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Abstract. The problem of uncertainty quantification (UQ) for inverse problems has become of significant
recent interest. However, UQ requires more than the classical methods for computing solutions of inverse problems.
In this paper, we take a Bayesian approach for the solution of ill-posed deconvolution problems with a symmetric
convolution kernel and Neumann boundary conditions. The prior is modeled as a Gaussian Markov random field
(GMRF) with the same boundary conditions and symmetry assumptions. These assumptions yield better results in
certain instances and also allow for the use of the discrete cosine transform for fast computations. Moreover, we
use a hierarchical model for the noise precision (inverse-variance) and prior precision parameters. This leads to a
posterior density function from which we can compute samples using a basic Markov Chain Monte Carlo (MCMC)
method. The resulting samples can then be used for both estimation (using, e.g., the sample mean) and uncertainty
quantification (using, e.g., histograms, the sample variance, or a movie created from the image samples). We provide
a numerical experiment showing that the method is effective, computationally efficient, and that for certain problems,
the boundary conditions can yield significantly better results than if a periodic boundary is assumed. The novelty in
the work lies in the combination of the MCMC method, Neumann boundary conditions, GMRF priors, and in the
use of a movie to visualize uncertainty in the unknown image.

Key words. image deblurring, inverse problems, Bayesian inference, Gaussian Markov random fields, Markov
chain Monte Carlo methods, Neumann boundary conditions
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1. Introduction. In applications such as astronomy, medicine, physics and biology, dig-
ital images are used by scientists and practitioners to record and analyze unique events. Envi-
ronmental effects and imperfections in the imaging system can cause the recorded images to
be degraded by blurring and noise. Unfortunately, it is not always possible to repeat the pro-
cess used to record the image to obtain “better pictures”; for example, it could be too costly to
repeat a particular experiment, or it may not be physically possible to repeat the event that was
observed. In such cases, computational post processing techniques, called image deblurring,
are used to improve the resolution of the image.

Image deblurring is typically modeled as a linear inverse problem. Suppose � ����� , �
	��

 ,
is a function describing the true � -dimensional image; e.g., for a plane image containing
pixels, ����� . The image formation process, which includes blurring and noise, is modeled
by an integral equation, � ����� � ����� ��������� � ����� � ���! "�����#�
where

���$�%	&�'

,
� �����

is a function that represents the observed image,
 "�����

represents ad-
ditive noise, and (�) �'
 is the computational domain. The kernel

� �*�+�$���
is a function that

specifies how the points in the image are distorted, and is therefore called the point spread
function (PSF). The inverse problem of image deblurring is: given

�
and

�
, compute an ap-

proximation of � . If the kernel has the property that
� ��������� � � ���-,.��� , then the PSF is said

to be spatially invariant; otherwise it is said to be spatially variant. In the spatially invari-/
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ant case, the blurring operation,
� �0� �*�1,2��� � �3��� � � , is a convolution operation, and thus the

corresponding inverse problem of computing an approximation of � from
�

and
�

, is called
deconvolution.

In a realistic problem, images are collected only at discrete points (i.e., pixels for 2D
images and voxels for 3D images), and are also only available in a finite bounded region ( .
It is, therefore, typical to work directly with the discrete linear model,

(1.1) 45�7698 �2:
�
where 8 , 4 and

:
are real valued ;�<�= vectors obtained by discretizing functions � ,

�
, and

 
,

and ; is the number of pixels (or voxels) in the discrete image. 6 is a real valued ;0<-; matrix
that arises when approximating the integration operation with a quadrature rule, and it usually
has structure (e.g., Toeplitz, circulant, Hankel, etc.) that can be exploited in computations.

Our approach for solving the discrete inverse problem (1.1) is statistically motivated.
Specifically, we assume that

:
is an ;><�= independent and identically distributed (iid) Gaus-

sian random vector with variance ?A@CB ( ? is known as the precision) across all pixels, and that
the probability density function for (1.1) is given by

(1.2) D � 4FE 8 � ? �HGJILKNM>OA, ? �FP 698 , 4 PLQSR �
where ‘

G
’ denotes proportionality. However, it is important to note that when attempting to

solve inverse problems, the maximizer of the likelihood T � 8HE 4 � ? � �UD � 4FE 8 � ? � with respect
to 8 is unstable with respect to the noise contained in 4 . This instability is a characteristic
of inverse problems, such as deconvolution, and it has to do with the fact that the forward
mapping (convolution) is a compact operator defined on a function space [5]. The standard
technique for overcoming such instability is regularization, which is treated in detail in sev-
eral references [5, 7, 8, 10, 20].

In the context of Bayesian statistics, regularization corresponds to the choice of the prior
probability density function D � 8HE V � , where V9WYX is a scaling parameter. In our case, we use
a Gaussian Markov random field (GMRF) to model the prior, which yields

(1.3) D � 8HE V �HG&ISK�M O , V� 8CZ\[]8 R �
where the precision matrix V^[ is sparse and encodes distributional assumptions regarding the
values of �`_ conditioned on the values of its neighbors, for all a .

Bayes’ Theorem states that the posterior probability density function D � 8HE 4 � ? � V � can be
expressed as D � 8HE 4 � ? � V �HG D � 4bE 8 � ? � D � 8HE V �GJILKNM>O", ? � P 6c8 , 4 P Q , V� 8 Z []8 Red(1.4)

Maximizing (1.4) with respect to 8 yields the so-called maximum a posteriori (MAP) estima-
tor. By equivalently minimizing the negative-log of (1.4), we see that [ corresponds to the
regularization matrix in classical inverse problems, while V+f+? corresponds to the regulariza-
tion parameter [20].

In this paper we extend the Bayesian formulation (1.4) and compute samples from the
resulting posterior density function using the Markov Chain Monte Carlo (MCMC) method
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of [1]. Bayes’ Law (1.4) is extended by assuming Gamma distributed hyper-priors on ? andV , i.e., D � ? �HG ?`gih @"B ISK�M��j,bkml ? �n�(1.5) D � V �HG Vog�p @"B ISK�M��j,bk`q V �n�(1.6)

with r l �sr q �t= , and
k l � k q �t=uXN@`v , which have mean and variance r'f k �t=uX�v

and rwf k Q �x=yX�z , respectively. Note that r{�x= yields exponential distributed hyper-priors,
however we present the full Gamma hyper-prior here because it is a conjugate distribution and
other choices for r and

k
may be advantageous in other situations. Given the large variance

values, the hyper-priors should have a negligible effect on the sampled values for ? and V .
With (1.2), (1.3), (1.5), and (1.6) in hand, through Bayes’ Law the posterior probability

density has the formD � 8 � ? � V|E 4 �HG D � 4bE 8 � ? � D � ? � D � 8HE V � D � V �(1.7) �Y?`}+~ Q�� g�h @CB Vi��} @CBj� ~ Q�� gip @CB ILKNM O , ? � P 698 , 4 PLQ , V� 8 Z []8 ,�k#l ? ,5k`q V R d
The prior and hyper-priors were chosen to be conjugate [6], which guarantees that the full
conditional densities have the same form as the corresponding prior/hyper-prior; specifically,
note that 8HE ? � V � 45�e��� � ?`69Z\6 � V^[ � @"B ?�6�ZC4 �y� ?`69Zw6 � V^[ � @"By� �(1.8) ?�E 8 � V � 45�Y� O ;�fo� � r l � =� P 698 , 4 PSQ �ek l R �(1.9) V|E 8 � ? � 4.�Y� O � ; , = � f+� � r qo� =� 8CZ�[H8 �!kmq R �(1.10)

where � and � denote Gaussian and Gamma distributions, respectively.
The power in (1.8)-(1.10) lies in the fact that samples from these three distributions can

be computed using standard statistical software, and a Gibbsian approach can be applied to
(1.8)-(1.10) yielding the MCMC method of [1] for sampling from (1.7).

A MCMC Method for Sampling from D � 8 � V � ?\E 4 � .
0. Initialize VS� , and ?�� , and set ���YX ;
1. Compute 8����2� � � ? � 6 Z 6 � V � [ � @CBS? � 6 Z 4 �u� ? � 6 Z 6 � V � [ � @CB � ;
2. Compute ? � � B �J� � ;�fo� � r l`� BQ P 698A� , 4 P Q �2kml � ;3. Compute V � � B �Y��� � ; , = � fo� � r q+� BQ � 8A� � Z [H8A� �!kmq � ;4. Set ���J� � = and return to Step 1.

What makes this MCMC method interesting in the case of image deblurring is that com-
puting the image samples in Step 1 requires the solution of the large linear system

(1.11)
� ? � 6 Z 6 � V � [ � 8 � �J? � 6 Z 4 �!�>���b�|Iy�$I�� �!� �*�C� ? � 6 Z 6 � V � [ � d

In this paper, we assume Neumann boundary conditions for the image 8 and symmetric
PSFs. The matrices 6 and [ are then diagonalizable by the discrete cosine transform (DCT),
which we will denote by � , making the computation of 8w� in Step 1 extremely efficient.
Specifically, if 6���� Z\� � , and [U��� Z\� � , given that � is an orthogonal matrix we have? � 69Z\6 � V � [U�Y�%Z � ? � � Q � V � � � � d
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Substituting this into (1.11) yields8 � ��� Z � ? � � Q � V � � � @CB ? � � ��4 � � Z � ? � � Q � V � � � @CB � ����%Z � ? � � Q � V � � � @CB ~ Q ��� ? � � Q � V � � � @CB ~ Q ? � � ��4 �! \�n�(1.12)

where
  �¡� ���A�$¢y� , which follows from the fact that if £ 	�� }`¤|} and ¥¦�§£   , then¥���� ���A� £¨£ Z � . Since � and � are computed off-line, and because multiplication by� and � Z is computed efficiently using a fast DCT algorithm [18], the computation of 8��

via (1.12) is very efficient.
The paper is organized as follows. We begin with a discussion of Neumann boundary

conditions for image deblurring problems in Section 2. Then in Section 3, we discuss GRMFs
generally, introduce the one that we use, and show that if Neumann boundary conditions
are assumed the precision matrix can be diagonalized using the DCT. Finally, in Section 4,
we show results of the method and compare it with other standard approaches. Concluding
remarks are given in Section 5.

2. The Neumann boundary condition for convolution problems. As has been stated,
we are interested in the case in which the image 8 is assumed to have Neumann, or reflective,
boundary conditions. To illustrate what we mean by this, we begin by considering 1D image
deconvolution. In this case, the unknown image 85� � � B � dSdyd � � } � can be extended spatially
to create the vector ©8��¦ª � @ } � B � dydSd � � � � � B � dydSd � � } � dSdyd � � Q }N« Z d
The matrix 6 is defined in terms of the convolution kernel¬ �¨ª � @ } � � @ } � B � dydSd � � � � � B � dydSd � � } « Z �
and the noise-free data vector is obtained via discrete convolution:

(2.1)
� _A� _ � }­®$¯ _ @ } � _ @ ® � ® �±°3²�� a\�¨= � dSdSd � ; �

or in matrix-vector notation,

(2.2) ³´´´µ
� B� Q...� }
¶¸···¹ � ³´´´´´µ

� } ºSºSº � � ºSºyº � @ }� } ºyºSº � � ºSºyº � @ }. . . . . . . . . . . . . . .� } ºSºyº � � ºyºSº � @ }� } ºSºSº � � ºyºSº � @ }
¶¸·····¹
³´´´´´´´´´´´´´µ

� @ } � B...���� B...� }...� Q }

¶¸·············¹ d
The key observation here is that the value

� _ for a near 1 will depend upon the region of

©8 to
the left of the computational domain, i.e.,

� � @ } � B � dSdyd � � � � ; while for a near ; ,
� _ will depend

upon the region of

©8 to the right of the computational domain, i.e.,
� � } � B � dSdSd � � Q } � .Rather than estimating these extra values by solving the underdetermined system (2.2),

the standard approach is to make assumptions about these values based on a priori knowl-
edge, or by relating the values to those within the computational domain. These assumptions
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are called boundary conditions. For example, a zero (or Dirichlet) boundary condition cor-
responds to the assumption that

� � @ } � B � dSdyd � �`� � � � � } � B � dSdyd � � Q } � � � , which yields a
Toeplitz matrix 6 [20]; while a periodic boundary condition corresponds to

� � @ } � B � dydSd � � � �� � � B � dydSd � � } � and
� � } � B � dydSd � � Q } � � � � B � dSdSd � � } � , which yields a circulant matrix 6 that

can be diagonalized by the discrete Fourier transform (DFT) [20].
The Neumann boundary condition corresponds to a reflection of the signal about the

boundaries, i.e.,
� � @ } � B � dydSd � � � � � � � } � dSdyd � � B � and

� � } � B � dSdyd � � Q } � � � � } � dSdSd � � B � . In
this case, the resulting matrix 6 has Toeplitz-plus-Hankel structure, and if the convolution
kernel ¬ is symmetric, i.e.,

� _»� � @ _ , then 6 can be diagonalized by the discrete cosine
transform (DCT) [15, Theorem 3.2]. We note that while a Toeplitz matrix is one for which
each descending diagonal from left to right is constant, a Hankel matrix is one for which each
descending anti-diagonal from right to left is constant.

We started with the 1D example in order to illustrate concepts more simply, but our
primary interest is two-dimensional (2D) image deblurring. In this case, 4 and 8 are obtained
by column-stacking the ¼½<e¼ arrays ¾ and ¿ , which we denote as 4À�ÂÁ IyÃ+� ¾ � and85�YÁ IuÃ+� ¿ � ; and 6 is defined in terms of the ¼Ä<>¼ convolution kernel ¬ �¦Å � _ ®oÆuÇ_�È ®$¯ @ Ç ,
with some assumed boundary condition. The noise-free ¼Â<>¼ data array then satisfies the
2D discrete convolution equation

(2.3)
�LÉ È Ê
� É � Ç­_ ¯ É @ Ç Ê � Ç­®$¯ Ê @ Ç � É @ _�È Ê @ ® �m_ ® �±°3²+�ÌË^�Í� �Î= � dydSd � ¼ d

In the 2D case, for zero and periodic boundary conditions, the extensions of ¿ are rep-
resented, respectively, by � � �� ¿ �� � � �ÌÏoÐ�Ñ ¿ ¿ ¿¿ ¿ ¿¿ ¿ ¿ d
In both cases the central ¿ corresponds to the unknowns within the computational domain
(i.e., the field of view). The assumption of zero boundary conditions results in a matrix 6
that is block Toeplitz with Toeplitz blocks [20], while periodic boundary conditions result
in a matrix 6 that is block circulant with circulant blocks and can be diagonalized by the
2D-DFT [20].

In instances where the zero and/or periodic extensions are poor approximations of real-
ity, unnatural artifacts in reconstructions can result. This is particularly the case when ¿ and¾ contain regions of relative high and variable intensity near the boundaries of the computa-
tional domain. In such instances, the reflective extension of ¿ , corresponding to Neumann
boundary conditions, works significantly better. It is represented by¿9ÒLÓÔ¿�Ó ¿9ÒLÓ¿9Ò ¿ ¿9Ò¿9ÒLÓÔ¿�Ó ¿9ÒLÓ �
where ¿ Ò is the image that results from flipping ¿ across its central vertical axis; ¿ Ó is the
image that results from flipping ¿ across its central horizontal axis; and ¿ ÒLÓ is the image
that results from flipping ¿ across its vertical then horizontal axes. The Neumann boundary
condition leads to a matrix 6 that is block Toeplitz-plus-Hankel with Toeplitz-plus-Hankel
blocks (BTHTHB), and provided the kernel ¬ is symmetric, i.e.,

(2.4)
� _�È ® � � @ _�È ® � � _3È @ ® � � @ _�È @ ® �
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EFFECTIVE MCMC-BASED IMAGE DEBLURRING 4816 can be diagonalized by the 2D-DCT [15, Theorem 3.3]. We will use such a BTHTHB
matrix 6 in our numerical experiments below, while acknowledging that (2.4) is somewhat
restrictive.

An alternative to using one of the above three artificial boundary conditions is to recon-
struct the object on an extended field of view, imposing a periodic boundary condition on the
extended object, and then mask the reconstruction (restricting to the field of view) to remove
the boundary artifacts. This approach has been used by various authors [2, 11, 16, 19]. It has
the benefit that it does not impose artificial boundary conditions at the boundary of the field of
view, hence boundary artifacts do not appear in reconstructions, and moreover, it requires no
restrictions on the PSF, such as the requirement of symmetry for the Neumann boundary con-
dition. However, the presence of the mask matrix in the model removes the periodic structure
from the problem, so that the resulting matrix 6 is not diagonalizable by a fast transform.
Hence an iterative method must be used to approximately solve (1.11), yielding the sample8A� in Step 1 of the MCMC method. As a result this alternative boundary condition is more
computationally intensive to implement than the Neumann boundary condition, which we
focus on here.

2.1. Diagonalizing matrices with Toeplitz-plus-Hankel structure. As stated above,
the Neumann boundary condition results in a matrix 6 that was diagonalizable by the DCT.
Specifically, 6¡���0Z � � �
where � is the ;U<�; diagonal eigenvalue matrix, and � is the orthogonal DCT matrix. In
1D, ���Y� BjÕ withª � BjÕ « _ ® �¨Ö � ,Ø× _; ÃL²iÙ O � a , = �L� �SÚ , = �ÜÛ�^; R �±× _\�ÞÝ = if aw�¨= �� if aw��� ��ß|� dSdSd � ; �
where =áà{a � Ú�à{; . In the 2D case, ����� Q Õ with � Q Õ ��� BÜÕ�â � BjÕ , where ‘ â ’ denotes
Kronecker product. We note that both � BjÕ and � Q Õ are orthogonal matrices.

In practice, multiplication by � and � Z is computed using the fast cosine transform
function [18]. In MATLAB, the syntax is as follows: in 1D, for

 !	>� }� BjÕ   �Jã`ä^å �� ��n� �0ZBjÕ   �çæ^ã`ä^å �� ��n�
while in 2D, if è is an ¼é<�¼ array, and we define

  �JÁ IuÃo� è � and èê� Ï+�$�ÍÏ�ëm�� �� ,Ï+�$�ÍÏ�ë#� � Q Õ  �� �Jã`ä^å|ì � è �n�íÏo����Ï�ë#� �%ZQ Õ  \� �çæ^ã`ä^å|ì � è � d
It remains to define the diagonal eigenvalue matrix � . In both cases,� � diag

�$� � ¬ B �AîY� �%ï B ���L�
where ¬ B is the first column of 6 , ï B �¦ª�= � X � dydSd � X « Z , ‘

î
’ denotes component-wise division,

and � is � BÜÕ in 1D and � Q Õ in 2D.

3. Defining the prior using Gaussian Markov random fields. We now turn to the
definition of the prior (1.3), and specifically, of the precision matrix V^[ . For this, we use
Gaussian Markov random fields (GMRFs). A GMRF 8!� � � B � dSdyd � � } � is a specific type of
Gaussian random vector. Thus 8��ð� ��ñ1�Íò @CB � where

ñ�	�� } is the mean of 8 , and
ò

is known as the ;!<�; symmetric positive semi-definite precision matrix. Note that in (1.3),ñ � � and
ò �YV^[ . If

ò
has a zero eigenvalue, 8 is called an intrinsic Gaussian [17].
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To define 8 more specifically, we need the notion of a labeled graph ó&� ��ôõ�$ö�� . Here
the set of pixels

ô �ÞÅi= � dydSd � ; Æ are the nodes of the graph, and
ö

is the set of edges Åua � Ú Æ ,
where a � Ú 	�ô with aõ÷�2Ú . If Åya � Ú Æ 	�ö we will say that a and Ú are neighbors. Moreover, we
define øN_ to be the set of all neighboring nodes of a (note that aáf	 ø|_ ), ;C_ to be the number of
elements in ø�_ , and 8AùÍú]�ÎÅu� ® E Ú 	 ø�_ Æ . We can now define a GMRF [17, Definition 2.1].

DEFINITION 3.1. A random vector 8¦� � � B � dSdyd � � } ��	ç� } is called a GMRF with
respect to a labeled graph ó5� ��ôõ�$ö�� with mean

ñ
and symmetric positive definite precision

matrix
ò

if and only if its probability density function has the formD � 8 � � � � ÛA� @ }�~ Q ÑNILû^�*ò9� B ~ Q ILKNM O , =� � 8 ,.ñb� Z ò>� 8 ,.ñb� R �
where ª ò « _ ® ÷�7X ü»ý Ú 	 ø�_ d

Note, therefore, that the precision matrix encodes the neighborhood structure; specifi-
cally, a and Ú are neighbors if and only if ª ò « _ ® ÷�7X .

The above definition of GMRFs is very general. What is extremely useful for us from a
modeling perspective is that a GMRF prior D � 8HE V � can be derived from statistical assumptions
about the pixel-level conditional densities D � � _ E 8 ù ú � for aH��= � dSdSd � ; . The idea of construct-
ing the prior D � 8HE V � from the scalar conditional densities D � � _ E 8 ù ú � is known as conditional
autoregression, and was pioneered by Besag [3]. The following theorem for Gaussian condi-
tional densities, and its proof, can be found in [17, Theorem 2.6].

THEOREM 3.2. Given the ; Gaussian full conditional distributions with conditional
mean and precision þ � �m_ÍE 8AùÍú � �JÿC_ , ­®�� ùÍú k _ ® � � ® , ÿ ® �L�� Ë����o� �m_ÍE 8AùÍú � ����_wW&X �
then 8 is a GMRF with respect to ó.� ��ô-��ö\� with mean

ñ
and precision matrix

ò
, whereª ò « _ ® � 	
 � � _ Ú»�7a �� _ k _ ® Ú 	 ø _ �X ²+û$�|Iy�$�
� Ù$I+�

provided �`_ k _ ® ��� ® k ® _ , ab÷�eÚ , and
ò

is positive definite.

3.1. A GMRF prior with Neumann boundary conditions. We now use Theorem 3.2
to construct our prior. We make the assumption that the conditional density �C_�E 8AùÍú is normal
with mean equal to ��#ùÍú�� B} ú�� ®�� ù ú � ® , the sum of the neighboring values of �#_ , and an
unknown precision scaled by the size of the neighborhood ;\_ ; specifically, we assume

(3.1) � _ E 8 ù úH�!� � �� ù ú �u� V�; _ � @"B � d
From Theorem 3.2, we have that (3.1) yields a Gaussian joint density for 8 given by

(3.2) D � 8HE V � G V @ ��} @CBj� ~ Q ISKNM�O", V� 8CZ\[]8 R �
where

(3.3) ª [ « _ ® � 	
 � ;C_ a\�eÚ �, =ÌÚ 	 øi_ �X ²oû$��IS���
� Ù$Io�
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and the ; , = appears due to the fact that [ has rank ; , = [17]. Other possibilities for
k _ ®

and � _ in Theorem 3.2 are discussed in [17], however in order to allow for the use the DCT
for fast computations, �m_ and

k _ ® must satisfy rather restrictive conditions.
Next, we construct [ in two specific cases. First, we assume a uniform grid on ª X � = «

with ; vertices Åi= � dydSd � ; Æ at locations Å � _ Æ }_ ¯ B , where
� _��Äa�f � ; � = � . We define �m_ to

be the intensity value at
� _ and assume the first-order neighborhood system: ø B �½Å�� Æ ,ø�_���Åua , = � a � = Æ for aw�Y� � dSdyd � ; , = , and ø } �çÅy; , = Æ . Thus from (3.3) we have

(3.4) [ BjÕ � ³´´´´´´´µ
= , = X ºSºSº X, = � , = . . .

...X . . . . . . . . . X
...

. . .
, = � , =X ºSºyº X , = =

¶¸·······¹ }`¤N}
d

Note that [ BÜÕ is the discrete second derivative matrix with Neumann boundary condi-
tions. Moreover, multiplication by [ BjÕ is equivalent to discrete convolution (2.1) with kernel� �¡ª X � dydSd � X �y, = � � �S, = � X � dSdyd � X « Z , assuming a Neumann boundary condition. Thus, since�

is symmetric, [ BÜÕ is a Toeplitz-plus-Hankel matrix that can be diagonalized by the DCT.
In 2D, we assume a uniform grid on ª X � = « <Uª X � = « with ;J�x¼ Q vertices Å � a � Ú � Æ�Ç_3È ®$¯ B

at locations Å ��� _ ��� ® � ÆuÇ_�È ®$¯ B , where
� � � � � �ê��f � ¼ � = � . Moreover, we define �m_ ® to be

the intensity value at
��� _ �$� ® � for a � Ú.� = � dSdSd � ¼ , and assume the first-order neighborhood

system:ø�_ ® �çÅ � a , = � Ú �L�y� a � = � Ú �n�u� a � Ú , = �n�u� a � Ú � = � Æ � °3²�� a � Ú0��� � dSdSd � ¼ , = �
whereas if a or Ú is 1 or ¼ , the vertices containing a 0 or ¼ � = are removed from ø _ ® ; for
example, ø B ® �éÅ � � � Ú �n�u� = � Ú , = �n�y� = � Ú � = � Æ and ø B�B �ÂÅ � = � � �n�y� � � = � Æ . Note then that; _ ® ��E ø _ ® E 	 Å�� ��ß|��� Æ .

In the 2D case, the conditional autoregressive model (3.1) has the form

(3.5) �m_ ® E 8AùÍú�� �e� ����#ùÍú�� �u� V�;C_ ® � @CBL� �
where ��#ùÍú���� B} ú�� � � É È Ê � � ù ú�� � É Ê . After reordering the array Åy�#_ ®oÆ�Ç_3È ®$¯ B by stacking its
columns to make the ;�<Y= vector 8 , i.e., 8�� Á IuÃo� ¿ � , we obtain the precision matrixò �7V^[ Q Õ , with

(3.6) [ Q Õ �J[ BjÕØâ ¢]�e¢ â [ BÜÕ �
where [ BÜÕ is defined in (3.4).

Note that [ Q Õ is the discrete 2D negative Laplacian matrix with Neumann boundary
conditions. Moreover, multiplication by [ Q Õ is equivalent to discrete convolution (2.3) with
the ¼Ä<�¼ kernel

�
defined by� _ ® � 	
 � � � a � Ú � � � X � X �L�, = � a � Ú �
	 Å � X ��� = �n�u��� = � X � Æ �X ²oû��|IS���
� Ù$I+�

assuming a Neumann boundary condition. Thus, since the kernel
�

is symmetric, [ Q Õ is
block Toeplitz-plus-Hankel with Toeplitz-plus-Hankel blocks (BTHTHB) matrix that can be
diagonalized by the 2D-DCT [8, 15].
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FIG. 4.1. On the left is the two-dimensional image used to generate the data, and on the right is the blurred
noisy data.

4. Numerical experiments. In this section, we implement the above MCMC method
on an image deconvolution test case. Here the mathematical model is of the form� �����$��� � � B� � B� � ���b,!���*���\,���� � � ����� ����� � � ��� � ���*�
which we discretize using mid-point quadrature on an =�����<J=u� � uniform computational
grid over [0,1] < [0,1]. This yields a system of linear equations 4¨� 6c8 . We assume that�

is a circular Gaussian convolution kernel, so that 6 has BTHTHB structure and can be
diagonalized by the 2D-DCT.

The data 4 is generated using (1.1) with the noise variance ?A@"B chosen so that the noise
strength is 2% that of the signal strength. In order to obtain noise-free data that is not cor-
rupted by the Neumann BC assumption, we begin with an extended 256 < 256 true image,
compute 2D discrete-convolution (2.3) assuming periodic BCs, and then restrict to the cen-
tral =�����<e=u� � sub-image to obtain 6c8 . The central 128 < 128 region of the image used to
generate the data and the data 4 are shown in Figure 4.1.

4.1. Assessing MCMC chain convergence. Just as with an iterative method for opti-
mization, a sampling method must be run to convergence. Convergence of an MCMC chain
can be determined in a number of ways. The recommended approach presented in [6] re-
quires the computation of multiple, parallel MCMC chains with randomly chosen starting
points. With multiple chains in hand, a statistic for each sampled parameter is then computed
whose value provides a measure of convergence.

This statistic is defined as follows. Suppose we compute ; É parallel chains, each of
length ; Ê (after discarding the first half of the simulations), and that Å�! _ ® Æ , for aw�¨= � dydSd � ; Êand Ú%�ç= � dSdSd � ; É , is the collection of samples of a single parameter. Then we define" � ;AÊ; É , = }�#­®$¯ B � !%$ ® , !&$'$ � Q � where !%$ ® � =; Ê } (­ _ ¯ B !'_ ® � and !%$'$N� =; É }�#­®$¯ B !)$ ®+*
and , � =; É }�#­®$¯ B � Q® � where

� Q® � =;AÊ , = } (­ _ ¯ B � ! _ ® , !%$ ® � Q d
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Note that !&$ ® and !)$'$ are the individual chain mean and overall sample mean, respectively.
Thus

"
provides a measure of the variance between the ; É chains, while

,
provides a

measure of the variance within individual chains.
The marginal posterior variance Á Ïo�u� !áE 4 � can then be estimated by-Á Ïo� � � !1E 4 � � �$� ;AÊ , = �

, � " � f^;AÊ �
which is an unbiased estimate under stationarity [6]. The statistic of interest to us, however,
is

(4.1) ./ �10 -Á Ïo� � � !1E 4 � f
, �

which decreases to 1 as ;�Ê3254 .
Once ./ is sufficiently ‘near’ 1 for all sampled parameters, the ;\Ê�; É samples are treated

as samples from the target distribution [6]. A value of 1.1 for ./ is deemed acceptable in [6].
In what follows, we stop the MCMC chain once ./ drops below a pre-specified tolerance.

4.2. Numerical tests. Next, we reconstruct the image by sampling from the posterior
density function D � 8 � ? � V|E 4 � defined in (1.7) using the above MCMC method. We computed
5 parallel MCMC chains and reached an ./ value of 1.03 when the length of the chains was
400, which took approximately 22.4 seconds. The initial values V � and ? � in Step 0 were
chosen randomly from the uniform distributions 6 �87|� =uX � and 6 � X � =^fo� � , respectively. We
plot the mean of the sampled images, with negative values set to zero, as the reconstruction
on the upper-left in Figure 4.2. From the samples for ? and V , on the upper-right in Figure 4.2,
we plot histograms for ? , V , and the regularization parameter r��êV+f+? , which has a 95%
credibility interval ª'9 d : =F<9=uX|@`v � :|d X;9õ<9=uXN@`v « . Note that the noise precision used to generate
the data, ?9� � d 9o� , is contained within the sample 95% credibility interval for ? , [4.66, 4.89].
And finally, for this example, we also plot the MAP estimator computed with r taken to be
the mean of the samples for r . As with the sample mean, we set the negative values in the
MAP estimator to zero.

It remains to quantify the uncertainty in 8 . First, we plot the standard deviation of the
sampled values at each pixel in the lower-right in Figure 4.2; to give the reader some sense
of the variability suggested by these images, we note that for a Gaussian, the 95% confidence
interval is approximately two standard deviations either side of the mean. A more satisfactory
approach for visualizing uncertainty in 2D is to create a movie of the image samples. We
generate this movie in MATLAB, taking every 10th sample as a frame after the first half of
all of the chains have been discarded. Another possible approach is to use the computed
pixel-wise mean ÿA_ ® and variance <`_ ® from the samples and then let the frames of the movie
be samples from � � ÿA_ ® � <`_ ® � for all a3Ú . This is the approach taken in [14] and we present the
results for our example in another movie, noting that since correlation between neighboring
intensities is not modeled in this approach, the image appears more variable. Because of
this, in our opinion, creating the movie from the MCMC samples is the better of the two
approaches.

In order to see the effect of the boundary conditions, we compare the results with those
obtained on the same data set using a periodic BC for the reconstruction step. We plot the
results in Figure 4.3. On the left is the chain mean for samples of 8 after chain lengths of
1000 with the same initial V � and ? � values as in the previous example. Note the boundary
artifacts. Also, the 95% quantile for ? for this run was ª X d : 7|� = d X+X « which does not contain
the value ?9� � d 9+� used to generate the data.

Finally, we compare the CPU time for our sample-based approach with that from the clas-
sical approach of estimating the regularization parameter using generalized cross validation

http://etna.math.kent.edu/vol.40.2013/pp476-488.dir/twinkle1.avi
http://etna.math.kent.edu/vol.40.2013/pp476-488.dir/twinkle2.avi
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FIG. 4.2. Two-dimensional deblurring example with Neumann boundary conditions. On the upper-left is
the mean image with negative values set to zero. On the upper-right are histograms of the samples of the precision
parameters = and > , as well as of the regularization parameter ?A@B=�C�> . On the lower-left is the MAP reconstruction
when ? is taken to be the mean of the sampled values for ? and negative values are set to zero. On the lower-right
is the standard deviation of the computed samples at each pixel.
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FIG. 4.3. Two-dimensional deblurring example. On the left is the reconstruction obtain from the MCMC
method but with periodic boundary conditions. On the right is the reconstruction obtained with ? estimated using
generalized cross validation.
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(GCV) [8, 20] and computing the resulting estimator for 8 . Using the Neumann boundary
condition and the 2D-DCT, the GCV estimation rule can be implemented extremely effi-
ciently. On the left in Figure 4.3 is the GCV solution, which took 0.05 seconds to compute.
Recall that the sample-based solution above required 5 chains of length 400 each to reach./ �Þ= d X ß and took approximately 22 seconds. The efficiency of the sample based approach
can be improved significantly if ./ is increased. For example, for ./ � = d = , the sampler
stopped at chains of length 50 each and took 2.5 seconds with a reconstruction that is visu-
ally indistinguishable from that computed with a longer chain, and a 95% credibility interval
of [4.49, 4.70] for the ? samples, which does not quite contain the value ?e� � d 9o� used to
generate the data. A chain of length 200 results if ./ ��= d X 7 , and in this case the 95% credi-
bility interval for ? was [4.56, 4.77], and computation took approximately 10 seconds. In any
case, the classical GCV-based approach is clearly more efficient, however the sample-based
approach has the clear benefit that uncertainty can be quantified and visualized for the image8 , precision parameters ? and V , and regularization parameter r.�7V+f+? .

5. Conclusions. Our focus is on the problem of image deconvolution, which is an ill-
posed inverse problem, and hence requires regularization. We take a Bayesian approach,
in which case the negative-log of the prior probability density function corresponds to the
regularization function. We construct our prior by assuming specific Gaussian conditional
densities for � _ E 8 ù ú , where 8 ù ú is the vector containing the ‘neighbor’ intensities � ® of pixel� _ . Our assumptions lead to a Gaussian prior with precision (inverse-covariance) matrix V^[ ,
where [ is the discrete negative-Laplacian matrix. This approach is known as conditional
autoregression, and the random vector 8 is called a Gaussian Markov Random Field (GMRF).
This interpretation of negative-Laplacian regularization has the benefit that the underlying
statistical assumptions are made apparent.

In addition, we assume that the unknown 8 has Neumann boundary conditions (BCs),
which corresponds to extending 8 outside of the computational domain via a reflection about
the boundary. For both convolution and GMRF models, the resulting matrices 6 and [ have
Toeplitz-plus-Hankel structure and (assuming a symmetric kernel) can be diagonalized by
the discrete cosine transform (DCT). The use of the DCT in the context of GMRFs does not
appear to be widespread, even though it has advantages over the oft-used DFT, which corre-
sponds to the assumption of periodic BCs. Specifically, in terms of computational efficiency
the DCT and DFT are comparable (both require D � ;FE ² G Q ; � flops), while the use of the DCT
yields better results when the unknown has relatively high intensity values near the bound-
ary of the computational domain, a fact that we demonstrate in the numerical experiments
section. On the other hand, the DCT requires a symmetric kernel, while the DFT does not.

For the estimation step, we implement a Markov Chain Monte Carlo (MCMC) method
for sampling from the posterior density function D � 8 � ? � V|E 4 � . At every MCMC iteration, the
primary work is the computation of the image sample 8w� . This requires the solution of a
matrix-vector equation with coefficient matrix ? � 6 Z 6 � V � [ . Since 6 and [ are diagonal-
izable by the DCT, computing 8 � is efficient, and hence, so is the MCMC method. We also
present a statistical technique for determining the convergence of the MCMC chain, and test
the method on an image deconvolution problem. The method is efficient and yields samples
of 8 , ? , and V , from which a reconstructed image (sample mean), a pixel-wise variance image,
and histograms of ? , V and the regularization parameter r5�YV+fo? are computed.

The computational efficiency of the sample-based approach is compared with that of
estimating r using generalized cross validation and computing the corresponding regularized
solution. The latter is significantly more computationally efficient, however the sample-based
approach readily allows for the quantification of uncertainty in 8 , ? , V , and the regularization
parameter rY� V+fo? . Specifically, we present histograms and credibility intervals for ? and
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movie with frames taken to be a sub-sample of the 8 samples.
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