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MULTI-PARAMETER ARNOLDI-TIKHONOV METHODS  *

SILVIA GAZZOLA T AND PAOLO NOVATIT

Abstract. For the solution of linear ill-posed problems, in this pape¥ introduce a simple algorithm for
the choice of the regularization parameters when performintjiqparameter Tikhonov regularization through an
iterative scheme. More specifically, the new technique ieth@s the use of the Arnoldi-Tikhonov method and the
discrepancy principle. Numerical experiments arising from discretization of integral equations are presented.
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1. Introduction. In the framework of Tikhonov regularization for the solutiof ill-
posed linear systemdz = b, A € RV*N the use of the multi-parameter regularization
(even called multiple penalty regularization) has beerothiced with the aim of acting si-
multaneously on different frequency bands of the solutiothe hope of reproducing all the
basic features of the unknown solution with a good accur@og to the wide range of appli-
cations, there is a growing interest in this kind of reguation, and many numerical schemes
have been recently presented in various contexts; we Lileahd the references therein for
an overview.

In this paper we mainly focus the attention on linear disci#tposed problems (see
[8, Chap. 1] for a background) and we assume that the availgjfiemand side vectab is
affected by noise, caused by measurement or discretizatiors. Therefore, throughout the
paper we suppose that

b=b+e,

whereb represents the unknown noise-free right-hand side, andewetd byz the solution
of the error-free systema = b.

In  the multi-parameter Tikhonov regularization setting, endting by
A = (A1,..., )7 the vector of the regularization parametexs £ 0,4 = 1, ..., k, A # 0)*
and byl = {L4,..., Ly} the set of regularization matrices, a regularized soluti@r: is
defined as

k
(1.1)  wac =arg min J(z, A, £), whereJ(z, A, £) = [|Az — b]> + Y "\ | Lix||* .
z€RN =

Here and in the sequel, the norm used is always the Euclidaam. n

While the multi-parameter regularization is theoreticallyperior to any single-parameter
regularization which uses one of the matridgsn (1.1), the main problem is that in practice
it may be quite difficult to work simultaneously with more thene regularization matrix and
to suitably define the regularization parametg&ss The existing methods for the automatic
choice of the parameters are essentially based on the djieadrh-curve criterion (e.g.,q])
and on the generalization of the GCV criterion; sée More recently an algorithm based on
the knowledge of the noise structure has been introduced.in [
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fWhen treating multi-parameter methods, one usually requisgsetich component of the vectaris different
from zero. However we prefer to present the analysis justdilgeneralization of the one-parameter case.
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In many real applications, the noisy dates known to satisfy
1o — bl <e,

so that the use of the discrepancy principl€][may be considered even in the case of the
multi-parameter regularization. Indeed, ihl] the authors introduce an algorithm for the
definition of the regularization parameters based on theamniazad solution with respect ta

of the equation,

(1.2) [Azp.c =0l =ne,  n=1

Up to now, to the best of our knowledge, such technique seerhs the only existing one
based on the discrepancy principle in the framework of théirparameter regularization.

In this paper, we solvel(1) using an iterative scheme called Arnoldi-Tikhonov (AT)
method, first proposed in5] in the case of the single-parameter regularization with
L = {Iy}, wherely denotes the identity matrix of ordeé¥. This method has proved to
be particularly efficient when dealing with large scale peohs, as for instance the ones aris-
ing from image restoration. Indeed, it is based on the ptmeof the original problemX.1)
onto Krylov subspaces of smaller dimensions computed bytheldi algorithm.

Using an iterative method forl(1) we automatically introduce a new parameter to be
determined, that is, the number of iterations. Let us debpte(Am) the m-th approximation
arising from the Arnoldi-Tikhonov process (from now we orimitlicating the dependency on
L, since this set is assumed to be fixed). The algorithm hergoged for the definition ok
and to stop the procedure, is based on the solution of

s =)

at each step, by means of a linear approximation (with résfme@ach parameteh;,
1 =1,..., k) of the function,

o (A) = || A2 ]|

This method generates a sequence of regularization veatsrs m > 1, whose compo-
nentsAEm) are automatically defined. The idea extends the one studigg] for the single-
parameter case, which has been shown to be competitive wigting) ones for Krylov type
solvers; see, e.g.5[10, 16].

The paper is organized as follows. In Sectiynve explain the use of the AT method for
the solution of {.1). In Section3, we describe our scheme for the choice of the parameter
vectorA. In Section4, we explain the algorithm associated to the new method aldtiga
computationally cheaper variant. In Secti@rwe display the main results obtained perform-
ing common test problems. Finally, in Secti6nwe provide some concluding remarks. We
also include an AppendiR, which reports some tables that summarize various meaningf
results related to the experiments described in Seé&ion

2. The Arnoldi-Tikhonov method. Let us work in the single parameter case with
A = {A} and£ ={L}. The Arnoldi-Tikhonov (AT) method was introduced ] [with
the basic aim of reducing the problem,

(2.1) min {||Az — b||* + A||Lz||*}, whereX > 0andL = Iy,
xre

to a problem of much smaller dimension. The idea is to prdfeeimatrixA onto the Krylov
subspaces generated Hyand the vectob, i.e., K, (A, b) = span{b, Ab, ..., A"~ b} with
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m < N. The method was also introduced to avoid the matrix-vectoltiplication with
AT required by Lanczos type schemes; see, €3y5,[9, 15]. To construct the Krylov sub-
spaces, the AT method employs the Arnoldi algorithm (4€e$ection 6.3] for an exhaustive
background), which yields the decomposition,

(2.2) AV, = m+1 Hm )

where V11 = [v1,...,0ms1] € RYX("HD) has orthonormal columns which span the

Krylov subspaceC,,1(A4,b) andwv, is defined a/ ||b||. The matrixH,, € Rm+xm

is an upper Hessenberg matrix. Denoting/hy the entries offf,,,, in exact arithmetic the

Arnoldi process terminates whenevey, 1 ,,, = 0, which meansC,,, 11 (4,b) = K,, (4, ).
The AT method searches for approximations of the solutich@fproblem 2.1) belong-

ing to K., (A, b). In this sense, substituting = V4. (v, € R™) into (2.1), yields the

reduced minimization problem,

2.9 i {[[ By V] 4 A}

sinceV,l , Vint1 = Ipn41. Remembering that; = b/|b|| we also have
Vil b= |bllex wheree; = (1,0,...,0)" € R™*,

Looking at @.3), we can say that the AT method can be regarded to as a reqdarersion
of the GMRES.

The method considered in this paper is an extension of the éthad in order to work
with one or more regularization operators not necessarlyaéto the identity matrix. In
detail, substituting, as before,= V,,y, (yn € R™) into (1.1) and using 2.2), we have that

k
(2.4)  min J(z,A,£) = min {HHmym||b|el||2+2)\iL,;mem||2}

€K (A,b) Ym ER™ —
- 2
Hp, 1b]] €1
VALV, 0
Ym ER™ : :
VALV, 0

In the sequel we will refer taX.5) as least squares formulation of the multi-parameter Atiol
Tikhonov method. We emphasize that the above strategy capieed even when the reg-
ularization matrices are rectangular, as for instance vwdegisidering scaled finite difference
approximations of the derivative operators. However, waakk that, contrary to4.3), the
original dimension of the problem is only partially reducsihceL;V,, € RWNV—ri)xm jf
L; e RN=pi)XN

SinceH,, = V, 1 AV,,, it L, € RV*N i = 1 ... k, one may even consider the
projected operators,

(2.6) K™ =V LV,

and hence the reduced minimization,

(2.7) min {HHmym — [lo] 61”2 + 211 As

Ym ER™

k)
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Even if problem 2.7) is not equivalent to the original on&.¢), many numerical experiments
have revealed that the use @f§) is worthy of further investigation. However, it is impor-
tant to point out that, in fact, the computational cost asded to the solution of4.7) is
comparable with the one o2 (5), because of the operatiof.).

Finally, we remark that if an initial approximation, of the solutionz is available,
then we can incorporate it into the Arnoldi-Tikhonov schéemyedefining the initial residual
ro = b — Axo and by considering the Krylov subspacés, (A, o). Consequently, the
approximate solution of the problem.({) is of the formzx,, = x9 + V¥, and in the
expressionsd.3), (2.4), (2.9, (2.7), we simply have to substitutewith rq; cf. [6].

3. The parameter selection strategyAs already said in the introduction, if we assume
that the quantity = ||b — b]| is known, it turns out that a successful strategy to definas
well as a stopping criterion, is the discrepancy princidl€) adapted to the iterative setting
of the AT method. At each iteration we can define the functiéit) (A) = Hb — Aa;fxm)H,
and we say that the discrepancy principle is satisfied asason

o™ (A) <ne, where 7 1.

We remark that, if we rather know the noise lesiek |le||/||b]|, then the discrepancy principle
reads

(3.1) o™ (A) = ne]bll.

We immediately note that, since for the AT method the appnations are of the form
a:g\"’) = me,(\m) € Km(A,b), Whereyf\m) solves p.5), the discrepancy can be rewritten
as

(3.2) ™ (A) = [|b— AViy ™| = e — Hay™ |,

wherec = ||b|je; € R™F1.

Now we briefly focus on the cade= 1, since the strategy derived to choose the com-
ponents of the regularization vectdrin the multi-parameter case is a generalization of the
algorithm for the single-parameter case.

3.1. The one-parameter caseAs in Section2, here we denote the unique regulariza-
tion parameter and operator simply hyand L, respectively. The method that we are going
to describe has been introduced @ énd has already been used irf]; we underline that it
is able to simultaneously determine suitable values fan baindm. Our basic hypothesis is
that the discrepancy can be well approximated by

(3.3) PN & o™ 4 A3,
i.e., by a linear function with respect fq in which o™, 3(™) ¢ R can be easily computed

or approximated.

Sinceygm) solves the normal equations,

(H 3 Hyp 4+ AVE LT LV, )y ™ = He,
associated with the least square problén®)(with £ = 1, by (3.2) we obtain

(3.4) o™ \) = |Hp(HEHyy + ANV,ELTLV,) " HE e — ¢
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For the computation of(™) in (3.3), the Taylor expansion of(4) suggests the choice

al™ = ¢"(0) = || Hp (HLHy) "HE e — ¢

)

which is just the norm of the residual of the GMRES iterateichitan be evaluated working
in reduced dimension, by solving the least squares problem

(3.5) min Hf{my — cH )

yER™

For the computation oB("™), suppose that, at step, we have used the parametef*—")
m)

(obtained at the previous step orpif = 1, given by the user) to compuyé(m,l) by solving
(2.5 with A = A\(™=1)_ The corresponding discrepancy is

¢(m)()\(m—1)) = HC - I_{myg\?(nw)wl)

and consequently, using the approximatidrB), we obtain

(m) ¢(m) ()\('rn—l)) _ a(’m)

(3.6) I5; D)

To select\(™) for the next step of the Arnoldi-Tikhonov algorithm we imjgos
(3.7) M (A = ne

and we force the approximation

(3.8) M A = o(m) 4 \(m) glm).

Hence, by 8.6) and @3.7), we define

ne — alm (m—1)

(m) —
(39 A= S e = atm

The method §.9) has a simple geometrical interpretation which allows ib&seen as
a zero finder. Indeed, with this choice af”™) and 3™, the functiong(™)()\) is linearly
interpolated at0, o)) and(A(™~1) ¢(™)(\(m=1)): Jooking at 3.8), we understand that,
at each iteration of the Arnoldi-Tikhonov method, a step gkaant-like zero-finder for the
solution of 3.7) is performed; see, agairg]|

We remark that in the first iterations d3.9) instability can occur, due to the fact that we
may havea(™ > ne. In this situation the result of3(9 may be negative (recall that the
function (™ () is increasing and is only defined far> 0); therefore, we consider

ne —a™
~ | gtm (A=) = g (m)

Numerically, formula 8.10 is very stable, in the sense that after the discrepancyipii

is satisfied \(™) ~ const for growing values ofn. We address the fact that this parameter
choice technique can also be used together with the Rangeid®ed approachl0] and even

in the case of Krylov methods based on the Lanczos bidiagmtia@in processd].

Finally we note that, with respect to the strategies usea@usmfconnection with the AT
method, the present one is intrinsically simpler and cheapdeed it essentially involves
guantities that are strictly connected to the projectedlem and the only additional com-
putations are performed in reduced dimension. More spadificche computation of the
GMRES residual require®(m?) operations (if the QR update is not employed, otherwise
justO(m)).

(3.10) Am) Am=1)
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3.2. The multi-parameter case.As pointed out by many works in the literature (cf.,
for example, §i] and [11]), the most natural way to face a multi-parameter probleto st
solve some single-parameter problems, one for each reégatimn matrix, and then to find a
connection between all the problems. In our case, atitkth step of the Arnoldi-Tikhonov
algorithm and for a giverj, 1 < j < k, we consider the problem,

- 7 - 2

H,,
= o] ex
AN LAV, 0
(3.11) min Ym — ,
Ym ER™ 0
)\g_qu—le 0
VALV,

which is aj-parameter Arnoldi-Tikhonov scheme; it can also be reghedea reduced version
of the systemZ.5), where the corresponding regularization vector is

— (m)\T r (m) _ /y(m) (m)\T
(3.12) A={(A2)7,A0,...,0) , where A7) = (A7, AT
According to the notation that we have used in the one-paemease, this means that
we have already solved, in a sequential wgy- 1) reduced problems obtained adding to
the original projected problenB(5) a new regularization term and that we have determined

the suitable regularization parametét%”), ceey )\‘g’fi, for the problems so far considered.

Therefore, now the task is to determine the paramkj@?. Since we only have to update
one parameter, we can use the strategy employed for theegiagameter AT method. We
define the function

7 m m T
(3.13) ¢§"”)(>\):¢(m)(A):Hcmeyxj) , A:((Ag_i)T,A,o,...,o) :

whereyf{’;) is the solution of 8.11). In this framework, the normal equations associated with

the problem 8.11) are
j—1
<H£Hm + Y NVILT LV + AVILT Ljvm> y\") = [ke.
=1

As before, we are looking for a linear approximation, witBpect to the parameter, of the
discrepancy associated with the reduced multi-parametéigm so far considered, i.e.,

(3.14) o™ () & al™ + Ap™.

Analogously to the one-parameter case, to otméﬁﬁ) we considen = 0, that is,
i1 -
o™ = ¢ (0) = | A, <H;QH + 3 AMVILT LiVm> H e —¢|.

i=1

Observing the above expression, we see that now we have ltevitledhe discrepancy asso-
ciated to thgj — 1)-parameter method with vector of the regularization partensegiven by

AET{. Using the definition§.13 we also have

(3.15) ol = pm (Al
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We emphasize that, to obtain the quan&ﬁll), we have to solve again tli¢ — 1)-parameter
problem with the regularization vector given szj“_q. Of course, when = 1, the determi-
nation ong’”) again requires the computation of the solution of the prob{@.5) as in the
one-parameter case, i.e{™ = ¢{"”(0) is still the residual of then-th GMRES iterate.
Regarding the quantil;y;m), once we have solve@(11) for A\ = Aé’”‘”, we obtain

T

m m m—1
( ) ) A: ((Ag—i)T7)\§ ))07"'70) )

(3.16) ™YY = lle - Hopyl

and consequently, using the approximati8riLf), we get

m m—1 m

¢§ )(>‘§' )) - a; )
)\gm—l)

g =

. . . (m)/y(m)y . . .
Finally, imposing¢; (Aj_ )_7 ne and forcing again3.14), we compute the new-th
component of the regularization vector as

(m)

Am) ey (m—1)
; :

qsgm) (Agnz—l)) N cv;m) J

As in the one-parameter case, the computation of eé@ﬁ j =1,...,k, can be mean-

ingless for the first few iterations, since whenis larger tham§m), the values oﬁ\gm) are
negative. For this reason we consider

ne — o™

(317) )\EM) = m m—1 ’ m )\j('m_l)~
¢§ )()\5_ )) —a; )

At this point, if j < k£ we add a regularization term and we repeat the previous ctatipo
with j+1 instead ofj; otherwise, ifj = k, the solutiory,({:“k) of (3.11) is indeed the solution of
the complete multi-parameter probleth). We stop the iterations as soongg" (A) < ne.

3.3. Geometrical interpretation. We close this section suggesting a geometrical inter-
pretation of the above proposed scheme. For simplicity wattthe casé = 2, but the
exposed ideas can be generalized to an arbitrary numbegofarization terms. We fix an
indexm and a Cartesian coordinate systém, \o, z). Consideringz = ("™ (A1, \y) we
obtain a differentiable surface iR3; solving (1.2) means finding the intersections between
the just mentioned surface and the horizontal plane 7e; see Figure3.1, upper frame.
The strategy described above prescribes to initially take= 0; in this way we work on
the plane(\1, z) and the approximate solutiod™ of (™ (A;,0) = ¢{™ (A1) = e is the
intersection between = a§m> + ww andz = 7e if this scalar is positive, otherwise
its absolute value; see Figugel, lower leftmost frame. At this point we take = A§m>,
that is, we work on the plan@\\"™, \,, z); the new value\\"™ is the approximate solution of
A (A™ Ay) = 6™ (X\2) = ne, which is the intersection between= o™ + A,3{™ and
z = ne if this scalar is positive, otherwise its absolute values Beyure3.1, lower rightmost
frame; in this case we display what happens when the quarg?@/ is larger than the noise
level.
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z
z
m)
&0,
(m)
470
(m))
aZ
ne ne
(m)
o )\2:0 }\1=’\(1m)
. *
- )
"(1"‘) }‘(1"‘ 1) A )\(2'") )\(2’“ ) A,

FiG. 3.1.Geometric interpretation of the strategy proposed to firghthlues of the regularization parameters
when performing Arnoldi-Tikhonov multi-parameter mettiwdhe casek = 2 and for a fixedm. Upper frame:

plot of the surfacez = ¢(") (A1, A2) along with the planes = ne and A\; = Ag’”). Lower leftmost frame:
plot of the curve¢§m)()\1) = ¢>(’")(/\1,0) on the plane\s = 0; we also display the thresholge, and the

considered linear approximation and the computed new vaﬁj@. Lower rightmost frame: plot of the curve
q§<2m>()\2) = ¢(m>(A§m>,A2) on the plane\; = Agm); we also display the thresholge, and the considered

linear approximation and the computed new va)dﬂ) (note that, in this casexém) > ne).

4. Algorithms. In this section, we summarize the method described abovevarmo-
pose a computationally cheaper variant of the followingatgm.

ALGORITHM 4.1. Multi-parameter Arnoldi-Tikhonov
Lonput: A, b, £ ={Ly,.... Ll A= (AP, A 20,6,
2. Form = 1,2, ... until [|c — A,y || < ne
(&) UpdateV,,, H,, by the Arnoldi algorithmZ.2).
(b) Forj=1,....k—1
i. Solve 8.11) with the parameter§(A'™})T, A" V)7 and evaluate)'™ (A" ")
by (3.16).
ii. Solve 8.11) with the parameter$(A§.T%)T, 0)” and evaluateb§m)(0) by
(3.16.
iii. Compute the new parameteém) by 3.17) and thenA§m> (cf. 3.12).
(c) Compute the vectq;f\m) = y[(\””,;) by solving the complete probler®.§), with
A= (AT AT
(d) Compute the new paramewﬁc’m by (3.17) and then updaté.

3. Compute the approximate solution= mef\m).



ETNA

Kent State University
http://etna.math.kent.edu

460 S. GAZZOLA AND P. NOVATI

Algorithm 4.1 follows the discussion of the previous section, and hengeires the
solution of each reduced system twice (for egch 1, ..., k), in order to sequentially update
the values of the components of the regularization vedtorThere is however a cheaper
alternative that consists in not using the updated valugb@parameter. In other words,

forj = 1,...k — 1, we do not need to replaoé’”_l) by )\g’”), but we can work with the

regularization vectof(A (" )T, AT = (AI™Y LAY A T)T at Stepebi

The new expression @f;.m) is now (cf. 3.15)

(4.1) al™ = glm (A ).

This alternative approach, described by Algoritdr2, requires only one solution 08(11),
forj =1,...,k, at each step.

ALGORITHM 4.2. Multi-parameter Arnoldi-Tikhonov without intermediatpdate
1oInput: A, b, £ = (Ly, ..., L), A = (A2 A9), 2,2,
2. Form =1,2,...untl |lc — E[my/(\m)H <ne
(&) UpdateV,,, H,, by the Arnoldi algorithmZ.2).
(b) Forj=1,...k
i. Solve 8.11) with the parameter§A ", )T and evaluates™ (A" ")
by (3.16).
ii. Takea!™ asin @.1).
iii. Compute the new parameter;m) by 3.17).
(c) Update the vectoh = (/\gm), . /\,(i’")).
3. Compute the approximate solution= V,,Ly(AT,,)L,l).

The numerical tests reported in Appendixshow that this strategy can compute regu-
larized solutions whose relative error is still comparaiol¢he one of the solutions obtained
running Algorithm4.1 However, the number of iterations required to return tHetgm is,
on average, larger than for the former method.

REMARK 4.3. In our computations both Algorithi.1 and Algorithm4.2 have been
implemented with some minor changes regarding the stopgiitgrion. Indeed we have
employed a sort ofveakened discrepancy principkbat is, we stop the iterations as soon as

(4.2) o™ (X) —nelo < 107,

wheref < 0is automatically determined as the sum of the order of theenlevele and of the
order of the last significant digit of. In this way, when applying the discrepancy principle,
we neglect any quantity coming after the last significanitdifthe producgn. For instance,

if £ =102 andn = 1.01 thend = —4 and we stop the iterations as soon as

o™ (N)/||b]| <1.01-107249.9-107°.

We remark that, if the “classical’discrepancy princip®lj is fulfilled, then also4.2) is sat-
isfied. We introduced this weakened version of the discrepannciple because, while exe-
cuting the numerical experiments, we noted that very ofterdiscrepancy stagnates slightly
above the prescribed threshold without crossing it and jwiegforming too many iterations,
the quality of the approximate solution deteriorates. At $lame time, we decide to enforce
the stopping criterion in order to assure that not only tHatgm yf\"” of the complete prob-
lem but also all the solutions of the reduced regularizaporblems satisfy the weakened
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discrepancy principle4(2), that is, '™ (A\{" ") — n2||o|| < 10° ¥j = 1,...,k — 1. This
is a quite natural choice, since the solution of the multepzeter problem is formed taking
into account thé: solutions of the associated one-parameter problems.

5. Numerical experiments. In this section we test the behavior of Algorithdnl to
solve multi-parameter problems. We believe that the best twavalidate the method just
described is to make suitable comparisons with what hapipetii® one-parameter case; in
the sequel we will explain the details and the goal of eacleexent. We will exclusively
focus on two-parameter and three-parameter cases. Allefteptoblems are taken from
Hansen’s packag@egularization Tool§7].

In all the examples we assume that we know the exact solatiand that the exact
right-hand side vector is either given ifi][or constructed by taking = AZ. The elements
of the noise vectoe are normally distributed with zero mean and the standardatien is
chosen such thafe|| /||| is equal to a prescribed levél Moreover, we always consider the
initial guessry = 0 and we set) = 1.01 andA = (1,...,1)T € R*. Following [L1], each
test problem is generated 100 times to reduce the dependérice results on the random
components of the vecter All the computations have been executed usingrMas 7.10
with 16 significant digits on a single processor computegli@ore i3-350M.

Before describing each test, we list the regularizatiornriced that we have employed:

e The identity matrix/y € RV*V,
e Scaled finite difference approximations of the first and selaarder derivatives, i.e.,

1 -1
(5.1) Dy := e RIN-DxN
I 1 -1
(1 -2 1
(5.2) Dy:= GR(N_Q)XN,
I 1 -2 1

whose null spaces are given by (D;) = span{(1,1,...,1)T} < R" and
N(Dy) =span{(1,1,...,1)7, (1,2,...,N)T} c RV,

e Square projection matrices built using the strategy sugge#n [12]: given
M < RN*f we compute the “skinny” QR factorization/ = WR (where
W e RV*fandR € R*) and we take, as regularization matrix

(5.3) L:=1Iy—WWT e RV*N,

In this way the null space df is spanned by the orthonormal columnsl&t This
kind of matrix is particularly useful when we want to consideegularization oper-
ator with a given null space different from the ones of the nwnly used operators

(5. and 6.2).

5.1. Results obtained considering particular solutions.The aim of the first set of
experiments is to show that, when applying the multi-patemmethod to a problem whose
exact solutiorx lies in the null space of the regularization operatgrthe parameter selection
strategy correctly weights thieth component of the regularization vectbrby assigning to
A; a value dominating the other components. Indeed, in thigsin, the regularization
operatorL; is the most suitable one, since the important features oftetion are not
damped. Therefore, we start to consider two particular iegalutions: the constant one,
Z.:= (1,1,...,1)T € RN, andthe linear ong;; := (1,2,..., N)T € RY; asrecalled in the
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above listz. € N(D;) NN (D.), whilez; € N(D,). For this reason we will employ both

two- and three-parameter methods with different combametiof the regularization matrices
In, D1, andDs.

Relative Errors
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FiG. 5.1. Results obtained running 100 times the test problefrapl ace with the particular solutionz.
(we plot one single marker for each performed test). Uppamf: we report the values of the relative errors in
logarithmic scale on the horizontal axis and, at each veitievel, we mark the values corresponding to fhgy
one-parameter (circle), thé; one-parameter (square), and ti{é200, D1) two-parameter (asterisk) methods.
Lower frame: we report the values of the regularization paeders in logarithmic scale on the horizontal axis and,
at each vertical level, we mark the values correspondingnédtoo one-parameter (circle), th®; one-parameter
(square), and thé 200, D1) two-parameter (asterisk) methods; concerning the matameter method, the first
line (labelled byT2g) refers to the parameter that weights the tejfmi|2, while the second line (labelled &y1)
refers to the parameter that weights the teffi; z||2.

First, we take the solutiom,. and consider the matrix of siz& = 200 associated with
the problemi _| apl ace. The noise level i€ = 10~2 and we determine a regularized
solution by using thél»q,, D1) two-parameter method. To illustrate what happens using the
single-parameter Tikhonov method, for each test we alsortepsults obtained considering
exclusivelyL = Iy andL = D;. We display the results for 100 different noisy right-hand
sides in Figures.1. We can clearly see that, with very few exceptions, the camepts of
the regularization vector associated witly, and D replicate the behavior of the parameter
of the Tikhonov method with. = I, and L = Dy, respectively. This means that, in
the regularization process, the most appropriate reqaton operator, in this cage;, gets
a larger weight than the others. In almost all cases, theisnhiof thel;o, and D; one-
parameter methods belong to Krylov subspaces of dimen&iarsl 6, respectively, while
most of the solutions associated to the two-parameter rddibtmng to Krylov subspaces of
dimensions 6 or 7. In Figurd.2 we focus on a single test and we display the course of the
relative error, the regularization parameters, and therdgancies of the examined methods
at each step of the Arnoldi algorithm. Looking at both figuves can see that the quality
of the solutions computed by the multi-parameter method ame improve with respect to
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FiG. 5.2. Behavior of the relative errors, regularization parametemd discrepancies versus the number of
iterations for the test problem_| apl ace with solutionZ.. Upper box: we consider the multi-parameter method
(asterisk), thelspo one-parameter method (circle), and tiig one-parameter method (square); middle box: we
display the values of the parametexs associated tdl2go (asterisk with dashed line) andl, associated taD;
(asterisk with dash-dot line) and the values of the parameatéthe two one-parameter methods considered above
(with the same markers as listed above); lower box: the ndrtheresidual of the GMRES ovgb|| (circle) and

the discrepancie$>§7”>/||bH associated to the first regularization term (squat’,&éﬁ”)/HbH associated to the second
regularization term (diamond).

the results for theD; one-parameter method. However, this is quite reasonabte sas
said in the introduction, the task of the multi-parametethud is to preserve many different
features of the solution; when, as in this case, the solld&gongs to the null space of one of
the considered operators, the one-parameter method véthreégularization operator is the
one that works the best.

Now we consider the matrix associated to the probpml | i ps with N = 200 and
take, as exact solution, the linear ong the noise level is agaiei = 10~2. We compute
the regularized solution employing the three-parametahatkwith regularization matrices
Ly = Iz, Lo = Dy, and L3z = D,. We display the results in Figui® 3 together with
our results for the same problem with tlig,, D;, D, one-parameter methods. Even in
this case the parameter selection strategy assigns thestgsgrameter value to the matrix
whose null space contains the exact solution (in this cAsg, Regarding the number of
iterations required to satisfy the weakened discrepaniogipie, the three-parameter method
needs in most of the cases 8, 11, or 13 iterations/ikgone-parameter method requires 7
or 8 iterations, while both thé®, and D, one-parameter methods demand 8 or 9 iterations.
In Figure5.4we show the relative errors of the regularization paranseded of the discrep-
ancies versus the number of iterations for the probddraw of size 200. We take again the
linear vectorz; as exact solution.

The method has been applied to the most popular test prold&fidg all of dimension
N = 200, using the two particular solution. andz;. We also consider two different noise
levels € = 10~2 ands = 5 - 10~2) and several combinations of regularization operators. We
summarize the obtained results in Table§, A.2, A.3, andA.4 reported in AppendiA.
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Relative Errors
T T T T

|200 O @ OO O O Q@DIRHD o
D ]

1 ul u] u]
D,| e o

(|200' 172
! ! ! !

0.05 0.1 0.15 0.2 0.22

200 O COCTIRATED
D i u] 0O [ u]
ORI

D, o 0 0
1200 [I—
D1 ks HK mmm * ) B O
D, PR L CRTRHE T ——

1 1 1 1 1

10° 10°° 10" 107 10 10° 10

FIG. 5.3.Results obtained running 100 times the test prokdérnl | i ps with the particular solutior; (we
plot one single marker for each performed test). Upper frame report the values of the relative errors on the
horizontal axis and, at each vertical level, we mark the galoorresponding to theoo one-parameter (circle), the
D; one-parameter (square), the, one-parameter (diamond), and thi& o0, D1, D2) three-parameter (asterisk)
methods. Lower frame: we report the values of the reguléiingparameters in logarithmic scale on the horizontal
axis and, at each vertical level, we mark the values corradpw to thelzoo one-parameter (circle), th®; one-
parameter (square), thB; one-parameter (diamond), and ti&oo, D1, D2 ) three-parameter (asterisk) methods;
concerning the multi-parameter method, the first line (lgkby I20) refers to the parameter that weights the term
||z||2, the second line (labelled b)) refers to the parameter that weights the tejti; «||2, and the third line
(labelled byDs) refers to the parameter that weights the tefisxz||2.

Finally, we consider experiments with the artificial sabuts

(5.4) Toin = 2@ + 2 := 10sin (g) +x e RY,
1 o
(5.5) Toan = 2 + 2®) = 0 tan (Nj- ] g) +zeRYN.

HereZ, is oscillating whileZ:,, is quickly increasing. These expeiments are motivated
by the fact that the pair of matriceS.({) and 6.2) considered so far represents a particular
situation, sinceV (D) C N(D2). Taking instead the solutiorb(4) or (5.5, by (5.3) we
can build two particular regularization matricés®) and L) such thatz(®) ¢ N(L(),
z® e M(L®)) and N (L) N V(L®) = {0}. Consequently, neithet;, norZ., belong

to the null space of the matricds® or L(*). In this way we can really appreciate that the
essence of the multi-parameter methods is, as said in tfeglirdtion, to preserve many dif-
ferent features of the solution of the original problem thety be distorted imposing only
one regularization operator. For both solutions we comgluz matrixA € R2°9%200 associ-
ated to the test problefmoxgood, a noise leveE = 102, and the regularization matrices
Ly =L, Ly, = L(® We display the results fob(4) and 6.5) in Figure5.5.

5.2. Results for more general solutionsln the second set of computed experiments
we simply consider the most common test problems7inwith their appropriate solution.
We are just going to display some graphs that compare thenpeshces of the new multi-
parameter method and the usual Arnoldi-Tikhonov method.c@esider the regularization
matricesl 7, D1, andD.
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FiG. 5.4. Behavior of the relative errors, regularization parametemd discrepancies versus the number of
iterations for the test problemhawwith solutionz;. The displayed quantities are the same as in Figugand are
denoted by the same markers. In addition: in the upper boxisualize theD» one-parameter method (diamond);
in the middle box we visualize the parameXgr(asterisk with solid line) that weights the tefjidz 2|2 of the multi-
parameter method along with the regularization parametsaiated to thé, one-parameter method (diamond);

in the lower box we visualize the discrepaW)/HbH (hexagram) associated to the third regularization term.

Figure5.6displays the behavior of the relative errors and the valdiéiseoregularization
parameters obtained when solving the test probleimapl ace of dimensionN = 200
with noise of levels = 102 in the right-hand-side vector. We consider thg, and D;
one-parameter methods and the,, Ixog) two-parameter method. We remark that, when
performing the multi-parameter method, the results carfieeted by the order in which the
regularization matrices appear. Indeed, looking at thameters selection strategy described
in subsectior8.2, we can understand that the first regularization matrix lfis tase,L1) is
weighted similarly to the one-parameter case, while thiefohg ones work as corrections.
This is a consequence of the fact that many reduced problemsotved sequentially and
each one is based on the solutions and on the parameters#sddo the previous ones; in
this sense the first regularization operator is somehowradgad with respect to the others.
Therefore, if one has some intuition about the regularityhef solution, we suggest to put
in the first place the most suitable regularization matrixabl€sA.5 and A.6 reported in
AppendixA collect results obtained by considering one-, two-, andekparameter methods
with various combinations of the usual regularization nicat and two different noise levels.

5.3. Further considerations. In this subsection we highlight a couple of important fea-
tures of the new method that we noted while carrying out thexerical experiments just
described.

The first property is that the AT multi-parameter method isyv®bust with respect to
the initial choice of the regularization vectdr, that is, considering different values of the
components ol\, the accuracy of the results and the number of iterationbasially stable.

In Figure5.7 we display the values of the regularization parametersioétdaby solving the
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FIG. 5.5. Results obtained running 100 times the test probl@mrgood with the particular solution&s;,
(first and second frames) aiag.y, (third and fourth frames); as before, we plot one single reafkr each performed
test. The regularization operators() and L(?) are projection operators of the forns (). First and third frames:
we report the values of the relative errors on the horizortelk and, at each vertical level, we mark the values
corresponding to the.(?) one-parameter (circle), thé.(*) one-parameter (square), and thi&(*), L(®)) two-
parameter (asterisk) methods. Second and fourth framesepat the values of the regularization parameters in
logarithmic scale on the horizontal axis and, at each veitievel, we mark the values corresponding to fHé&)
one-parameter (circle), thé (%) one-parameter (square), and tli&(®), L(?)) two-parameter (asterisk) methods;
concerning the multi-parameter method, the first line (lzeby .(*)) refers to the parameter that weights the first
regularization term (i.e., the one that acts on th&) component of the solutions.¢) and (.5)), and the second
line (labelled byL(®)) refers to the parameter that weights the second reguléidaaerm (i.e., the one that acts on
thez(® component of the solutions.¢) and .5)).
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FiG. 5.6.Results obtained running 100 times the test problelrapl ace (we plot one single marker for each
performed test). Upper frame: we report the values of thatiet errors on the horizontal axis and, at each vertical
level, we mark the values corresponding to thgy one-parameter (circle), th®, one-parameter (square), and the
(D1, I200) two-parameter (asterisk) methods. Lower frame: we regutvalues of the regularization parameters
in logarithmic scale on the horizontal axis and, at each ieattlevel, we mark the values corresponding to fhgy
one-parameter (circle), thé; one-parameter (square), and thé1, I200) two-parameter (asterisk) methods;
concerning the multi-parameter method, the first line (lezkby D) refers to the parameter that weights the term
[|D1]|2, while the second line (labelled Hyqo) refers to the parameter that weights the telfm|2.

test problenshaw of dimensionN = 200 and taking as exact solution the one givenih [
the noise level i = 10~2. We have employed th@q0, D1, D>) three-parameter method
and carried out four tests with initial vectdr whose three entries are all equal(®, 1,

10, or 100. We can see that, except in the very first iterations, the \iehaf each),;,

i = 1,2,3, is very similar independently of the initial valuéo). We have also considered
different components of the initial vectdr and the results, even if not shown, are identical
to the ones just described.

The second property is about the performance of the methahwiany extra itera-
tions are executed after the stopping criterion is fulfill€&espite that we had to review the
stopping criterion introducing the weakened discrepaniyciple (cf. Sectiont), we can ap-
preciate that in many cases the behavior of the method isstable even when we decide to
go on with an arbitrary number of iterations. For instanoesigure5.8we display what hap-
pens when solving the probleshaw by the three-parameter method and letting, as above,
N =200, = 1072, L1 = Is00, Lo = Dy, andLs; = D-. Similar results have been obtained
for phi | I i ps andf oxgood.

6. Conclusion. We have described a new strategy to work with multi-paraniékéonov
methods when an iterative scheme based on the Arnoldi gigois applied. The parameter
selection method is based on the discrepancy principle lEmdlgorithm to determine suit-
able regularization parameters at each step of the Arnéddrithm is computationally very
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FiG. 5.7. Values of the components of the regularization vectoversus the number of iterations (each
frame corresponds to a different component). The test proliéshawand we consider thél2o0, D1, D2) multi-
parameter AT method. The initial values for the regulaimatvector areA = (0.5,0.5,0.5)” (diamond),A =
(1,1,1)T (asterisk),A = (10, 10,10)7 (circle), A = (100, 100, 100)” (square).
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FIG. 5.8. Values of the relative error, of the discrepancies and ofrégularization parameters versus the
number of iterations for the test probleshawsolved by th€ 200, D1, D2) multi-parameter method. In the second
and third boxes, the circle denotes the quantities assedi& the first regularization matrix/¢oo), the diamond
denotes the quantities associated to the second regutemizenatrix (D), and the square denotes the quantities
associated to the third regularization matrikg). This method would stop at the 9th iteration (denoted byeaige
asterisk), but we decide to run it until the 30th iteration.
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cheap, since it exclusively involves computations in redlidimension. We have verified

that the new method is able to automatically weight differegularization terms, assigning

larger values of the regularization parameters to the maisalde regularization matrices.

The numerical experiments performed also show that, in ncasgs, the new method is able
to improve the solution computed by means of the one-paemAenoldi-Tikhonov method.

Appendix. A.

We report some tables for the experiments described in &e6ti The results are ob-
tained performing, for each problem, 100 tests and takiegatrerage of the relative errors,
the average of each regularization parameter that appe#ne imethod, and the average of
the number of iterations. The parametais \o, and\3 are always associated with the regu-
larization matriced v, D1, and D5, respectively. When the multi-parameter method is used,
we report the results obtained applying both Algorithn and Algorithm4.2 (we mark the
latter with the abbreviatiol\J within brackets next to the test name). The dimension of the
problem is alwaysV = 200. TablesA.1, A.2, A.3, andA.4 show tests for particular solutions
(constant and linear), while Tablé&s5 andA.6 use solutions given by the routines @f.[We
consider different noise levels and we highlight the motgriesting results with boldface.
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TABLE A.1
Constant solutiorE. with noise levef = 10—2.
Relative Errors A1 A2 A3 Iterations
baart 1.0378e-001 6.7818e-004 - - 3.00
baart 3.1941e-002 - 2.9526e+002 - 3.36
baart 4.6184e-002 - - 1.5322e+003 3.08
baart 3.3079e-002 4.1362e-003| 2.3190e+003 - 3.40
baart (W) 3.8475e-002 2.3079e-003| 1.0314e+003 - 4.31
baart 3.5972e-002 5.8633e-003 - 8.8528e+004 3.34
baart (W) 4.6334e-002 6.8556e-004 - 1.5115e+004 3.01
baar t 5.4689e-003 - 3.9761e+002| 1.5605e+005 4.01
baart (W) 6.3468e-003 - 3.3345e+002| 6.4547e+005 4.00
baar t 3.2744e-002 3.9987e-003| 2.7437e+003| 8.9722e+007 3.48
baart (W) 2.5777e-003 3.7114e-003| 8.3275e+003| 2.0124e+009 5.30
gravity 7.6927e-002 2.7235e-002 - - 4.05
gravity 3.5608e-002 - 1.2120e+002 - 4.89
gravity 3.7409e-002 - - 7.5008e+003 5.01
gravity 3.6233e-002 4.3953e-002| 5.0042e+001 - 5.06
gravity (W) 3.6591e-002 3.5814e-002| 9.1060e+001 - 4.82
gravity 3.7397e-002 4.6282e-002 - 1.8640e+002 4.94
gravity (W) 3.7525e-002 3.7270e-002 - 2.6912e+003 4.92
gravity 3.0131e-002 - 2.9360e+002| 1.8309e+004 6.08
gravity (W) 2.7768e-002 - 3.8358e+002| 2.3200e+004 7.08
gravity 3.1157e-002 5.7598e-002| 4.7711e+001| 3.1995e+003 6.50
gravity (W) 2.6016e-002 6.3788e-002| 2.6957e+002| 7.3402e+003 8.02
shaw 1.9111e-001 8.2282e-004 - - 11.96
shaw 1.0719e-001 - 9.6939e-001 - 6.82
shaw 1.4307e-001 - - 1.7511e+002 7.12
shaw 1.2701e-001 1.1500e-003| 6.5296e+000 - 6.91
shaw (W) 9.5561e-002 8.9523e-004 1.2847el - 7.65
shaw 1.1748e-001 | 9.5530e+000 - 1.3175e+003 7.44
shaw (W) 1.2813e-001 | 6.1538e+000 - 2.2507e+003 7.82
shaw 1.1748e-001 - 9.5530e+000| 1.3175e+003 7.44
shaw (W) 1.2813e-001 - 6.1538e+000| 2.2507e+003 7.82
shaw 1.7063e-001 1.0023e-003| 3.0629e+000| 1.2808e+003 7.65
shaw (W) 1.0891e-001 9.5358e-004| 7.0005e+000| 1.5660e+003 8.38



ETNA

Kent State University
http://etna.math.kent.edu

MULTI-PARAMETER ARNOLDI-TIKHONOV METHODS

TABLE A.2

Constant solutiorE. with noise leveE = 5 - 10—2.

Relative Errors A Ao A3 Iterations
baart 4.7271e-002 | 1.8289e-002 - - 3.03
baart 4.6467e-002 - 2.6946e+002 - 3.00
baart 4.8727e-002 - - 3.1295e+001 3.00
baart 2.8299e-002 | 3.5002e-002| 2.8047e+003 - 3.81
baart (W) 4.5396e-002 | 1.8319e-002| 3.1644e+002 - 3.01
baart 5.6287e-002 | 3.5177e-002 - 6.1848e+004 3.81
baart (W) 4.5595e-002 | 1.8319e-002 - 2.0673e+004 3.01
baart 4.1186e-002 - 2.6891e+003| 3.5107e+006 3.12
baart (W) 4.2843e-002 - 1.2127e+003| 4.1811e+006 3.09
baart 2.9684e-002 | 3.4540e-002| 2.8129e+003| 7.0676e+006 3.95
baart (W) 4.5433e-002 | 1.8319e-002| 3.1644e+002| 1.4420e+005 3.01
gravity 1.4412e-001 | 6.2068e-002 - - 3.00
gravity 7.3863e-002 - 1.0178e+003 - 3.38
gravity 7.6596e-002 - - 5.8340e+002 3.30
gravity 7.5657e-002 | 8.9338e-002| 2.6968e+001 - 3.52
gravity (W) 5.9147e-002 | 1.7299e-001| 1.4920e+003 - 4.61
gravity 7.6178e-002 | 9.4794e-002 - 7.9399e+002 3.41
gravity (W) 7.7175e-002 | 6.9617e-002 - 1.6570e+003 3.23
gravity 5.6443e-002 - 3.4291e+003| 1.0032e+005 5.13
gravity (W) 5.7096e-002 - 2.1291e+003| 1.7057e+005 5.14
gravity 7.5426e-002 | 1.1257e-001| 3.4710e+001| 1.6360e+004 3.90
gravity (W) 5.5631e-002 | 3.2129e-001| 7.2494e+002| 5.6887e+004 10.39
shaw 3.8658e-001 | 1.1241e-002 - - 4.73
shaw 3.7087e-001 - 1.0679e+001 - 4.30
shaw 3.7499e-001 - - 1.1396e+002 4.08
shaw 3.4765e-001 | 4.0968e-002| 6.2112e+000 - 5.77
shaw (W) 3.2295e-001 | 2.8325e-002| 8.9987e+000 - 6.71
shaw 3.6824e-001 | 9.7160e-002 - 5.0404e+002 4.85
shaw (W) 3.5303e-001 | 1.8491e-002 - 1.3922e+003 5.06
shaw 2.2610e-001 - 8.0840e+001| 1.0614e+003 6.59
shaw (W) 2.8593e-001 - 2.4070e+001| 2.7850e+003 6.02
shaw 3.4812e-001 | 3.0250e-002| 6.1392e+000| 5.6965e+002 7.06
shaw (W) 3.2119e-001 | 3.3386e-002| 3.6780e+000| 1.0717e+003 9.23
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TABLE A.3
Linear solutionz; with noise leveE = 10~2.
Relative Errors A1 A2 A3 Iterations
gravity 9.1882e-002 9.9070e-003 - - 5.88
gravity 4.3925e-002 - 6.2429e+000 - 6.60
gravity 4.4210e-002 - - 8.3509e+002 6.60
gravity 4.8555e-002 3.0927e-002 - 1.5557e+001 6.32
gravity (W) 4.5759e-002 | 2.1120e-002 - 2.0771e+003 6.85
gravity 4.0287e-002 - 3.9018e+001| 7.2829e+003 7.96
gravity (W) 3.5810e-002 - 6.9289e+001| 7.7211e+003 9.39
gravity 4.0742e-002 3.3236e-002| 5.2950e+000| 1.8860e+003 8.15
gravity (W) 3.6273e-002 | 4.3565e-002| 6.7350e+000| 2.0170e+003 12.37
phillips 8.3395e-002 | 7.5351e-004 - - 3.88
phillips 5.1312e-002 - 6.0850e+000 4.79
phillips 2.5810e-002 - - 1.0223e+004 3.70
phillips 4.9806e-002 1.1568e-003 - 1.5404e+002 3.76
phillips (W) 2.9860e-002 | 7.8084e-004 - 1.1637e+005 3.73
phillips 2.0121e-002 - 1.3793e+001| 3.0215e+005 5.34
phillips (W) 7.3637e-003 - 1.0211e+001| 7.1454e+007| 5.82
phillips 2.1245e-002 1.1547e-003| 5.1765e+000| 7.0991e+005 4.03
phillips (W) 4.9555e-003 | 1.0063e-003| 2.6263e+000| 1.3782e+009 6.12
shaw 1.6558e-001 | 5.6169e-004 - - 8.04
shaw 9.8639e-002 - 2.0738e+000 - 7.05
shaw 1.1969e-001 - - 2.8091e+002 7.90
shaw 1.6111e-001 9.4367e-004 - 2.4475e+002 7.60
shaw (W) 1.4970e-001 | 6.4663e-004 - 3.0588e+002 8.65
shaw 1.8624e-001 - 1.4567e+003| 7.5914e+003 10.66
shaw (W) 1.8275e-001 - 1.6192e+003| 6.4621e+004 12.87
shaw 1.5545e-001 7.2387e-004| 1.1118e+000| 3.0236e+002 8.34
shaw (W) 8.5492e-002 6.8840e-004| 2.3488e-001| 9.2377e+002 10.08
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TABLE A.4
Linear solutionz; with noise leveE = 5 - 10~ 2,
Relative Errors A1 A2 A3 Iterations
gravity 2.8768e-001 5.5438e-002 - - 4.05
gravity 7.9760e-002 - 8.3692e+001 - 4.99
gravity 9.9241e-001 - - 2.0821e+003 6.47
gravity 9.9263e-001 3.0098e-002 - 3.0273e+002 8.08
gravity (W) 9.9256e-001 | 3.0199e-002 - 3.9649e+002 9.23
gravity 7.0756e-002 - 5.1613e+002| 5.8957e+004 6.88
gravity (W) 6.9625e-002 - 5.1480e+002| 8.2787e+004|  7.32
gravity 7.1772e-002 2.7579e-001| 3.3161e+001| 3.5037e+003 8.09
gravity (W) 6.9084e-002 | 2.8820e-001| 1.6383e+001| 2.2734e+003 15.31
phillips 1.3393e-001 | 6.9273e-003 - - 4.98
phillips 4.6177e-002 - 1.9380e+001 - 4.00
phillips 6.2626e-002 - - 1.5541e+002 3.00
phillips 5.9475e-002 1.2138e-002 - 3.8318e+003 3.04
phillips (W) 4.4428e-002 | 7.1280e-003 - 7.3170e+005 3.96
phillips 4.4724e-002 - 8.0428e+001| 2.8338e+006 5.74
phillips (W) 3.0147e-002 - 4.9414e+001| 9.6469e+006 5.51
phillips 5.9309e-002 1.1927e-002| 1.9741e+001| 2.6932e+004 3.15
phillips (W) 5.1288e-002 | 8.9332e-003| 5.1621e+000| 2.0490e+007 6.68
shaw 4.2575e-001 | 5.0157e-003 - - 5.40
shaw 3.3582e-001 - 9.5404e+000 - 5.81
shaw 3.8572e-001 - - 1.2562e+003 541
shaw 3.7063e-001 1.6175e-002 - 5.2509e+002 6.60
shaw (W) 3.3534e-001 | 1.8732e-002 - 1.0808e+003 8.03
shaw 1.9170e-001 - 3.4898e+001| 1.0244e+003 7.64
shaw (W) 1.5476e-001 - 3.7043e+001| 3.9485e+003 8.22
shaw 3.3859e-001 | 1.8235e-002| 5.7642e+000| 5.6926e+002 7.68
shaw (W) 3.1797e-001 2.1206e-002| 3.7208e+000| 2.1282e+003 12.32
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TABLE A.5
Given solution with noise levél= 10~2.
Relative Errors A1 A2 A3 Iterations
baart 5.0485e-002 | 5.9453e-004 - - 4.00
baart 9.6425e-002 - 4.2167e-001 - 6.00
baart 6.2569e-002 - - 1.0876e+003 5.01
baart 1.5099e-001 | 1.0683e-003| 6.3735e-002 - 5.50
baart (W) 1.5135e-001 | 1.0854e-003| 1.0809e-001 - 6.10
baart 8.8097e-002 | 8.3136e-004 - 1.3274e+002 4.38
baart (W) 1.2243e-001 | 1.0936e-003 - 2.3528e+002 5.67
baart 1.2223e-001 - 8.5082e-001| 1.6022e+002 7.57
baart (W) 1.2907e-001 - 8.9299e-001| 1.1968e+002 8.93
baart 1.4903e-001 | 1.1395e-003| 1.5122e-002| 9.7826e+001 6.63
baart (W) 2.0029e-001 | 1.2088e-003| 2.5714e-003| 3.3557e+001 15.88
gravity 1.2013e-001 | 9.7765e-003 - - 5.27
gravity 4.0751e-002 - 3.4584e+000 - 6.24
gravity 4.0657e-002 - - 5.4844e+002 6.19
gravity 4.3901e-002 | 3.3339e-002| 7.3607e-001 - 6.15
gravity (W) 4.2829e-002 | 2.7101e-002| 3.6701e+000 - 6.50
gravity 4.2992e-002 | 4.1944e-002 - 9.7444e+001 6.04
gravity (W) 4.1431e-002 | 2.8425e-002 - 2.3548e+003 6.60
gravity 4.5887e-002 - 1.1104e+001| 2.0749e+003 7.92
gravity (W) 4.6282e-002 - 1.2389e+001| 2.5341e+003 8.83
gravity 3.7745e-002 | 4.0109e-002| 8.4321e-001| 4.1857e+002 7.80
gravity (W) 3.5941e-002 | 5.1580e-002| 6.8753e-001| 8.0771e+002 13.03
phillips 2.8920e-002 | 1.8711e-002 - - 5.00
phillips 2.5621e-002 - 5.2041e+000 - 5.05
phillips 2.5663e-002 - - 5.5949e+002 5.00
phillips 2.5654e-002 | 5.5102e-002| 2.2946e+000 - 7.52
phillips (W) 2.5428e-002 | 4.2635e-002| 2.2588e+000 - 8.06
phillips 2.6108e-002 | 5.0990e-002 - 2.7694e+002 7.48
phillips (W) 2.6021e-002 | 4.1527e-002 - 3.0252e+002 8.05
phillips 2.7134e-002 - 1.0548e+001| 1.4744e+002 7.54
phillips (W) 2.7043e-002 - 9.1030e+000| 1.3533e+002 8.43
phillips 2.5571e-002 | 4.6571e-002| 9.4471e-001| 4.5558e+001 9.71
phillips (W) 2.5307e-002 | 5.1642e-002| 3.8008e-001| 5.2265e+001 12.56
shaw 1.3445e-001 | 7.5858e-004 - - 5.85
shaw 1.2074e-001 - 5.4351e-001 - 6.29
shaw 1.2074e-001 - - 1.2207e+002 6.01
shaw 1.3477e-001 1.8739e-003| 2.5149e-001 - 6.73
shaw (W) 1.4452e-001 | 3.1749e-003| 2.6832e-001 - 8.02
shaw 1.3466e-001 | 2.0832e-003 - 5.8343e+001 6.71
shaw (W) 1.4767e-001 | 3.6720e-003 - 5.1928e+001 8.18
shaw 2.0162e-001 - 1.8871e-001| 2.9227e+000 9.59
shaw (W) 2.0445e-001 - 1.8076e-001| 4.0254e+000 10.85
shaw 1.3631e-001 | 3.1890e-003| 2.6252e-001| 1.7495e+001 7.71
shaw (W) 1.3297e-001 | 3.6163e-003| 2.2794e-002| 9.6222e+000 15.36
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TABLE A.6
Given solution with noise levél=5- 102,
Relative Errors A A2 A3 Iterations
baart 2.5915e-001 | 5.5184e-003 - - 3.88
baart 3.5281e-001 - 4.1254e+001 - 22.62
baart 1.4907e-001 - - 7.8514e+001 3.90
baart 3.1181e-001 | 1.0697e-002| 1.6995e+000 - 5.41
baart (W) 3.1079e-001 | 1.0679e-002| 1.8720e+001 - 6.17
baart 2.5738e-001 | 7.0589e-003 - 1.4668e+003 4.04
baart (W) 2.4875e-001 | 6.3857e-003 - 1.8854e+003 4.16
baart 3.6233e-001 - 4.2956e+001| 6.7892e+005 11.53
baart (W) 3.6189e-001 - 4.2750e+001| 9.5807e+005 12.31
baart 3.0971e-001 | 1.2027e-002| 9.7625e-001| 8.6695e+002 6.34
baart (W) 3.0669e-001 | 1.4359e-002| 5.6894e+000| 2.7463e+006 22.44
gravity 2.0667e-001 | 7.6931e-002 - - 4.20
gravity 7.1581e-002 - 6.4767e+001 - 5.00
gravity 6.5899e-002 - - 1.0511e+002 4.96
gravity 7.0950e-002 | 1.5823e-001| 2.6622e+000 - 5.89
gravity (W) 6.9396e-002 | 9.8279e-002| 2.2876e+001 - 5.08
gravity 6.7248e-002 | 1.4980e-001 - 1.3094e+003 5.15
gravity (W) 6.5526e-002 | 9.7083e-002 - 2.3641e+003 5.03
gravity 8.9110e-002 - 1.5691e+002| 7.3888e+003 7.24
gravity (W) 9.2507e-002 - 1.5515e+002| 9.6310e+003 8.28
gravity 6.7490e-002 | 3.0044e-001| 7.9010e+000| 4.7311e+002 8.24
gravity (W) 6.6388e-002 | 3.1555e-001| 7.0614e-001| 1.0583e+003 16.10
phillips 1.7706e-001 | 5.4795e-002 - - 4.00
phillips 5.2064e-002 - 2.7421e+001 - 4.86
phillips 4.9188e-002 - - 1.2585e+002 4.79
phillips 5.1560e-002 | 2.2233e-001| 3.0768e+000 - 8.89
phillips (W) 4.5868e-002 | 9.5929e-002| 1.1118e+001 - 5.33
phillips 5.0609e-002 | 2.1969e-001 - 3.3818e+002 7.30
phillips (W) 5.3031e-002 | 8.1022e-002 - 3.5514e+003 5.04
phillips 6.2712e-002 - 6.8085e+001| 3.2822e+002 7.74
phillips (W) 6.2458e-002 - 6.7112e+001| 3.4593e+002 8.65
phillips 4.9898e-002 | 2.5948e-001| 1.8172e+000| 5.1243e+001 10.62
phillips (W) 4.9975e-002 | 2.6521e-001| 2.4459e-001| 9.0852e+001 16.69
shaw 1.8119e-001 | 7.5811e-003 - - 5.00
shaw 2.0664e-001 - 1.2412e+001 - 6.91
shaw 2.0299e-001 - - 1.9892e+003 6.81
shaw 1.8248e-001 | 2.9196e-002| 1.1667e+000 - 9.45
shaw (W) 1.7661e-001 | 2.9472e-002| 1.3307e+000 - 8.14
shaw 1.7095e-001 | 3.2668e-002 - 3.7580e+002 8.77
shaw (W) 1.7345e-001 | 3.0384e-002 - 2.4513e+002 9.91
shaw 3.6022e-001 - 1.9433e+001| 2.1029e+002 8.31
shaw (W) 4.1838e-001 - 1.6601e+001| 6.2015e+002 9.97
shaw 1.6869e-001 | 2.7108e-002| 1.3957e+000| 6.2512e+001 8.53
shaw (W) 1.7007e-001 | 2.9894e-002| 1.6217e-001| 6.3068e+001 15.61




