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COMPUTING APPROXIMATE EXTENDED KRYLOV SUBSPACES WITHOUT
EXPLICIT INVERSION *

THOMAS MACHT, MIROSLAV S. PRANKCE, AND RAF VANDEBRIL T

Abstract. It is shown that extended Krylov subspaces—under some asgursptcan be computed approxi-
mately without any explicit inversion or system solves imeal. Instead, the necessary computations are done in an
implicit way using the information from an enlarged standarglév subspace.

For both the classical and extended Krylov spaces, the reatdapturing the recurrence coefficients can be
retrieved by projecting the original matrix on a particulehogonal basis of the associated (extended) Krylov space.
It is also well-known that for (extended) Krylov spaces df flimension, i.e., equal to the matrix size, the matrix
of recurrences can be obtained directly by executing siityilenansformations on the original matrix. In practice,
however, for large dimensions, computing time is saved by maksegof iterative procedures to gradually gather
the recurrences in a matrix. Unfortunately, for extendeddtrgpaces, one is obliged to frequently solve systems of
equations.

In this paper the iterative and the direct similarity apptoare integrated, thereby avoiding system solves. At
first, an orthogonal basis of a standard Krylov subspacemédsionm, + m, + p and the matrix of recurrences
are constructed iteratively. After that, cleverly choseitary similarity transformations are executed to alter the
matrix of recurrences, thereby also changing the orthogoemsis vectors spanning the large Krylov space. Finally,
only the firstm, + m, — 1 new basis vectors are retained resulting in an orthogorsas lagproximately spanning
the extended Krylov subspace

King,m, (A,v) = span {Afm"*lv, oL AT v Av, A%, Aml*lv} .

Numerical experiments support the claim that this approxinais very good if the large Krylov subspace
approximately containspan { A=™r 1y, ... A=y}, This can culminate in significant dimensionality reduction
and as such can also lead to time savings when approximatimvimg e.g., matrix functions or equations.

Key words. Krylov, extended Krylov, iterative methods, Ritz valueslypomial approximation, rotations, QR
factorization
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1. Introduction. There is an intimate relation between orthogonal polyntsniheir
recurrence relations, and the associated matrix formatigerms of classical Krylov spaces,
the orthogonal basis vectors spanning the spaces, anddlairences. This link proved to
be of bidirectional prosperity for both the polynomial adives the matrix communities, as
illustrated by, e.g., a numerically reliable retrievallod tveights for Gauss quadratuie[21]
and the convergence analysis of Krylov based algorithmsnglon approximation theory
and potential theoryl[8, 19, 31]. Approximations of functions by Laurent polynomials and
rational functions have been present for a long time (dearid the references therein), but
in [26] the matrix analogue in terms of Krylov subspaces was intced for the first time.
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Since then rational Krylov spaces have been the subject of stadies; it is therefore
impossible to provide an exhaustive listing of all the ral@iterature. We attempt to high-
light the references closest linked to the extended (pel) ftase in the next paragraph. Ruhe
initiated this research and constructed several algostretated to (generalized) eigenvalue
computations based on rational Krylov spaces; see 6.2, 28, 29). The relations with
matrices and possible numerical issues were investigatédl i7, 20, 23]. Fasino proved
in [9] that the matrix capturing the recurrence coefficientsugiodense, is highly structured
and dominated by low rank parts. This low rank structure viesdy exploited in eigenvalue
and inverse eigenvalue problentsl] 35, 36, 37]. An analysis of convergence is presented
in [3, 5]. The main bottleneck, however, in the design of these matiiterative methods
still remains the computation of the vectors spanning thddirsubspace, which requires
successive system solve¥.

Rational Krylov methods13] and extended Krylov methods in particular are popular for
numerically approximating the action of a matrix functiffd) on a vectow [8, 14, 15, 16].
Extended Krylov subspace methods have also been used ® Is@punov equationsL]]
and have been proven useful in model order reducti@ri practice, a rational, extended or
classical Krylov space defines a small subspace on which imjecgs the original matrix or
problem, thereby reducing the dimension and leading to aroapmate solution.

In an extended Krylov space defined by a mattixand a vectow, not only multiplica-
tions with positive powers ofl but also with negative powers are admitted. This extra flex-
ibility often allows the extended spaces to be chosen mu@ilsnthan the standard Krylov
subspaces for achieving a certain accuracy. As a resulprtjected problem linked to the
extended space can sometimes be much smaller than thepmrdésg projected problem
linked to the standard Krylov subspace, but it still congaime vital properties of the origi-
nal matrix. When building the extended Krylov subspace esysiolves to obtainl—!v are
necessary. In the numerical examples in the above mentjmagsets, this is often done by us-
ing the MATLAB functionbackslash or a direct solver. For large systems, direct solvers
often require too much storage or too much computation tiffieerefore it is sometimes
necessary to switch to an iterative solver, which in turngiaia based on a Krylov subspace
method. The approach presented here integrates the Knylmspaces utilized for comput-
ing A~*v, k =1,2, ..., with the construction of the desired extended Krylov subspa

More precisely, the proposed algorithm is initiated by ¢y a large standard Krylov
subspace of a certain dimension. After that, the compregsiocedure is initiated, and clev-
erly chosen unitary similarity transformations are exeduin the matrix capturing the recur-
rence coefficients. As a result, the matrix of recurrencesghs structure and approximates
the matrix of recurrences linked to a predefined extendedoirgpace. These similarity
transformations do not alter the starting vectdout do mix up the Krylov space. Finally,
only a subset of all changed Krylov vectors is retained, Wiiow approximate the vectors
of the extended space.

Before the new algorithm is presented in Sectiprsome essential facts on extended
Krylov spaces, rotations, and operations on rotationseaiewed in Sectio2. An extension
of the implicit Q-theorem for Hessenberg matrices, see, L@, required for the validation
of the results, is given in Sectidh Section5 is confined to the error estimates introduced
by approximating the extended space. In the numerical @rpets in Sectiorb, it is shown
that the new approach is feasible for some but not all casgerienents for approximating
matrix functions, approximately solving Lyapunov equasipcomputational timings, and
visualizations of the behavior of the Ritz values are ineliid

2. Preliminaries. The novel algorithm mostly relies on manipulating the QRd&za-
tion of the matrix of recurrences, where the matgixtself is factored in essentiallyy x 2
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rotations. This section elucidates transformations wingl rotations (Sectiof.2), and links
the appearance of negative and positive power4 of the extended Krylov subspace to the
ordering of the rotations when factoring tgefactor in the QR factorization of the matrix of
recurrences (Sectioh 3). At first, after notational conventions, Krylov and extedd<rylov
spaces are introduced (Sectidn).

The following notation is employed throughout this papeatmces are typeset as upper
case lettersl, vectors as lower case Matrix elements are denoted ds ; and MATLAB'’s
colon notation is used, e.g4. 1., stands for the firsk columns ofA. The Hermitian conju-
gate of a matrixA is marked by a superscripted asteri$k Theith standard basis vector is
denoted bye; andI; stands for thé x ¢ identity matrix.

2.1. Krylov and extended Krylov spaces.Let A € C™"*™ be a matrix and € C" a
vector. TheKrylov subspacekC,, (4, v) is defined as

K (A,) = span {u, Av, A%, .., A= 1p}

Closely related is th&rylov matrixdefined byK,, (4,v) = [v, Av, A%v, ..., A"~ 1y]. We
use a calligraphidC for the space and a non-calligrapticfor the matrix; the same conven-
tion holds for the extended Krylov subspace, which is defipeddw.

If the dimension ofiC,,, (A, v) is m, then there exists an orthogonal mattixe C"*™
such that

(2.1) span {V. 1.x} = span {v, Av, A%, ... ,Ak_lv} Yk < m.
An extendedrylov subspace is of the form
Km,..m, (A, v) = span {A_m“"lv7 L AT 0, Av, AP, A"”_lv} .

When building such a space, vectors are added one by one,@ittiee left (negative powers)
or on the right (positive powers). To record which vectoraeges the subspace in each step,
aselection vectos is introduced, determining which vector from the bilatesatjuence

(2.2) ..., AMey, A™ o A% Al v, AT e, AR, AT TRy ATy

is chosen next. To make the ordering in the bilateral sequeonsistent with forthcoming
deductions, the positive powers dfare defined to be the leff)sequence and the negative
powers the right«) sequence. The selection vectoonly comprises elementsandr. The
first vector of the extended space is always The second vector iglv chosen from the
left if s; = ¢ or A~'v selected from the right fos; = r. Theith successive vector in the
extended Krylov space is taken left whenewvgr; = ¢ or rightif s;_; = r, and it is selected
next to the last picked vector on that side of the bilaterglsace. An alternative notation
t0 Koy m, (A, 0) is Ky m (A, v), wheres is the selection vector and = my + m, — 1 is
the number of vectors taken out &f.9) to generate the extended Krylov space. The number
of times/ appears in the firsth — 1 components of equalsm,, andm,. corresponds to the
number of occurrences of

ExAmMPLE 2.1. For example, a Krylov space’s selection vector has valyes?. The
selection vector accompanying a pure (only inverse powesved) extended Krylov space
only comprises values The alternating occurrence 6§ andr’s leads to an extended Krylov
space of the form

Ks.m(A,v) = span {v, Av, A7, A%, A=20, A3v, A3, .. } ,

1For brevity we will call in the remainder of the paper the cleakor standard Krylov subspace just Krylov
subspace.
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which, for unitary matrices, links closely to CMV matrice®?]. We come back to this in
Example2.5. There is no particular reason to restrict oneself to périgdctor successions,
e.g..s = [rlrrrir...] corresponds to

Ks.m(A,v) = span {v, A7, Av, A= 20, A3, A4, A%, A5, } .

Itis well-known that in the Krylov space, the matrix of remmcesd = V*AV e C™*™,
often also named thprojected counterpaytis an upper Hessenberg matrix (i.&; ; = 0,
forall i > j + 1). In the extended case, however, this does not longer hdld.structure of
the projected counterpart is examined in Secfidhand relies on concepts introduced in the
next section.

2.2. Rotations and their manipulations. Rotations [L1] (also called Givens or Jacobi
transformations) are commonly used to set entries in a xtatdero, e.g., in order to retrieve
the QR decomposition of a matrix.

DEFINITION 2.2. Matrices G(i, j,0) which are equal to the identity, except for the
positionsG, ; = cos(f), G;; = sin(#), G;; = —sin(d), and G, ; = cos(#) are hamed
rotations.

We will restrict ourselves to rotations(i, i+1, 8) acting on neighboring rows or columns,
abbreviated a&7;. A rotationG is unitary, that isG applied to a vector leaves tf2enorm
unchanged. By thaction of a rotation we mean the effect tha&t has on the rows/columns of
the matrix to which it is multiplied. To keep track of the axtiof a rotation, we typically rep-
resent them graphically by a bracket having arrows poirttirthe rows respectively columns

affected, e.g.,
E X x| [x X
0 x| |x x|’

When forming a product of several rotations, their order astibas clearly matter. We say
that they are organized in a particutariesof rotations or satisfy a certajattern

In this paper, we will nearly always operate on the QR faz&gion and in particular,
on the factorization of the matrig) into rotations, which we also address asotational
factorization The role of the upper triangular mattiis inconsequential as one can transfer
rotations from the left to the right through the upper trialag matrix without destroying its
upper triangularity and without altering the pattern of tbtations involved. More precisely,
applying a rotation acting on neighboring rows from the tefian upper triangular matrix
introduces a non-zero entry on the sub-diagonal. One caayalvestore the upper triangular
structure by eliminating this entry by a rotation from thghti (the elements marked with a
tilde are the only ones affected):

3
o o o X
o o X X
S X X X
X X X X
oS O O X
S XXt X
S XXt X
X X XeX

|
o o o X
S O Xt X
S X Xt X
X X XeX

3

This operation, passing rotations from one side to the dthealled atransfer Of course,
one can transfer rotations from the right to the left as wélloreover, let@Q be a matrix
factored into2 x 2 rotations obeying a particular pattern. Transferring ootation after
the other through the upper triangular matrix shows thatrdi@tional pattern remains un-
affected. This means that a mattik having an RQ factorizationl = R(Q admits a QR
factorization4 = QR, where the rotational factorizations @fand(Q obey the same pattern.
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2.3. The projected counterpart, extended Krylov spaces, ahpatterns in the QR
factorization. This section discusses the connection between the extéfrgitl subspace
and the structure of the QR factorization of the projectathterpart.

Let us first consider an x n Hessenberg matrix. Its QR decomposition can be written
as a descending series of rotations times an upper triangialiaix, e.g.,

X
X

X X X
X X X X
X X X X X
X X X X X X
X X X X X X
I
T
3

3
X
X X
X X X
X X X X
X X X X X
X X X X X X

The unitary matrix@ is thus decomposed into — 1 rotations according to position vec-
tor p = [¢££ ¢ ¢], which captures the positioning of successive rotatiork réspect to each
other: an entryp; = ¢ signifies that the rotatiods; is positioned to the left of the rota-
tion G;11, wherea®, = r indicates that7; is positioned to the right of7; ;.

When going from classical Krylov spaces to extended Krylaacgs, one can no longer
guarantee the projected counterpart to remain of Hessgffitmen. Nevertheless these matri-
ces, let us name theextended Hessenbemgtrices, share major properties with the classical
Hessenberg matrix when comparing their QR factorizati&ash extended Hessenberg ma-
trix admits a QR factorization with Q factored into— 1 rotationsG,; fori =1,...,n — 1.
Recall thatG; acts on neighboring rowisand: + 1. Due to noncommutativity, it clearly mat-
ters whether, fofi — j| = 1, G; is positioned to the left or to the right 6f;. So the mutual
arrangement of successive rotations is stored in the positctor, uniquely characterizing
the rotational pattern in the QR factorization of an extehdessenberg matrix.

DEFINITION 2.3. Let A be a matrix having a QR decompositidn= QR. If the unitary
matrix Q admits a decomposition into at mast- 1 rotations all acting on different pairs of
neighboring rows, then we will cald an extended Hessenberg matrix.

If Q can be decomposed into exactly- 1 rotations differing from the identity, we will
call A an unreduced extended Hessenberg matrix.

WheneverA is of extended Hessenberg form, the matgixwith A = QR being a QR
factorization, will also be of extended Hessenberg form.

EXAMPLE 2.4. EquationZ.3) displays the rotational pattern of tiig-factors showing
up in the QR factorization of a Hessenberg (left), a CMV nxafdenter), and an inverse
Hessenberg matrix (right).

I K ( [
2.3) i [ [

In [36, 37] the link between extended Hessenberg matrices and extéfgéov spaces
is examined. The position and selection vector nicely tgetber both concepts: they are
identical. Therefore, from now on, we will limit ourselves the selection vector for both
concepts. Summarizing, consider an extended Krylov spacg (A, v) determined by its
selection vectos. LetV € C"*™ be an orthogonal basis for this extended space such that

(2.4) span{V. 1.} = Ks (4, v) vk < m.
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Then the matrixt* AV € C™*™ will be of extended Hessenberg form. More precisely,
the Q-factor in the QR decomposition df* AV admits a decomposition intax — 1 rota-
tions G; acting on rows andi: + 1, whereG; is positioned to the left of7;; if s; = £ or
positioned to the right fog; = r.

ExamMPLE 2.5. Reconsider Examplesl and2.4. Classical Krylov subspaces can be
identified with a selection vector of onf§s and hence with a descending series of rotations
as on the left ofZ.3). It is not hard to see that a classical Krylov space generayed —*,
results in a projected counterpart A~V being of Hessenberg form. Obviously, its in-
verseV* AV will thus be of inverse Hessenberg form. Both the pure extdrgpace and
the inverse Hessenberg matrix are described by a seleatictonvof solelyr’'s. The alter-
nating vectors = [¢r{r ...] results in azigzagshaped pattern, associated with the CMV
decomposition.

3. The implicit Q-theorem for the extended case.Given a matrixA and a vectow,
the selection vector has a strong impact on the structuressehtial uniqueness the pro-
jected counterpart, as shown in the next theorem. \84gential uniqueness the projected
counterpart we mean unigueness up to unitary similariti &itliagonal matrix. When con-
sidering essential uniqueness of the malfiof orthogonal vectors, we mean uniqueness up
to unimodular scaling of each column.

THEOREM 3.1 (From B6, 37]). Let A be a non-singular matrixs a selection vector,
and letV andV be two unitary matrices sharing the first column, i¥ée; = Ve,. Assume
that both projected counterparts are QR-factored as

(3.1) QR=H=V*AV and QR=H=V*AV.

If Q and( are extended Hessenberg matrices factored into non-ijemtiations following
the ordering imposed by, then the matrice&l and H are essentially the same.
Theorem3.1is an extension of the so called implicit Q-theorem for Hagseg matri-
ces, stating that once the matrix structure—determined égetection vector—and the first
vectorVe; are fixed, everything else is implicitly defined. For our mse, this theorem is
not general enough: we require essential uniqueness oft @fodue projected counterparts
(typically of a strictly smaller dimension than the matrik) this case, the matricds andV’
are not necessarily square anymore, the associated sal®etitor(s) need only be defined
for the firstk components, and we cannot guarantee all rotations to beretiff from the
identity. Generalizing this, we first reformulate Theorgrhdealing with reducible matrices.
THEOREM 3.2. Let A be a non-singular matrixs a selection vector, and lét and V'
be two unitary matrices sharing the first column, i¥g; = Ve;. Assume both projected
counterparts are QR-factored as (8.1). Denote the individual rotations appearing in the

rotational factorizations ofQ and Q as G and G¥, respectively, where the subscript
indicates that the rotation acts on rowsindi + 1. Assume both patterns of rotations satisfy

the ordering imposed by. Define: as the minimal for which eitherGf2 or GiQ equal the
identity, i.e.,

I%:m_in{lgign—z suchthaIG?:IorG?:I},

and if no such rotation exists, set= n — 1. Then the upper left x k parts of H and H are

essentially the same, as are the fitstolumns oft” and V.

Theorem3.2follows directly from the more general Theoréhb, which we prove below.
COROLLARY 3.3. Under the assumptions of Theorén? and fork = n — 1, the two

tuples (/,H) and (V,H) are essentially unique as a result of the unitaritydoind V.
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Proof. If k = n — 1, then according to Theoref?2 the firstn — 1 columns ofV are
essentially fixed. Sincepan {V'} = C™, the last column is then fixed as well. O

TheorentB3.2states again a property related to a full projection, ia@.s§uare matrices
andV. Obviously, the conclusions are not the same when relakisgondition as illustrated
in the following example.

ExAMPLE 3.4. Take & x 5 diagonal matrixA = diag(1,2, 3,4, 5) and starting vec-
torv = [1,1,1,1,1]7. Consider two Krylov spaces not of full dimension

K = span {v,Av, sz} and K= span {v, AU,A_lv} .

The associated orthogonal matridésandV are

1 —2 2 1 —2 .52
Vs V10 V14 V5 V10 3o
1 —1 —1 1 —1 —.425
¢ S Ec i
1 1 —1 1 1 —.065
V5 V10 V14 V5 V10 3a
1 2 2 1 2 .34
V5 V10 V14 V5 V10 3o

havir]goz2 ="7.0775. UsingV’ andV in the similarity transformation, we get féf = V*AV
andH = VAV

3. V2 3 —V2
H=|-V2 3 o and H=|-v2 3 11089
13 1.1089 2.3133

10

Obviously bothH and A admit an identical pattern in the Q-factor of both QR factai
tions, and secondly the matricesandV share the first column. Nevertheless, the projected
counterparts are non-identical, neither are the thirdroalvectors of” andV'.

The difference is subtle. Only considering the selectiartaeassociated to the projected
counterparts, we see that= [¢] suffices. For the Krylov space, however, as long as it has
not reached its full dimension, the selection vectoss [¢¢] ands = [¢r] differ and are vital
to reconstruct the spacésandK.. We modify Theorens.2 accordingly.

THEOREM3.5. Let A be a non-singulan x n matrix, s and $ be two selection vectors,
and letV andV be twon x (m+1), (with? ;< n) rectangular matrices having orthonormal
columns and sharing the first colunife; = Vey. LetV and V be the principal leading
submatrices of size» x m of V andV, respectively. Consider

62 AV =VH+rpw, =VH=VQR,
' AV =VH+ ¢, =VH=VQR,

With 7y, iy € C", Wy, € C™, H,H € C™™, H H € C"+D*m and with the
QR decomposition§f = QR and H = QR of H and H, respectively, wher€) and @ are
decomposed into a series of rotations ordered as imposecdingd §. Definek as follows

(3.3) k= min{l <i<m—1suchthatG? =1,69 =1, ors; # §i},

i

2The casen = n requires a reformulation 08(2) and is therefore excluded. One can fall back on Thedgn
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and if no suchk; exists, set: equal tom. Then the firsk columns oft” andV and the upper
left £ x k blocks ofl’* AV andV* AV are essentially the same.

In Example3.4we haves; = $; andss # 3, and thusk = 2. This example confirms
that Hq.2 1.2 = Hi.2,1:2. To actually prove Theorer®.5 Lemma3.6is required.

LEMMA 3.6. Let H be anm x m matrix with H P, being of (rectangular) extended
Hessenberg form for < k& < n, whereP;, = [I,0]7 € R™*k, Assume that the unitary
matrix Q, whereQ R = H Py, has the first rotations in its rotational factorization ordered
according to the selection vecter Thenk 1 (H, e1) is upper triangular.

The proof is identical to the proof of Theorem 3.7 froBV[ the clue is the necessity
of having element; available to make a statement for thie+ 1)st subspace and to have
non-identity rotations as well. Let us now prove Theor&m

Proof of Theoren8.5. First we need to increase the matridés H, and their variants
with a hat in size. Le®/, andV, be augmented square unitary matrices, sharing the first
columns withV andV, respectively. The enlarged matricBs and 1, are defined as the
projected counterpartg* AV, = H, andV* AV, = e- By Theorem3.6, with kasin @.3),
we have]’(S (He,el) = Ks,n_l(He,el)P ansz (He,el) = Ks,n—l(Heael)P both
upper triari(jular. Elementary computations provid’e us with

VeKs,n—l(Heael) = Ks,n—l(‘/eHeVe*; Veel) = Ks,n—l(A; Veel) = Ks,n—l(Ay V61)7

and simiIarIyVng,n,l(er, e1) = Ksn—1(4, Vel). Combining everything and projecting
onto the first columns leads to

VoKysn 1(Heye1) Py = Ky 1(A,Ve) Py = K n1(A, Ve) Py = VoKs o1 (He, e1) P

Uniqueness of the partial QR factorizations of the outer aefd outer right factorizations
yields the essential equality of the fidgsvectors ofl” andV'. The rest follows trivially. 0O

4. An implicit extended Krylov subspace algorithm. Building an extended Krylov
subspace typically requires solving some linear systemghis section, an algorithm for
approximately computing an extended Krylov subspace witegplicit system solves is pre-
sented.

To clarify the description of the algorithm (see AlgoritHnfior a pseudo-code version),
it is accompanied by an example having selection vecter[¢r . ..]. First, an oversampling
parametep is chosen and the Krylov subspake, (A4, v) with dimensionn = |s| + 1 + p
(here|s| equals the length of the vectej is constructed. This oversampling parameter
determines how many vectors in addition are put into the ddr@ubspace before the trans-
formation to the extended space starts. A large valueiotreases the computational cost
of the algorithm, but it will also improve the approximatitém the extended Krylov sub-
spaces. Le¥ be an orthogonal matrix forming a basis /6f, (A, v) satisfying €.1). We
haveAV =V H + re}, with H in Hessenberg form.
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Second, the QR decomposition Bf = QR using a series of rotations is computed

X X X X X X X X X X X X X
X X X X X X L X X X X X
X X X X X X X X X X
X X x x| _ X X X
X
X X X L X
X X X
-Q —R

In the third step,H is transformed via unitary similarity transformations e tdesired
shape corresponding to the extended Krylov subspace haelegtion vectos = [¢r...].
The first rotation must always remain unaltered, sii¢efirst column must stay fixed. The
first entry ins is an/, entailing the second rotation to be on the right-hand sfdéefirst
one. Since this is already the case in the example, nothimgirs to be done. The next
entry is anr, meaning the third rotation must be brought to the other. Sidehis end, all the
rotations starting from the third one are transferred tghotine upper triangulark:

X X X X

X X X X

X X X X
3

AV =V

X
X X ---
3

To execute a similarity transformation on the Hessenbergixn&/, we multiply with W~
from the right-hand side and sEt= VI/*. As a result, we obtain

X X
‘: X

L—: X X X
C

X X X X
X X X X
X X X X

AV =V +ren, W*.

3
X -
X X

I
O

=H

Note thatW¥ is an orthogonal matrix and hence algo The first three rotations il have
now the shape for a selection vector beginning Vith]. Next, all the other entries inare
dealt with. If the entry ins is r, the trailing rotations are transferred to the right ancuigta
back to the left by similarity transformations. If the nexttey is ¢, nothing is done. This
procedure is repeated until the endsd$ reached:; as a resuit is in the desired form.

3Probably there are much more economical manners of retrievin@Enfactorization o, e.g., by storingd
directly in factored form and updating the factors as in tNé/MLQ case 5. This is, however, beyond the goal
of this paper.

4 Whenever the matri¥ is highly structured, e.g., tridiagonal, the QR decomposipartially destroys the
existing structure. Typically, however, a new, exploitablructure emerges. We do not want to defer too much from
the core message of the current paper and as such do not ittsipestdetail.
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We now have an approximation to the extended Krylov subspétbetoo many vectors.
So in the fourth and last step, the fifst+ 1 columns ofl” and the uppef|s| + 1) x (|s| +1)
block of H is retained.

Selecting only part of the entire decomposition introduaespproximation error (see
Section5) as also the residual is affected by the previous transfiiomaand part of it gets
ignored. More precisely, the original residual;, is transformed intee, W*, with We,;, of
the following form

GW

m—2 . .
G%_ 0] — 0| - |y
E E 1 0 E Q1 Oéiﬂi
1 B B1

with G = {ai ﬂ’} and|a;|,|8;| < 1. The product]]; a;|

771—i’ﬁmfi:mfi+1,7h7i:m7i+1 -8B, &

is expected to be smaller than one and is possibly decayingrtnfast, of course depending
on the properties off, A, and/C;; (A, v). So, if the first|s| + 1 entries of(ej;, W*)1.|54+1 are
negligibly small, then we can apply Corolladyl and know that we have computed a good
approximation.

COROLLARY 4.1. Having computed” and H as described above, assuming the ma-
trix (e, W*)1.s141 is zero, and none of the rotations in the factorizatiorébéquals the
identity, thenV and H are essentially the same aslif were computed as the orthogonal
basis of the extended Krylov subsp#teg 1 (A,v) andH = V*AV.

Proof. The first rotation remains unaltered and as slieh = Ve;. Applying Theo-
rem3.5yields theresult. 0O

It will be shown in Sectiorb that this algorithm works well in practice A~'v has a
good approximation within the space spanned/by

5. Error bounds. In this section we will show that the algorithm computes adjoo
approximation to the extended Krylov subspacelif'v is well approximated in the large
Krylov subspacéC, (A, v).

For our analysis, a matriX is needed for which the algorithm will not approximate but
compute the exact extended Krylov subspace linked to tiggnadi matrix A. Consider the
matrix

(5.1) A=A—rui.

Corollary 4.1 implies that Algorithm1 computes the exact solution if the residyial| is
zero. ObviouslyAv; = Av;, Vi < m, sinceV has orthonormal columns, implying that up to
sizem, the Krylov subspaces; (A, v) andK,; (A, v) are identical. Because of

1 *
Avp, = Avg, — rvsvs, = VH. 5,

we obtainAV = V H. HenceA is a matrix for which the algorithm computes the exact
extended Krylov subspace identical to the computed appration when applying the al-
gorithm to A. The difference| A — A|, is, however, a too large overestimation to be an
adequate error measure because even when the algorithmcpeod good approximation,
the norm can be large.

First, assume that in the selection vectoonly oner appears, and so the extended
Krylov subspace contains only a single vectbr'v besides positive powers of timesw.
This means in fact that the algorithm compuié§|s‘+1(f1,v) instead ofiCy |54+1(A4,v).
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Algorithm 1: Computing an extended Krylov subspace without inversion.

Input: A € C"*", v € C", s, e.9.,s = [(r{r...], oversampling parametgr
Output: H, Vwith AV =VH+V. e}, +oh* = VH + V. piel,
1m:=|s|+1+p;m:=|s|+1;
2 ComputeV spanning the Krylov subspaég;, (A4, v), H := V*AV, and
0= (AV — VH)GT;“ with AV =V H + 7"6;% andem = I:,l:ﬁz;
3 h:=¢epm;
4 Compute the QR-factorization ¢f = QR into /i — 1 rotations
G1Gs ...Gjy-1 := @Q and an upper triangulag;

s forj=1,...,|s| do

6 if s(j) == rthen

7 Compute theRQ-factorization ofR [T/ J+1 =TI —]+1 GiR;
8 V=V H?LI;H Gr;

9 h:= HZI;H—l Gih;

10 end

11 end

12 if ||o||5 || h1:m ]|, is small enoughhen

13 V= V,l:ma H = Hl:m,l:m;

14 return V and H;

15 else
16 \ Choose a largep and start again;
17 end

Note that the Krylov subspacés; |;+1(A,v) andC; |, \+1(A v) are both spanned by the

vectorsv, Av, A%v, ..., Al*l=1y and by A~ 1v respectivelyA~'v. Hence, the norm of the
dn‘ference between the last two vectols} —'v — A~ 1v||,, is @ measure of the accuracy of
the computed extended Krylov space approximation. In Lerfrhahis norm is linked to
the approximation accuracy of~!v in the subspacé;, (A4, v) = span {V'}, which can be
quantified by]|(I — VV*)A~ ||

LEMMA 5.1. TakeA € C"*™ and Ietfl be asin(5.1). LetV be the matrix of orthonor-
mal columns spanning; (A, v) = K (A,v). Sety = |[VV*A(I — VV*)]|,, and assume
that H = V* AV is invertible. Then

a7t = A% < @y V1) - vV Ao,

Proof. It follows from AV = VH that A=V = VH-! andAV = VV*AV. We have
(for all norms)

|47 = A7 < [T = vV ATt 4 |vvraTte - A
<[l =vva-te| + |AAvieatie - A

(5.2) < |- vvato| + A vvravvaie - Al

The projection ofv on V' is againv, hencev = VV*v. As VV* is a projection, the iden-
tity VV* = VV*VV* holds. Using the sub-multiplicativity of the 2-norm, theeead norm
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in (5.2) can be bounded as

HA-l(VV*)VV*AVV*A-lv — AV

(5.3) i
< |Atvve| vvravvati o,
Furthermore,
(5.4) Hirlvv* = VETV L < VI [E ) 1V,
——

=1
By combining 6.3), (5.4), and the following estimate3D, Proposition 2.1]

[VV*AVV* A~y — o, <~ || = VVF) A |

27

the proofis completed. 0O
This lemma tells us that Algorithrh computes a good approximation to the sought ex-
tended Krylov subspace if ~!v is approximated well enough i (A, v).

6. Numerical experiments. In Section6.1 we compare the accuracy of the novel ap-
proach at first for the examples frortg], where explicit matrix inversions are used to approx-
imate matrix functions (Examplés1-6.3), and secondly (Examplg4taken from [L7]), we
illustrate the possible gain in compression with the newag@gh when approximately solv-
ing Lyapunov equations. In Sectidh2, the behavior of the Ritz values is examined when
executing the compression technique. And finally in Sedii@nthe computational complex-
ity of the new method is analyzed.

6.1. Accuracy of approximating matrix functions. The approach of computing the
extended Krylov subspace implicitly is suitable for appneating (some) matrix functions
as the following numerical experiments show. The experiméor Exampless5.1-6.3 are
taken from Jagels and Reichel it]. Four different selection vectors are used: withim
with anr at every second entry, every third, and every fourth entnthis section the vari-
ablem, determining which vectors and submatrix to retain, is gsv@aken ags| + 1. The
computations are performed in MATLAB. The main idea behimelse examples is to show
that one can do equally well as ihd] without explicit inversions, whenever the inverse op-
eration ofA onv is approximated well enough in the large subspace.

The implicit extended Krylov subspace method is used foaghgroximation off (A)v.
We haveH = V*AV, so f(A)v can be approximated by

[ = VIH)V 0 =V [f(H)ew o],

Three functions were tested(z) = %m_"”) f(x) = log(z), and f(x) = ﬁ It is known
that in these cases the approximations stemming from esteKaylov subspaces are of-
ten quite good. In Figure§.1-6.6, the plotted error is a measure of the relative distance
betweenf(A)v and its approximation.

ExamMPLE 6.1. In this example, we demonstrate that we are able todepesthe figures
from [15, Examples 5.1-5.2], meaning that the implicit approaclopers equally well as the
explicit one. Consider &000 x 1000 symmetric positive definite Toeplitz matrix having
entries

1

Tl
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In Figures6.1 and6.2 we report the relative error of approximatirfgA)v for different se-
lection vectors. In Figuré.1 for f(z) = w and in Figure6.2 for f(z) = log(z).
The vectorv has normally distributed random entries with mean zero arihnce one.
The oversampling parameteris= 100. It is known that both functions can be approxi-
mated well by extended Krylov subspaces, and as a resultipaystidentical behavior as
in [15, Figures 5.1-5.2] is observed.

——[0Leelie .. .|
1072 std. Krylov subsp. e [ererere ]
5 -+ [lrllril .. .|
s e [Tl .. .]
[ —6 | x N
o 10 ¥
2 %
Q \
) e,
1010 p N 1
10-14 L | g, o °
10 20 30 40 50 60 70
m
FiG. 6.1. Relative error in approximatingf(A)v for f(z) = w for various selection vectors

andm = 12, 24, 36, 48, 60.

10—2

10-¢

Relative error

1071

10~

FiG. 6.2. Relative error in approximatingf(A)v for f(z) = log(x) for various selection vectors
andm = 12, 24, 36, 48, 60.

EXAMPLE 6.2. In this example, the matrid arises from the discretization of the
operatorL(u) = 1—10um — 100wy, on the unit square as inp, Examples 5.4-5.5]. The results
are less accurate, but still reasonable approximationsetieved. For the discretization in
each direction, a three point stencil with 40 equally ditréd interior points has been used.
Together with a homogeneous boundary condition, this gi@d600 x 1600 symmetric
positive matrixA. The starting vectov is chosen to be; = \/%, for all j. Figure6.3

displays the relative approximation error fffz) = e"p;i_“) and Figures.4for f(x) = %
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We notice that the oversampling parameter= 100 is not large enough, as the sub-
spacek; (A, v), depicted by the upper green line in Fig@& is not approximatingd —!v
nor f(A)v up to a satisfactory accuracy. After truncation (fox 100), we arrive at the mid-
dle lines revealing an accuracy for the extended space ald@tical as for the large untrun-
cated Krylov space (depicted again by the green line contgihoweverp = 100 additional
vectors). The Krylov subspace of dimensibt2 can thus be reduced to an approximated
extended Krylov subspace with onl vectors, while retaining an almost identical relative
error. The error of the approximated space vighvectors is more thaB orders smaller than
the error for a Krylov subspace of dimensit?y which corresponds to the top green line.

An even larger oversampling parameter20f) is tested (corresponding to the bottom
line in Figure6.3) and a reduction of the dimension fra2a2 of the classical Krylov space
to 12 for the extended Krylov subspace is observed without loscofiracy. Moreover, the
accuracy achieved with the approximated space is évaders better than the one attained
by the classical Krylov space of only vectors.

In Figure6.4, corresponding t¢(z) = % almost the same behavior is observed when
reducing a space of dimensidf6 respectively236 to an extended Krylov subspace of di-
mension36 with a selection vecto r¢r¢r .. .].

1072

106

Relative error

10710

104 L ! ! ! ! ! =
10 20 30 40 50 60 70

FiG. 6.3. Relative error in approximatingf(A)v for f(z) = ‘”‘";7’“3) for various selection vectors
andm = 12,24, 36, 48, 60.

EXAMPLE 6.3. In this example, a matrix for which A~'v does not lie in the Krylov
subspace is taken. The algorithm is expected to fail heree mihtrix A is a symmetric
indefinite matrix of the following form

)

— B C 1000x 1000
A= [ c* _B } eR

with a tridiagonal matrixB with 2's on the diagonal ané- 1's on the subdiagonals ardis a
matrix with all entries zero except forlain the lower left corner. The setting of Examplel
is repeated here for approximatifigA)v with f(z) = %;m) Figure6.5reveals an equally
bad performance as in the Krylov case.

In [15], the extended Krylov subspace was successful in the appation of f(A)v
because of the use of explicit solves with the MATLAB backkldunction. In practice,
however, such solvers are not always available and oftegr dtrative solvers are used to
solve these systems of equations, which would lead to simitzblems as observed here.
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FiG. 6.4. Relative error in approximatingf(A)v for f(z) = % for various selection vectors
andm = 12, 24, 36, 48, 60.
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FIG. 6.5. Relative error in approximatingf(A)v for f(z) = —L for various selection vectors

T

andm = 12, 24, 36, 48, 60.

EXAMPLE 6.4. In this examplel7, Example 4.2], the implicit extended Krylov sub-
space method is used for solving Lyapunov equations. Thebmadt € R>000x5000 jg g
diagonal matrix having eigenvalues = 5.05 + 4.95cos(6),6 € [0,2x]. The Lyapunov
equationAX + X A* + BB* = 0 is considered withB a vector with normally distributed
entries with variance one and mean zero. In Figufiawe report the relative difference (in
the 2-norm) of the approximatiol computed via

X =ViraY Vi,
whereY is the solution of
(6.1) HY +YH + (V5,.B)(V.,B)* =0
and the exact solution computed with the MATLAB functilgapchol . An oversampling

parametep = 50 was chosen. Compared to the standard Krylov subspace,rtendion of
the small Lyapunov equation i (1) can be reduced by0—65% without loss of accuracy.
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e (000000l .. ]
cxe [lrlrlrl ..

Relative error

m

FiG. 6.6.Relative error in the approximate solutions 4X + X A* + BB* = 0 for m = 12, 24, 36, 48, 60.

6.2. Ritz values. In the next three examples, we would like to highlight thet that
the algorithm starts with the information from the Krylovbspace and then squeezes this
information into a smaller extended space. The experintemézal that the truncated subspace
will try to keep possession of all information linked to theéended space as long as possible.

In the next three examples, so-called Ritz plots (see Fijuré 6.8, and6.10) are de-
picted. In all these examples, the matrices under congidaraave eigenvalues residing in
a real interval; this interval corresponds to the range showthe y-axis. The x-axis ranges
from 0 tom, with m being the dimension of,,,(A,v) or K ,, (A4, v). Foreachd < k < m
on the x-axis, the eigenvaluesdf, , AV. ;.;, with V as in €.1) or (2.4), named theRitz val-
ues are computed and plotted barallel to the y-axis. Red csosseeal Ritz values approx-
imating eigenvalues quite well, having absolute error s&nshanl e—7.5. Yellow crosses
represent good approximations with errors betweer 7.5 and1e—5, the green markers
represent reasonable approximations, i.e., errors batwee5 and1e—2.5 and the blue
ones the remaining Ritz values.

ExAMPLE 6.5. Consider a simple diagonal matrix of siz@ x 200 with equal dis-
tributed eigenvalues betwe®mand2 and a uniform starting vector consisting solelyld.

At first, the Krylov subspace of dimensien = 180 is computed for this matrix. A classical
convergence pattern of the Ritz values, where first the ereigenvalues are found, is ob-
served in Figuré.7a The second plot, Figur@ 7h shows the Ritz values obtained after the
truncation algorithm is applied to approximate an extengigdov subspace; in this case the
selection vector contains alternatifig andr’s. The truncation is initiated once the Krylov
subspace of sizé80 was reached. Again the Ritz values according to the numbi€ryddv
vectors retained are plotted. We start with dimensi8, and so it cannot be better than
the final column of Figuré.7a Furthermore, the algorithm is also unable to outperforen th
results displayed in the third plot, Figue7g since this plot shows the eigenvalues for the
exact extended spaces of dimension up&.

To envision what happens more clearlyyvideo (equal _spaced _pos _HQ.mp4) is
generated The animation first shows the Ritz value plots for the clzdsKrylov space.
The Ritz values are plotted concurrently while increashnggubspace’s size. After dimen-
sion180 is reached, the final column is separated from the plot andmphbld at the right on
the screen, the classical Ritz values are kept in the baakgrim gray. Next the Ritz value
plot for the extended space is generated. One can now ckelthe difference between the

5The videos are also availablefstp://people.cs.kuleuven.be/ ~thomas.mach/extKrylov/


http://etna.math.kent.edu/vol.40.2013/pp414-435.dir/equal_spaced_pos_HQ.mp4
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2
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1
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' B , 0 ]
0 50 100 150 0 o0 100 150
(a) Standard Krylov method. (b) Approximate extended Krylov method.
2

1.5

0 50 100 150
(c) Extended Krylov method.

FiG. 6.7.Ritz plots for equal spaced eigenvaluegin2].

extended and the classical case, where obviously the eispifabe extended case is more
towards zero. Now the interesting part starts: the exteisgade is kept where it is, and we
start the truncation algorithm based on the Ritz valuegipogid on the outer right. The outer
right vector moves back into the picture, and in each corsectiuncation step (diminishing
of the subspace size), the Ritz values from the extendea spamverwritten by the ones of
the truncated space. Now one clearly sees how the truncaljomithm tries hard to match
the extended space, but is strongly limited by the initialgilable information. Eventually,
the truncation plot almost entirely integrates in the estshplot.

EXAMPLE 6.6. In the second example again a diagonal matrix is takémequal dis-
tributed eigenvalues but now between, and ;. We observe that the traditional Krylov
method as before first locates the outer eigenvalues (Fig@#®. The extended Krylov
method on the other hand (Figu6e89, due to its pole at zero, converges rapidly to the
interior eigenvalues. The truncation strategy starts withinformation from the standard
Krylov space and tries to approximate the extended space@sap possible. Figur@8b
visualizes that the truncation strategy tries to retain ashminformation as possible from the
interior of the spectrum and rapidly disposes of the infdfamenear the edges. It is expected
that the truncation strategy will fail in delivering acctgaesults when used for, e.g., approxi-
mating matrix functions. Againadeo(equal _spaced _sym_HQ.mp4) is generated along


http://etna.math.kent.edu/vol.40.2013/pp414-435.dir/equal_spaced_sym.mp4
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0 50 100 150 0 50 100 150
(a) Standard Krylov method. (b) Approximate extended Krylov method.

0 50 100 150
(c) Extended Krylov method.

FiG. 6.8.Ritz plots for equal spaced eigenvalueg-in5, .5].

the same lines as in Exampes. In this case we see that the truncation algorithm quickly
throws away most of the valuable information in its attengpapproximate the extended
space. This is caused by the clear discrepancy between finexapations reached by the
classical and the extended Krylov spaces.

ExXAMPLE 6.7. In the final example again a diagonal matrix was takeh aigenvalues
according to the distribution (see Figuie)

1
=),
wherea = —%, as in [L9]. The distribution shows that most of the eigenvalues acatkxd

at the boundaries 1 and1. Based on potential theoryt§, 19], one knows that for this dis-
tribution first the inner eigenvalues, located aroOndre found by classical Krylov methods.
This implies that the classical Krylov space will have a dmgoal as the extended Krylov
approach namely first finding the eigenvalues around thénorilys before, Figure$.10a-
6.10care generated. In this case the truncation strategy wilkkwery well. A visualization
video(heavy _tail _HQ.mp4) is also available.

6.3. Computational efficiency. In this section we investigate the computational effi-
ciency of the new algorithm with respect to matrix functioml@ations. Assume a matrix


http://etna.math.kent.edu/vol.40.2013/pp414-435.dir/heavy_tail.mp4
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(a) Standard Krylov method. (b) Approximate extended Krylov method.
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(c) Extended Krylov method.

FiG. 6.10.Ritz plots for strong eigenvalue concentrations near thelées of[—1, 1].
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linked to a Krylov space of dimensidr| + p + 1 is built and then truncated to an extended
space of dimensiofs| + 1. In practice it is impossible to estimate the time requir@dbiuild-
ing the Krylov space because typically the matrix vectortiplitations are the dominant
factor and its complexity heavily depends on the algorithrstauctures used. As this time
is identical for both approaches, we do not report on it. Bamind, however, that overall
it might occur to be the dominating computation. Nevertbgleeven in this case, the pro-
posed method is able to significantly reduce the size of thepace resulting in equivalently
significant memory savings.

So, for now, we neglect the time needed to construct the Krgtmce and only investi-
gate the forthcoming computations on the projected copatés of size$s|+1 and|s|+p+1
including the time required for executing the compressigach parametef in the selec-
tion vectors implicates a transfer of at most| + p rotations through an upper triangular
matrix. Such a transfer cost3(|s| + p) flops. As there are at most| ¢'s, we have an
upper bound o® (]s|(|s| + p)?) to complete the truncation process. Additionally, thegran
ferred rotations are applied 6. This costsO(n) per rotation, where: is the dimension
of A, or O (n|s|(|s| + p)) in total. Naturally this is not the total complexity, and &ahal
computations are exerted on the truncated and untruncatgected counterpart. For in-
stance, assume this second phase to have cubical complERiyn we arrive at a total cost
of O ((|s| + p)?) for the untruncated matrix and & (|s|(|s| + p)) + O (|s|*) operations
for the truncated matrix. Clearly the turning point to aerist cheaper algorithms is attained
early.

EXAMPLE 6.8. The same operator as in Exampl2is used but now discretized with 70
equal distributed interior points, so th&becomes a matrix of siz®00 x 4900. On the dense
matrix A, the computation of (A)v relying on the MATLAB functionexpmtook18.4 s. Due
to the properties ofi, a large oversampling parameter= 1600 is required to achieve good
results. For the Krylov subspace of dimensid4, 0.66 s were needed to compufgA)v
with a relative accuracy of.15e—11. With the reduction approach, one is able to reduce
the Krylov subspace to an extended Krylov subspace of diloers(s = [¢r¢]) in 0.59 .
Within this subspace one can compyted)v to the same accuracy as in the large Krylov
subspace i.001s. The computation of the large Krylov subspace was the mmperesive
part of the computation and todR6.6 s°

ExAMPLE 6.9. In this example a plain flop count is depicted. lebe a matrix of
sizen x n with n = 10, 000. Again the computation of (4)wv is the goal, which is conducted
via the eigendecomposition of the mateixor the compressed matrix* AV. Assume this
cost15n3 with n being the dimension afl respectivelyl’* AV. Once the Krylov subspace
of dimension|s| + p + 1 (costs are aboun(|s| + p)? flops) is computed, one can con-
tinue in two different ways. Either one directly computes #igendecomposition or one first
compresses the Krylov space and then computes the eigangdesition. The compression
requires abouts|(2n(|s|+p)+2(|s|+p)?) flops. Together, it requirels|s|®+|s|(2Nn+2n?)
flops versusi5(|s| + p)? for the direct computation. For different values|ef and|s| + p,
the flop counts are shown in Figusel 1

7. Conclusions. We have presented a new algorithm which often computes isurifig
accurate approximations to extended Krylov subspace®utitising explicit inversion or ex-
plicit solves of linear systems. The numerical exampleartjallustrate these claims when-
ever the larger subspace approximates the actiettdfon the starting vectar well enough.

If, however, this constraint was not satisfied, it was shdwat the presented approach was

6The computation of the Krylov subspace was done without aegiaptricks or optimization. This explains
the large gap to th&8.4 s for the computation for the full dense matrix.
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— f(A)v — standard Krylov subspace
— f(A)v — extended Krylov subspact
— f(A)v — full matrix

------- computation of the Krylov subspace
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FIG. 6.11.Complexity plot.

able to significantly reduce the size of the Krylov space ligding it to extended form with-
out notable loss of accuracy with respect to the larger spadarger compression can have
multiple advantages such as reduced storage costs andededperation counts for sub-
sequent computations. A final set of nhumerical experimdhistiates this latter statement
revealing a honneglectable reduction of computationairef

This research poses quite some questions. How is this delatde implicitly restarted
Lanczos methodZ, 24, 33] and can this truncation be used for restarts? Is it possible
go from extended Lanczos to rational Lanczos allowing ttegawof shifts? Are there good
heuristics to determine the selection vectors, the sizeepiitial large Krylov space, and the
dimension of the truncated part?
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