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VECTOR EXTRAPOLATION APPLIED TO ALGEBRAIC RICCATI EQUATIO NS
ARISING IN TRANSPORT THEORY ∗

ROLA EL-MOALLEM † AND HASSANE SADOK‡

Abstract. We apply the reduced rank extrapolation method (RRE) to an iterative method for computing the
minimal positive solution of a nonsymmetric algebraic Riccati equation that arises in transport theory. The compu-
tations yield the minimal positive solution of a vector equation, which is derived from the special form of solutions
of the Riccati equation and by exploiting the special structure of the coefficient matrices of the Riccati equation.
Numerical experiments and comparisons illustrate the effectiveness of the new approach.
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1. Introduction. An important problem that arises in different areas of science and
engineering is the computation of limits of sequences of vectors x0, x1, . . . , wherexi are
complexN -vectors withN large. Such sequences may result from iterative methods or per-
turbation techniques and may converge very slowly. This is the case, for example, when they
result from finite-difference or finite-element discretizations of continuum problems, where
rates of convergence become worse as the mesh size decreases. Vector extrapolation methods
can be applied to such vector sequences. These methods transform a sequence of vectors gen-
erated by some process to a new sequence which converges faster, without requiring explicit
knowledge of the sequence generator.

Our concern is a special kind of nonsymmetric algebraic Riccati equation (NARE) that
arises in transport theory. We will apply a polynomial vector extrapolation method [7, 34],
namely RRE, to a vector sequence produced by an iterative method for computing the mini-
mal positive solution of NARE.

This paper is organized as follows. In Section2, we introduce a specific kind of NARE
that arises in transport theory. We will review some iterative methods which have been proven
to be efficient for solving these kinds of equations. We will focus on the method of Lin [24],
and we will make a small modification, similar to that of NBGS in [1] to accelerate it. Sec-
tion 3 is devoted to polynomial vector extrapolation methods, namely the reduced rank ex-
trapolation (RRE). RRE is an efficient convergence accelerator and a short review of this
method will be given. An application of the RRE method to the iterative method of Lin [24]
is considered followed by a numerical example in Section4 which shows the effectiveness of
our approach.
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2. NARE. Nonsymmetric algebraic Riccati equations appear in transport theory, where
a variation of the usual one-group neutron transport equation [3, 9, 12, 22] is formulated as

[

(µ+ α)
∂

∂x
+ 1

]

ϕ(x, µ) =
c

2

∫ 1

−1

ϕ(x,w) dw ,

ϕ(0, µ) = f(µ) , µ > −α , |µ| ≤ 1 ,(2.1)

lim
x→∞

ϕ(x, µ) = 0 ,

whereϕ(x) is the neutron flux,α (0 ≤ α < 1) is an angular shift, andc is the average of
the total number of particles emerging from a collision, which is assumed to be conserved,
i.e.,0 < c ≤ 1.

The scattering functionL : [−α, 1] × [α, 1] → R for particle transport in the half-space
can be derived from (2.1) and satisfies the integro-differential equation

(2.2)

(

1

µ+ α
+

1

y − α

)

L(µ, y) = c

(

1 +
1

2

∫

1

−α

L(ω, y)

ω + α
d ω

)(

1 +
1

2

∫

1

α

L(µ, ω)

ω − α
d ω

)

,

where(µ, y) ∈ [−α, 1] × [α, 1] and(α, c) ∈ (0, 1)2 are pairs of nonnegative constants; see
the appendix in [19].

Whenc = 0 or α = 1, the integro-differential equation (2.2) has a trivial solution [3].
However, when0 ≤ α < 1 and0 < c ≤ 1, it has a unique, positive, uniformly bounded, and
globally defined solution [19].

Discretization of the integro-differential equation (2.2) by a numerical quadrature for-
mula on the interval[0, 1] yields an algebraic matrix Riccati equation.

Nonsymmetric algebraic Riccati equations (NARE) are quadratic matrix equations of the
general form

(2.3) XCX −XD −AX +B = 0.

where the coefficient matricesA,B,C, andD ∈ R
n×n.

Let {ωi}
n
i=1 and{ci}ni=1 denote the sets of nodes and weights, respectively, of the spe-

cific quadrature rule that is used on the interval [0, 1]. Thisquadrature rule is obtained by
dividing the interval inton/4 subintervals of equal length and applying a Gauss-Legendre
quadrature with 4 nodes to each subinterval. These typically satisfy:

(2.4) c1, . . . , cn > 0,

n
∑

i=1

ci = 1 , and 1 > ω1 > ω2 > . . . > ωn > 0.

We are interested in a special case of NARE where

(2.5) A = ∆− eqT , B = eeT , C = qqT , D = Γ− qeT ,

and

e = [1, 1, ..., 1]T ,

q = [q1, q2, ..., qn]
T , qi =

ci
2ωi

, qi > 0,

∆ = diag([δ1, δ2, ..., δn]), δi =
1

cωi(1 + α)
,(2.6)

Γ = diag([γ1, γ2, ..., γn]), γi =
1

cωi(1− α)
,
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wherediag(·) applied to a vector denotes a square diagonal matrix with theelements of the
vector on its diagonal. Here,0 ≤ α < 1 and0 < c ≤ 1. As a consequence of (2.4), we have

0 < δ1 < δ2 < . . . δn and 0 < γ1 < γ2 < . . . < γn.

In addition,

γi ≤ δi for α ≤ 0,
γi > δi for α 6= 0,

for i = 1, 2, . . . , n.
The term nonsymmetric distinguishes this case from the widely studied continuous-time

algebraic Riccati equations (CARE), defined by the quadratic matrix equation

XCX −AX −XAT +B = 0,

whereB andC are symmetric. For a comprehensive analysis of CARE; see [5, 23, 27].
Nonsymmetric algebraic Riccati equations arise in many fields such as transport the-

ory when dealing with particle transfer (or radiative transfer), Wiener-Hopf factorization of
Markov chains, nuclear physics, applied probability, engineering, control theory, etc. In
this paper, we are interested in special Riccati equations that arise in transport theory with
A, B, C, andD given as in (2.5).

The existence of nonnegative solutions of (2.3) was shown by Juang [18] using degree
theory. It is shown [18, 21] that the Riccati equation (2.3) has two entry-wise positive solu-
tionsX = [xij ] andY = [yij ] in R

n×n which satisfyX ≤ Y , where we use the notation
X ≤ Y if xij ≤ yij for all i, j = 1, ..., n. In applications from transport theory, only the
smaller one of the two positive solutions is of interest and is physically meaningful. Some
iterative procedures [20] were developed to find both nonnegative solutions.

2.1. Obtaining the minimal positive solution of NARE by a vector equation. It has
been shown by Lu [25] that the minimal positive solution of a NARE can be obtainedby
computing the minimal positive solution of a vector equation. This vector equation is derived
from a special form of solutions of the Riccati equation and by exploiting the special structure
of the coefficient matrices of the Riccati equation.

Rewrite the NARE (2.3)–(2.5) as

∆X +XD = (Xq + e)(qTX + eT )

and let

(2.7) u = Xq + e and vT = qTX + eT .

It has been shown in [18, 21] that any solution of (2.3) must be of the form

(2.8) X = T ◦ (uvT ) = (uvT ) ◦ T,

where ◦ denotes the Hadamard product defined byA ◦ B = [aijbij ] for any two
matricesA = [aij ] andB = [bij ], T is the Cauchy matrix,T = [ti,j ] = [1/(δi + γj)],
X = [xi,j ], u = [u1, u2, . . . , un]

T andv = [v1, v2, . . . , vn]
T .

Finding the minimal positive solution of (2.3) requires finding two positive vectorsu
andv in (2.8). Substituting (2.8) into (2.7) gives the vector equation

(2.9)
u = u ◦ (Pv) + e,

v = v ◦ (Qu) + e,
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where

P= [Pij ] = [
qj

δi + γj
] = T diag(q)(2.10)

and

Q= [Qij ] = [
qj

δj + γi
] = TT diag(q).(2.11)

The minimal positive solution of (2.3) can be obtained by computing the minimal positive
solution of the vector equation (2.9). This vector equation can be expressed as

f(u, v) := u− u ◦ (Pv)− e = 0,

g(u, v) := v − v ◦ (Qu)− e = 0
.

which is a system of nonlinear equations having the vector pair (u, v) as a positive solution.
Based on the above, Lu [25] defined an iterative method for the solution of (2.9).

2.1.1. The iterative method of Lu. Lu defined an iterative scheme to find the positive
vectorsu andv,

(2.12)
u(k+1) = u(k) ◦ (Pv(k)) + e,

v(k+1) = v(k) ◦ (Qu(k)) + e, for k = 0, 1, . . . ,

(u(0), v(0)) = (0, 0),

satisfying a certain stopping criterion. For all0 ≤ α < 1 and0 < c ≤ 1, the sequence
{(u(k), v(k))} defined by (2.12) is strictly monotonically increasing, bounded above, andthus
converging; see [25] for the proof. Each iteration costs approximately4n2 flops.

The minimal positive solution of (2.3) can be computed by

X∗ = T ◦ (u∗(v∗)T ),

where(u∗, v∗) is the limit of (u(k), v(k)) defined by the iteration scheme (2.12).

2.1.2. A modified iterative method. Bao et al. [2] proposed a modified version of the
iterative method of Lu [25]. They noticed that sinceu(k+1) is obtained beforev(k+1), it
should be a better approximation tou∗ thanu(k). Consequently,u(k) is replaced withu(k+1)

in the equation forv(k+1) of the iteration scheme (2.12).
The modified iteration is as follows

(2.13)
ũ(k+1) = ũ(k) ◦ (P ṽ(k)) + e,

ṽ(k+1) = ṽ(k) ◦ (Qũ(k+1)) + e, for k = 0, 1, . . . ,

ũ(0) = ṽ(0) = 0.

The monotonic convergence of the modified iteration scheme (2.13) is illustrated in [2].
Also, it is shown how the minimal positive solutionX∗ of the NARE (2.3) can be computed
from

X∗ = T ◦ (u∗(v∗)T ),

where(u∗, v∗) is the limit of (ũ(k), ṽ(k)) defined by the modified iteration (2.13).
Since it was also shown thatu(k) < ũ(k) andv(k) < ṽ(k) for k ≥ 3, (ũ(k), ṽ(k)) has

the same limit(u∗, v∗) as(u(k), v(k)). Also, this proves how the modified iteration scheme
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(2.13) is more efficient than (2.12). The cost of every iteration step is approximately4n2

flops.
Two accelerated variants of the iterative scheme (2.12) of Lu, proposed in [1], are the

nonlinear block Jacobi (NBJ) iteration scheme

(2.14)
u(k+1) = u(k+1) ◦ (Pv(k)) + e,

v(k+1) = v(k+1) ◦ (Qu(k)) + e, for k = 0, 1, . . . ,

and the nonlinear block Gauss-Seidel (NBGS) iteration scheme

(2.15)
u(k+1) = u(k+1) ◦ (Pv(k)) + e,

v(k+1) = v(k+1) ◦ (Qu(k+1)) + e, for k = 0, 1, . . . .

For both NBJ and NBGS, the sequence{(u(k), v(k))} is shown in [1] to be strictly mono-
tonically increasing and convergent to the minimal positive solution(u∗, v∗) of the vector
equations (2.9). NBJ and NBGS have the same computational costs at every iteration step
(approximately4n2 flops). Both are effective solvers of NAREs arising in transport theory,
but NBGS is more efficient than NBJ in applications. In particular, in terms of the asymptotic
rates of convergence, the NBGS method is twice as fast as the NBJ method; see [15, Theo-
rem 5] which explains the numerical results presented in [1], where the number of iterations
required for NBGS is half of that for NBJ.

In conclusion, the four fixed-point iterations (2.12), (2.13), (2.14), and (2.15) are easy
to use and share the same low complexity at every iteration. However, NBGS was proved
in [15] to be the fastest among these methods in terms of the asymptotic rate of convergence
when(α, c) 6= (0, 1), although being sublinear when(α, c) = (0, 1). The sublinear conver-
gence, which takes place when the Jacobian at the required solution is singular, is transformed
into a quadratic convergence by means of a Newton method proposed in [4].

2.1.3. The Newton method.Guo and Laub proposed in [14] an application of the New-
ton method to the Riccati equation (2.3). This method has an order of complexityO(n3) per
step and yields quadratic convergence. Lu [26] instead proposed an algorithm that consists
of iteration (2.12) combined with a Newton iteration. This scheme is simple andmore ef-
ficient than applying the Newton method directly to (2.3). Another approach was proposed
by Bini et al. [4] who apply a fast Newton method to the NARE (2.3). It consists of an
algorithm which performs the Newton iteration inO(n2) flops. This approach relies on a
modification of the fast LU factorization algorithm for Cauchy-like matrices proposed by
Gohberg et al. [13]. The same idea reduces the cost of Newton’s algorithm proposed by
Lu [26] from O(n3) to O(n2) while preserving the quadratic convergence in the generic
case.

2.1.4. The iterative method of Lin. This method was proposed in [24]. Let
w = [uT , vT ]T and reformulate the vector equation (2.9) as

(2.16) f(w) := w − w ◦Mw − e = 0,

where,

M =

[

0 P
Q 0

]

.

The Jacobian matrixJ(f, w) of f(w) for anyw ∈ R
2n is given by

J(f, w) = I2n −N(w),
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where

N(w) =

[

diag(Pv) diag(u)P
diag(v)Q diag(Qu)

]

.

Lin constructed a class of iterative methods to solve the vector equation (2.16) based on
the following iterative scheme

(2.17) w(k+1) := w(k) − T−1
k f(w(k)), for k = 0, 1, 2, . . . ,

whereTk is chosen to approximateJ(f, w(k)) and Tk ≥ J(f, w(k)). Note that when
Tk = J(f, w(k)), the Newton method results. A disadvantage of the Newton method is
that it requires an LU factorization of the Jacobian matrixJ(f, w(k)) at each iteration step to
obtain the new approximation tow∗. This costsO(n3) operations per step.

For anyw(k) = [(u(k))T , (v(k))T ]T ∈ R
2n, Lin [24] proposed the choice

(2.18) Tk = I2n −

[

diag(Pv(k)) 0
0 diag(Qu(k))

]

.

Substituting (2.18) into (2.17) gives

(2.19) w(k+1) =

[

u(k+1)

v(k+1)

]

:=

[

(In − diag(Pv(k)))−1e
(In − diag(Qu(k)))−1e

]

.

Convergence of the iterative method (2.19) was examined in [24]. It was shown that
the convergence is sublinear as(α, c) tends to(0, 1) and linear when(α, c) = (0, 1). Since
(In − diag(Pv(k))) and(In − diag(Qu(k))) are diagonal matrices, the computational cost
of each iteration step is approximately4n2 flops. A numerical comparison shows how the
iterative method of Lin converges faster than the modified iterative method of Lu (2.13) and
the Newton method.

2.1.5. A modification of the iterative method of Lin. A modification of the itera-
tive scheme (2.19) that is an analog of the NBGS method [1] is proposed. In the iterative
scheme (2.19), u(k+1) is computed beforev(k+1). Therefore,u(k+1) should be a better ap-
proximation ofu∗ thanu(k). Replacingu(k) by u(k+1) in the equation forv(k+1) in (2.19)
leads to the modified iteration scheme

(2.20) w(k+1) =

[

u(k+1)

v(k+1)

]

:=

[

(In − diag(Pv(k)))−1e

(In − diag(Qu(k+1)))−1e

]

.

For a matrixG ∈ R
n×n, we define the following function

ΦG : Rn −→ R
n ,

t −→ (In − diag(Gt))−1e.

Then iteration (2.20) can be expressed as

(2.21) w(k+1) =

[

u(k+1)

v(k+1)

]

:=

[

ΦP (v
(k))

ΦQ(u
(k+1))

]

.

LEMMA 2.1. Let (u∗, v∗) be the minimal positive solution of(2.20). Then,u∗ > e
andv∗ > e.
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Proof. Let (u∗, v∗) be the minimal positive solution of (2.20). Then

u∗ = (In − diag(Pv∗))−1e > e > 0,
v∗ = (In − diag(Qu∗))−1e > e > 0,

since P and Q are positive matrices.
THEOREM 2.2. Given the sequence of vectors generated by(2.20) with initial vector

(u(0), v(0)) = (0, 0), let (u∗, v∗) be the minimal positive solution of(2.20). Then the se-
quence{(u(k), v(k))} is strictly monotonically increasing, bounded above and thus conver-
gent.

Proof. To show this, we have to prove component-wise that

(i) 0 ≤ u(k) < u(k+1) < u∗ and0 ≤ v(k) < v(k+1) < v∗, k ≥ 1;
(ii) lim

k→∞

u(k) = u∗ and lim
k→∞

v(k) = v∗.

We start by proving (i) by induction. Let(u(0), v(0)) = (0, 0) be a starting point for this
method. Fork = 0, using (2.20) and Lemma2.1, we get

u(0) = 0 < e = u(1) < u∗.

Also,

v(1) = [In − diag(Qu(1))]−1e = [In − diag(Qe)]−1e < [In − diag(Qv∗)]−1e

and, therefore,

v(0) = 0 < e = v(1) < v∗.

This shows that (i) holds fork = 0. Now, suppose that (i) holds for a positive integerk, i.e.,
we have

0 ≤ u(k) < u(k+1) < u∗ and 0 ≤ v(k) < v(k+1) < v∗, for k ≥ 1.

Using (2.20) and the fact thatv(k) < v(k+1), we have

[In − diag(Pv(k+1))]u(k+2) = e = [In − diag(Pv(k))]u(k+1)

> [In − diag(Pv(k+1))]u(k+1).

SinceIn − diag(Pv(k+1)) > In − diag(Pv∗) > 0, using Lemma2.1 and the fact that
v(k+1) < v∗, we get

0 ≤ u(k+1) < u(k+2).

Also,

[In − diag(Pv(k+1))]u(k+2) = e = [In − diag(Pv∗)]u∗

< [In − diag(Pv(k+1))]u∗.

Therefore,u(k+2) < u∗ holds, and consequently (i) holds for(k + 1).
In conclusion, (i) is shown by induction.

The proof of (ii) can be done via (i) which provides the existence of two positive vectors
(û∗, v̂∗), with 0 < û∗ < u∗ and0 < v̂∗ < v∗, satisfying

lim
k→∞

u(k) = û∗ and lim
k→∞

v(k) = v̂∗,
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and

û∗ = ΦP (v̂
∗),

v̂∗ = ΦQ(û
∗),

i.e., (û∗, v̂∗) is a positive solution of (2.20). Due to the minimal property of(u∗, v∗) and the
comparative property of(û∗, v̂∗) with (u∗, v∗), it must hold that̂u∗ = u∗ andv̂∗ = v∗.

We consider the case whenα = 0 andc = 1, which is referred to as the critical case.
Looking back at equations (2.6), it can be seen that whenα = 0, we haveδi = γi = 1

ωi

and consequently∆ = Γ. We haveT = [ti,j ] = [ 1
δi+γj

] and sinceδi = γi, it follows that

T = [ 1
δi+δj

] andT is symmetric (T = TT ). In view of (2.10) and (2.11), we getP = Q and
consequentlyΦP = ΦQ.

LetK andL be two matrices inRn×n and define the following transformation

ΦK,L : Rn−→ R
n,

t −→ ΦK(ΦL(t)).

Then iteration (2.21) becomes
[

u(k+1)

v(k+1)

]

=

[

ΦP,Q(u
(k))

ΦQ,P (v
(k))

]

.

And forΦP = ΦQ,
[

u(k+1)

v(k+1)

]

=

[

ΦP,P (u
(k))

ΦP,P (v
(k))

]

.

Starting with equal initial vectorsu(0) = v(0) = 0, it can be easily seen by induction that
the sequences{u(k)}k∈N and{v(k)}k∈N are equal. This implies that it is enough to compute
one of the vector sequences, for example{u(k)}k∈N, and the solution of NARE then can be
calculated by

X = T ◦ (u∗(u∗)T ),

whereu∗ denotes the limit ofu(k). Thus, only half of the computational work of (2.21) is
needed.

Now, we consider the calculation of the Jacobian matrix of the modified iteration (2.21).
Let

Φ : Rn × R
n −→ R

n × R
n ,

(u, v) −→ (ΦP,Q(u),ΦQ,P (v))

be the transformation describing the iteration (2.21). Then the iterative scheme (2.21) can be
written as

[

u(k+1)

v(k+1)

]

:=

[

ΦP,Q(u
(k))

ΦQ,P (v
(k))

]

.

The Jacobian matrix is given by

J(Φ, (u, v)) =

[

J(ΦP,Q, (u, v))
J(ΦQ,P , (u, v))

]

=





J(ΦP ,ΦQ(u))J(ΦQ, u) 0

0 J(ΦQ,ΦP (v))J(ΦP , v)



 .
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At the solution(u∗, v∗), the Jacobian is of the form

(2.22) J(Φ, (u∗, v∗)) =





J(ΦP , v
∗)J(ΦQ, u

∗) 0

0 J(ΦQ, u
∗)J(ΦP , v

∗)



 ,

becauseΦQ(u
∗) = v∗ andΦP (v

∗) = u∗. We have

(In − diag(Pv∗))−1e =

























1
1−

∑
n
j=1

P1jv
∗

j

1
1−

∑
n
j=1

P2jv
∗

j

...

1
1−

∑
n
j=1

Pnjv
∗

j

























.

Therefore,

J(ΦP , v
∗) =









P11

(1−
∑

n
j=1

P1jv
∗

j
)2 . . . P1n

(1−
∑

n
j=1

P1jv
∗

j
)2

...
. . .

...
Pn1

(1−
∑

n
j=1

Pnjv
∗

j
)2 . . . Pnn

(1−
∑

n
j=1

Pnjv
∗

j
)2









= {(In − diag(Pv∗))−1}2P.

Define

K : Rn×n × R
n −→ R

n×n,

(Y, t) −→ {(In − diag(Y t))−1}2Y.

Then

(2.23) J(ΦP , v
∗) = K(P, v∗).

Similarly, we have

(2.24) J(ΦQ, u
∗) = K(Q, u∗).

Substituting (2.23) and (2.24) into (2.22), the Jacobian matrix at the solution becomes

(2.25) J(Φ, (u∗, v∗)) =

[

K(P, v∗)K(Q, u∗) 0
0 K(Q, u∗)K(P, v∗)

]

.

3. Vector extrapolation methods [7, 34] . The most popular vector extrapolation meth-
ods are the minimal polynomial extrapolation (MPE) method by Cabay and Jackson [8], the
reduced rank extrapolation (RRE) method by Eddy [10] and Mesina [28], the modified min-
imal polynomial extrapolation (MMPE) method by Sidi et al. [33], Brezinski [6], and Pu-
gachev [29], the topologicalǫ-algorithm (TEA) by Brezinski [6], and the vectorǫ-algorithm
(VEA) by Wynn [35, 36]. These methods do not require explicit knowledge of how these-
quence is generated and can be applied to the solution of linear and nonlinear systems of
equations. Several recursive algorithms for implementingthese methods are presented in
[6, 10, 11, 16]. A numerical comparison of vector extrapolation methods and their applica-
tions can be found in [17, 34].

We are interested in applying the RRE method to the iteration(2.20) to accelerate its
convergence. See Table4.1for a comparison between RRE, MPE, and MMPE which explains
the choice of using RRE. Throughout this paper, we denote by(·, ·) the Euclidean inner
product inRN and by‖ · ‖ the corresponding norm.
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3.1. Review of RRE [34]. Let {s(k)}k∈N be a sequence of vectors inRN . Define the
first and the second forward differences ofs(k) by

∆s(k) = s(k+1) − s(k) and ∆2s(k) = ∆s(k+1) −∆s(k) , k = 0, 1, . . . ,

When applied to the vector sequence{s(k)}k∈N, the RRE method produces an approx-
imation t(k) of the limit or the antilimit of{s(k)}k∈N; see [30]. The approximationt(k) is
defined by

(3.1) t(k) =

k
∑

j=0

η
(k)
j s(j),

where

(3.2)
k

∑

j=0

η
(k)
j = 1

and

(3.3)
k

∑

j=0

βi,jη
(k)
j = 0, for i = 0, 1, ..., k − 1.

The scalarsβi,j ∈ R are defined by

βi,j = (∆2s(i),∆s(j)),

for i = 0, 1, ..., k − 1 and j = 0, 1, ..., k.
It follows from (3.1), (3.2), and (3.3) thatt(k) can be expressed as the ratio of two deter-

minants

t(k) =

s(0) s(1) . . . s(k)

β0,0 β0,1 . . . β0,k

...
...

...
βk−1,0 βk−1,1 . . . βk−1,k

1 1 . . . 1
β0,0 β0,1 . . . β0,k

...
...

...
βk−1,0 βk−1,1 . . . βk−1,k

.

Using the following notation

∆iS(k) = [∆is(0), . . . ,∆is(k−1)]

and Schur complements,t(k) can be written as

t(k) = s(0) −∆S(k)(∆2S(k))+∆s(0),

where(∆2S(k))+ denotes the Moore-Penrose generalized inverse of∆2S(k) defined by

(∆2S(k))+ = ((∆2S(k))T∆2S(k))−1(∆2S(k))T .
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It is clear thatt(k) exists and is unique if and only if det((∆2S(k))T∆2S(k)) 6= 0; see [32].
We assume this to be the case. The computation of the approximationt(k) can be carried out
by one of the recursive algorithms in [11].

To give an estimate for the residual norm for nonlinear problems, introduce the new
transformation

t̃(k) =

k
∑

j=0

η
(k)
j s(j+1).

We use the generalized residual oft(k) defined in [17]. It is given by

r̃(t(k)) = t̃(k) − t(k) =

k
∑

j=0

ηj∆s(j)

and can be expressed as

r̃(t(k)) = ∆s(0) −∆2S(k)(∆2S(k))+∆s(0).

Note that the generalized residualr̃(t(k)) is obtained by projecting∆s(k) orthogonally
onto the subspace spanned by∆2s(0), . . . ,∆2s(k−1). It is an approximate residual unless the
sequence is generated linearly, in which case it is the true residual. Therefore, a stopping
criterion can be based on‖r̃(t(k))‖.

3.2. Implementation of the RRE method. We follow the description given by Sidi
in [31]. An important feature of this method is that it proceeds through the solution of least-
squares problems by QR factorization.

Introduce the following notation

∆S(k+1) = [∆s(0), . . . ,∆s(k)] and η(k) = (η
(k)
0 , . . . , η

(k)
k )T .

In view of (3.1), (3.2), and (3.3), η(k)j can be determined by solving the overdetermined linear
system

∆S(k+1)η(k) = 0

by the least-squares method subject to the constraint
∑k

j=0 η
(k)
j = 1. This leads to minimiz-

ing the positive definite quadratic form

η(k)
T
(∆S(k+1))T∆S(k+1)η(k)

subject to the same constraint.
Setd(k) = [d

(k)
0 , . . . , d

(k)
k ]T , λ = (

∑k
i=0 d

(k)
i )−1, andη(k) = λd(k) (η(k)i = λd

(k)
i ).

Thenη(k) can be computed by solving the linear system of equations

(3.4) (∆S(k+1))T∆S(k+1)d(k) = e.

Assume that∆S(k+1) has full rank. Then it has a QR factorization∆S(k+1) = Q(k)R(k).
This leads to another form of the linear system (3.4),

(R(k))TR(k)d(k) = e.
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Finally, the approximationt(k) can be expressed as

t(k) = s(0) +Q(k−1)(R(k−1)ξ(k)),

where

ξ(k) = [ξ
(k)
0 , ξ

(k)
1 , . . . , ξ

(k)
k−1]

T , ξ
(k)
0 = 1− η

(k)
0 , and ξ

(k)
j = ξ

(k)
j−1 − η

(k)
j

for j = 1, . . . , k − 1.
Another expression oft(k) is given by

(3.5) t(k) = s(0) +

k−1
∑

j=0

ξ
(k)
j ∆s(j) = s(0) +∆S(k)ξ(k).

Then, using (3.4) and (3.5), the generalized residualr̃(t(k)) can be written as

r̃(t(k)) =

k
∑

i=0

η
(k)
i ∆s(i) = ∆S(k+1)η(k).

Note that the QR factorization of∆S(k+1) is formed by appending one additional column
to Q(k−1) to obtainQ(k), and a corresponding column toR(k−1) to obtainR(k). This QR
factorization can be computed inexpensively by applying the modified Gram-Schmidt process
(MGS) to the vectorss(0), s(1), . . . , s(k+1); see [31].

The computations for the RRE method are described by Algorithm 1. This algorithm
becomes increasingly expensive ask increases, because the work requirement grows quadrat-
ically with the number of iteration stepsk. The storage requirement grows linearly withk. To
avoid this, the RRE algorithm should be restarted periodically every r steps for some integer
r > 1.

Algorithm 1 Basic RRE algorithm.

Step 0 Input:Vectorss(0), s(1), . . . , s(k+1).
Step 1 Compute∆s(i) = s(i+1) − s(i) , for i = 0, 1, . . . , k.

Set∆S(k+1) = [∆s(0),∆s(1), . . . ,∆s(k)].
Compute the QR factorization of∆S(k+1), namely,∆S(k+1) = Q(k)R(k).

Step 2 Solve the linear system

(R(k))TR(k)d(k) = e; whered(k)=[d
(k)
0 , d

(k)
1 , . . . , d

(k)
k ]T ande = [1, 1, . . . , 1]T .

(This amounts to solving two upper and lower triangular systems.)

Setλ = (
k
∑

i=0

d
(k)
i )−1, λ ∈ R

+.

Setη(k)i = λd
(k)
i , for i = 0, 1, . . . , k.

Step 3 Computeξ(k) = [ξ
(k)
0 , ξ

(k)
1 , . . . , ξ

(k)
k−1]

T whereξ(k)0 = 1− η
(k)
0

andξ(k)j = ξ
(k)
j−1 − η

(k)
j , 1 ≤ j ≤ k − 1.

Computet(k) by :t(k) = s(0) +Q(k−1)(R(k−1)ξ(k)).

3.3. Application of the restarted RRE method to the solutionof NARE. We apply a
restarted RRE algorithm to the vectors computed by the iteration scheme (2.20) to solve the
NARE (2.3)–(2.5). Two approaches for restarted RRE are detailed in Algorithms2 and3. Al-
gorithm2 applies a restarted RRE method directly to the vector sequence{w(k)}k∈N, where
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w(k) = [(u(k))T , (v(k))T ]T , while Algorithm3 applies a restarted RRE method to the vector
sequences{u(k)}k∈N and{v(k)}k∈N separately. Both approaches accelerate the convergence
of the vector sequences but Figure3.1shows that the technique of Algorithm2 works better,
especially near the critical case. For later numerical experiments, we therefore use Algo-
rithm 2.

Algorithm 2 The restarted RRE(r) applied to{w(k)}k , r is fixed.

Input:k = 0, u(0) = v(0) = 0, choose an integerr.
Then,w(0) = [(u(0))T , (v(0))T ]T = 0.
Fork = 1, 2, ...,
y(0) = u(k−1); z(0) = v(k−1); s(0) = (y(0), z(0))T ;
y(j+1) = ΦP (z

(j)), z(j+1) = ΦQ(y
(j+1)), s(j+1) = (y(j+1), z(j+1))T , j = 0, . . . , r − 1.

Compute the approximationst(r−1) by applying the RRE Algorithm1 on the vectors
(s(0), s(1), . . . , s(r));
If t(r−1) satisfies accuracy test, stop.
Else

w(k) = (u(k), v(k))T = t(r−1);
End

Algorithm 3 The restarted RRE(r) applied to{u(k)}k and{v(k)}k, r is fixed.

Input:k = 0, u(0) = v(0) = 0, choose an integerr.
Fork = 1, 2, ...,
y(0) = u(k−1); z(0) = v(k−1);
y(j+1) = ΦP (z

(j)), z(j+1) = ΦQ(y
(j+1)), j = 0, . . . , r − 1.

Compute the approximationst(r−1)
1 andt(r−1)

2 by applying the RRE of Algorithm1 on
the vectors[(y(0), z(0))T , (y(1), z(1))T , . . . , (y(r), z(r))T ];

If t(r−1)
1 andt(r−1)

2 satisfy accuracy test, stop.
Else

u(k) = t
(r−1)
1 ; , v(k) = t

(r−1)
2 ;

End

3.4. The choice ofr. The RRE algorithm should be restarted everyr iterations, for
some integerr > 1, to avoid the increase in computational work and storage ask increases.

If w∗ = Φ(w∗) is a fixed point andJ(Φ, w∗) is the Jacobian matrix ofΦ atw∗, then

w(k+1) − w∗ = J(Φ, w∗)(w(k) − w∗) +O(‖(w(k) − w∗)‖2).

It suffices to examine the eigenvalues of the Jacobian matrixJ(Φ, w∗). Going back to the
iteration (2.21) and observing the eigenvalues of the Jacobian matrix (2.25) at the solution,
it can be seen that these eigenvalues range between zero and one. Most of these eigenval-
ues are close or equal to zero, except for a few which are closeto one. Therefore, choos-
ing a small integerr is sufficient. In particular,r = 4 yields good results. Figure3.2
shows the distribution of the spectrum of the Jacobian matrix at the solution forn = 512,
and(α, c) = (0.001, 0.999) with spectral radiusρ(J(Φ, (u∗, v∗))) ≈ 0.86.
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FIG. 3.1.n = 512, α = 0.001, c = 0.999.
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FIG. 3.2. Distribution of the spectrum of the Jacobian matrix at the solution.

4. Numerical experiments. A numerical example is presented in this section to illus-
trate the performance of the new approach for solving the vector equation (2.17). We consider
a special kind of Riccati equation (2.3)–(2.5). The constantsci andωi are given by a numer-
ical quadrature formula on the interval[0, 1], which is obtained by dividing[0, 1] into n/4
subintervals of equal length and applying a composite Gauss-Legendre quadrature rule with
4 nodes in each subinterval.

Computations are performed for different choices of the parameters(α, c) and for dif-
ferent values ofn using MATLAB 7.4 (R2007a) on an Intel-I5 quad-core 2.5 Ghz processor
(4 GB RAM) with Fedora 18 (Linux) and with approximately15 significant decimal digits.
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The stopping criterion is given by

ERR =
‖w(k+1) − w(k)‖

‖w(k+1)‖
≤ tol

for tol = 10−10.
Table4.1 compares the three vector extrapolation methods RRE,MPE, and MMPE for

two values ofr. One can observe that forr = 4, the three methods are comparable and give
close results, while for a largerr (r = 10 ), the RRE method is the best.

TABLE 4.1
Comparison of the three vector extrapolation methods for differentr and forn = 2048.

r = 4 RRE MPE MMPE
CPU time (in seconds) 3.8 3.8 3.9

Residual norm 3.5.10−11 2.10−11 3.9.10−11

r = 10 RRE MPE MMPE
CPU time (in seconds) 6.59 7.57 10.36

Residual norm 6.87.10−12 9.0−12 1.0.10−11

Table4.2 compares the iterative method proposed by Lin (2.12), its modified version
(2.13), and the application of RRE. Denote by ILin the iterative method proposed by Lin [24]
with the choice ofTk given in (2.18), by MILin in its modified version, and by RRE the mod-
ified version with the application of restarted reduced rankextrapolation every4 iterations
of Algorithm 2. Table4.2 shows how the three methods converge to the minimal positive
solution of (2.20) for severalα andc values. The RRE method is seen to outperform ILin
and MILin. Figure4.1 shows the performance of RRE in comparison with ILin and MILin
for (α, c) = (0.001, 0.999).

TABLE 4.2
Numerical results for n=256 with different (α,c).

α c Method Iteration steps Residual norm CPU time
ILin 4732 9.98e-11 5.47

10−8 1− 10−6 MILin 2517 9.98e-11 2.87
RRE 20 5.03e-14 0.11
ILin 1813 9.97e-11 2.08

10−5 1− 10−5 MILin 955 9.93e-11 1.08
RRE 7 3.83e-14 0.05
ILin 674 9.98e-11 0.77

0.0001 0.9999 MILin 353 9.88e-11 0.4
RRE 7 9.8e-16 0.04
ILin 246 9.7e-11 0.3

0.001 0.999 MILin 129 9.04e-11 0.14
RRE 9 2.99e-14 0.05
ILin 12 4.01e-11 0.01

0.5 0.5 MILin 7 3.32e-11 0.008
RRE 3 9.72e-17 0.02
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We now compare RRE and the fast Newton method proposed in [4]. Computations of
this table have been implemented in Fortran 90 on Linux with 2.5 Ghz and with about15
significant decimal digits and fortol = 10−10. The Fortran code implemented in [4] is used.
Denote by LuF the fast Newton method, which is based on a fast LU algorithm that reduces
the cost of Newton’s algorithm proposed by Lu [26] from O(n3) toO(n2); see Section2.1.3.
Table4.3 compares the restarted RRE method with LuF in terms of CPU time (in seconds)
for differentn and for(α, c) = (10−8, 1− 10−6). It can be seen that RRE is faster than LuF
also when the convergence is slow for(α, c) close to(0, 1) and for largen.

TABLE 4.3
Comparison in terms of CPU time in seconds for differentn.

α = 10−8, c = 1− 10−6

n LuF RRE(4)
512 0.35 0.24
1024 1.37 0.96
2048 6.6 3.8

5. Conclusions. In this paper, we dealt with a special kind of Riccati equations, NARE,
that arises in transport theory. We presented some efficientiterative methods which solve
this kind of equations either by computing the minimal positive solution of a vector equation
or directly to NARE. We applied a polynomial vector extrapolation method, namely reduced
rank extrapolation (RRE), to the iterative method proposedby Lin [24] which computes the
minimal positive solution of NARE as the minimal positive solution of a vector equation.
Numerical experiments showed the advantage of using the RREmethod, especially near the
critical case when(α, c) is close to(0, 1) and for largen.
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