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COMPUTATION OF EXTERIOR MODULI OF QUADRILATERALS *

HARRI HAKULA T, ANTTI RASILAT, AND MATTI VUORINEN#

Abstract. We study the problem of computing the exterior modulus of a bedrquadrilateral. We reduce this
problem to the numerical solution of the Dirichlet-Neumanolpem for the Laplace equation. Several experimental
results, with error estimates, are reported. Our main methodesage of arhp-FEM algorithm, which enables
computations in the case of complicated geometry. For simplengges, good agreement with computational
results based on the SC Toolbox, is observed. We also usedimgacal error estimation method introduced in our
earlier paper to validate our numerical results. In paréicutxponential convergence, in accordance with the theory
of Babuska and Guo, is demonstrated.
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1. Introduction. A bounded Jordan curve in the complex plane divides the dgrin
complex planeC,, = C U {oo} into two domainsD; and Dy, whose common boundary is
the Jordan curve. One of these domains, Bay is bounded and the other one is unbounded.
The domainD; together with four distinct points,, 2o, z3, z4 iIn 0D , which occur in this
order when traversing the boundary in the positive dirextis called a quadrilateral and
denoted by Ds; 21, 22, 23, 24) ; See [L, 14, 16, 17].

By Riemann’s mapping theorem, the domdiin can be mapped conformally onto a
rectanglef: D; — (0,1) x (0,h) such that the four distinguished points are mapped onto
the vertices of the rectanglg(z1) = 0, f(z2) = 1, f(z3) = 1 4+ ih, f(z4) = ih. The
unique number. is called the (conformal) modulus of the quadrilateB; z1, 22, 23, 24)

[1, 14, 16, 17]. Apart from its theoretical significance in geometric ftioa theory, the con-
formal modulus is closely related to certain physical gitestwhich also occur in engineer-
ing applications. In particular, the conformal modulusyglan important role in determin-
ing resistance values of integrated circuit networks; seg.,, P2, 23]. Similarly, one can
map D, , the complementary domain, conformaljly D, — (0,1) x (0,%) such that the
four boundary points are mapped onto the vertices of thangteg(z1) = 0, g(22) = 1,
g(z3) = 1+ ik, g(z4) = ik, reversing the orientation. Again the numideis unique and
it is called the exterior modulus &fD; z1, 22, 23, 24) . In practice, the computation of both
the modulus and the exterior modulus is carried out by usurgerical methods such as nu-
merical conformal mapping. Mapping problems involving anbded domains likewise are
related to some well-known engineering applications sihdetermining two dimensional
potential flow around a cylinder or an airfoil.

In the case of domains with polygonal boundary, numericahos based on the Schwarz-
Christoffel formula have been extensively studied; s#e@ne of the pioneers of humerical
conformal mapping was D. Gaiet(), 21]. The literature and software dealing with numeri-
cal conformal mapping problems is very wide; see, €&).2F]. In our earlier paper]2] we
applied an alternative approach which reduces the probtetinet Dirichlet-Neumann prob-
lem for the Laplace equation. Thus any software capable lofrgpthis problem may be
used. We use thep-FEM method for computing the modulus of a bounded quaeériéand
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here we will apply the same method for the exterior modulus amother method, AFEM
[5], for the sake of comparison, as ihd]. Our approach also applies to the case of domains
bounded by circular arc boundaries as we will see below. dukhbe noted that while our
method does not require finding the canonical conformal rimapjit is possible to construct
the mapping from the potential function. An algorithm, witeveral numerical examples, is
presented in1]. An alternative to FEM would be to use numerical methodsifoegral
equations. For recent work on numerical conformal mappigel on such an approach, see
Nasser 19].

In particular, an important example of a quadrilatéial ; z1, z2, 23, 24) is the case when
D, is a polygon withzy, 29, 23, 24 as the vertices. Its modulus was computedLlig;[the re-
sulting formula was also applied in%]. Here we reduce its exterior modulus to the (interior)
modulus by carrying out a suitable inversion which keepéhertices invariant and maps the
exterior to the interior of a bounded plane region whose bamy consists of four circular
arcs.

We apply here three methods to study our basic problem:

(1) Thehp-FEM method introduced inlP] and its implementation by H. Hakula.

(2) The AFEM method of K. Samuelsson; see, ef.ahd [L2].

(3) The Schwarz-Christoffel Toolbox of T. Driscoll and N.€fethen [, 8, 26, 27].

The methods (1) and (2) are based on a reduction of the extaddulus problem to the
solution of the Dirichlet-Neumann problem for the Laplacgiation in the same way as in
[1] and [12], whereas, (3) makes use of numerical conformal mappindhoast Note that

[1] also provides a connection between the extremal length fafraly of curves and its

reciprocal, the modulus of a family of curves, both of whick aidely used in geometric
function theory.

We describe the high-order, and hp-finite element methods and report the results of
numerical computation of the exterior moduli of a numberwédrilaterals. In the-method,
the unknowns are coefficients of some polynomials that asecaated with topological en-
tities of elements, nodes, sides, and the interior. Thusdigition to increasing accuracy
through refining the mesh, we have an additional refinemenatnpeter, the polynomial de-
greep. For an overview of thép-method; see, e.g., Bakka and Suri4]. A more detailed
exposition of the methods is given 84, 25].

Our study is structured according to a few particular case.start out with the case
when the quadrilateral is the complement of a rectangle lamdértices are the distinguished
points of the quadrilateral. In this case we have the formfila Duren and J. Pfaltzgraf®]
to which we compare the accuracy of each of the above metligd8). Then we consider
the problem of minimizing the exterior modulus of a trapekzwiith a fixed heighth and
fixed lengths for the pair of parallel opposite sides and gmes conjecture supported by
our experiments. We also remark that the case of symmetxaduns can be dealt with
by the Schwarz-Christoffel transformation and we relagesitterior modulus to a symmetry
property of the modulus of a family of curves. Finally, wedjuhe general case and present
comparisons of methods (1)-(3) for this case as well. SChHimoHoes not have a built in
function for computing the exterior modulus. However, we tise functionextermap
and an auxiliary Ndbius transformation, to map the exterior of a quadrildtéfz a, b, ¢, d)
conformally onto the upper half-plane so that the boundaigtga, b, ¢, andd are mapped to
the pointsco, —1, 0, andt > 0, respectively. Then the exterior modulus of the quadritdte
is 7(t)/2, wherer is the Teichniiller modulus function; se€’] and 2.2, below. We use the
MATLAB code from P] to compute values of (t), ¢ > 0.

Our computational workhorse, thig-FEM algorithm implemented in Mathematica, is
used in all cases involving general curved boundaries. \Weodstrate that nearly the optimal
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rate of convergence; cxp(—Cle/S) in terms of the numbelN of unknowns as predicted
by the results of Balika and Guod], is attained in a number of tests cases. Our results
are competitive with the survey results ap-adaptive algorithms reported by Mitchell and
MacClain [L8] for the L-shaped domain.

At the end of the paper we present conclusions concerningpéirmance of these
methods and our discoveries.

2. Building blocks of the method. In this section we give reference results which can
be used in obtaining error estimates. We also present sooraejdc identities which are
required in our computations.

2.1. The hypergeometric function and complete elliptic inégrals. Given complex
numbersa, b, andc with ¢ # 0,—1, -2, ..., the Gaussian hypergeometric functios the
analytic continuation to the slit plari@\ [1, oo) of the series

o0 b n
F(a,b;c;z):2F1(a,b;c;z):ZW'Z', lz| < 1.

n=0
Here(a,0) = 1 for a # 0, and(a, n) is theshifted factorial functioror the Appell symbol
(a,n) =ala+1)(a+2)---(a+n—1)

forn € N\ {0}, whereN = {0,1,2,...} and theelliptic integrals K(r), K'(r) of the first
kind are

K(r) = SF(/2,1/210%),  K'()=K('), andr’ = V1—12,
and theelliptic integrals& (r), €' (r) of the second kind are

E(r) = SF(1/2,-1/2 1%, E(r) =€), and’ = /112

Some basic properties of these functions can be foung, 2.

2.2. The modulus of a family of curves.For a family of curved" in the plane, we use
the notationM(I") for its modulus [L7]. For instance, ifl" is the family of all curves joining
the opposité-sides within the rectanglf, a] x [0,b],a,b > 0, thenM(T') = b/a. If we
consider the rectangle as a quadrilat&palvith distinguished pointa + ib, ib, 0, a we also
haveM(Q; a + ib,ib,0,a) = b/a; see [, 17] . Given three set®, E, F' we use the notation
A(E, F; D) for the family of all curves joiningt with F'in D .

Next consider another example, which is important in theusegFort > 0 let £ =
[-1,0], F = [t,00) and letA; be the family of curves joiningZ and F' in the upper half-
planeC; = {z € C: Imz > 0}. Then ], we have

K1/v1T+1)
Kt/ +1)

2.3. The Duren-Pfaltzgraff formula [9, Theorem 5]. Fork € (0, 1) write

2(E(k) — (1 = k)K(k))
k) — kXK' (k)

M(A) = 7()/2; 7(t) =2

P(k) =

Theniy: (0,1) — (0, 00) defines an increasing homeomorphism with limiting valties> at
0,1, respectively. In particular)=!: (0,00) — (0, 1) is well-defined. LetR be a rectangle



ETNA

Kent State University
http://etna.math.kent.edu

COMPUTATION OF EXTERIOR MODULI 439

a

Fic. 2.1. Polygonal quadrilateral before (left) and after (right)efinversion transformation +— z/|z|2.
Note that the points, ¢, d on the unit circle remain invariant.

with sides of lengths andb, respectively, and Ief be the family of curves lying outsid®
and joining the opposite sides of lendthThen

(2.1) M(T) = 2g§<((klc)) ,  wherek =y !(a/b).

This formula occurs in different contexts. For instance GVBickley [6, (1.17), p. 86] used
it in the analysis of electric potentials and W. von Koppé&hénd F. Stallmannis, (4.2.31)
and (4.2.63)], established it in conformal mapping proldeni\s far as we know, Duren
and Pfaltzgraff were the first authors to connect this foamwith the exterior modulus of a
quadrilateral. Recently, Vuorinen and Zha@][proved some identities and inequalities for
the functiony .

2.4. Mapping unbounded onto bounded domainsThe transformation: — z/|z|?
maps the complement of the closed unit disk onto the unit. digkis transformation is an
anticonformal mapping and it maps the complement of a palggquadrilateral with vertices
a, b, c, dwith |b] = |c¢| = |d| = 1 onto a bounded domain, bounded by four circular arcs. Note
that the point$, ¢, d remain invariant under this transformation; see Figlifie Here we also
make use of the well-known formula for the center of the eittirough three given points.

2.5. The Dirichlet-Neumann problem. The following problem is known as ttgirichlet-
Neumann problemLet D be a region in the complex plane whose boundabyconsists of
a finite number of regular Jordan curves, so that at every daynpoint, except possibly
at finitely many ones, a normal is defined. & = A U B where A and B are disjoint
unions of Jordan arcs. Lets,p be a real-valued continuous functions definedAm3,
respectively. Find a function satisfying the following conditions:

1. u is continuous and differentiable in.
2. u(t) =va(t), forallte A.
3. If 9/0n denotes differentiation in the direction of the exteriormal, then

0
%u(t) =p(t), forallte B.
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2.6. Modulus of a quadrilateral and Dirichlet integrals. One can express the mod-
ulus of a quadrilateralD; z1, 22, 23, 24) In terms of the solution of the Dirichlet-Neumann
problem as follows. Lety;,j = 1,2,3,4 be the arcs obD between(zy, z1) , (21, 22) ,

(22, 23) , (23, z4), respectively. Ifuis the (unique) harmonic solution of the Dirichlet-Neumann
problem with boundary values af equal to0 on s, equal tol on~4 and withdu/on = 0
on~; U~s,thenby[L, p. 65 Thm 4.5],

M(D; 21, 22, 23, 24) = // |Vu|? dx dy.
D

_ 2.7. The reciprocal identity. Given a quadrilateral) = (D; 21, 22, 23, 24) We call
Q = (D; 29, 23, 24, 21) the conjugate quadrilateral. It is a simple basic fact that

M@M(Q) =1.
It was suggested inlB] and [L2] that the quantity
(2.2) r(Q) = IM(QM(Q) — 1|

might serve as a useful error characteristic. We will camito use this also in our work.

2.8. The hp-FEM method and meshing. In this paper, we use thep-FEM method
for computing for the exterior modulus of a quadrilaterabr & general description of our
method; seel2]. Proper treatment of corner singularities is handled i following two-
phase algorithm, typically recursive, where triangles barreplaced by quadrilaterals or a
mixture of both:

1. Generate an initial mesh (triangulation) where the cariaee isolated with a fixed
number of triangles depending on the interior angleso that the refinements can
be carried out independently:

(a) 0 < 7/2: one triangle,
(b) m/2 < 6 < : two triangles, and
(c) m < 6: three triangles.

2. Every triangle attached to a corner is replaced by a refamemvhere the edges in-
cident to the corner are split as specified by the scalingfact This process is re-
peated recursively until the desired nesting levéed reached. The resulting meshes
are referred to a&v, v)-meshes. Note that the mesh may include quadrilaterals afte
refinement.

Since the choice of the initial mesh affects strongly thensgfient process, it is advisable to
test with different choices. Naturally, one would want théial mesh to be minimal, that
is, having the smallest possible number of elements yetigiray support for the refinement.
This is why initial meshes are sometimes referred to as nahimeshes.

In Figure2.2a challenging example is shown. In this case the large vaniaf the edge
lengths is addressed by adding a refinement step to the gotistr of the initial mesh. A
detail of the initial mesh is given in Figué3along with the final mesh.

3. Applications and numerical results.

3.1. The case of a rectangleThe first tests with thép-FEM software were made for
the case of the exterior modulus of a rectangle and checladsighe Duren-Pfaltzgraff for-
mula 2.1). For a convenient parametrization of the computationy#réces of the rectangle
were chosen to be the pointse’’, —1, —ei’, ¢ € (0,7/2] on the unit circle. In this case, the
“interior” modulus of the rectangle isan(¢/2) . It is equal to the modulus of the family of
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-

FIG. 2.2.The initial mesh and a detail. Note that the three-elemelet igisatisfied at every corner.

e

S &

FiG. 2.3.The final(0.15, 14)-mesh used in the actual computation and a detail.

curves joining the sidef, e'‘] and[—1, —e%] and lying in the interior of the rectangle. The
formula (2.1) now gives the corresponding exterior modulus as

XK' (k) o 1
2K (k) k=9 1(tan(t/2)>'

For the computation, we carried out the inversion» 1/z = z/|z|? in the unit circle
which keeps all the points of the unit circle fixed and transf® the exterior modulus prob-
lem for the rectangle to the “interior” modulus problem oflane domain bounded by four
circular arcs; see Figurg.1. These circular arcs are the images of the sides of the gletan
under the inversion. The results turned out to be quite ateuwith a typical relative error
of the order10~1°; see Table.1

TABLE 3.1
Exact values of the moduli 6J(1, e**, —1, —e'?) given by .1) and the errors of computational results of the
hp-methodp = 20, the AFEM method and the SC Toolbox. The errors are obtainemimparing with the exact
formula @.1). The errors are given aflog |error|].

k | exact{ = kn/12) | ErrorlhpFEM] | ErrorffAFEM] | Error[SCT]
1 1.50290233467 -9 —6 -9

2 1.31044063554 -9 —6 -9

3 1.20035166917 -9 —6 —10
4
5
6

1.12114255114 —10 —6 -9
1.05681535228 —10 —6 —-13
1. —10 —6 —15
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@k=1 b)Y k=2 © k=3
(d k=4 @ek=5 Hk=6

FiG. 3.1.Circular arc domains used for thiep-FEM computations of the values in Talfle. The scale varies
from picture to picture.

3.2. The side sliding conjecture.Consider the problem of finding the minimal exterior
modulus of the polygonal quadrilateral with vertided,a = t + th,b = t — s + th when
h,s > 0 are fixed and varies. We consider the question of computing the modulubef
family T" of curves joining the opposite sidék o] and [b, 0] outside the quadrilateral. Our
first step is to reduce the problem to an equivalent problech $loat three of the points are
on the unit circle. Note that this setting is valid onlyjf is inside the quadrilateral. Indeed,
for every choice of ands this condition defines an upper limit for the valuetof

The least value of the exterior modulus is attained when(1+s)/2. Fort < (1+s)/2
the modulus is a decreasing functiontof

In Figure 3.3 we show a graph of the exterior module as a function of therpater
t € [0.5,2.5], whenh = 1,s = 2. The computation was carried out with SC Toolbbx;
FEM, and AFEM and for the range of computed values, the reisgegraphs coincide. For
the SC Toolbox and thep-FEM the reciprocal estimate for the error was smaller than®
and for AFEM10~°.
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FIG. 3.2. The circular arc domains of Figurd.1in the same scale.

1.005¢
1t
0.995¢
0.99r
0.985¢
0.98¢

0.975¢

0.5 1 1.5
Fic. 3.3. Side Sliding Conjecture: Dependence of the exterior maatuparameter withh = 1,s = 1.
Maximum is reached d@t= (1 + s)/2 = 1, as predicted by the conjecture.

3.3. The case of a symmetric hexagonSuppose thaf)(a, b,0,1) is a quadrilateral
in the upper half plane. Then the closed polygonal ling, 0,b, @, 1, a defines a hexagon
H = @Q U Q symmetric with respect to the real axis. Map the compleméni/oonto
C\ {-1 —t,1+ t} by a conformal mag such thaty(0) = —1 — ¢,g(b) = g(b) = —1,
g(a) = g(@) = 1,¢9(1) = 1 4+ t wheret > 0 depends on the point configuratienb, 0, 1 . It

is clear by symmetry that
IM(A*) = M(A),
where

A=A(-1-¢t-1],[1,1+t;C) andAT = A([-1 —¢t,—1],[1,1 + t]; {z : Imz > 0}) .
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Because of the conformal invariance of the modulus we alse ha
M (g1 (AT)) = M(g7H(A)) .

Applying this formula with 2.1) we see that

ey - KO (L)

where forh > 0,

This formula can be checked by using the SC Toolbox to coctsthe above conformal
mappingg . In the tests we carried out fér = 0.2,0.3,0.4, and0.5 the reciprocal estimate
for the error was smaller tharo—* .

3.4. General quadrilaterals. The exterior modulus of the quadrilater@lwith vertices
a, b, c,d is considered in this section, i.e., we compute

// |Vu|? da dy
Q

over the complement of the quadrilateral whens the solution of the Laplace equation
in the complement of the quadrilateral with Dirichlet vaduieand0 on the sidesb, ¢] and
[d, a] , respectively, and the Neumann valuen the sidesa, b] and|c, d] . Here we allow the
boundary of the quadrilaterad(, to be a parametrized curvét), ¢ € [—1,1].

In Figure 3.4 an overview of the standard FEM approach is given. Usingédrginder
elements one can stretch the domain without introducingyifidant number of elements.
Singularities at the corner point must be accounted for exgrading of the mesh. Since
both the circle and the square cases are symmetric, thei@xteodulus is exactly 1, and
furthermore the potential value at infinity or the far-fielalwe is exactly 1/2.

In Tables3.2, 3.3 and3.6results for two polygonal quadrilaterals

e Quadrilateral A:{0, 1, (28/25,69/50), (—19/25,21/25)},

e Quadrilateral B{0, 1, (42/25,4), (—3/25,21/25)},
are presented. The exterior modulus has been computed tisegymethods as an equiva-
lent interior modulus problem and also in a truncated dombhirthe interior case, both SC
Toolbox andhp-FEM give similar results, but AFEM in its standard settinged not reach
the desired accuracy. This is probably due to the adaptiverse failing in the presence of
cusps in the domain. Tabl&s2 and3.3indicate that large exterior angles are the most sig-
nificant source of errors in the FEM solutions, as expectedhé rather benign setting of the
Quadrilateral A, SC Toolbox and both the internal and exehp-FEM versions have the
same accuracy, but in the case of Quadrilateral B, we seeglra$s of accuracy in the FEM
solutions.

Finally, we consider two flower domains, that is, quadrilaktedomains with the boundary
y(t) = r(t)e | r(t) = 4/5 + (1/5) cos(nnt) and corners at = —1,—1/4,0,1/2. For the
Quadrilateral C we choose = 4 and for D we choose. = 8. These domains have the
useful property that the exterior problem can easily be eded to a corresponding interior
problem of the domain with boundaty'~(¢). Since these domains cannot be handled using
the SC Toolbox, we take the interior solution as the refezefi@bles3.4 and3.5 show that
we can obtain results of high accuracy also for traditigneliallenging domains.
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(a) Exterior domain. The computational do-
main has been truncated with radits 106.

(b) Zoom of the mesh in the case of a circle. (c) Zoom of the mesh in the case of a square.

(d) Zoom of the potential in the case of a (e) Zoom of the potential in the case of a
circle. Reciprocal error~ 8.8 - 10~ 10, square. Reciprocal error 6.3 - 10710,

FIG. 3.4.Exterior modulus over the exterior domain.
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TABLE 3.2
Quadrilateral A: {0, 1, (28/25,69/50), (—19/25,21/25) }. The values obtained with SC Toolbox are used
as reference. The errors are given gsg;  |error|].

Method | Exterior Modulus | Error (2.2) | Relative Error
SC Toolbox 0.9923416323 -9 -
AFEM 0.9923500126 -4 -5
hp-FEM (Interior) 0.9923416332 -9 -9
hp-FEM (Exterior) |  0.9923416332 9 9
TABLE 3.3

Quadrilateral B: {0, 1, (42/25,4), (—3/25,21/25)}. The values obtained with SC Toolbox are used as
reference. The errors are given &g |error|].

Method | Exterior Modulus | Error (2.2) | Relative Error
SC Toolbox 0.9592571721 -9 -
AFEM 0.9593012739 -4 -4
hp-FEM (Interior) 0.9592571731 -8 -8
hp-FEM (Exterior) | 0.9592572007 7 7

It turns out that besides the actual value of the exterioruhadone can also determine
the value of the far-field potential. Either one can detesrilre value of the potential at the
reflection point of the interior problem, i.e., at the origim simply evaluate the solution of the
exterior problem at the farthest point. Remarkably, thet¢ated domain results agree well
with the (theoretically) exact results of the equivalemienmodulus problems; see Tal3l&.

In Figures3.5-3.8we show comparisons of the interior and exterior potente&tifi. For the
two polygonal quadrilaterals, the corresponding contingd and the location of the origin
in the interior case are indicated. In the general case,ged of the far-field value based
solely on geometric arguments is an open problem.

We note, that for both Quadrilateral C and D, the interior &mterior capacities are
equal. This invariance is new and has not been reported iliténature before. It is crucial
that the four corners are chosen from extremal points, thdbcal minima and maxima of
the radius.

4. Performance considerations.In this section we study the performance of our ap-
proach in terms of computational cost in time and storagairements, and convergence of
the capacity, which is shown to be exponential. Here we denshe Quadrilaterals D defined
above, and compare the interior and exterior problems. ddnsparison is reasonable, since
due to the new invariance, the interior and exterior prols@an be solved usingxactly the
same the geometgnd thus the singularities are of the same kind.

4.1. Convergence.All experiments have been computed usifig v)-meshes, with
a = 0.15, andv = min(16, pmax ), Where 16 is dictated by double precision arithmetic. This
choice allows us to compare two elememalistributions, namely the constapt= p.,ax,
and the gradeg-vector where the elementalincreases per element layer away from the
singularity, e.g., fromp = 1 up top = pyax. The valuep,,.. has been chosen so that the rel-
ative error in both approaches is roughly the same and irrdaoce with the results resported
above pmax,; = 18 andpmax, g = 22, for the interior and exterior problems, respectively.

The optimal rate of convergence of the relative error in cétgas

~ Cy exp(—Cy N'/3),

where N is the number of unknowns and; are coefficients independent of [24]. In
Figure4.1the convergence plots corresponding to bettlistributions are shown using two
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TABLE 3.4
Quadrilateral C:v(t) = r(t)e’, r(t) = 4/5 + (1/5) cos(4nt) and corners at = —1,—1/4,0,1/2. The
values obtained witthp-FEM (Interior) are used as reference. The errors are giverflag, |error|].

Method | Exterior Modulus | Error (2.2 | Relative Error
hp-FEM (Interior) | 0.819644188480517 -14 -
hp-FEM (Exterior) | 0.819644192648361 -8 -8

TABLE 3.5
Quadrilateral D:y(t) = r(t)e®t, r(t) = 4/5 + (1/5) cos(8nt) and corners at = —1,—1/4,0,1/2. The
values obtained witthp-FEM (Interior) are used as reference. The errors are giverflag, |error|].

Method | Exterior Modulus | Error (2.2) | Relative Error
hp-FEM (Interior) | 0.912218760201526 -10 -
hp-FEM (Exterior) | 0.912218762855067 -8 -8

different scalings: (A) in standard loglog-scale, and (B)semilog-scale withV!/3 as the
abscissa. The first plot shows that solutions to both probleamverge exponentially, but
the latter one shows that the exterior approach is not asegffias the interior one. Using
linear fitting of logarithmic data, we find convergence ratésype N''/#, with Br,c = 3.72,
Be,.. = 3.8, b1, = 3.41, andfg 4 = 3.55, where the indices andg refer to constant and
graded polynomial distributions, respectively.

Two observations should be noted: a) faster convergeneedads not imply more ac-
curate results; b) the convergence behaviour becomestidse s > v as the refinement
strategy is changed.

4.2. Time. Averaged timing results over a set of 30 runs with conspadistribution are
shown in Table4.1 Note that the hierarchic nature of the problem has not bakentinto
account here and runs for different valuespdiave been independent. In our implementa-
tion the numerical integration is the most expensive pane Mumerical integration routines
are based on a matrix-matrix multiplication formalism whis highly efficient in terms of
flops per memory access, and benefits from BLAS-level pdisatieon our test machine with
eight cores; Apple Mac Pro 2009 Edition 2.26 GHz, Mathenaafi®.4. The time spent in
assembling the matrix is included in the integration timethematica does not support pre-
allocation of sparse matrix structures or autosummingailization which leads to a lot of
reallocation of sparse matrices.

Interestingly, the time spent on the direct solution of y&ems is shorter for the exterior
problem for problems of comparable size. In our opinion tkighe result of the ordering
heuristic used by Mathematica being more efficient over dogains.

5. Conclusions. In this study we have shown that three different algorith&SEM,
SC Toolbox, andhp-FEM, can all be effectively used for the computation of tixéegor
modulus of a bounded polygonal quadrilateral. As far as wankrihere are very few nu-
merical or theoretical results on the exterior modulus ia literature. The problem is first
reduced to a Dirichlet-Neumann problem for the Laplace &gnaln our earlier paperl?]
we introduced the reciprocal identity as an error estimatdte inner modulus computation
of a quadrilateral and here we demonstrate that the sameothafbplies to error estimation
for the exterior modulus as well. We compare our numericalits to the analytic Duren-
Pfaltzgraff formula for the exterior modulus of a rectangled observe that our results agree
with it. Moreover, in this case the analytic formula yiel@sults that are within the limits
provided by the reciprocal error estimate from our compatet! results. The reciprocal error
estimate is also applied to study, for the case of polygonatiglaterals, the accuracy of SC
Toolbox and the AFEM method, and mutual accuracy compagisoa given. Finally, for the
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TABLE 3.6
Comparison of the computed values of the potential at igfifiihe errors are given aSog;  |error|].

Quadrilateral | hp-FEM (Interior) | hp-FEM (Exterior) | Relative Error

A 0.5281867366243582 0.528186746841098 -7
B 0.6659476737428786 0.665947680024454 -8
C 0.587328339965107% 0.587328346939813 -7
D 0.5398927341965689 0.539892741420341 -7

(a) Contours of the inner problem. Originis  (b) Contours of the outer problem. Note the
indicated with a dot. contours extending to infinity.

FiG. 3.5. Quadrilateral A: Correspondence of the potential contobetween the inner (A) and outer (B)
solutions. Shown are the potential levelsz) = 0,1/10,...,1, and«(0). Corresponding contours can be
identified by matching the shadings of the regions in between

case of quadrilaterals with curvilinear boundary, whersthtwo methods do not apply, we
give results obtained by thep-FEM method, and their error estimates based on the relative
error and the reciprocal error estimate. In this case we atsdyze the dependence of the
accuracy on the number of degrees of freedom and demonsgatly optimal convergence,
compatible with the theory of BaBla and Guod].

A problem of independent interest is the value of the pogiiitinction at infinity. We
study this problem for the exterior modulus of a polygonadyilateral and solve it by map-
ping the exterior domain onto a bounded domain by inversimhthen computing the value
of the potential function of the corresponding interior g problem at the image point of
the point at infinity.
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(a) Contours of the inner problem. Origin is (b) Contours of the outer problem. Note the
indicated with a dot. contours extending to infinity

FiG. 3.6. Quadrilateral B: Correspondence of the potential contobetween the inner (A) and outer (B)
solutions. Shown are the potential leveléz) = 0,1/10,...,1, andu(0). Corresponding contours can be
identified by matching the shadings of the regions in between

)

"

(a) Potential field of the inner problem. (b) Potential field of the outer problem.

FIG. 3.7.Quadrilateral C: The potential field of the inner (A) and ou¢B) solutions.

(a) [Potential field of the inner problem. (b) Potential field of the outer problem.

FiG. 3.8.Quadrilateral D: The potential fields of the inner (A) and eu(B) solutions.
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FIG. 4.1. Quadrilateral D: Convergence of the relative error in cajfitgc Constanip: Black, Gradedp: Red;
Interior problem: Solid line; Exterior problem: Dashed énThe number of unknownss.

TABLE 4.1
Quadrilateral D: Time spent in the solution process. Allégnare seconds as reported by Mathematica’s

Timing-function. Time spent in assembly of the linear syssancluded in that of integration. (Apple Mac Pro 2009
Edition 2.26 GHz, Mathematica 8.0.4.)

(a) Interior Problem.

p | N | Meshing | Integration (Assembly)| Solve | Total
4 | 1505 1 Z (0 0 3
8 | 10049 4 14 (4) 4 22
12 | 31777 11 44 (14) 14 69
16 | 72833 21 136  (52) 42 199
(b) Exterior problem.
p | N | Meshing | Integration  (Assembly)| Solve | Total
4 | 3456 4 2 (0 0 6
8 17792 13 19 (6) 3 35
12 | 49152 26 63 (23) 10 99
16 | 103680 47 210 (80) 30 287
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