED PARAREAL-IN-TIME
KRYLOV SUBSPACE METHODS FOR

PARABOLIC OPTIMAL CONTROL PROBLEMS ∗

XIUHONG DU†, MARCUS SARKIS‡, CHRISTIAN E. SCHAERER§, AND DANIEL B. SZYLD¶

Abstract. We study the use of inexact and truncated Krylov subspace methods for the solution of the linear
systems arising in the discretized solution of the optimal control of a parabolic partial differential equation. An
all-at-once temporal discretization and a reduction approach are used to obtain a symmetric positive definite system
for the control variables only, where a Conjugate Gradient (CG) method can be used at the cost of the solution of
two very large linear systems in each iteration. We propose touse inexact Krylov subspace methods, in which the
solution of the two large linear systems are not solved exactly, and their approximate solutions can be progressively
less exact. The option we propose is the use of the parareal-in-time algorithm for approximating the solution of these
two linear systems. The use of less parareal iterations makes it possible to reduce the time integration costs and to
improve the time parallel scalability. We also show that truncated methods could be used without much delay in
convergence but with important savings in storage. Spectralbounds are provided and numerical experiments with
inexact versions of CG, the full orthogonalization method (FOM), and of truncated FOM are presented, illustrating
the potential of the proposed methods.
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1. Introduction. An important class of problems in many fields including electromag-
netic inversion, diffraction tomography, and optimal design are solved using optimization
with partial differential equations as constraints. A common approach for the solution of this
constrained optimization problem consists of introducingLagrange multipliers and solving
for the stationary point of the Lagrangian. This approach yields a KKT system with a saddle
point form; see, e.g., [3, 4, 13, 14, 15, 21]. In this paper, we consider the solution of a large
saddle point (or KKT) system of the form
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where the vectory is the state, the vectoru is the control, andp is a vector of Lagrange mul-
tipliers. We are particularly interested in problems that evolve from time dependent PDE’s
whereE andN are space-time discretizations of some time dependent operators and the vec-
torsy, u, andp are the discrete space-time solutions. In many of the applications mentioned
above, the control is time invariant and thus has a much smaller dimension than when it is
time dependent.
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Although it is possible to tackle the KKT system head on, it requires storage for all
space-time vectors. In this case, it is possible to use the reduced Hessian approach (see, e.g.,
[19, 20, 22, 23]) that yields a much smaller linear system

(1.2) Hu = b,

where the matrixH := G+NTE−TKE−1N is symmetric positive definite, and it is often
referred to as the reduced Hessian.

Other approaches can be used as well (see, e.g., the survey [2]), however, here we fo-
cus on the reduced Hessian approach for two reasons. We already mentioned that the size
of the problem (1.1) which comes from a space and time discretization is such that the Hes-
sian approach gives a considerable smaller system. Second,the reduced Hessian method is
the method of choice for nonlinear problems Sequential Quadratic Programming codes (see
[23]) and as such is well developed. We mention that there is recent work that allows for in-
exactness in the solution of the KKT system [6], but the reduced Hessian is still the dominant
approach in nonlinear programming. See also [1] for an additional discussion on the merits
of the reduced Hessian approach and further references therein.

One important feature of the reduced Hessian approach applied to our problem is that it
leads to a symmetric positive definite system and thus could be solved using the conjugate
gradient method (CG). However, the main disadvantage of thereduced Hessian method is
that each matrix-vector product is very expensive. The CG ateach iteration requires only
one matrix-vector product with the matrixH. Note however that each of these matrix-vector
products requires the solution of two very large linear systems, one withE and one withET ,
say

(1.3) Ez = s and ETw = v,

and traditionally these are expected to be solved accurately. This means that we need to
solve two discretized time dependent partial differentialequations (PDEs) per CG step, and
since the problem under consideration is large, an iterative method has to be employed for the
solution of these two discretized PDEs. In practice, the solution of the linear systems (1.3)
are performed iteratively, using suitable preconditioners, up to a certain given tolerance. Thus
an iterative solver is embedded within an outer one (that is,the one used for the solution
of the reduced Hessian system). The cost of these inner computations, of course, may be
considerable. However, if the calculations are performed inexactly, there may be significant
savings in computational effort. In other words, relaxing the accuracy of these inner matrix-
vector products would decrease the cost of the overall calculations and thus make the reduced
Hessian method attractive.

There are two likely scenarios where solving the Equations (1.3) approximately may
bring considerable computational advantages. The first corresponds to spatial parallelization
and it appears for instance whenE−1 andE−T involve an implicit temporal discretization
and a domain decomposition. The second case, which is the onewe analyze in this paper,
comes from a temporal parallelization, where for instance an exact solver is used in each time
step, however, the parareal method [18] is applied in order to speed up total CPU time. We
note that both spatial and temporal parallelization could also be considered in the inexact and
truncated Krylov subspace framework developed below.

For the approximate solution of (1.3) we introduce the use of inexact parareal approxima-
tions. The parareal method [18] is a parallel-in-time iterative method for solving an evolution
based on a decomposition of its time domain. The operationsE−1s andE−Tv represent the
discrete forward and reversed in time evolution of the parabolic equation, and even though the
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time direction seems intrinsically sequential, the combination of coarse and fine solution pro-
cedures have proven to converge and allow for more rapid solution if parallel architectures
are available. Due to coarse granularity and time parallelization of the method, an inexact
parareal with a fixed number of parareal iterations was considered in [22] for constructing a
preconditioner for all-at-once KKT large systems arising in parabolic optimal control prob-
lems. The goal here is different, it is to develop inexact parareal approximations for the
reduced Hessian method. While in [22] the main mathematical concern was to establish
condition number estimates of the preconditioned system, here the concern is in how to mea-
sure the inexactness in the computation of the Schur complement (Hessian) system (1.2) in
terms of the number of parareal iterations, therefore, new theoretical results are required (see
Theorem 3.5).

The natural question that arises then is how inexact these inner matrix-vector multiplica-
tions are allowed to be performed in order to ensure the convergence of the outer iterations.
In the context of nonlinear optimization it is a common practice to solve the linear equations
at each step of a Newton method inaccurately as long as we are far from the solution, but
as we get closer, we need to increase the accuracy if we wish toachieve quadratic conver-
gence [16]. But in the context of linear systems, such as the one with reduced Hessian, it
was shown in [28] that it is actually beneficial to perform the calculations in an increasingly
inexact way as the iteration progresses; see also [5, 12, 31, 32]. In fact, in [7] experiments are
shown where increasing the accuracy in the linear systems degrades the performance of the
method.

The inexactness introduced when solving the systems (1.3) up to a certain tolerance can
be understood as performing instead of an exact matrix-vector multiplicationHv, an inexact
matrix-vector multiplication given by

(1.4) Hv := (H+D)v

whereD is an error (or discrepancy) matrix which usually changes from one iteration to the
next.

Studies of inexact Krylov subspace methods, where matrix-vector products are of the
form (1.4), indicate that‖D‖ can be allowed to grow as the iterations progress; see [5, 28, 31].
In our context this means that the (inner) tolerance with which the systems (1.3) are solved can
increase, with the associated computational savings. We describe this in detail in Section3.1.

When using inexact matrix-vector products, the three-term recurrence of CG does not
guarantee the orthogonality of the basis of the Krylov subspace. In [25] MINRES is used and
the problem is assumed to maintain symmetry. Furthermore, if we use different number of
inner iterations or different number of sweeps for the approximation for the two systems (1.3),
then the resulting matrixH is not symmetric. In other words, we may gain computational
time, but we lose symmetry, and thus we need a Krylov subspacemethod without a three-
term recurrence. In this paper, we use the full orthogonalization method (FOM) [26, 27, 30],
which reduces to CG when the coefficient matrix is symmetric and does not change from one
iteration to the next.

To mitigate the need for additional storage, we explore the use of truncated FOM (TFOM),
namely we only store the lastmT vectors and only orthogonalize new basis vectors with re-
spect to thosemT vectors (two sets ofmT vectors are computed and stored, and the approxi-
mate solution can be computed progressively without the need to store the whole basis); see,
e.g., [26, 27, 30]. Usually, the truncated methods have a “delay” in convergence, i.e., the
lack of full orthogonality translates into taking more iterations to converge to the same accu-
racy. The theory developed in [29] indicates that the delay experienced in truncated methods
does not have to be significant. This delay in convergence with its associated computational



ETNA
Kent State University 

http://etna.math.kent.edu

INEXACT KRYLOV FOR PARABOLIC OPTIMAL CONTROL PROBLEMS 39

cost is of course offset by the tremendous storage savings that one can obtain. Thus, in this
paper we use inexact and truncated FOM (TIFOM) for the solution of the reduced Hessian
system (1.2). We believe that this is the first time that both inexactnessand truncation are
used simultaneously. In the special case when onlymT = 2 vectors are kept, then TIFOM
is sometimes called inexact CG (ICG). We note thatFlexible Conjugate Gradients(FCG)
in [24] uses a different but related approach; it starts from CG andconsiders the storage of
additional vectors for further “local orthogonalization”. We note that inexact Krylov methods
have also been studied for singular matrices [8], and therefore they can also be applied to
ill-conditioned problems.

In the next section we describe the general parabolic control problems that we consider,
and then specify a class of problems on which we illustrate our approach: a classical dis-
tributed control problem. In Section3, we discuss the inexactness in the computation of the
Schur complement (Hessian) system (1.2) as well as the conditions on the approximation
of E andET for using the parareal approximation ofE−TKE−1; see Equation (1.2). In Sec-
tion 4, we report numerical experiments using inexact FOM and its truncated variants. The
results show that considerable savings in time and memory requirements are obtained when
the proposed truncated and inexact methods are used.

2. A parabolic optimal control problem. Let Ω ⊂ R
d be an interval (d = 1) or a

polygonal(d = 2) domain of size ofO(1) and letA be a coercive map from a Hilbert
spaceL2(t0, tf ;Y ) to L2(t0, tf ;Y

′), whereY ′ is the dual ofY with respect to the pivot
spaceH = L2(Ω). Denote the state variable space as

Y = {z ∈ L2(t0, tf ;Y ) : zt ∈ L2(t0, tf ;Y
′)}.

Giveny0 ∈ H, we consider the following state equation on(t0, tf ) with z ∈ Y:

(2.1)





zt +Az = v in x ∈ Ω,

z = yD on x ∈ ∂Ω,

z(0) = y0.

In this paper we consider the following control problem:

The distributed control problem, where the distributed control v belongs to
an admissible spaceV=L2(t0, tf ;V ), where in our applicationV =L2(Ω).
We considerA = −∆ (minus the Laplacian), and without loss of generality
we assume homogeneous Dirichlet boundary conditionsyD = 0 (equiva-
lently Y = H1

0 (Ω)), and we indicate the dependence ofz on v ∈ V using
the notationz(v).

We mention that many of the considerations we present for theabove problem can also
be applied to the boundary control problem, which is an ill-posed inverse problem, and where
the interest consist in recovering the boundary conditions; see, e.g., [1, 7].

We describe now our approach. To define an optimal control problem, we consider a
time interval(t0, tf ), a given target functioñy in L2(t0, tf ;Y ), parametersα ≥ 0, β ≥ 0,
andγ > 0, and we employ the following performance function which we associate with the
state equation (2.1)

J(z(v), v) :=
α

2

∫ tf

t0

‖z(v)(t, ·)− ỹ(t, ·)‖2L2(Ω)

+
β

2
‖z(v)(tf , ·)− ỹ(tf , ·)‖

2
L2(Ω) +

γ

2

∫ tf

t0

‖v(t, ·)‖2L2(Ω).

(2.2)
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For simplicity, we assume thaty0 ∈ Y andỹ ∈ L2(t0, tf ;Y ). Following [17], we consider
the optimal control problem for Equation (2.1), which is equivalent to finding a controlv
whichminimizesthe cost function (2.2).

To discretize the state equation (2.1) in space, we apply the finite element method to its
weak formulation for each fixedt ∈ (t0, tf ). We choose a quasi-uniform triangulationTh(Ω)
of Ω, and employ theP1 conforming finite element spaceYh ⊂ Y for approximatingz(t, ·),
and theP0 finite element spaceVh ⊂ V for approximatingv(t, ·). Let {φj}

q̂
j=1 and{ψj}

p̂
j=1

denote the standard basis functions forYh andVh, respectively. Throughout the paper we
use the same notationz ∈ Yh andz ∈ R

q̂, or v ∈ Vh andv ∈ R
p̂, to denote both a finite

element function in space and its corresponding vector representation, and to indicate their
time dependence, we denote them asz andv, respectively.

A discretization in space of the continuous time linear-quadratic optimal control problem
will seek to minimize the following quadratic functional

Jh(z, v) :=
α

2

∫ tf

t0

(z − ỹh)T (t)Mh(z − ỹ)(t) dt

+
β

2
(z(tf )− ỹ(tf ))

TMh(z(tf )− ỹ(tf )) +
γ

2

∫ tf

t0

vT (t)Rhv(t) dt

(2.3)

subject to theconstraintthatz satisfies the discrete equation of state:

(2.4) Mhż +Ah z = Bhv, for t0 < t < tf ; and z(t0) = yh0 .

Here (z − ỹh)(t) and (z(tf ) − ỹ(tf )) denote the tracking and the final error. The func-

tions ỹh(t) andyh0 belong toYh and are approximations tõy(t) andy0, respectively (for
instance, considerL2(Ω)-projections intoYh). The matricesMh, Ah ∈ R

q̂×q̂, Bh ∈ R
q̂×p̂,

andRh ∈ R
p̂×p̂ have entries(Mh)ij := (φi, φj), (Ah)ij := (φi,Aφj), (Bh)ij := (φi, ψj),

and(Rh)ij := (ψi, ψj), where(·, ·) denotes theL2(Ω) inner product.
To obtain a temporal discretization of (2.3) and (2.4), we partition[t0, tf ] into l̂ equal

sub-intervals with time step sizeτ = (tf−t0)/l̂. We denotetl = t0+l τ for 0 ≤ l ≤ l̂. Asso-
ciated with this partition, we assume that the state variablez is continuous in[t0, tf ] and linear

in each sub-interval[tl−1, tl], 1 ≤ l ≤ l̂, with associated basis functions{ϑl}l̂l=0. Denoting

by zl ∈ R
q̂ the nodal representation ofz(tl), we havez(t) =

∑l̂
l=0 zlϑl(t). The control

variablev is assumed to be time discontinuous and constant in each sub-interval (tl−1, tl)

with basis functions{χl}
l̂
l=1. Denotingvl ∈ R

p̂ as the nodal representation ofv(tl − (τ/2))

yieldsv(t) =
∑l̂

l=1 vlχl(t).
The corresponding discretization of the expression (2.3) yields:

(2.5) Jτ
h (z,v) =

1

2
(z− ỹ)TK(z− ỹ) +

1

2
vTGv + (z− ỹ)Tg,

where the block vectorsz := [zT1 , . . . , z
T
l̂
]T ∈ R

l̂q̂ andv := [vT1 , . . . , v
T
l̂
]T ∈ R

l̂p̂ de-
note the state and control variables, respectively, at all the discrete times; the discrete target
is ỹ := [ỹT1 , . . . , ỹ

T
l̂
]T ∈ R

l̂q̂ with target errorel = (zl − ỹhl ) for 0 ≤ l ≤ l̂, wherez0 := yh0 ;

the matrixK := Z+ΓwithZ,Γ ∈ R
(l̂q̂)×(l̂q̂),Γ = β diag(0, 0, ...,Mh) andZ = αDτ⊗Mh,

Dτ ∈ R
l̂×l̂ with entries(Dτ )ij :=

∫ tf
t0
ϑi(t)ϑj(t)dt, for 1 ≤ i, j ≤ l̂, and⊗ stands for the

Kronecker product; the matrixG = γτIl̂ ⊗ Rh ∈ R
(l̂p̂)×(l̂p̂) and Il̂ ∈ R

l̂×l̂ is an iden-
tity matrix; and the vectorg = (gT1 , 0

T , . . . , 0T )T , whereg1 = α τ
6Mhe0 and where we
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have usedτ6 =
∫ tf
t0
ϑ0(t)ϑ1(t)dt. Note thatg1 does not necessarily vanish because it is not

assumed that̃yh0 = z0.
Employing the backward Euler discretization in time, the Equation (2.4) takes the form

(2.6) F1zi+1 = F0 zi + τBhvi+1 for t0 < t < tf ; and z(t0) = yh0 ,

whereF0, F1 ∈ R
q̂×q̂ are (fixed) matrices given byF0 :=Mh andF1 :=Mh + τAh. Using

a full discretization in time, Equation (2.4) has the matrix form

(2.7) Ez+Nv = f3,

where the input vector isf3 := [(F0y
h
0 )

T , 0T , ..., 0T ]T ∈ R
l̂q̂. The block lower bidiagonal

matrixE ∈ R
(l̂q̂)×(l̂q̂) is given by

E =




F1

−F0 F1

. . .
. . .
−F0 F1


 ,

and the block diagonal matrixN ∈ R
(l̂q̂)×(l̂p̂) is given byN = −τIl̂ ⊗Bh.

3. Inexact Krylov subspace methods for the Schur complementsystem. The La-
grangian functionalLτ

h(z,v,q) for minimizing (2.5) subject to the constraint (2.7) is

(3.1) Lτ
h(z,v,q) = Jτ

h (z,v) + qT (Ez+Nv − f3).

To obtain a discrete saddle point formulation of (3.1), we apply the optimality conditions
for Lτ

h(·, ·, ·). This yields the symmetric indefinite linear system (1.1), wheref1 := Kỹ − g

andỹ := [(ỹh1 )
T , . . . , (ỹh

l̂
)T ]T ∈ R

l̂q̂.

Eliminatingy = E−1 (f3 −Nu) andp = E−T (f1 −Ky) in (1.1) yields thereduced
Schur complement system:

(3.2) Hu := (G+NTE−TKE−1N)u = b

(see [19, 21]), whereb := NTE−T
(
KE−1f3 − f1

)
is pre-computed. The matrixH is

symmetric positive definite, and in addition we have that

(v,Gv) ≤ (v,Hv) ≤ µ(v,Gv),

whereµ is estimated later in (3.27). As a result, the (preconditioned) Conjugate Gradient
method can be used to solve (3.2), but each matrix-vector product withH requires the solution
of two linear systems, one withE and one withET .

As already stated, our aim is to use inexact Krylov subspace methods for the approxi-
mation to the solution of (3.2). We propose the use of a Truncated Full Orthogonalization
Method (TFOM) and its inexact version, which we call TIFOM. Again, we favor the use of
versions of FOM here, since they reduce to CG if the solutionsof the two linear systems
in (1.3) are exact.

3.1. The truncated full orthogonalization method. In the FOM algorithm, at each
iteration one would require a matrix-vector product with the matrixH defined in (3.2), sayHs

with ‖s‖ = 1. This product would proceed as follows:
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————————————————————-
ALGORITHM 1: Matrix-vector productHs

————————————————————-
1. Multiply Ns andGs.
2. SolveEz = Ns.
3. Multiply Kz.
4. SolveETw = Kz.
5. ComputeNTw +Gs.

————————————————————-

The idea we are exploring is to replace steps2 and4 in Algorithm 1 above using an
approximation (later on in the paper, this approximation will be obtained using the parareal
algorithm studied, e.g., in [11]). We are interested in approximating the solutions of these
two linear systems using as less accuracy as possible, whileobtaining a good solution to
(3.2). To that end, we first review some results available in the recent literature on inexact
Krylov subspace methods; see, [5, 28, 31].

We begin by mentioning two results from [28] dealing with inexact FOM and its trun-
cated version (Theorems3.1 and3.2 below). The Full Orthogonalization Method (FOM) is
a Krylov subspace method for nonsymmetric linear systems, say of the formHu = b with
initial vector u0, which afterm iterations builds an orthogonal basis of the usual Krylov
subspace using the Arnoldi method and collects these vectors in a matrixVm. Then, the ap-
proximationum = u0 +Vmxm is computed, wherexm is the solution of the linear system

(3.3) Hmx = βe1,

with β = ‖r0‖, r0 = b − Hu0, Hm = VT
mHVm is anm × m upper Hessenberg

matrix, ande1 is the first Euclidean vector; see, e.g., [9, 26, 27, 30] for more details on
FOM. The truncated version of FOM consists of computing a basis collected inVm where
the last vectorvm is only orthogonalized with respect to the previousmT vectors say. In
this manner, onlymT + 1 vectors are needed to be kept in storage, and the resulting ma-
trix Hm = VT

mHVm is m × m upper Hessenberg and banded with (upper) semi-band-
width mT − 1∗. In the extreme case, ifmT = 2 and if H is symmetric positive definite,
FOM reduces to CG, andHm is tridiagonal.

As indicated in the introduction, when we refer to the inexact Arnoldi method, we simply
mean that at thekth step of the Arnoldi method, the matrix-vector productHvk−1 is not
exact. Instead we have(H +Dk)vk−1 for somediscrepancymatrixDk, which is usually a
different matrix at each different stepk. A natural question is how large‖Dk‖ is allowed to
grow and how we assure a residual norm below a prescribed tolerance.

Using the Arnoldi decompositionHVk = Vk+1Ĥk and since the principal square part
of Ĥk is given byHk = [Ik, 0] Ĥk, the next theorem guarantees overall convergence below
a given toleranceǫ.

THEOREM 3.1. [28] Assume thatm steps of the inexact Arnoldi method have been
carried out, and letxm be the solution of(3.3). Letrk = b −Huk = r0 −HVkxk be the
true residual, and̃rk = r0−Vk+1Ĥkyk be the computed residual at thekth FOM iteration,

∗Truncated FOM is called IOM in [27], and it can be implemented in such a way thatum = u0 + Vmxm is
computed directly fromum−1 without the need to store all the vectors inVm. This implementation is called DIOM
in [27].
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respectively. Letǫ > 0, and let

(3.4) ℓm = σm(Hm)/m,

whereσm(Hm) is the smallest singular value ofHm. If for everyk < m,

(3.5) ‖Dk‖ ≤ ℓm
ǫ

‖r̃k−1‖
,

then,

(3.6) ‖rm − r̃m‖ < ǫ and ‖VT
mrm‖ < ǫ.

An equivalent result for the inexact truncated FOM with a truncation parametermT is shown
in the following theorem.

THEOREM 3.2. [28] Assume thatm steps of the inexact truncated Arnoldi method have
been carried out (with truncation parametermT ). Let the hypothesis of Theorem3.1 hold,
and let hereℓm be

(3.7) ℓm = σm(Vm)σm(Hm)/m.

If (3.5) holds for everyk < m, then one has that(3.6) holds.

REMARK 3.3. As mentioned earlier, the advantage of truncated methods is that fewer
vectors need to be kept in storage. The price one pays is that the matrixVm with the basis
vectors does not have orthogonal columns. In the case of fullFOM (i.e., with no trunca-
tion) the quantityσm(Vm) = 1, while in the truncated case it decreases as the truncation
parametermT decreases. Therefore, the value ofℓm in (3.7) is smaller than that in (3.4),
and furthermore the smaller the truncation parametermT is, the more restrictive the condi-
tion (3.5) is. In other words, we can allow less inexactness when we have more truncation.

Remark3.3 applies in particular to the extreme case ofmT = 2, i.e., to inexact CG.
We mention that the convergence bound of FCG in [24, Theorem 3.1] is of a different kind
than (3.6), but nevertheless, the essence of Remark3.3also applies: the smaller the truncation
parametermT is, the smaller the discrepancy needs to be to maintain convergence.

Returning to Algorithm1, we now consider the situation when for the matrix vector prod-
uctHs, we approximate the solution of each of the linear systems insteps2 and4. We con-
sider that the approximate solutionẑ toEz = Ns in step2 is obtained via an iterative method.
In particular, in the next section we describe the parareal method represented bŷz = E−1

n1
Ns,

whereEn1
corresponds ton1 applications (or sweeps) of the parareal method.

3.1.1. Parareal approximationE−T
n K̂E−1

n . The parareal method is a parallel itera-
tive method for solving an evolution equation based on adecompositionof its temporal
domain[t0, tf ] into k̂ coarsesub-intervals of length∆T = (tf − t0)/k̂, settingT0 = t0
andTk = t0 + k∆T for 1 ≤ k ≤ k̂; see, e.g., [18]. It determines the solution at the timesTk
for 1 ≤ k ≤ k̂ by using amultiple-shootingtechnique which requires solving the parabolic
equation on each interval(Tk−1, Tk) in parallel. To speed up the multiple shooting iteration,
the residual equations are “preconditioned” by solving a “coarse” time-grid discretization of
the parabolic equation using the time step∆T .

We define the matrixK̂ := Ẑ + Γ̂ with Ẑ, Γ̂ ∈ R
((l̂+k̂−1)q̂)×((l̂+k̂−1)q̂), where

Γ̂ = β diag(0, 0, ...,Mh). Here, Ẑ = αD̂τ ⊗ Mh, D̂τ := blockdiag(D̂1
τ , . . . , D̂

k̂
τ ),

D̂1
τ ∈ R

(m̂)×(m̂), andD̂k
τ ∈ R

((m̂+1))×((m̂+1)), for 2 ≤ k ≤ k̂, are the time mass matri-
ces associated to the sub-intervals[Tk−1, Tk], wherem̂ = (Tk − Tk−1)/τ . Note thatK̂ is a
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block diagonal (in time) matrix, and it is easy to see that(l̂+ k̂−1)q̂ = m̂q̂+(k̂−1)(m̂+1)q̂.
Note thatK can be obtained by assemblinĝK at the timesTk, 1 ≤ k ≤ ˆk − 1. In order to
simplify notation, from now on we denote the operationwTKz by wT K̂z, where the vec-
torsw, z ∈ R

(l̂q̂) are mapped to vectors inR((l̂+k̂−1)q̂), also denoted byw andz, where their
nodal values corresponding to the timesTk, 1 ≤ k ≤ k̂ − 1 are duplicated.

In this section we formulate a preconditionerEn for E based onn Richardson itera-
tions of the parareal algorithm; cf. [32] where Richardson is used as an outer iteration for
a different Schur complement problem. UsingEn, an application ofE−T

n K̂E−1
n to a vec-

tor v = [vT1 , . . . , v
T
l̂
]T ∈ R

l̂q̂ can be computed in three steps.

Step I, applyE−1
n v :→ ẑn usingn applications of the parareal method (described in more

detail below).
Step II, multiply K̂ẑn :→ t̂n (see below).
Step III , applyE−T

n t̂n :→ wn, i.e., the transpose ofStep I.

Let m̂ = (Tk−Tk−1)/τ andjk−1 = (Tk−1−T0)/τ . Consider the solutionZk at timeTk
defined by marching from timeTk−1 to time Tk using the backward Euler discretization
scheme on the fine time mesh (characterized byτ ) with an initial dataZk−1 at Tk−1 with
forcing term[vTjk−1+1, . . . , v

T
jk−1+m̂]T . It is easy to see that

F1 Zk = F∆
0 Zk−1 + Sk,

whereF∆
0 := (F0F

−1
1 )m̂−1F0 ∈ R

q̂×q̂, Sk :=
∑m̂

m=1

(
F0F

−1
1

)m̂−m
vjk−1+m, Z0 = 0,

andF0 andF1 as in (2.6). Imposing continuityF1 Zk − F∆
0 Zk−1 − Sk = 0 at timesTk,

for 1 ≤ k ≤ k̂, yields

(3.8) CZ :=




F1

−F∆
0 F1

. ..
. . .

−F∆
0 F1







Z1

Z2

...
Zk̂


 =




S1

S2

...
Sk̂


 =: S.

In this paper we consider the case where the coarse solution at Tk with initial dataZk−1 ∈ R
q̂

at Tk−1 is obtained by applying one coarse time step of the backward Euler
methodG1Zk = G0 Zk−1, where the matrixG1 := (Mh +Ah∆T ) andG0 :=Mh ∈ R

q̂×q̂.
In the parareal algorithm, the following coarse propagatorbased onG0 andG1 is em-

ployed to precondition the system (3.8) via:



Zi+1
1

Zi+1
2
...

Zi+1

k̂


 =




Zi
1

Zi
2
...
Zi
k̂


+




G1

−G0 G1

. . .
. . .

−G0 G1




−1 


Ri
1

Ri
2

...
Ri

k̂


 ,

for 0 ≤ i ≤ n − 1, where the residualRi :=
[
Ri

1
T
, . . . , Ri

k̂

T
]T

∈ R
k̂q̂ in (3.8) is defined

asRi := S−CZi, whereZi :=
[
Zi
1
T
, . . . , Zi

k̂

T
]T

∈ R
k̂q̂, andZ0 :=

[
0T , . . . , 0T

]T
.

We now definêzn := E−1
n s. Let ẑn be the nodal representation of a piecewise lin-

ear functionẑn in time with respect to the fine triangulation parameterizedby τ on [t0, tf ],
and continuous inside each coarse sub-interval[Tk−1, Tk], i.e., the function̂zn can be dis-

continuous across the coarse pointsTk, 1 ≤ k ≤ k̂ − 1, therefore,̂zn ∈ R
(l̂+k̂−1)q̂. On

each sub-interval[Tk−1, Tk], ẑn is defined marching from timeTk−1 to timeTk using the
backward Euler scheme with fine times stepsτ and initial dataZn

k−1 atTk−1.
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3.1.2. Conditions on the approximation ofE−1 and E−T . We return to Algorithm1
and analyze the situation when for the matrix vector productHs,we approximate the solution
of each of the linear systems in steps2 and4. We mention that studies of inexact Krylov
subspace methods such as FOM applied to some standard Schur complements (i.e., with only
one inverse) can be found in [28, 32].

Let ẑ be the approximate solution toEz = Ns and letq1 = Eẑ − Ns be its resid-
ual. Now step3 has the formK̂ẑ. Let ŵ be the approximate solution toETw = K̂ẑ

and letq2 = ET ŵ − K̂ẑ be its residual. Therefore, we have thatẑ = E−1q1 + E−1Ns

andŵ = E−Tq2 +E−T K̂ẑ. Thus, in step5 we have

NT ŵ = NTE−Tq2 +NTE−T K̂
(
E−1q1 +E−1Ns

)
,

= NTE−T K̂E−1Ns+
(
NTE−Tq2 +NTE−T K̂E−1q1

)
.

Thus, the inexact matrix-vector productGs + NT ŵ differs from the exact matrix-vector
productGs+NTw exactly by the discrepancy vector

d = NTE−Tq2 +NTE−T K̂E−1q1.

Let us define the discrepancy matrix as

(3.9) D := NTE−Tq2s
T +NTE−T K̂E−1q1s

T ,

where‖s‖ = 1. Our goal is to satisfy a condition of the form (3.5). To that end, observe that
from (3.9), we have

‖D‖ ≤ ‖NTE−T ‖ ‖q2‖+ ‖NTE−T K̂E−1‖ ‖q1‖.

Therefore, to achieve (3.5), it suffices to require that

(3.10) ‖q2‖ ≤ η
ℓm

‖NTE−T ‖

ǫ

‖rm−1‖
:= ℓ(1)m

ǫ

‖rm−1‖

and that

(3.11) ‖q1‖ ≤ (1− η)
ℓm

‖NTE−T K̂E−1‖

ǫ

‖rm−1‖
:= ℓ(2)m

ǫ

‖rm−1‖
,

for a given0 < η < 1.
In the expressions (3.10) and (3.11), the parameterη can the fixed (e.g.,η = 1/2), or it

may vary from one step to the next.

3.1.3. The convergence of inexact parareal.We consider that the approximate solu-
tion ẑ is obtained via an iterative method. In particular, we use the parareal method repre-
sented bŷz = E−1

n1
Ns as described in Section3.1.1. In a similar manner,̂w is obtained

via ŵ = E−T
n2

K̂ẑ. Notice thatn1 is not necessarily equal ton2. In casen1 = n2, it sym-

metrizes the matrixE−T
n2

K̂E−1
n1

; this property will be explored further. The residual at step 2
of Algorithm 1 in terms of the parareal method is given by

q1 = Eẑ−Ns = EE−1
n1

Ns−Ns

and, correspondingly, the residual in step4 is:

q2 = ET ŵ − K̂ẑ = ET
(
E−T

n2
K̂E−1

n1

)
Ns− K̂E−1

n1
Ns.
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As a result the discrepancy matrix defined in the expression (3.9) takes the form

(3.12) D = NTE−T
n2

K̂E−1
n1

NssT −NTE−T K̂E−1NssT .

Theorem3.5 below shows that the norm of the discrepancy matrixD converges ge-
ometrically to zero as we increase the numbern := min{n1, n2} of applications of the
parareal method, that is,‖D‖ ≤ Cρn‖G‖ whereρn ≤ 0.2984256075n. The convergence
rate0.2984256075 holds when the backward Euler scheme is applied to both time stepsτ
and∆T ; see [10, 21, 22] on how to establish convergence rates for parareal methods. Before
we prove Theorem3.5, we next prove the following intermediate result.

LEMMA 3.4. Let ρn denote the convergence factor forn applications of the parareal
method. Then for anyw ∈ R

(l̂q̂)×(l̂q̂) andz := E−1w with z(t) indicating its time depen-
dence, we have that

(3.13)
(
(E−1

n −E−1)w, K̂(E−1
n −E−1)w

)
≤ (α(tf − t0) + β)ρ2n

k̂∑

k=1

‖z(Tk)‖L2(Ω).

Proof. Let Ah andMh be theq̂ × q̂ symmetric positive definite matrices introduced
in (2.4). LetXh := [x1, ..., xq̂] andΛh := diag{λ1, ..., λq̂} be the generalized eigenvectors
and eigenvalues ofAh with respect toMh, i.e., Ah = MhXhΛhX

−1
h . Let z := E−1w

with z(t) =
∑q̂

q=1 φq(t)xq andẑn := E−1
n w with ẑn(t) =

∑q̂
q=1 φ

n
q (t)xq. We note thatφnq

might be discontinuous across the coarse pointsTk. Then
(
(E−1

n −E−1)w, K̂(E−1
n −E−1)w

)

= α‖ẑn − z‖2L2(t0,tf ;L2(Ω)) + β‖ẑn(tf )− z(tf )‖
2
L2(Ω)

=

q̂∑

q=1

α‖φnq − φq‖
2
L2(t0,tf )

+ β|φnq (tf )− φq(tf )|
2.

First part (Estimation ofα‖φnq − φq‖
2
L2(t0,tf )

). For eachtl ∈ [Tk−1, Tk] we have

|φnq (tl)− φq(tl)| =
(
(1 + τλq)

−1
)(tl−Tk−1)/τ

|φnq (Tk−1)− φq(Tk−1)|,

and sinceλq > 0 implies
(
(1 + τλq)

−1
)(tl−Tk−1)/τ ≤ 1, we obtain

‖φnq − φq‖
2
L2(Tk−1,Tk)

≤ ∆T |φnq (Tk−1)− φq(Tk−1)|
2.

Hence,

‖φnq − φq‖
2
L2(t0,tf )

≤ (tf − t0) max
1≤k≤k̂

|φnq (Tk)− φq(Tk)|
2.

Using [22, Lemma 4.3] withφq(T0) = 0 and initial valueφ0q(Tk) = 0, we obtain

(3.14) max
1≤k≤k̂

|φnq (Tk)− φq(Tk)|
2 ≤ ρ2n max

1≤k≤k̂
|φq(Tk)|

2 ≤ ρ2n

k̂∑

k=1

|φq(Tk)|
2.

We just have established the upper bound forα‖φnq − φq‖
2
L2(t0,tf )

given by

(3.15) α‖φnq − φq‖
2
L2(t0,tf )

≤ α(tf − t0)ρ
2
n

k̂∑

k=1

|φq(Tk)|
2.
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Second part(Estimation ofβ|φnq (tf )− φnq (tf )|
2). It follows from (3.14) that

(3.16) β|φnq (tf )− φnq (tf )|
2 ≤ βρ2n

k̂∑

k=1

|φq(Tk)|
2.

Using the expressions (3.15) and (3.16), and the identity

q̂∑

q=1

|φq(Tk)|
2 = ‖z(Tk)‖

2
L2(Ω)

yields the upper bound (3.13).
This completes the proof.

THEOREM 3.5. Let k̂ = (tf − t0)/∆T , D be as in(3.12) andρn the rate of convergence
of the parareal in consideration. Then

(3.17) ‖D‖ ≤ 4(tl − t0)
α(tf − t0) + β

γ

(
k̂ρn1

ρn2
+ k̂

1

2 (ρn1
+ ρn2

)
)
‖G‖.

Proof. Using

E−T
n2

K̂E−1
n1

−E−T K̂E−1 = (E−T
n2

−E−T )K̂(E−1
n1

−E−1)

+ (E−T
n2

−E−T )K̂E−1 +E−T K̂(E−1
n1

−E−1),

‖ssT ‖ = 1, and the symmetry and positive definiteness ofK̂, we obtain

‖D‖

≤ ‖NT (E−T
n2

−E−T )K̂(E−1
n2

−E−1) N‖1/2‖NT (E−T
n1

−E−T )K̂(E−1
n1

−E−1)N‖1/2

+ ‖NT (E−T
n2

−E−T )K̂(E−1
n2

−E−1)N‖1/2 ‖NTE−T K̂E−1N‖1/2

+ ‖NT (E−T
n1

−E−T )K̂(E−1
n1

−E−1)N‖1/2 ‖NTE−T K̂E−1N‖1/2.

Let us first bound the term‖NTE−T K̂E−1N‖1/2. Note that if for anyv ∈ R
l̂p̂

(3.18) (E−1Nv, K̂E−1Nv) ≤ λ(v,Gv),

then ‖NTE−T K̂E−1N‖ ≤ λ‖G‖. The next goal is to find an upper bound forλ. As
before, letz = E−1Nv. The continuous version of (3.18) can be described as how to
boundα‖z‖2(tf ,t0;L2(Ω)) + β‖z(tf )‖

2
L2(Ω) by λγ‖v‖2L2(Ω), wherez and v satisfy the state

equation (2.1). This can be obtained by using the energy method, that is, multiply (2.1)
by z(t), integrate onΩ, and use the coerciveness ofA to obtain

(3.19)
1

2

d

dt
‖z(t)‖2L2(Ω) ≤ (v(t), z(t))L2(Ω).

Integrating in time and applying a Young inequality we obtain

(3.20) ‖z(t)‖2L2(Ω) ≤ 2(t− t0)‖v‖
2
(t0,t;L2(Ω)) +

1

2(t− t0)
‖z‖2(t0,t;L2(Ω)),
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and integrating in time again we obtain

(3.21) ‖z‖2(t−t0;L2(Ω)) ≤ 4(t− t0)
2‖v‖2(t0,t;L2(Ω))

and

(3.22) ‖z(t)‖2L2(Ω) ≤ 4(t− t0)‖v‖
2
(t0,t;L2(Ω)).

We now consider the discrete counterparts of (3.19)–(3.22) to the backward Euler scheme.
Let us denotez = [zT1 , . . . , z

T
l̂
]T ∈ R

l̂q̂ andv = [vT1 , . . . , v
T
l̂
]T ∈ R

l̂p̂, and lettl = t0 + τ l.
It is easy to show that the counterparts of (3.21) and (3.22) are given by

(3.23) τ

l∑

i=1

(zi,Mhzi) ≤ 4(tl − t0)
2τ

l∑

i=1

(vi, Rhvi)

and

(3.24) (zl,Mhzl) ≤ 4(tl − t0)τ

l∑

i=1

(vi, Rhvi).

We note that

(3.25) τ

l∑

i=1

(vi, Rhvi) ≤ τ

l̂∑

i=1

(vi, Rhvi) = (v,Gv),

and using properties of the mass matrix of piecewise linear functions in time we have

(3.26) ‖z‖2(t0,tl;L2(Ω)) ≤ τ

l∑

i=1

(zi,Mhzi).

Hence, using (3.23)–(3.26) we obtain

(3.27) (E−1Nv, K̂E−1Nv) ≤ 4(tf − t0)
α(tf − t0) + β

γ
(v,Gv).

Similarly, and using Lemma3.4, we obtain
(
(E−1

n −E−1)Nv, K̂(E−1
n −E−1)Nv

)

≤ 4(tl − t0)
α(tf − t0) + β

γ
(k̂ρ2n)(v,Gv).

(3.28)

Combining the inequalities (3.27) and (3.28) with n = n1 orn = n2, yields the bound (3.17).
This completes the proof.

REMARK 3.6. We discuss a variant of the performance function (2.2). It consists of
modifying its first term to

J(z(v), v) :=
α

2

k̂∑

k=1

∆‖z(v)(Tk, ·)− ỹ(Tk, ·)‖
2
L2(Ω)

+
γ

2

∫ tf

t0

‖v(t, ·)‖2L2(Ω) dt+
β

2
‖z(v)(tf , ·)− ỹ(tf , ·)‖

2
L2(Ω).

(3.29)
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This means that the discrepancy betweenz(v) and ỹ is measured only at certain specific
pointsTk. In particular we force, although this is not necessary, that the pointsTk be in
correspondence with the coarse time mesh of the parareal method. This simplifies the imple-
mentation of the cost function, and more importantly, a large savings in memory allocation
is achieved since we do not need to storez(v) at all fine time mesh points only at those of
the coarse time mesh. It is not hard to see that Lemma3.4holds for this case with the same
constant in (3.13). Additionally, Theorem3.5 holds for this case with the same constant
in (3.17).

We end this section with a comment on the practical use of our conditions (3.10)
and (3.11). While the values of the problem dependent constantsℓ

(1)
m andℓ(2)m can in principle

be computed, this is not computational feasible for our kindof problems. Therefore, since
we know from Theorem3.5that these constants exist, we try some initial values, and if need
be, we modify them. We mention also that the bounds used in theproofs of Theorems3.1
and3.2that give rise to this constants are by no means tight. Thus, there is a wide latitude in
choosing these constants.

4. Numerical experiments. In this section, we describe numerical results on tests of an
optimal control problem involving the following 2D-heat equation:





zt −∆z = v, x ∈ Ω, 0 < t

z(t, 0) = 0, x ∈ ∂Ω, 0 ≤ t

z(0, x) = 0, x ∈ ∂Ω,

whereΩ = [0, 1]× [0, 1]. We choose the performance target function:

ỹ(x) = x1(1− x1)e
−x1x2(1− x2)e

−x2 for t ∈ [0, 1].(4.1)

We choose as stopping criterion for the iterative solvers for the outer iteration
ǫ = ‖rm‖/‖r0‖ ≤ 10−6, whererm denotes the residual at themth iteration. We imple-
mented inexact FOM (IFOM) and its truncated variant TIFOM(mT ). We concentrate on the
inexactness arising from the internal tolerance of the parareal method. The stopping criteria
for the inner applications of the (parareal scheme) is givenby expressions (3.10) and (3.11):

ǫ
(i)
inner = ℓ(i)m

ǫ

‖rm−1‖
, i = 1, 2.(4.2)

Since we want a relative residual below the prescribed toleranceǫ, instead of (4.2), we use

(4.3) ǫ
(i)
inner = ℓ(i)m

ǫ‖r0‖

‖rm−1‖
, i = 1, 2.

REMARK 4.1. The number of applications of the parareal scheme depends on the ex-
pression(4.3). As a consequence, the number of inner iterations of the parareal method need
not be equal from one outer iteration to the next.

Experiment 1. For this experiment, we considerα = 1, β = 12, γ = 10−5. The 2D do-
mainΩ is discretized in a15×15 grid (q̂ = 132, h = 1/14, andp̂ = 14× 14× 2− 2 = 390)
and the time discretization of[0, 1], τ = 1/512 (l̂ = 512). In all cases, we use the parareal
method described in Section3.1.1as a preconditioner witĥk = 32 coarse time intervals.
For this problem the size of the matrixG is 199680 × 199680 (almost200000 × 200000)
corresponding tôp l̂ = 390× 512. The matricesE, N are of size(132 × 512)× (132 × 512)
and(132 × 512) × (390 × 512), respectively. The results (number of outer iterations and
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TABLE 4.1
Outer (inner)-iterations comparison betweenIFOM and TIFOM(mT ). Outer toleranceǫ = 10−6,

ℓ
(1)
m = ℓ

(2)
m , α = 1, β = 12, γ = 10−5, mesh grid size of15 × 15, τ = 1/512, k̂ = 32, ∆T/τ = 16,

and n.c. means that the algorithm does not converge for100 iterations.

ℓ
(i)
m ǫ IFOM

TIFOM
mT = 2 mT = 4

Eq. (4.1) Eq. (4.4) Eq. (4.1) Eq. (4.4) Eq. (4.1) Eq. (4.4)

10
−12 15(576) 15(566) 16(610) 16(600) 16(608) 16(596)

10
−10 15(482) 15(476) 17(532) 17(526) 17(528) 17(524)

10
−8 15(388) 15(378) 17(426) 16(402) 17(426) 16(400)

10
−7 15(340) 15(328) 18(394) 18(374) 17(374) 16(350)

10
−6 15(288) 15(284) 19(340) 17(316) 19(338) 19(334)

10
−5 17(238) 16(222) 24(298) 22(272) 21(266) 26(284)

10
−4 17(180) 16(174) n.c. 48(286) 22(210) 70(406)

ℓ
(i)
m ǫ

mT = 8 mT = 12

Eq. (4.1) Eq. (4.4) Eq. (4.1) Eq. (4.4)

10
−12 15(576) 15(566) 15(576) 15(566)

10
−10 16(504) 16(498) 15(482) 15(476)

10
−8 17(420) 17(412) 15(388) 15(378)

10
−7 17(368) 17(354) 15(340) 15(328)

10
−6 18(320) 16(296) 16(298) 16(294)

10
−5 19(258) 19(244) 19(242) 19(244)

10
−4 28(254) 20(182) 20(192) 20(188)

number of applications of the parareal method) corresponding to IFOM and TIFOM(mT )
with mT = 2, mT = 8, andmT = 12 orthogonal vectors are presented in the Table4.1.
We force the sameℓ(i)m ǫ for each application of the parareal method, i.e.,ℓ

(1)
m = ℓ

(2)
m in (4.2).

Observe that as expected, in all cases, IFOM converges to theprescribed tolerance in fewer
outer iterations than the truncated versions. However, note that TIFOM does converge in all
cases with a relatively small increase in the number of totaliterations, i.e., the delay is small
but with the concomitant savings in storage. This is furtherillustrated in Figure4.2(a) and (b),
where a fixed outer tolerance of10−6 andℓ(i)m ǫ = 10−5 is considered. Observe that the com-
puted residual converges below the outer toleranceǫ, andℓ(i)m ǫ = 10−5 roughly specifies the
accuracy of the true solutionr = b − Hu.

Note also that if one compares in Table4.1 the rows corresponding to theℓ(i)m ǫ = 10−12

(closer to exact FOM) with that ofℓ(i)m ǫ = 10−6, for example, one can appreciate the sav-
ings of almost 50% in total computational effort. This is consistent with the savings shown
in [28, 32] for other problems.

In Figure4.1 we show the contour plot of two slices corresponding to timest = 0.5
and t = 1 of the exact ((a) and (d)) and inexact solution ((b) and (e)) and the difference
between them ((c) and (f)). We use the TIFOM(8) andℓ(i)m ǫ = 10−5. The comparison
between the difference between the exact and inexact solution (see for example plot4.1(f))
reveals that the worst case difference is attained att = 1 being of order of10−7.

In general, whenℓ(i)m ǫ decreases from10−7 to 10−3, the true residual deteriorates (see
Figure4.2). For the cases reported, the true residual stagnates, being the stagnation point
directly dependent onℓ(i)m ǫ. In principle, although reducing the internal tolerance isrecom-
mended to save computational time, there are limits. We havereported experiments where we
can not guarantee to satisfy the hypotheses of Theorem3.2and therefore no longer possible
guarantee the convergence of the inexact method.



ETNA
Kent State University 

http://etna.math.kent.edu

INEXACT KRYLOV FOR PARABOLIC OPTIMAL CONTROL PROBLEMS 51

 

 

2 4 6 8 10 12

2

4

6

8

10

12

1

2

3

4

5

6

7

8

x 10
−3

 

 

2 4 6 8 10 12

2

4

6

8

10

12

1

2

3

4

5

6

7

8

x 10
−3

 

 

2 4 6 8 10 12

2

4

6

8

10

12

−16

−14

−12

−10

−8

−6

−4

−2
x 10

−8

(a) (b) (c)

 

 

2 4 6 8 10 12

2

4

6

8

10

12

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

 

 

2 4 6 8 10 12

2

4

6

8

10

12

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

 

 

2 4 6 8 10 12

2

4

6

8

10

12

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
−7

(d) (e) (f)

FIG. 4.1. Contour plot of slice at timet = 0.5: (a) exact solution,(b) inexact solution, and(c) difference
between the exact and inexact solution. Contour plot of slice at timet = 1: (d) exact solution,(e) inexact solution,
and(f) difference between the exact and inexact solution. Truncation parametermT = 8 and outer tolerance10−6

andℓ(i)m ǫ = 10−5.

To illustrate the robustness of the proposed method for different smoothness of the target
functions, we run the same experiments with a target function which is not smooth in time
like (4.1), namely the following discontinuous in time target function:

(4.4)

{
ỹ(x) = x1(1− x1)e

−x1x2(1− x2)e
−x2 for t ∈ [0, 0.5],

ỹ(x) = 2x1(1− x1)e
−x1x2(1− x2)e

−x2 for t ∈ (0.5, 1].

The results are shown at Table4.1. It can be observed that the conclusions obtained with the
target function (4.1) remain valid with the target function (4.4). Therefore, there is no special
bias in performing our numerical tests using the smooth target function (4.1). We do this for
the rest of the paper.

Experiment 2. Scalability. Here we consider the same problem as in Experiment 1 to
study the convergence, mainly the variation in the number ofiterations with respect to the
discretization parametersτ , k̂, andq̂ in terms of the strong and weak scalability of TIFOM(8)
when parareal is used inE−T

n K̂E−1
n . The results are summarized at Tables4.2and4.3.

In Table 4.2 we list the number of outer (inner) iterations required to solve the sys-
tem (3.2) varying the values ofℓ(i)m ǫ to be10−7, 10−6, and10−5. Different mesh grid cor-
responding to different space variables, i.e.,q̂ = 62, q̂ = 92, and q̂ = 132 (correspond-
ing to 36, 81 and 169 space variables) and different coarse time steps∆T are tested with
fixed τ = 1/512 and parametersα = 1, β = 12, γ = 10−5.Table4.2shows how the number
of iterations varies with the respect tôk for a fixed total problem size. Observe that for a
variety of grid sizes, the number of outer and inner iterations remain approximately constant
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FIG. 4.2. (a)Computed residual and(b) true residual. TIFOM withmT = 20 (black),mT = 12 (blue),

mT = 8 (green),mT = 4 (pink), and ICG (red). The outer tolerance is10−6 andℓ(i)m ǫ = 10−5.

TABLE 4.2
TIFOM(8) number of outer (inner) iterations. The parameters are outer toleranceǫ = 10−6, α = 1,

β = 12, and γ = 10−5. Backward Euler discretization is used withτ = 1/512 and backward Euler coarse

propagator withk̂ = 1/(∆T ). ℓ(1)m = ℓ
(2)
m and theℓ(i)m ǫ values are10−7, 10−6, and10−5.

k̂ 8 16
∆T/τ 64 32

q̂ = 6
2 25(398) 28(396) 31(344) 25(480) 27(434) 44(468)

q̂ = 9
2 22(358) 22(326) 25(278) 21(416) 22(378) 24(308)

q̂ = 13
2 17(286) 17(262) 19(226) 17(354) 17(308) 19(264)

k̂ 32 64
∆T/τ 16 8

q̂ = 6
2 23(466) 25(412) 36(380) 23(436) 25(380) 197(1494)

q̂ = 9
2 22(436) 22(376) 35(384) 21(314) 22(336) 51(434)

q̂ = 13
2 17(368) 18(320) 19(258) 17(330) 17(274) 18(226)

if an inner toleranceℓ(i)m ǫ < 10−5 is used. This indicates that TIFOM(8) when combined
with the parareal method for approximatingE−TKE−1, i.e.,E−T

n K̂E−1
n , is independent of

the coarse grid discretization if an adequateℓ
(i)
m ǫ is taken.

In Table4.3, we analyze how the number of iterations varies with respectto k̂ for a fixed
problem size, i.e., in this case the number of fine temporal subintervals inside each coarse
temporal subintervals is set to∆T/τ = 16. Different grid sizes, coarse time steps∆T,
and ℓ(i)m ǫ are tested. Observe that the TIFOM(8) with the parareal method is robust and
scalable for theℓ(i)m ǫ tested when the size of the problem is increased maintainingfixed the
size of each problem inside each subdomain.

Experiment 3. ℓ(1)m ǫ 6= ℓ
(2)
m ǫ. Here we consider the effect of forcing thatℓ(1)m 6= ℓ

(2)
m

to test the applicability of the method to the case where the two systems in (1.3) are solved
with different (inner) tolerances, resulting in a nonsymmetric matrixH. In the experiments
we consider the same problem as in Experiment 1.

In Table4.4 the results of imposing differentℓ(i)m are shown. We present the number of
outer and inner (number of applications of the parareal method) iterations corresponding to
IFOM, TIFOM(mT ) with mT = 2, mT = 8, andmT = 12 orthogonal vectors. From these
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TABLE 4.3
TIFOM(8) number of outer (inner) iterations. The parameters are outer toleranceǫ = 10−6, α = 1,

β = 12, andγ = 10−5. Backward Euler discretization is used withτ = 1/l̂. ℓ(1)m = ℓ
(2)
m , and theℓ(i)m ǫ values are

10−7, 10−6, and10−5. The number of time intervals in each subdomain is∆T/τ = 16.

k̂ 8 16 32

l̂ 128 256 512

q̂ = 6
2 19(306) 23(316) 25(258) 22(424) 27(410) 40(422) 23(466) 25(412) 36(380)

q̂ = 9
2 17(274) 19(272) 21(228) 21(383) 20(364) 29(318) 22(436) 22(376) 30(384)

q̂ = 13
2 14(230) 15(224) 17(202) 16(328) 16(286) 17(242) 17(368) 18(320) 19(258)

TABLE 4.4
Comparison between the IFOM and TIFOM(mT ). Outer toleranceǫ = 10−6, ℓ(1)m ǫ 6= ℓ

(2)
m ǫ, α = 1,

β = 12, andγ = 10−5. Mesh grid size of15 × 15, τ = 1/512, k̂ = 32, ∆T/τ = 16, andn.c. means that the
algorithm doest not converge for 100 outer iterations.

ℓ
(1)
m ǫ ℓ

(2)
m ǫ IFOM TIFOM o-iter. (i-iter.)

o-iter. (i-iter) mT = 2 mT = 4 mT = 8 mT = 12

10
−7

10
−7 15(340) 18(394) 17(334) 17(368) 15(340)

10
−7

10
−6 15(340) 19(408) 19(400) 18(382) 15(340)

10
−7

10
−5 16(352) 22(454) 22(442) 20(404) 17(364)

10
−7

10
−4 16(354) n.c. 39(656) 20(424) 17(368)

10
−6

10
−7 15(288) 18(330) 19(338) 17(310) 16(298)

10
−6

10
−6 15(288) 19(340) 19(338) 18(320) 16(298)

10
−6

10
−5 16(300) 23(390) 20(346) 19(334) 17(310)

10
−6

10
−4 16(300) 51(710) 37(520) 20(352) 17(310)

10
−5

10
−7 15(234) 19(270) 27(280) 18(254) 21(246)

10
−5

10
−6 15(234) 19(270) 29(284) 18(254) 19(242)

10
−5

10
−5 17(238) 24(298) 21(266) 19(258) 19(242)

10
−5

10
−4 17(240) 30(334) 31(356) 20(270) 19(244)

experiments, it can be observed that more than two vectors are needed to attain convergence,
i.e., in some situations (whenmT = 2), the number of storage vectors do not suffice to
guarantee the convergence of the method. In fact, when the difference betweenℓ(1)m ǫ and
ℓ
(2)
m ǫ is large, then ICG is not expected to work well. In all cases, however, the convergence

of TIFOM is attained with storage savings formT = 4, mT = 8, andmT = 12. Observing
TIFOM, we note that the more asymmetric the matrixH is, more orthogonal vectors are
required to obtain the same result, i.e.,mT must be increased.

In Figure 4.3 we report the computed and true residual behavior forℓ
(1)
m ǫ = 10−6

and ℓ(2)m ǫ = 10−4. The influence ofℓ(2)m ǫ > ℓ
(1)
m ǫ can be observed since the true residual

stagnates aroundℓ(2)m ǫ = 10−4. Observe also in the computed residual the delay in the con-
vergence of the ICG whenℓ(1)m 6= ℓ

(2)
m corroborating the results of Table4.4.

In Figure4.4 we show the contour plot of two slices corresponding to timest = 0.5
and t = 1 of the exact ((a) and (d)) and inexact solution ((b) and (e)) and the difference
between them ((c) and (f)). We use the TIFOM(8),ℓ

(1)
m ǫ = 10−6 andℓ(2)m ǫ = 10−4. The

comparison between the difference between the exact and inexact solution (see for example
plot 4.4(f)) reveals that the worst case difference is being of orderof 10−6.
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FIG. 4.3. (a) Computed residual and (b) true residual for TIFOM withmT = 20 (black), mT = 12

(blue), mT = 8 (green),mT = 4 (pink), and ICG (red). The outer tolerance is10−6 and ℓ
(1)
m ǫ = 10−6

andℓ(2)m ǫ = 10−4.

TABLE 4.5
Comparison betweenIFOM andTIFOM(mT ). Outer toleranceǫ = 10−6, ℓ(1)m ǫ = ℓ

(2)
m ǫ, functional (3.29),

α̃ = 1, β̃ = 12, mesh grid size15 × 15, τ = 1/512, k̂ = 32, ∆T/τ = 16, and n.c. means that the algorithm
does not converge for 100 iterations.

ℓ
(i)
m ǫ

IFOM TIFOM

o-iter (i-iter)
mT = 2

o-iter (i-iter)
γ̃ = 10

−3 γ̃ = 10
−5 γ̃ = 10

−3 γ̃ = 10
−5

10
−7 5(112) 15(316) 5(112) 17(356)

10
−6 5( 92) 15(162) 5( 92) 17(300)

10
−5 5( 74) 17( 90) 5( 74) n.c.

ℓ
(i)
m ǫ

TIFOM
mT = 4 mT = 8

o-iter (i-iter) o-iter (i-iter)
γ̃ = 10

−3 γ̃ = 10
−5 γ̃ = 10

−3 γ̃ = 10
−5

10
−7 5(112) 16(340) 5(112) 17(338)

10
−6 5( 92) 18(310) 5( 92) 16(282)

10
−5 5( 74) 27(296) 5( 74) 18(230)

Experiment 4. Functional (3.29). Here we are interested in the analysis of the func-
tional (3.29) introduced in Remark3.6. To this end we take the same problem as in the
Experiment 1 but now with the functional (3.29) and we perform variations on its parame-
ters α̃, β̃, and γ̃. We first analyze the influence of̃γ in the solution determined by (3.29)
since it is associated to the regularization term. In Table4.5, we takeα̃ = 1, β̃ = 12, andγ̃
with values10−3 and10−5. Observe that wheñγ is reduced, then the number of iterations
increases. This shows the sensitivity of the problem toγ̃. These results are in accordance
with previous published works related to this problem (see [22]) and with Theorem3.5.

Tables4.6and4.7show the influence of̃α andβ̃, respectively. It can be observed that the
number of outer iterations almost remains invariant whenα is modified, but the method can be
sensible to converge ifℓ(i)m ǫ is reduced (to values equal or lower to10−5) andmT = 2. This
is due to the fact that with the functional (3.29), the condition for convergence established in
Theorem3.2for the TIFOM(2) is no longer satisfied.
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FIG. 4.4. Contour plot of slice at timet = 0.5: (a) exact solution, (b) inexact solution, and (c) difference be-
tween the exact and inexact solution. Contour plot of slice at timet = 1: (d) exact solution, (e) inexact solution, and
(f) difference between the exact and inexact solution. Truncation parametermT = 8 and outer toleranceǫ = 10−6

andℓ(1)m ǫ = 10−6 andℓ(2)m ǫ = 10−4.

A similar conclusion can be reached for the sensibility of TIFOM with respect toβ in
terms ofℓ(i)m ǫ. In this case, however, TIFOM is more sensitive toβ. In general we can expect
from Theorem3.5that whenα̃ andβ̃ increases, the number of outer iterations of the TIFOM
is increased.

5. Concluding remarks. We have proposed the use of inexact and truncated Krylov
subspace methods for the solution of the linear systems arising in the discretization of para-
bolic control problems. We use the reduced Hessian approach, resulting in a symmetric
positive definite system for which one would normally use theConjugate Gradient (CG)
method. Since the reduced Hessian is expressed as a matrix product, and two of this matrices
involve solutions of very large linear systems, we only approximate their solution (leading to
inexact methods), thus resulting in a nonsymmetric system.We choose inexact FOM (which
would reduce to CG in the absence of nonsymmetry). The approximation of the large systems
are done with the parareal method.

Our experiments show that the truncated inexact FOM can produce good results while
saving in storage (because of the truncation) and computational expense (because of the in-
exactness). Furthermore, the number of (outer) FOM iterations remains constant for a large
range of temporal and spacial discretizations, illustrating the robustness and scalability of the
proposed approach.

Acknowledgements.We would like to thank Eldad Haber for his comments on an ear-
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TABLE 4.6
Comparison betweenIFOM, andTIFOM(mT ). Outer toleranceǫ = 10−6, ℓ(1)m = ℓ

(2)
m , functional (3.29)

with β̃ = 12 and γ̃ = 10−5. In addition, the mesh grid size15× 15, τ = 1/512, k̂ = 32, ∆T/τ = 16, and n.c.
means that the algorithm does not converge for 100 iterations.

ℓ
(i)
m ǫ

IFOM TIFOM

o-iter (i-iter)
mT = 2

o-iter (i-iter)
α̃ = 0 α̃ = 1 α̃ = 100 α̃ = 0 α̃ = 1 α̃ = 100

10
−7 13(220) 15(316) 15(338) 15(246) 17(356) 17(370)

10
−6 13(178) 15(268) 16(174) 16(214) 17(300) 17(340)

10
−5 13(154) 15(208) 16(104) 20(146) n.c n.c

ℓ
(i)
m ǫ

TIFOM
mT = 4 mT = 8

o-iter (i-iter) o-iter (i-iter)
α̃ = 0 α̃ = 1 α̃ = 100 α̃ = 0 α̃ = 1 α̃ = 100

10
−7 15(248) 16(340) 16(356) 14(232) 17(338) 17(362)

10
−6 17(222) 18(310) 19(336) 15(196) 16(282) 17(314)

10
−5 19(188) 27(296) 23(280) 15(164) 18(230) 21(282)

TABLE 4.7
Comparison betweenIFOM, andTIFOM(mT ). Outer toleranceǫ = 10−6, ℓ(1)m = ℓ

(2)
m . Functional (3.29)

with α̃ = 1 and γ̃ = 10−5. In addition, the mesh grid size15 × 15, τ = 1/512, k̂ = 32, ∆T/τ = 16, and n.c.
means that the algorithm does not converge for 100 iterations.

ℓ
(i)
m ǫ

IFOM TIFOM

o-iter (i-iter)
mT = 2

o-iter (i-iter)
β̃ = 0 β̃ = 1 β̃ = 12 β̃ = 0 β̃ = 1 β̃ = 12

10
−7 3(78) 8(194) 15(316) 3(78) 8(194) 17(356)

10
−6 3(70) 8(166) 15(162) 3(70) 9(166) 17(300)

10
−5 3(58) 9(136) 17( 90) 3(58) 9(138) n.c.

ℓ
(i)
m ǫ

TIFOM
mT = 4 mT = 8

o-iter (i-iter) o-iter (i-iter)
β̃ = 0 β̃ = 1 β̃ = 12 β̃ = 0 β̃ = 1 β̃ = 12

10
−7 3(78) 8(194) 16(340) 3(78) 8(194) 17(338)

10
−6 3(70) 8(166) 18(310) 3(70) 8(166) 16(282)

10
−5 3(58) 8(136) 27(296) 3(58) 8(136) 18(230)
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