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VECTOR EXTRAPOLATION APPLIED TO ALGEBRAIC RICCATI EQUATIO NS
ARISING IN TRANSPORT THEORY *
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Abstract. We apply the reduced rank extrapolation method (RRE) to aatite method for computing the
minimal positive solution of a nonsymmetric algebraic Riccgti&ion that arises in transport theory. The compu-
tations yield the minimal positive solution of a vector eqamatiwhich is derived from the special form of solutions
of the Riccati equation and by exploiting the special stteof the coefficient matrices of the Riccati equation.
Numerical experiments and comparisons illustrate the effentiss of the new approach.
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1. Introduction. An important problem that arises in different areas of smeand
engineering is the computation of limits of sequences otarse:, x4, ... , wherez; are
complex/N-vectors withN large. Such sequences may result from iterative methodsrer p
turbation techniques and may converge very slowly. Thiséscase, for example, when they
result from finite-difference or finite-element discretimas of continuum problems, where
rates of convergence become worse as the mesh size dechades extrapolation methods
can be applied to such vector sequences. These methodstraassequence of vectors gen-
erated by some process to a new sequence which convergas féagtout requiring explicit
knowledge of the sequence generator.

Our concern is a special kind of nonsymmetric algebraic &i@quation (NARE) that
arises in transport theory. We will apply a polynomial veastrapolation method7] 34],
namely RRE, to a vector sequence produced by an iteratiieosiéor computing the mini-
mal positive solution of NARE.

This paper is organized as follows. In Sectiyrwe introduce a specific kind of NARE
that arises in transport theory. We will review some iteathethods which have been proven
to be efficient for solving these kinds of equations. We vdtidis on the method of Lir2H],
and we will make a small modification, similar to that of NBGH[1] to accelerate it. Sec-
tion 3 is devoted to polynomial vector extrapolation methods, @lgirthe reduced rank ex-
trapolation (RRE). RRE is an efficient convergence acctder@nd a short review of this
method will be given. An application of the RRE method to tiegative method of LinZ4]
is considered followed by a numerical example in Secfiarhich shows the effectiveness of
our approach.
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2. NARE. Nonsymmetric algebraic Riccati equations appear in trarispeory, where
a variation of the usual one-group neutron transport equds, 9, 12, 22] is formulated as

() +1] ot =5 [ oty v,

2/
(2.1) oO0,p) = f(p), pu>-a,|p/ <1,
lim o (z,p) =0,

wherep(x) is the neutron fluxp (0 < « < 1) is an angular shift, and is the average of
the total number of particles emerging from a collision, evhis assumed to be conserved,
ie,0<c<1.

The scattering functiodl : [—«, 1] x [a, 1] — R for particle transport in the half-space
can be derived from2 1) and satisfies the integro-differential equation

1 1
2.2) (Mia + yia) L(u,y):c(l+%la%dw) (1+%/ﬂ %dw),
where(u,y) € [~a, 1] x [a,1] and(a, ¢) € (0,1)? are pairs of nonnegative constants; see
the appendix in19].

Whene = 0 or o = 1, the integro-differential equatior2 ) has a trivial solution ].
However, wherd) < o < 1 and0 < ¢ < 1, it has a unique, positive, uniformly bounded, and
globally defined solution[9].

Discretization of the integro-differential equatio?.f) by a numerical quadrature for-
mula on the interval0, 1] yields an algebraic matrix Riccati equation.

Nonsymmetric algebraic Riccati equations (NARE) are gaticimatrix equations of the
general form

(2.3) XCX - XD—AX +B=0.

where the coefficient matrice$, B, C, andD € R"*"™,

Let {w;}, and{¢;}~, denote the sets of nodes and weights, respectively, of the sp
cific quadrature rule that is used on the interval [0, 1]. Tdusdrature rule is obtained by
dividing the interval inton /4 subintervals of equal length and applying a Gauss-Legendre
guadrature with 4 nodes to each subinterval. These typisatisfy:

(2.4) €1y Cn >0, Zcizl, and 1>w; >ws >...>wy, > 0.
=1

We are interested in a special case of NARE where

(2.5) A=A—eq", B=eel, C=q¢", D=T—qe?,
and
€= [1717' 71]T7
T Ci
- ey n B P =, Q; 0,
q=1[q1,92, - qn] G =559 >
1
2.6 A = diag([d1, 02, ..., ,]), 0; = ,
( ) 1ag([ 1,02, ) ]) cwl(1+a)
. 1
I' = diag([y1,72, -+ ¥n))s Yi =
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wherediag(-) applied to a vector denotes a square diagonal matrix witkelgr@ents of the
vector on its diagonal. Here) < o < 1 and0 < ¢ < 1. As a consequence a? @), we have

0<d1<da<...0p @and0 <y <72 <...< Y.

In addition,

’Ylgéz fOI’ozSO,
Vi > 6 for a # 0,

fori=1,2,...,n.
The term nonsymmetric distinguishes this case from thelwitedied continuous-time
algebraic Riccati equations (CARE), defined by the quacratitrix equation

XCX —AX —XAT+B=0,

whereB andC are symmetric. For a comprehensive analysis of CARE;Se3[ 27].

Nonsymmetric algebraic Riccati equations arise in manysieluch as transport the-
ory when dealing with particle transfer (or radiative tri@ms Wiener-Hopf factorization of
Markov chains, nuclear physics, applied probability, eegring, control theory, etc. In
this paper, we are interested in special Riccati equatioaisdrise in transport theory with
A, B, C,andD given as in 2.5).

The existence of nonnegative solutions ®f3 was shown by Juand.f] using degree
theory. Itis shown 18, 21] that the Riccati equatior2(3) has two entry-wise positive solu-
tions X = [z;;] andY = [y;;] in R™*™ which satisfyX < Y, where we use the notation
X <Yifxy; <y foralli,j =1,...,n. In applications from transport theory, only the
smaller one of the two positive solutions is of interest amghysically meaningful. Some
iterative procedure[)] were developed to find both nonnegative solutions.

2.1. Obtaining the minimal positive solution of NARE by a vetor equation. It has
been shown by LuZ5] that the minimal positive solution of a NARE can be obtairmsd
computing the minimal positive solution of a vector equati®his vector equation is derived
from a special form of solutions of the Riccati equation ap@ploiting the special structure
of the coefficient matrices of the Riccati equation.

Rewrite the NARE 2.3)—(2.5) as

AX 4+ XD = (Xq+e)(g" X +eT)
and let
(2.7) u=Xqg+e and o7 =¢TX 4T,

It has been shown irlB, 21] that any solution ofZ.3) must be of the form

(2.8) X =To (uw’")=(ww")oT,
where o denotes the Hadamard product defined Myo B = [a;;b;;] for any two
matricesA = [a;;] and B = [b;;], T is the Cauchy matrix]" = [t; ;] = [1/(d; + v;)],
X =[], u = [u,us,...,u,)T andv = [v1,v2,...,v,]7.

Finding the minimal positive solution oR(3) requires finding two positive vectors
andv in (2.8). Substituting 2.8) into (2.7) gives the vector equation

u=uwuo(Pv)+e,

@9) v=vo(Qu)+e,
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where

(2.10) P=[Py] =[5 jf'%] = T diag(q)
and

(211) Q=[Qy =[] = T dias(a).

The minimal positive solution o(.3) can be obtained by computing the minimal positive
solution of the vector equatio2 ©). This vector equation can be expressed as

f(u,v) :=u—wuo(Pv)—e=0,
g(u,v) :=v—vo(Qu)—e=0 "

which is a system of nonlinear equations having the vector(pav) as a positive solution.
Based on the above, L2%] defined an iterative method for the solution afg).

2.1.1. The iterative method of Lu. Lu defined an iterative scheme to find the positive
vectorsu andv,

wE+D = 4B o (Pp®)) 1 e,
(2.12) v+ = ) o (QuP)) +e, fork=0,1,...,
(u(O)’U(O)) - (070)7

satisfying a certain stopping criterion. For 8ll< o < 1 and0 < ¢ < 1, the sequence
{(u™,v*))} defined by 2.12) is strictly monotonically increasing, bounded above, tmng
converging; seeZp) for the proof. Each iteration costs approximatehy? flops.

The minimal positive solution ofX.3) can be computed by

X*=To (u*(v")"),
where(u*, v*) is the limit of (u*), v(*)) defined by the iteration schem2 {2).

2.1.2. A modified iterative method. Bao et al. P] proposed a modified version of the
iterative method of LuZ45]. They noticed that since**1) is obtained beforey*+1) it
should be a better approximationdt thanu*). Consequently,*) is replaced with,(*+1)
in the equation fon(*+1) of the iteration scheme(12).

The modified iteration is as follows

@D = @ o (P5R)) 1 e,
(2.13) o) = 50 o (QuktD) e, fork=0,1,...,
20 = 50) — 0.

The monotonic convergence of the modified iteration schetrigd)(is illustrated in P].
Also, it is shown how the minimal positive solution* of the NARE @.3) can be computed
from

X* = To (u'(v")"),

where(u*, v*) is the limit of (a(*), 5(*)) defined by the modified iteratio (13.
Since it was also shown that®) < @) andv®) < ) for k > 3, (a®,5*) has
the same limit(w*, v*) as(u®,v*)). Also, this proves how the modified iteration scheme
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(2.13 is more efficient than2.12). The cost of every iteration step is approximatéhy?
flops.

Two accelerated variants of the iterative sche@éd) of Lu, proposed in]], are the
nonlinear block Jacobi (NBJ) iteration scheme

uF Y = B+ o (PpR)y e,

(2.14) D) = D) o (QuR)) e, fork =0,1,...,

and the nonlinear block Gauss-Seidel (NBGS) iterationsehe

(k+1) _ , (k+1) (k)
(2.15) u(k+1) _ u(k+1) ° (Pv(k )1+ ©
v =0 o (Quikt) re fork=0,1,....

For both NBJ and NBGS, the sequer{¢e*), v(¥))} is shown in [L] to be strictly mono-
tonically increasing and convergent to the minimal positholution(u*, v*) of the vector
equations Z.9). NBJ and NBGS have the same computational costs at eveayide step
(approximatelydn? flops). Both are effective solvers of NARES arising in tramspheory,
but NBGS is more efficient than NBJ in applications. In pauée, in terms of the asymptotic
rates of convergence, the NBGS method is twice as fast asBdeniethod; seell, Theo-
rem 5] which explains the numerical results presented]imnvfhere the number of iterations
required for NBGS is half of that for NBJ.

In conclusion, the four fixed-point iterationg.12), (2.13, (2.14), and @.15 are easy
to use and share the same low complexity at every iteraticoweder, NBGS was proved
in [15] to be the fastest among these methods in terms of the astimgzte of convergence
when(«, ¢) # (0,1), although being sublinear whén, ¢) = (0, 1). The sublinear conver-
gence, which takes place when the Jacobian at the requirgtbsds singular, is transformed
into a quadratic convergence by means of a Newton methoagpeahin .

2.1.3. The Newton method.Guo and Laub proposed if4] an application of the New-
ton method to the Riccati equatio?.). This method has an order of complexi®y(n?) per
step and yields quadratic convergence. Rf][instead proposed an algorithm that consists
of iteration @.12 combined with a Newton iteration. This scheme is simple @anwe ef-
ficient than applying the Newton method directly #3). Another approach was proposed
by Bini et al. 4] who apply a fast Newton method to the NARE.). It consists of an
algorithm which performs the Newton iteration @(n?) flops. This approach relies on a
modification of the fast LU factorization algorithm for Cdnyelike matrices proposed by
Gohberg et al. I3]. The same idea reduces the cost of Newton’s algorithm m@gpdy
Lu [26] from O(n?) to O(n?) while preserving the quadratic convergence in the generic
case.

2.1.4. The iterative method of Lin. This method was proposed ir24. Let
w = [uT,vT]" and reformulate the vector equatichd) as

(2.16) f(w):=w—-woMw-—e=0,
where,
0 P
w-]3 7

The Jacobian matrix ( f,w) of f(w) for anyw € R?" is given by

J(f,w) = Iy, — N(w),
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where

_ |diag(Pv) diag(u)P
= |diag()Q  diag(Qu)| "

Lin constructed a class of iterative methods to solve théovemmjuation 2.16) based on
the following iterative scheme

N(w)

(2.17) wFtD = ®) T f(w®) fork =0,1,2,...,

where T}, is chosen to approximaté(f,w®)) and T, > J(f,w™). Note that when
Tr = J(f,w®), the Newton method results. A disadvantage of the Newtorhoukts
that it requires an LU factorization of the Jacobian maffiy, w(*)) at each iteration step to
obtain the new approximation to*. This costs)(n?) operations per step.
For anyw® = [(u®)T, (v(F))T]T € R?", Lin [24] proposed the choice
B diag(Pv*)) 0
(2.18) Te = Iy, — [ 0 ding( Qu(k))] .

Substituting 2.18) into (2.17) gives

(k1) — di W)~
(k1) — | Y — | (n — diag(Pv'™))""e
(2.19) w L(ku)} [(In—diag(Qu(k)))_le '

Convergence of the iterative metho2l 19 was examined inZ4]. It was shown that
the convergence is sublinear @s c) tends to(0, 1) and linear wher{, ¢) = (0, 1). Since
(I,, — diag(Pv™®)) and(I,, — diag(Qu(*¥))) are diagonal matrices, the computational cost
of each iteration step is approximatety? flops. A numerical comparison shows how the
iterative method of Lin converges faster than the modifiethtive method of LuZ.13 and
the Newton method.

2.1.5. A modification of the iterative method of Lin. A modification of the itera-
tive scheme 4.19 that is an analog of the NBGS methad |s proposed. In the iterative
scheme 2.19, v**t1) is computed before*+1). Therefore,u*t1) should be a better ap-
proximation ofu* thanu®). Replacingu®) by u**+1) in the equation fon**1) in (2.19
leads to the modified iteration scheme

(k+1) I, — diag(Pv®)))~te
(k+1) _ U — | Un a8
(2.20) w L(Hl)] [( I, — diag(Qu*+V))~te|

For a matrixG € R"*", we define the following function

(OISR R" — R" N
t — (I, — diag(Gt))'e.

Then iteration 2.20 can be expressed as

(k+1) P p(vk*)
(k+1) = u = P(U )

LEMMA 2.1. Let (u*,v*) be the minimal positive solution d2.20. Then,u* > e
andv* > e.



ETNA
Kent State University
http://etna.math.kent.edu

RRE APPLIED TO NARE 495

Proof. Let (u*, v*) be the minimal positive solution o2(20. Then

u* = (I, — diag(Pv*)) e > e > 0,
v* = (I, — diag(Qu*))~te > e > 0,
since P and Q are positive matrices. O
THEOREM 2.2. Given the sequence of vectors generated280 with initial vector
(@, v®) = (0,0), let (u*,v*) be the minimal positive solution q®.20). Then the se-
quence{ (u®), »(¥))} is strictly monotonically increasing, bounded above angstbonver-
gent.
Proof. To show this, we have to prove component-wise that
() 0<u® <+ < y* and0 < v®) < pF+D < p* k> 1;
(i) lim v =u* and lim v®) = v*.
k—o0 k—o0
We start by proving (i) by induction. Léu(?), v(%)) = (0,0) be a starting point for this
method. Fork = 0, using .20 and Lemma&2.1, we get

w9 =0<e=uV <u’.
Also,
v = (I, — diag(Qui)] e = [I, — diag(Qe)] 'e < [I, — diag(Qu")] e
and, therefore,
@ =0 <e=0v® < p*.

This shows that (i) holds fok = 0. Now, suppose that (i) holds for a positive integer.e.,
we have

0<u® <™ <y*  and  0<o® <) < p* fork > 1.
Using .20 and the fact that®) < »(*+1) we have

[1,, — diag(Pv*tN]u*+2) = ¢ = [I,, — diag(Pv®)]uF+)
> [I,, — diag(Po*+1))(F+D),

Sincel,, — diag(Pv**tV) > T, — diag(Pv*) > 0, using Lemma2.1 and the fact that
v+ < %, we get

0< uF D) < g (+2)
Also,

I, — diag(Pv*N]u*+2) = ¢ = [I,, — diag(Pv*)]u*
< [, — diag(Pv*+D)]u*.

Thereforeu(*+2) < v* holds, and consequently (i) holds fgr + 1).
In conclusion, (i) is shown by induction.
The proof of (ii) can be done via (i) which provides the existe of two positive vectors
(@*,0%), with0 < ¢* < u* and0 < 9* < v*, satisfying
k)

lim «® = 4* and lim o'

= ’0*7
k—o00 k—o00
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and
" = Op(0%),
0" = Bo(a"),
i.e., (4*,0*) is a positive solution 0f4.20). Due to the minimal property qfu*, v*) and the
comparative property gfi*, 0*) with (u*, v*), it must hold thati* = «* ando* = v*. a

We consider the case when= 0 andc = 1, which is referred to as the critical case.

Looking back at equation2 (), it can be seen that when = 0, we haved; = v, = wi
and consequenthh = I". We haveT = [¢; ;] = [ﬁ] and since); = +;, it follows that
T= [ﬁ] and7 is symmetric U = 77). In view of (2.10 and @.11), we getP = @ and
consequentlypp = ®g,.

Let K and L be two matrices ifR™*" and define the following transformation

(bK,L RY— Rn,
t — (I)K((I)L(t))

Then iteration 2.21) becomes

(w1 [ @po(u®) ]

| o® D | | @ p(v™) |
And for ®p = @,

r u(k-i—l) T B r (I)pyp(u(k)) b

I U(k-+1) | - I CI)RP(U(k)) ] :

Starting with equal initial vectors(®) = v(°) = 0, it can be easily seen by induction that
the sequencelu*)} oy and{v*)},cn are equal. This implies that it is enough to compute
one of the vector sequences, for exam{alé"')}keN, and the solution of NARE then can be
calculated by

X =T o (u'(u’)"),

whereu* denotes the limit ois(*). Thus, only half of the computational work o?.¢1) is
needed.

Now, we consider the calculation of the Jacobian matrix efrttodified iterationZ.21).
Let

® :R" xR" — R" x R",
(w,v) — (Ppo(u), Pq,r(v))

be the transformation describing the iterati@r2(l). Then the iterative schemg.21) can be
written as

[u(k“)} _ F’P,Q(U(k))]_

U(k+1) (I)QJD(U(IC))
The Jacobian matrix is given by

_ [J(@p g, (u,v))
J(2, (u,v)) = {J@Qp’i, (u, v))]

J(@p, Po(u)J(Pg,u) 0

0 J (@, ®p(v))J(@p,v)
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At the solution(u*, v*), the Jacobian is of the form
‘]((I)Pav*)‘]((p@vlﬁ) 0
(222)  J(®,(u*,0) =
0 J(Dg,u*)J(Pp,v*)
because (u*) = v* and®p(v*) = u*. We have

- 1 -
1—2;‘:1 Pyjvy

1
1=3>27_1 P2jv;
(I, — diag(Pv*)) " le =

1
L1=>"% ) Pnjvj |

Therefore,
P I i T
(A=>7_y Pyvy)® "7 (1=2271 Puyjvy)?
J(®p,v*) = = {(I,, — diag(Pv*))"'}?P.
Pnl Pnn
(A=2"7_1 Pnjv;)? 7 (=227 Pojvj)?
Define
K :R"™" xR" — R™",
(YV,t)  — {(I, — diag(Y't)) ™' }?Y.
Then
(2.23) J(®p,v*) = K(P,v").
Similarly, we have
(2.24) J(@q,u”) = K(Q,u").
Substituting .23 and @.24) into (2.22), the Jacobian matrix at the solution becomes

3. Vector extrapolation methods [/, 34] . The most popular vector extrapolation meth-
ods are the minimal polynomial extrapolation (MPE) methgddabay and Jackso®]| the
reduced rank extrapolation (RRE) method by Editl§j and Mesina 28], the modified min-
imal polynomial extrapolation (MMPE) method by Sidi et aB3], Brezinski [6], and Pu-
gachev P9, the topologicak-algorithm (TEA) by Brezinski§], and the vectoe-algorithm
(VEA) by Wynn [35, 36]. These methods do not require explicit knowledge of howstire
quence is generated and can be applied to the solution @rlewed nonlinear systems of
equations. Several recursive algorithms for implementirese methods are presented in
[6, 10, 11, 16]. A numerical comparison of vector extrapolation methodg their applica-
tions can be found in1[7, 34].

We are interested in applying the RRE method to the itergf#on0) to accelerate its
convergence. See Tablel for a comparison between RRE, MPE, and MMPE which explains
the choice of using RRE. Throughout this paper, we denoté- by the Euclidean inner
product inRY and by|| - || the corresponding norm.
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3.1. Review of RRE B4]. Let {5}, be a sequence of vectorsiki¥. Define the
first and the second forward differencess6f by
AsF) = s+ _ () and A2 = AstFHD — AR g =0,1,...,
When applied to the vector sequenicé® },.cn, the RRE method produces an approx-
imation t(*) of the limit or the antilimit of{s*)1,cx; see B0]. The approximationt*) is
defined by

k
(3.1) H0 =3 P50,
§=0
where
k
(3.2) S =1
j=0
and
k
(3.3) S g =0, for i=0,1,..k-1.
j=0

The scalargs; ; € R are defined by
By = (A%, AsD),
fori=0,1,...,k—1andj=0,1,... k.

It follows from (3.1), (3.2), and @.3) thatt(*) can be expressed as the ratio of two deter-
minants

FO) s 4k
Bo,o Bo,1 oo Bok
k) _ Bk-1,0 Br—11 --- Br—1k
1 1 o 1
60,0 50,1 ... Bo,k
Br-10 Br-11 - Br—1k

Using the following notation
ALSK) = (AT AT
and Schur complements?) can be written as
(k) — (0) _ AS(’“)(AQS(’“))J“AS(O),
where(A2S™ )+ denotes the Moore-Penrose generalized invergs?sf*) defined by

(AQS(k))-i- _ ((AQS(k))TAQS(k))_l(AQS(k))T.
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It is clear thatt(*) exists and is unique if and only if dg\2S5®*))TA2S(H)) =£ 0; see B2).
We assume this to be the case. The computation of the appateim(*) can be carried out
by one of the recursive algorithms ih].

To give an estimate for the residual norm for nonlinear potd, introduce the new
transformation

k
(k) — an(-k)s(””-
=0
We use the generalized residuat:g? defined in [L7]. It is given by
k
f(t(k)) — (k) _ (k) — Z njAS(j)
=0
and can be expressed as
F(t®)) = As® — AZSF (AZSR))+ A5,

Note that the generalized residuzt(*)) is obtained by projecting\s'*) orthogonally
onto the subspace spanned®¥s(? ..., A%2s* =1 _|tis an approximate residual unless the
sequence is generated linearly, in which case it is the garlual. Therefore, a stopping
criterion can be based di#(¢(F)]|.

3.2. Implementation of the RRE method. We follow the description given by Sidi
in [31]. An important feature of this method is that it proceedstigh the solution of least-
squares problems by QR factorization.

Introduce the following notation

ASHFED = [As@ As®] and ™ = .. )T

In view of (3.1), (3.2), and @.3), n;'“) can be determined by solving the overdetermined linear
system

AS(kH)n(k') =0

by the least-squares method subject to the const@ﬁﬁ:to n§k) = 1. This leads to minimiz-

ing the positive definite quadratic form
n(k)T(AS(kH))TAS(kH)n(k)

subject to the same constraint.
Setd® = [d{”,...,dM|T A = (25, d*) 1, andn® = Ad® @GP = rxdP).
Thenn®) can be computed by solving the linear system of equations

(3.4) (ASKEFINT AGHRFD (k) — ¢

Assume that\S(**+1) has full rank. Then it has a QR factorizatidnS(*+1) = Q*) R(¥),
This leads to another form of the linear systedn),

(R(k))TR(k)d(k) —e.
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Finally, the approximation*) can be expressed as
t#®) = 5O 4 Q=D (RK=De(k)y,
where

¢® =g, g & =1l and ¢ = ¢, — "
forj=1,...,k—1.
Another expression daf*) is given by

k-1
(3.5) #(k) — 5(0) 4 ij('k)As(j) = 5O L ASE (),
=0

Then, using 8.4) and @.5), the generalized residua(t(*)) can be written as

k
f(t(k)) - Zm(k)AS(i) = A+ (k)
i=0

Note that the QR factorization akS(*+1) is formed by appending one additional column
to Q*~1) to obtainQ*), and a corresponding column ff*~1) to obtainR*). This QR
factorization can be computed inexpensively by applyimgtiodified Gram-Schmidt process
(MGS) to the vectors(®, s(V) .. s(k+1): see B1].

The computations for the RRE method are described by Algorit. This algorithm
becomes increasingly expensivekdacreases, because the work requirement grows quadrat-
ically with the number of iteration stefis The storage requirement grows linearly withTo
avoid this, the RRE algorithm should be restarted peridigieaery r steps for some integer
r>1.

Algorithm 1 Basic RRE algorithm.

Step 0 Input:Vectors(®), s(1) . s(k+1),

Stepl Computds(® = s0+) — 5 - fori=0,1,...,k.
SetASHFHD = [AsO) A . As)],
Compute the QR factorization dfS*+1), namely,AS*+1) = Q¥ R(¥),

Step 2 Solve the linear system
(RNTRK)4K) — ¢; whered® =[d,d™, ... d™T ande = [1,1,...,1]7.
(This amounts to solving two upper and lower triangular eiyst.)

)
SetA=(>d;”) 1, A e RT.

i=0

setp!®) = xal®, fori=0,1,.... k.

Step3 Compute®) = (¢ ™ . ¢M 1T whereel®) =1 — 5"
ande® = ¢ —y® 1< j<k-1.

-1
Computet® by () — 50 5 QU1 (-1 gk,

3.3. Application of the restarted RRE method to the solutionof NARE. We apply a
restarted RRE algorithm to the vectors computed by thetitergachemeZ.20) to solve the
NARE (2.3—(2.5). Two approaches for restarted RRE are detailed in Algm#thand3. Al-
gorithm 2 applies a restarted RRE method directly to the vector semguen®)},.cry, where
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w® = [T ()T while Algorithm 3 applies a restarted RRE method to the vector
sequence$u®) ),y and{v*)}, oy separately. Both approaches accelerate the convergence
of the vector sequences but Figurd shows that the technique of Algorithinworks better,
especially near the critical case. For later numerical Brpmts, we therefore use Algo-
rithm 2.

Algorithm 2 The restarted RRE) applied to{w®)},. , r is fixed.

Inputk = 0, u(® = v(®) =0, choose an integer.
Then,w©® = [(u®)T, (W©)T)T = 0.

Fork=1,2,...,
YO = o (k=1); 5(0) = (k=1); §(0) — (4(0) ()T,
YUt = @p(s9), 2041 = Qg (yUtD), sUFD = (30D, S0 j= 0, — 1.

Compute the approximation§ —1) by applying the RRE Algorithm on the vectors
(S(O>, 5(1)7 ey S(T)),
If +("—1) satisfies accuracy test, stop.
Else
wk) = (u(k),v(k))T = ¢(r=1:
End

Algorithm 3 The restarted RRE) applied to{u¥)}; and{v ¥}, r is fixed.

Inputk = 0, u(®) = v =0, choose an integer.
Fork=1,2,...,
YO = (k=) 5(0) = k-1,
YO+ = Bp(20)), 20D = o (yi+D), j=0,...,r — 1.
Compute the approximatiom%’_l) andtér_l) by applying the RRE of Algorithmi on
the vectorg(y(®), z(ONT (yM) 2ONT . (y™) 2N T,
If "~ andt" ") satisfy accuracy test, stop.
Else
u®) =475 o) =Y,
End

3.4. The choice ofr. The RRE algorithm should be restarted everiterations, for
some integer > 1, to avoid the increase in computational work and storageiasreases.

If w* = ®&(w*) is a fixed point and/ (P, w*) is the Jacobian matrix @b atw*, then
wtt —w* = J(@,w") (™ —w*) + O (™ —w")|?).

It suffices to examine the eigenvalues of the Jacobian mdfidx w*). Going back to the
iteration €.21) and observing the eigenvalues of the Jacobian matrB&| at the solution,
it can be seen that these eigenvalues range between zermandost of these eigenval-
ues are close or equal to zero, except for a few which are ttosee. Therefore, choos-
ing a small integer is sufficient. In particulary = 4 yields good results. Figurd.2
shows the distribution of the spectrum of the Jacobian matrihe solution fom = 512,
and(a, ¢) = (0.001,0.999) with spectral radiup(J(®, (u*,v*))) ~ 0.86.
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FIG. 3.1.n = 512, a = 0.001, ¢ = 0.999.

0.9

0.6 1

05 B

04t .

L L L
0 200 400 600 800 1000 1200

FiG. 3.2. Distribution of the spectrum of the Jacobian matrix at thiison.

4. Numerical experiments. A numerical example is presented in this section to illus-
trate the performance of the new approach for solving theoveguation?.17). We consider
a special kind of Riccati equatio.Q)—(2.5). The constants; andw; are given by a numer-
ical quadrature formula on the intervl, 1], which is obtained by dividingd0, 1] into n/4
subintervals of equal length and applying a composite Ghagendre quadrature rule with
4 nodes in each subinterval.

Computations are performed for different choices of thepeaters(«, ¢) and for dif-
ferent values of, using MATLAB 7.4 (R2007a) on an Intel-15 quad-core 2.5 Ghagassor
(4 GB RAM) with Fedora 18 (Linux) and with approximately significant decimal digits.
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The stopping criterion is given by

Hw(k+1) _ w(k)H

BRE= ")

< tol

for tol = 10719,
Table4.1 compares the three vector extrapolation methods RRE,MREMMPE for

two values ofr. One can observe that for= 4, the three methods are comparable and give
close results, while for a larger(r = 10 ), the RRE method is the best.

TABLE 4.1
Comparison of the three vector extrapolation methods fffedintr and forn = 2048.

r=4 RRE MPE MMPE
CPU time (in seconds 3.8 3.8 3.9
Residual norm 3.5.107 11 210~ 3.9.107 M

r=10 RRE MPE MMPE
CPU time (in seconds 6.59 7.57 10.36
Residual norm 6.87.1012 9.0 1.0.107

Table 4.2 compares the iterative method proposed by Al P, its modified version
(2.13, and the application of RRE. Denote by ILin the iterativetinoel proposed by Ling4]
with the choice off, given in 2.18), by MILin in its modified version, and by RRE the mod-
ified version with the application of restarted reduced rarkapolation every iterations
of Algorithm 2. Table4.2 shows how the three methods converge to the minimal positive
solution of .20 for severala andc values. The RRE method is seen to outperform ILin
and MILin. Figure4.1shows the performance of RRE in comparison with ILin and MILI
for (a,c) = (0.001,0.999).

TABLE 4.2
Numerical results for n=256 with different(c).

o c Method | Iteration steps Residual norm| CPU time
ILin 4732 9.98e-11 5.47
1078 | 1—107% | MiLin 2517 9.98e-11 2.87
RRE 20 5.03e-14 0.11
ILin 1813 9.97e-11 2.08
107° | 1—-107% | MILin 955 9.93e-11 1.08
RRE 7 3.83e-14 0.05
ILin 674 9.98e-11 0.77
0.0001| 0.9999 | MILin 353 9.88e-11 0.4
RRE 7 9.8e-16 0.04
ILin 246 9.7e-11 0.3
0.001 0.999 MILin 129 9.04e-11 0.14
RRE 9 2.99e-14 0.05
ILin 12 4.01le-11 0.01
0.5 0.5 MILin 7 3.32e-11 0.008
RRE 3 9.72e-17 0.02
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FIG. 4.1.n = 256, r = 4.

We now compare RRE and the fast Newton method proposed].irComputations of
this table have been implemented in Fortran 90 on Linux with@hz and with about5
significant decimal digits and fapl = 10~1°. The Fortran code implemented i fis used.
Denote by LuF the fast Newton method, which is based on a fdsdlgorithm that reduces
the cost of Newton’s algorithm proposed by L26] from O(n?) to O(n?); see Sectio.1.3
Table4.3 compares the restarted RRE method with LuF in terms of CP¥ {imseconds)
for differentn and for(a, ¢) = (1078,1 — 1079). It can be seen that RRE is faster than LuF
also when the convergence is slow for, ¢) close to(0, 1) and for largen.

TABLE 4.3
Comparison in terms of CPU time in seconds for different

a=10"8% ¢c=1-10"°
n LuF RRE(4)
512 | 0.35 0.24
1024 | 1.37 0.96
2048 | 6.6 3.8

5. Conclusions. In this paper, we dealt with a special kind of Riccati equagidNARE,
that arises in transport theory. We presented some effitenattive methods which solve
this kind of equations either by computing the minimal pesisolution of a vector equation
or directly to NARE. We applied a polynomial vector extrag@n method, namely reduced
rank extrapolation (RRE), to the iterative method propdsgdlin [24] which computes the
minimal positive solution of NARE as the minimal positiveligion of a vector equation.
Numerical experiments showed the advantage of using the iR&Bod, especially near the
critical case whelia, ¢) is close to(0, 1) and for largen.
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suggestions.
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