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DISCRETIZATION INDEPENDENT CONVERGENCE RATES FOR
NOISE LEVEL-FREE PARAMETER CHOICE RULES FOR THE

REGULARIZATION OF ILL-CONDITIONED PROBLEMS ∗

STEFAN KINDERMANN†

Abstract. We develop a convergence theory for noise level-free parameter choice rules for Tikhonov regu-
larization of finite-dimensional, linear, ill-conditionedproblems. In particular, we derive convergence rates with
bounds that do not depend on troublesome parameters such as thesmall singular values of the system matrix. The
convergence analysis is based on specific qualitative assumptions on the noise, the noise conditions, and on certain
regularity conditions. Furthermore, we derive several sufficient noise conditions both in the discrete and infinite-
dimensional cases. This leads to important conclusions for the actual implementation of such rules in practice. For
instance, we show that for the case of random noise, the regularization parameter can be found by minimizing a
parameter choice functional over a subinterval of the spectrum (whose size depends on the smoothing properties of
the forward operator), yielding discretization independent convergence rate estimates, which are of optimal order
under regularity assumptions for the exact solution.

Key words. regularization, parameter choice rule, Hanke-Raus rule, quasioptimality rule, generalized cross
validation
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1. Introduction. The selection of the regularization parameter for regularization meth-
ods is of high importance for ill-posed problems. Several methods for this task are known;
see, e.g., [5]. It is standard to use parameter choice rules which depend on the knowl-
edge of the noise level. Here instead, we discuss so-called noise level-free (or heuristic,
or data-driven) parameter choice rules, which do not use thenoise level at all, for instance,
the quasioptimality principle, the Hanke-Raus rules, and generalized cross validation. For a
long time, such methods have been considered of minor importance since it is well-known
that they cannot yield convergence in the worst case for ill-posed problems. However, re-
cently [10, 11, 15] a successful, quite general theory has been developed for such rules within
the framework of a restricted noise analysis (using so-called noise conditions). It is the aim
of this paper to extend this theory to the case of discrete ill-conditioned problems. Such
problems typically (but not exclusively) arise by discretizing ill-posed problems and are very
important. The transfer of the convergence theory from the infinite-dimensional case to the
finite-dimensional one is not as straightforward as might beexpected at first look. The reason
is that the standard noise conditions as formulated in [10, 11, 15] are never satisfied in the dis-
crete case. A central topic in this paper is to replace these conditions by ones that are useful in
a finite-dimensional setting. The aim is to develop a convergence theory proving convergence
rates that are robust with respect to the discretization, i.e., estimates with constants that do
not depend on “bad” parameters such as the condition number,which usually blows up as the
discretization becomes finer.

We establish such a convergence theory by imitating the infinite-dimensional theory
and using appropriate noise conditions and regularity conditions. Our analysis is based on
Tikhonov regularization but can be extended to other methods as well.

The paper is organized as follows: In Section2 we set the stage, define the parameter
choice rules that we consider, and state the main abstract convergence theorem. The next
section, Section3, is an extension of the study of the noise and regularity conditions in [10].
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We develop alternative formulations of these in the infinite-dimensional case. This section is
rather independent of the other ones and puts previous results (such as the noise conditions
in [11] and scaling conditions of [2]) onto a common ground. In Section4 we state anal-
ogous noise and regularity conditions which are meaningfulin the discrete case. The main
difference to the infinite-dimensional case is that the relevant conditions only have to hold
in a subinterval of the spectrum away from0. Using this, we find convergence rates for the
quasioptimality principle and the Hanke-Raus rules, similar to the infinite-dimensional case
(Theorem4.8). Furthermore, we also show some rate estimates for generalized cross valida-
tion. In Section5, we study the noise conditions under the assumption that thenoise is white
(independent and identically normally distributed) and estimate the probability that they are
satisfied, which immediately leads in combination with Theorem 4.8 to convergence rates
which hold with a certain probability. By studying some typical examples of ill-conditioned
problems in Section5.1, we can consider the question if and in what sense a noise condition
holds, and how the parameter choice rules are used in practice. This is elaborated on in the
final section.

2. Tikhonov regularization and parameter choice functionals. In the following, we
focus on ill-conditioned linear equations in Hilbert spaces

(2.1) Anxn = yδ,n,

whereAn is an operatorXn → Yn with finite-dimensional range,xn is the unknown so-
lution, andyδ,n are given (possibly noisy) data. Note that we always assume that (2.1) is
ill-conditioned (i.e.,An has a large condition number), hence in this paper we use the terms
“discrete” and “ill-conditioned” as synonyms. Below we will prove results which also hold
in the infinite-dimensional case, e.g., in Section3. To indicate this situation, we will drop the
subscriptn and writeA, x, y,X, Y, etc., when all involved Hilbert spaces are allowed to be
infinite-dimensional as well.

Formally, the problem (2.1) is never ill-posed. Nevertheless ill-conditioned problems
show in many cases a similar behavior as ill-posed ones and usually have to be approached
by regularization. Indeed, suppose that the datayδ,n in (2.1) are a contamination of some
exact datayn by noise with noise levelδ,

yδ,n = yn + en, ‖en‖ = δ.

Then solving (2.1) by means of the Moore-Penrose pseudo-inversexn,δ = A†
nyδ,n leads to

an error bound

(2.2) ‖x†n − xn,δ‖ ≤ 1

σmin(An)
δ,

whereσmin(An) is the smallest singular value ofAn andx†n denotes the (unknown) solution
for exact datax†n = A†

nyn. For discretized versions of ill-posed problems, this boundis sharp
and becomes very large as the discretization becomes finer, such that quite oftenxn,δ is of
no use at all. The remedy in this situation is to use regularization, for instance, Tikhonov
regularization, and to compute

(2.3) xα,δ,n =
(

AT
nAn + αI

)−1
AT

nyδ,n,

whereα > 0 is the regularization parameter.
Usually, the regularized solutionxα,δ,n is a better estimate ofx†n thanxn,δ if the regu-

larization parameter is chosen appropriately. Several methods for this choice are well-known
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such as a priori or a posteriori rules, which require the knowledge of the noise level; see,
e.g., [5]. Recently, a convergence theory was developed for noise level-free parameter choice
rules, which have the advantage that the noise level is not needed. However, the price to pay is
that they only work if the data erroren satisfies some additionalnoise conditions[10, 11, 15].
It is the aim of this article to extend the analysis of [10] to the case of discrete, ill-conditioned
problems (2.1).

The class of noise level-free rules we are considering here has the following form. The
regularization parameterα = α∗ is selected by minimizing a certain functionalψ

(2.4) α∗ = argminα∈In
ψ(α, yδ,n)

over a compact intervalIn ⊂ [0,∞]. Note that in the discrete case, the intervalIn of pos-
sible regularization parameters has to exclude0, i.e., In ⊂ [η,∞[ with η > 0, contrary to
the infinite-dimensional case, where an interval[0, α0] can be chosen. This is an subtle but
important issue and will be addressed in more detail in Sections4 and5, where examples of
possible intervalsIn are given.

The main goal of our analysis is to prove, if possible,discretization independenterror
estimates, i.e., estimates of the form

‖xα,δ,n − x†n‖ ≤ f(δ),

wheref is robust in the sense that it stays bounded even ifAn approaches an operatorA of an
infinite-dimensional ill-posed problem. In particular,f should not depend on constants such
as the smaller singular values ofAn. Note that (2.2) is not discretization independent, since
the smallest singular value usually tends to0 asn increases ifAn represents a discretization
of a forward operatorA of an ill-posed problem.

In this paper we donot consider convergence asn → ∞, in particular, we do not as-
sume thatAn converges to some operatorA with infinite-dimensional range. Nevertheless,
the results of this paper are still relevant in several situations: it can be the case that the prob-
lem (2.1) is given without reference to any discretization of a infinite-dimensional problem,
such that it is only of interest to compute the solutionx†n in a stable way. Discretization in-
dependent error estimates are of great use because they can be applied no matter how high
the condition number ofAn is. The second case is thatAn is a suitable discretization of an
ill-posed problem with an operatorA, which has the property thatx†n converges to the solu-
tion x† of the infinite-dimensional problem. This happens, for instance, when using the dual
projection method [5]. In this case, it is not difficult to use our results to prove convergence
of xα,δ,n as the discretization becomes finer,n → ∞. However, it is well-known that not
every discretizationAn of suchA leads to convergence ofx†n tox†; see the Seidman counter-
example [17]. In this case, our estimates are useless, but this does not necessarily mean that
heuristic parameter choice rules cannot be applied successfully.

We will focus on Tikhonov regularization, but the analysis can be extended to other
methods as well [10]. Furthermore, we will use the following notations: by an index function
we mean a continuous, strictly increasing functionφ : R+ → R

+ with φ(0) = 0. We will
denote byyn the exact data and byx†n the associated minimum norm solution,

yn = Anx
†
n, x†n = A†

nyn,

yδ,n will denote the noisy data

yδ,n = yn + en,
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with δ the noise level

δ = ‖yδ,n − yn‖ = ‖en‖.

Moreover,xα,δ,n will denote the regularized solution (2.3), while xα,n is the regularized
solution with exact data

xα,n =
(

AT
nAn + αI

)−1
AT

nyn.

As it is standard, the total error‖xα,δ,n−x†n‖ is split into two parts, the propagated data error

ed(α) = ‖xα,δ,n − xα,n‖

and the approximation error

ea(α) = ‖xα,n − x†n‖,

which yields the well-known error bound

(2.5) ‖xα,δ,n − x†n‖ ≤ ed(α) + ea(α).

For a fixed parameter choice functional, the regularizationparameterα∗ is selected
via (2.4). The main estimate of the total error is then given in the following theorem; see
also [10, 11, 15].

THEOREM 2.1. Letψ : In × Y → R be subadditive, i.e.,

ψ(α, z + w) ≤ ψ(α, z) + ψ(α,w),

nonnegative,ψ(α) ≥ 0, and symmetric,ψ(α,−y) = ψ(α, y), and let a minimumα∗ in (2.4)
exist.

For any fixeden ∈ Yn, zn ∈ R(An), let there exist a monotonically decreasing func-
tion ρ↓,en : R

+→R
+ and a monotonically increasing functionρ↑,zn : R

+→R
+ such that

ψ(α, en) ≤ ρ↓,en(α) ∀α ∈ In,(2.6)

ψ(α, zn) ≤ ρ↑,zn(α) ∀α ∈ In.(2.7)

Moreover, foryn = Anx
†
n fixed, let there exists a setN ⊂ Yn (the set of “admissible

noise”), a constantCd, and an index functionsΦ such that

ed(α
∗) ≤ Cdψ(α

∗, yδ,n − yn) ∀yδ,n − yn ∈ N ,(2.8)

ea(α
∗) ≤ Φ(ψ(α∗, yn)).(2.9)

Then, ifyδ,n − yn ∈ N we have the error estimate

(2.10) ‖xα∗,δ,n − x†n‖ ≤ inf
α∈In

{

Cdρ↓,yδ,n−yn
(α) + 2Cdρ↑,yn

(α) + ea(α) if α∗ ≤ α,

Φ
(

ρ↓,yδ,n−yn
(α) + 2ρ↑,yn

(α)
)

+ ed(α) if α∗ > α.

Proof. The proof is an adaption of those in [10, 15]. Note thated(α) is monotonically de-
creasing andea(α) is monotonically increasing. Letα ∈ In be arbitrary but fixed. Ifα∗ ≤ α,
then by monotonicity it holds thatea(α∗) ≤ ea(α). By the properties and estimates ofψ and
the monotonicity ofρ↑,y, we find

ed(α
∗) ≤ Cdψ(α

∗, yδ,n − yn) ≤ Cd (ψ(α
∗, yδ,n) + ψ(α∗, yn))

≤ Cdψ(α, yδ,n) + Cdρ↑,yn
(α∗) ≤ Cd

(

ρ↓,yδ,n−yn
(α) + ρ↑,yn

(α)
)

+ Cdρ↑,yn
(α)

≤ Cdρ↓,yδ,n−yn
(α) + 2Cdρ↑,yn

(α).



ETNA
Kent State University 

http://etna.math.kent.edu

62 S. KINDERMANN

With (2.5) the result follows for the caseα∗ ≤ α. Now assume thatα∗ > α. Then the role
of ed andea are reversed:

ed(α
∗) ≤ ed(α),

ea(α
∗) ≤ Φ(ψ(α∗, yδ,n) + ψ(α∗, yδ,n − yn)) ≤ Φ

(

ψ(α, yδ,n) + ρ↓,yδ,n−yn
(α∗)

)

≤ Φ
(

ρ↑,yn
(α) + ρ↓,yδ,n−yn

(α) + ρ↓,yδ,n−yn
(α)
)

.

REMARK 2.2. The functionsρ↑,yn
andρ↓,yδ,n−yn

are usually known and independent
of n. Calculating the infimum in (2.10) then leads to discretization independent convergence
(rates) if all the prerequisites of this theorem hold withn-independent constants. Here, the
most difficult part is to show (2.8) and (2.9). The estimate on the noise term, (2.8), is in gen-
eral impossible without restricting the noise to a setN . The condition thatyδ,n−yn ∈ N such
that (2.8) holds, is termed anoise conditionand the bound (2.10) is a bound in therestricted
noise case. The corresponding inequality (2.9) is a condition on the exact solution. Note that
in general the desirable choiceΦ(x) = Cax does not hold with a discretization independent
constant, but onlyΦ(x) = Cax

ν with ν < 1. Because of this, the right-hand side of (2.10)
only yields suboptimal rates. However, if so-calledregularity conditions(also called decay
conditions in [10, 11]) on the exact solution hold, then an estimate (2.9) with Φ(x) = Cax

and a discretization independent constantCa is possible, leading to optimal order estimates.
REMARK 2.3. This theorem is neither specific to the discrete case norto Tikhonov

regularization. It remains valid in the infinite-dimensional case and also for othermonotone
regularization methods; see [10] for details.

2.1. Parameter choice functionals and their bounds.We are now in the position to
analyze specific parameter choice functionals and the corresponding estimates in Theorem2.1
in more detail. For the analysis, the parameter choice functionals are conveniently expressed
in terms of a spectral family of the operatorA. Since we are focusing on the discrete case,
we only need to consider the singular value decomposition ofAn.

Let us denote by(σi, ui, vi)Ni=1 the singular system ( withσi the singular values,ui the
left andvi the right singular vectors) of the operatorAn with finite-dimensional range. We
consider the following rules obtained via (2.4) and the corresponding parameter functionals:
the quasioptimalityrule [19, 20], whereψ = ψQO, the Hanke-Raus rule HR1 [9], where
ψ = ψHR,1, the Hanke-Raus rule HR∞ [9], whereψ = ψHR,∞, and generalized cross
validation[21], whereψ = ψGCV . These functionals are defined as follows, usingλi := σ2

i .

ψQO(α, yδ,n)
2 =

N
∑

i=1

α2λi

(λi + α)4
|(yδ,n, vi)|2,

ψHR,1(α, yδ,n)
2 =

N
∑

i=1

α2

(λi + α)3
|(yδ,n, vi)|2,

ψHR,∞(α, yδ,n)
2 =

N
∑

i=1

α

(λi + α)2
|(yδ,n, vi)|2,

ψGCV (α, yδ,n)
2 =

1
(

1
N

∑N
i=1

α
α+λi

)2

N
∑

i=1

(

α

(λi + α)

)2

|(yδ,n, vi)|2.

For each of these rules, the regularization parameter is chosen by minimizing the functional
with respect toα as in (2.4) using only the actual given datayδ,n as information.
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Note that for the computation of these functionals andα∗, the singular system is not
needed. For instance, the quasioptimality rule is in practice computed by selecting a sequence
of geometrically decreasing regularization parameters,αi = α0q

i ⊂ In, with q < 1, and
choosingα∗ = αi, wherei is the integer where the minimum of

‖xαi+1,δ,n − xαi,δ,n‖ i = 1, 2, . . .

is attained. More precisely, this is the discrete quasioptimality rule [19], but the corresponding
functional can be treated quite similar to the original one.The rule HR1 can be computed by

ψHR,1(α, yδ,n)
2 = α−1(yδ,n −Anx

II
α,δ,n, yδ,n −Anxα,δ,n),

employing one step of the iterated Tikhonov regularization[9]

xIIα,δ,n := xα,δ,n + (AT
nAn + αI)−1

(

AT
n (yδ,n −Anxα,δ,n)

)

.

The rule HR∞ is particularly simple, since it is just an appropriatelyα-scaled residual

ψHR,∞(α, yδ,n)
2 = α−1‖Anxα,δ,n − yδ,n‖2,

and in a similar way, the GCV-functional can be computed by

(2.11) ψGCV (α, yδ,n)
2 = η(α)2‖Anxα,δ − yδ,n‖2

with

η(α) =
( α

N
trace

(

(A∗
nAn + αI)−1

)

)−1

.

For more information, further functionals, and possible fine-tuning, we refer to [3, 6, 7, 10,
16]. All of the above defined parameter choice functionals are obviously positive, symmet-
ric, and subadditive, and by continuity, a minimumα∗ in (2.4) always exists. In view of
Theorem2.1we are now interested in the corresponding estimates.

The propagated data error and the approximation error can beexpressed in terms of the
spectral system as

ed(α)
2 =

N
∑

i=1

λi

(α+ λi)2
|(yδ,n − yn, vi)|2, ea(α)

2 =
N
∑

i=1

α2

(α+ λi)2
|(x†n, ui)|2,

which immediately yields the following estimates of type (2.6), (2.7):

ψQO(α, yδ,n − yn) ≤ ed(α),

ψQO(α, yn) ≤ ea(α),

ψHR,1(α, yδ,n − yn) ≤
δ√
α
,

ψHR,1(α, yn) ≤ ea(α),

ψHR,∞(α, yδ,n − yn) ≤
δ√
α
,(2.12)

ψHR,∞(α, yn) ≤ cνα
ν‖x†n‖−ν ∀0 < ν ≤ 1

2
.(2.13)

Here‖x†n‖−ν is the norm of a “source element” in a source condition

(2.14) ‖x†n‖2−ν = ‖(AT
nAn)

−νx†n‖2 =

N
∑

i=1

1

λ2νi
|(x†, ui)|2,
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andc2ν = (1+2ν)1+2ν(1−2ν)1−2ν

4 . ConcerningψGCV , we notice that it differs fromψHR,∞
only by a function depending onα. Thus, we can use the bounds forψHR,∞ to get

ψGCV (α, yδ,n − yn) ≤ η(α)δ

ψGCV (α, yn) ≤ cν‖x†n‖−νη(α)α
ν+ 1

2 , ∀0 < ν ≤ 1

2
.

Furthermore, we notice that estimates forψHR,1(α, yδ − y) andψHR,∞(α, yδ,n − yn) in
terms ofed(α) are also possible if additional (rather restrictive) conditions on the noise hold;
see, e.g., [10, Lemma 4.9].

3. Noise conditions and regularity conditions.We now study the so-called noise con-
ditions, i.e., conditions onyδ,n−yn such that inequalities of the form (2.8) hold. It was shown
in [11] that such estimates are possible with bounded constants for the quasi-optimality prin-
ciple, and later for many other combinations of regularization methods and parameter choice
functionals [10].

At first we extend some known results on the noise condition using inequalities equiv-
alent to or sufficient for (2.8). We will derive these in the general infinite-dimensional case,
extending the analysis of [10, 11]; of course, the discrete setting is a special case of this. The
infinite-dimensional versions of the parameter choice functionalsψQO, ψHR,1, ψHR,∞ are
obvious and can be found for instance in [10].

LEMMA 3.1. LetA : X → Y be a bounded operator between Hilbert spaces, and let the
regularization be Tikhonov regularization. The inequality (2.8) for ψ = ψQO is equivalent to

(3.1)
∫ ∞

1

ψQO(α
∗η, yδ − y)2

η − 1

η2
dη ≤ C2

d

6
ψQO(α

∗, yδ − y)2,

and for the caseψ = ψHR,1, the inequality(2.8) is equivalent to

(3.2)
∫ ∞

1

ψHR,1(α
∗η, yδ − y)2

η − 2

η2
dη ≤ C2

d

2
ψHR,1(α

∗, yδ − y)2.

Proof. Let Fλ be a spectral family ofAA∗. For the quasioptimality functionalψQO we
use Fubini’s theorem to get

∫ ∞

1

ψQO(α
∗η, yδ − y)2

η − 1

η2
dη =

∫ ∞

1

∫

σ

α∗2λη2

(λ+ α∗η)4
dFλ‖yδ − y‖2 η − 1

η2
dη

=

∫

σ

∫ ∞

1

α∗2λη2

(λ+ α∗η)4
η − 1

η2
dη dFλ‖yδ − y‖2 =

1

6

∫

σ

λ

(α∗ + λ)2
dFλ‖yδ − y‖2.

Forψ = ψHR,1 we find similarly usingQ, the orthogonal projector ontoR(A),

∫ ∞

1

ψHR,1(α
∗η, yδ − y)2

η − 2

η2
dη =

∫ ∞

1

∫

σ

α∗2η2

(λ+ α∗η)3
dFλ‖Q(yδ − y)‖2 η − 2

η2
dη

=

∫

σ

∫ ∞

1

α∗2η2

(λ+ α∗η)3
η − 2

η2
dη dFλ‖Q(yδ − y)‖2 =

1

2

∫

σ

λ

(α∗ + λ)2
dFλ‖yδ − y‖2.

Sinceed(α∗)2 =
∫

σ
λ

(α∗+λ)2 dFλ‖yδ − y‖2, the assertion follows.
From this lemma we can find several sufficient conditions suchthat (2.8) holds. We

define

V (t) :=

∫ t

0

λ dFλ‖yδ − y‖2, W (t) :=

∫ t

0

dFλ‖Q(yδ − y)‖2.
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PROPOSITION3.2. Let the same assumptions as in Lemma3.1 hold. Forψ = ψQO,
each of the following conditions imply(3.1) and hence(2.8).

• There exists anǫ > 0 andCd <∞ such that

(3.3) ψQO(α
∗η, yδ − y)2 ≤ ǫ(1 + ǫ)

C2
d

6
η−ǫψQO(α

∗, yδ − y)2, ∀η ≥ 1.

• There exists anǫ > 0 andCd <∞ such that

(3.4)
∫ ∞

1

V (ηt)
η − 1

η4
dη ≤ C2

d

6
V (t) ∀t > 0.

• There exists anǫ > 0 andCd <∞ such that

(3.5) V (ηt) ≤ ǫ(1 + ǫ)
C2

d

6
η2−ǫV (t) ∀η ≥ 1, t > 0.

• There exists a constantCnc <∞ such that

(3.6)
∫ ∞

t

1

λ
dFλ‖yδ − y‖2 ≤ Cnc

t2

∫ t

0

λ dFλ‖yδ − y‖2 ∀t > 0.

Here,(3.6) holds if and only if(3.5) holds.
Proof. The first condition (3.3) implies (3.1) simply by integration. For (3.4) we use

integration by parts and a change of variables

ψQO(α
∗, yδ − y)2 =

∫ ∞

0

α∗2λ

(α∗ + λ)4
dFλ‖yδ − y‖2

=

∫ ∞

0

α∗2

(α∗ + λ)4
dV (λ) = 4

∫ ∞

0

α∗2

(α∗ + λ)5
V (λ) dλ,

ψQO(α
∗η, yδ − y)2 = 4

1

η2

∫ ∞

0

α∗2

(α∗ + ξ)5
V (ξη) dξ,

from which the sufficiency of (3.4) for (3.1) follows. Again by integration, (3.5) implies (3.4).
The equivalence of (3.6) and (3.5) is a consequence of a celebrated theorem of Arinjo and
Muckenhoupt [1]; see [18]. The constantCnc in (3.6) can be related toCd by inspection of
the proofs in [11].

In particular, the noise condition of Theorem2.1can be formulated by definingN as the
set of allyδ − y such that one of the conditions in this proposition holds (with discretization
independent constants). For the Hanke-Raus rule HR1 we have similar characterizations.

PROPOSITION3.3. Let the same assumptions as in Lemma3.1 hold. Forψ = ψHR,1,

each of the following conditions imply(3.2) and hence(2.8).
• There exist anǫ > 0 andCd <∞ such that

(3.7) ψHR,1(α
∗η, yδ − y)2 ≤ 2ǫǫ(1 + ǫ)

C2
d

2
η−ǫψHR,1(α

∗, yδ − y)2, ∀η ≥ 2.

• There exist anǫ > 0 andCd <∞ such that

(3.8)
∫ ∞

2

W (ηt)
η − 2

η3
dη ≤ C2

d

2
W (t) ∀t > 0.
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• There exist anǫ > 0 andCd <∞ such that

(3.9) W (ηt) ≤ 2ǫǫ(1 + ǫ)
C2

d

2
η1−ǫW (t) ∀η ≥ 2, ∀t > 0.

• There exists a constantCnc > 0 such that

(3.10)
∫ ∞

t

1

λ
dFλ‖Q(yδ − y)‖2 ≤ Cnc

t

∫ t

0

dFλ‖Q(yδ − y)‖2 ∀t > 0.

Here,(3.10) holds if and only if(3.9) holds.
Proof. The implication (3.7) ⇒ (3.2) follows by multiplication of (3.2) by η−2

η2 and
integration overη > 2, noting that the part of the integral in (3.2) overη ∈ [1, 2] is negative.
In view of (3.8), we can proceed as for the quasioptimality case,

ψHR,1(α
∗, yδ − y)2 =

∫ ∞

0

α∗2

(α∗ + λ)3
dW (λ) = 3

∫ ∞

0

α∗2

(α∗ + λ)4
W (λ) dλ,

ψHR,1(α
∗η, yδ − y)2 = 3

1

η

∫ ∞

0

α∗2

(α∗ + ξ)4
W (ηξ) dξ,

which implies (3.2) after integration. By integration overη, (3.9) implies (3.8). Finally, again
by the results of [1], (3.10) is equivalent to (3.9), when the condition holds for allη > 1. But
it is straightforward to see that this is also equivalent to the condition holding for allη > 2,
possibly with different constants.

To complete the picture we recall results of [10] for the Hanke-Raus rule HR∞:
PROPOSITION3.4. If (3.10) or (3.9) holds, then(2.8) holds (possibly with a different

constantCd than in(3.9)) for ψHR,∞.
The conditions (3.10) and (3.6) were used in [10, 11] to establish (2.8) for several regu-

larization methods. Our analysis shows the sufficiency of the scaling-type conditions. This
type of conditions (but stronger ones) were employed in [2] to prove convergence rates for
the quasioptimality principle.

The noise conditions are usually interpreted as restrictions that rule out “smooth noise”,
i.e., noise that is in the range ofA. This can be seen in the following proposition. Here we
denote again byQ the orthogonal projector ontoR(A).

PROPOSITION3.5. If Q(yδ−y) 6= 0 and if one of the conditions(3.4), (3.5), (3.6), (3.8),
(3.9), or (3.10) holds, thenQ(yδ − y) 6∈ R(A). In particular, if A has finite-dimensional
range, then none of these conditions can hold.

Proof. Since (3.5) or (3.6) imply (3.4), and (3.9) or (3.10) imply (3.8), it is enough to
prove this proposition if either (3.4) or (3.8) holds. Suppose thatQ(yδ − y) ∈ R(A). Then

W (t) ≤ o(t) andV (t) ≤ o(t2).

In this case, assuming (3.4), we find by the change of variablesz = ηt that

t2
∫ ∞

t

V (z)

z4
(z − t) dz = t2

∫ ∞

0

V (z)

z4
max{z − t, 0} dz ≤ o(t2).

The function(z, t) 7→ max{z − t, 0} is nonnegative and monotonically increasing ast→ 0.
By the monotone convergence theorem, we obtain that

∫ ∞

0

V (z)

z3
dz = lim

t→0

∫ ∞

0

V (z)

z4
max{z − t, 0} dz = 0,
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which is impossible unlessV (z) = 0 almost everywhere. Using (3.8) we can conclude
analogously the absurd consequence that

∫ ∞

0

W (z)

z3
dz = lim

t→0

∫ ∞

0

W (z)

z3
max{z − 2t, 0} dz = 0.

Hence,Q(yδ−y) 6∈ R(A). Clearly, this can only hold for nonzeroQ(yδ−y) if R(A) 6= R(A),
i.e., only whenA has non-closed range and hence never in the discrete or well-posed case.

In the following sections we will consider noise conditionsthat make sense in the discrete
case.

3.1. Regularity conditions. Besides the noise condition, the estimate (2.9) is the sec-
ond main ingredient in Theorem2.1. The situation here is different to that in (2.8) because
(2.9) is already satisfied for some index function if a source condition holds [10]. Unfortu-
nately, this only yields suboptimal rates. Of particular interest is the case when (2.9) holds
with Φ(x) ∼ x, as this implies optimal order rates. Sufficient conditionsfor this situation
were stated in [11] and were called decay conditions. Here, we will use the termregularity
condition instead. Thus, we are now interested in finding properties ofx† that allows us to
conclude that

(3.11) ea(α
∗) ≤ Caψ(α

∗, Ax†)

holds for some of the parameter choice functionals. To beginwith, we again study the infinite-
dimensional case extending previous results of [10, 11]. The following is an analogue of
Lemma3.1.

LEMMA 3.6. LetA : X → Y be a bounded operator between Hilbert spaces, and let the
regularization be Tikhonov regularization. The inequality (3.11) for ψ = ψQO is equivalent
to

(3.12)
∫ ∞

1

ψQO(
α∗

η
,Ax†)2

η − 1

η2
dη ≤ C2

a

6
ψQO(α

∗, Ax†)2,

and for the caseψ = ψHR,1, the inequality(3.11) is equivalent to

(3.13)
∫ ∞

1

ψHR,1(
α∗

η
, yδ − y)2

1

η
dη ≤ C2

a

2
ψHR,1(α

∗, yδ − y)2.

Proof. Denote byEλ a spectral family ofA∗A. The approximation error can be ex-
pressed asea(α) =

∫

α2

(α+λ)2 dEλ‖x†‖2. Hence, the lemma follows from

∫ ∞

1

(α
∗

η
)2λ2

(α
∗

η
+ λ)4

η − 1

η2
dη =

1

6

α∗2

(α∗ + λ)2
,

∫ ∞

1

(α
∗

η
)2λ

(α
∗

η
+ λ)3

1

η
dη =

1

2

α∗2

(α∗ + λ)2
.

From this we may derive sufficient conditions for (3.11) in form of scaling conditions.
Let us define

Ṽ (t) =

∫ ∞

t

1

λ2
dEλ‖x†‖2.

PROPOSITION3.7. Let the same assumptions as in Lemma3.6hold. Each of the follow-
ing conditions imply(3.12) (and hence(3.11) for the quasioptimality rule).
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• There exist anǫ > 0 andCa <∞ such that

(3.14) ψQO(
α∗

η
,Ax†)2 ≤ ǫ(1 + ǫ)

C2
a

6
η−ǫψQO(α

∗, Ax†)2 ∀η ≥ 1.

• There exist anǫ > 0 andCa <∞ such that

(3.15)
∫ ∞

1

Ṽ (
t

η
)
η − 1

η4
dη ≤ C2

a

6
Ṽ (t) ∀t ≥ 0.

• There exist anǫ > 0 andCa <∞ such that

(3.16) Ṽ (
t

η
) ≤ ǫ(1 + ǫ)

C2
a

6
Ṽ (t)η2−ǫ ∀η ≥ 1, t > 0.

• There exist constantsCrc, t1 such that

(3.17)
∫ t

0

dEλ‖x†‖2 ≤ Crct
2

∫ ∞

t

1

λ2
dEλ‖x†‖2 ∀0 ≤ t ≤ t1.

Moreover, each of the following conditions imply(3.13) (and hence(3.11)) for the Hanke-
Raus rule HR1.

• There exist anǫ > 0 andCa <∞ such that

(3.18) ψHR,1(
α∗

η
,Ax†)2 ≤ ǫ

C2
a

2
η−ǫψHR,1(α

∗, Ax†)2 ∀η ≥ 1.

• There exist anǫ > 0 andCa <∞ such that

(3.19)
∫ ∞

1

Ṽ (
t

η
)
1

η3
dη ≤ C2

a

2
Ṽ (t) ∀t ≥ 0.

• There exist anǫ > 0 andCa <∞ such that

(3.20) Ṽ (
t

η
) ≤ ǫ

C2
a

2
Ṽ (t)η2−ǫ ∀η ≥ 1, t > 0.

• Condition(3.17).
Proof. The conditions (3.14) and (3.18) imply (3.12) and (3.13), respectively, by integra-

tion. By an integration by parts we find that

ψQO(α
∗, Ax†)2 = 4

∫ ∞

0

α∗3λ3

(α∗ + λ)5
Ṽ (λ) dλ,

ψHR,1(α
∗, Ax†)2 = 3

∫ ∞

0

α∗3λ2

(α∗ + λ)4
Ṽ (λ) dλ,

which shows that (3.15) and (3.19) imply (3.12) and (3.13), respectively. By integration,
(3.16) and (3.20) imply the corresponding inequalities (3.15) and (3.19). The sufficiency of
(3.17) was already shown in [11, 15].

Concerning the HR∞ rule, the estimate (3.11) was established under (3.17) in [10]. We
remark that regularity conditions of the form (3.17) have already been used in [10, 11]. It
should be noticed that if a source condition with saturationindex holds, i.e.,

∫ ∞

0

1

λ2
dEλ‖x†‖2 <∞,

then (3.17) is automatically satisfied; see [10, 11].
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4. Discrete case.Proposition3.5 indicates a difficulty that occurs in the discrete case.
Since thenQ(yδ,n − yn) is always in the range ofAn (A†

n is defined on the whole space),
the noise conditions as mentioned in Proposition3.5 cannot be satisfied. This also can be
observed by a limit argument: in all casesψ(α, yδ,n − yn) tends to0 asα → 0 while
limα→0 ed(α) = A†

n(yδ,n − yn). More precisely, we have
LEMMA 4.1. If An has finite-dimensional range, then for allz ∈ Yn the function-

als ψQO(α, z) andψHR,∞(α, z) are monotonically increasing inα for α ∈ [0, σ2
min] with

ψQO(0, z) = 0, ψHR,∞(0, z) = 0, and ψHR,1(α, z) is monotonically increasing inα
for α ∈ [0, 2σ2

min] withψHR,1(0, z) = 0.
Thus, the estimate (2.8) cannot be satisfied uniformly for allα∗ sufficiently small. This

is the reason why in the discrete case one has to restrict the search for a minimum ofψ to an
interval which does not contain0. The following propositions are appropriate formulations
of noise conditions in the discrete case. They are analogousto (3.6) and (3.10).

PROPOSITION4.2. Let us define

ei = (yδ,n − yn, vi).

If

inf
τ≥0







(1 + τ)2 +

∑

λi>τα∗

e2i
λi

∑

λi≤τα∗ λie
2
i

α∗2(1 + τ)4







≤ C2
d ,

then(2.8) holds forψQO. If

inf
τ>0







τ(1 + τ) + (1 + τ)3α∗
∑

λi>τα∗

e2i
λi

∑

λi≤τα e
2
i







≤ C2
d ,

then(2.8) holds forψHR,1. If

inf
τ>0







τ + (1 + τ)2α∗
∑

λi>τα∗

e2i
λi

∑

λi≤τα∗ e2i







≤ C2
d ,

then(2.8) holds forψHR,∞.
Proof. Let τ > 0 be arbitrary. Then

ed(α)
2 =

∑

λi≤τα∗

λi

(α∗ + λi)2
e2i +

∑

λi>τα∗

λi

(α∗ + λi)2
e2i

≤ (1 + τ)2
∑

λi≤τα∗

α∗2λi
(α∗ + λi)4

e2i +
∑

λi>τα∗

1

λi
e2i

≤ (1 + τ)2ψQO(α
∗, yδ − y)2

+

∑

λi>τα∗
1
λi
|(yδ − y, vi)|2

∑

λi≤τα∗ λi|(yδ − y, vi)|2
α∗2(1 + τ)4ψQO(α

∗, yδ − y)2,

where the last inequality follows from

∑

λi≤τα∗

λie
2
i ≤ α∗2(1 + τ)4

∑

λi≤τα∗

α∗2λi
(α∗ + λi)4

e2i .
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In a similar fashion we obtain

∑

λi≤τα∗

λi

(α∗ + λi)2
e2i

≤
{

τ
∑

λi≤τα∗
α∗

(α∗+λi)2
e2i ≤ τψHR,∞(α∗, yδ − y)2,

τ(1 + τ)
∑

λi≤τα∗
α∗2

(α∗+λi)3
e2i ≤ τ(1 + τ)ψHR,1(α

∗, yδ − y)2,
∑

λi≤τα∗

e2i

≤
{

α∗(1 + τ)2
∑

λi≤τα∗
α∗

(α∗+λi)2
e2i ≤ α∗(1 + τ)2ψHR,∞(α∗, yδ − y)2,

α∗(1 + τ)3
∑

λi≤τα∗
α∗2

(α∗+λi)3
e2i ≤ α∗(1 + τ)3ψHR,1(α

∗, yδ − y)2.

As a simple consequence we obtain a discrete version of the noise condition allowingα∗

to be in an interval:
PROPOSITION4.3. In the case of the quasioptimality rule,ψ = ψQO, let the following

condition hold: there exists a constantCncd and an intervalIn ⊂ [0,∞) such that

(4.1) ξ2
∑

λi>ξ

e2i
λi

≤ Cncd

∑

λi≤ξ

λie
2
i ∀ξ ∈ In.

Then, for anyτ > 0, the noise condition(2.8) holds for allα∗ ∈ 1
τ
In with a constant

C2
d = (1 + τ)2 + Cncd

(1 + τ)4

τ2
.

In the case of the Hanke-Raus rules,ψ = ψHR,1 or ψ = ψHR,∞, let the following condition
hold: there exists a constantCncd and an intervalIn ⊂ [0,∞) such that

(4.2) ξ
∑

λi>ξ

e2i
λi

≤ Cncd

∑

λi≤ξ

e2i ∀ξ ∈ In.

Then for anyτ > 0, the noise condition(2.8) holds for allα∗ ∈ 1
τ
In with a constant

C2
d = τ(1 + τ) + Cncd

(1 + τ)3

τ
,

in the case ofψ = ψHR,1 and with a constant

C2
d = τ + Cncd

(1 + τ)2

τ
,

in the case ofψ = ψHR,∞.
Proof. A proof follows by settingξ = τα∗.
In Section5 we will look closer at the conditions (4.1), (4.2) for the case of random

noise. Let us now consider the regularity (decay) conditionin the discrete case. First, we are
interested in estimates of the form

(4.3) ea(α
∗) ≤ Caψ(α

∗, Ax†n)
ν , 0 < ν ≤ 1,

for someν. The most important case,ν = 1, which yields optimal order rates, will be treated
in Proposition4.6. We recall the definition of‖.‖−ν in (2.14).
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PROPOSITION4.4. Let0 < ν ≤ 1 be fixed. If

(4.4) (νν(1− ν)(1−ν))2‖x†n‖2−ν inf
η>0

(α∗ + η)4ν

η4ν
(

∑

λi≥η λ
−2|(x†n, ui)|2

)ν ≤ C2
a ,

then(4.3) is satisfied forψQO. If

(4.5) (νν(1− ν)(1−ν))2‖x†n‖2−ν inf
η>0

(α∗ + η)3ν

η3ν
(

∑

λi≥η λ
−2|(x†n, ui)|2

)ν ≤ C2
a ,

then(4.3) is satisfied forψHR,1 andψHR,∞.
Proof. A standard convergence rate estimate yields

ea(α
∗)2 ≤ sup

x∈R

x2ν

(1 + x)2
α∗2ν‖x†n‖2−ν ≤ (νν(1− ν)(1−ν))2‖x†n‖2−να

∗2ν .

For arbitraryη > 0 we have

ψQO(α
∗, Ax†n)

2 =
∑

i

α∗2λ2i
(α∗ + λi)4

|(x†n, ui)|2 ≥ α∗2
∑

i

λ4i
(α∗ + λi)4

(x†n, ui)|2
λ2i

≥ α∗2 η4

(α∗ + η)4

∑

λi≥η

(x†n, ui)|2
λ2i

,

which proves (4.4). ForψHR,1 and forψHR,∞ we have

ψHR,1(α
∗, Ax†n)

2 =
∑

i

α∗2λi
(α∗ + λi)3

|(x†n, ui)|2 ≥ α∗2
∑

i

λ3i
(α∗ + λi)3

(x†n, ui)|2
λ2i

≥ α∗2 η3

(α∗ + η)3

∑

λi≥η

(x†n, ui)|2
λ2i

,

ψHR,∞(α∗, Ax†n)
2 =

∑

i

α∗λi
(α∗ + λi)2

|(x†n, ui)|2 ≥ α∗2
∑

i

λ3i
α∗(α∗ + λi)2

(x†n, ui)|2
λ2i

≥ α∗2 η3

(α∗ + η)3

∑

λi≥η

(x†n, ui)|2
λ2i

,

which yields (4.5).
The relevance of this proposition is that basically only a discretization independent source

condition is enough to obtain (4.3) with uniform constants. More precisely,
COROLLARY 4.5. If ‖x†n‖−ν ≤ c1 and for someη

(4.6)
∑

λi≥η

λ−2|(x†n, ui)|2 ≥ c2,

then for allα∗ ≤ [0, αmax], (4.3) is satisfied forψQO, ψHR,1, ψHR,∞ with such aν and

a constantCa = νν(1 − ν)1−νc1

(

(αmax+η)ω

ηωc2

)
ν
2

, whereω = 4 for ψQO andω = 3 for

ψHR,1, ψHR,∞.
The condition (4.6) is not difficult to satisfy. It only means that the low frequency part

of x†n does not become too small as the discretization becomes finer. When we want to
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have (4.3) with ν = 1, we can apply the previous proposition only when a source condition at
the saturation holds, i.e., when‖x†n‖−1 is bounded by a discretization independent constant.
However, even if this is not the case, we can use the followingregularity conditions and are
still able to satisfy (4.3) with ν = 1:

PROPOSITION4.6. If

(4.7) inf
τ

(τ + 1)2

τ2





(τ + 1)2

τ2α∗2

∑

λi<α∗ |(x†n, ui)|2
∑

λi≥τα∗

|(x†
n,ui)|2
λ2
i

+ 1



 ≤ C2
a ,

then(4.3) is satisfied forψQO with ν = 1. If

(4.8) inf
τ

(τ + 1)

τ





(τ + 1)2

τ2α∗2

∑

λi<τα∗ |(x†n, ui)|2
∑

λi≥τα∗

|(x†
n,ui)|2
λ2
i

+ 1



 ≤ C2
a ,

then(4.3) is satisfied forψHR,1 with ν = 1. If

(4.9) inf
τ

1

τ





(τ + 1)2

τ2α∗2

∑

λi<τα∗ |(x†n, ui)|2
∑

λi≥τα∗

|(x†
n,ui)|2
λ2
i

+ 1



 ≤ C2
a ,

then(4.3) is satisfied forψHR,∞ with ν = 1
Proof. We estimate the functionalsψ from below as above

∑

i

α∗2λ2i
(α∗ + λi)4

|(x†n, ui)|2 ≥ τ2

(1 + τ)2

∑

λi≥τα∗

α∗2

(α∗ + λi)2
|(x†n, ui)|2,

∑

i

α∗2λi
(α∗ + λi)3

|(x†n, ui)|2 ≥ τ

(1 + τ)

∑

λi≥τα∗

α∗2

(α∗ + λi)2
|(x†n, ui)|2,

∑

i

α∗λi
(α∗ + λi)2

|(x†n, ui)|2 ≥ τ
∑

λi≥τα∗

α∗2

(α∗ + λi)2
|(x†n, ui)|2,

and

∑

λi≥τα∗

α∗2

(α∗ + λi)2
|(x†n, ui)|2 ≥ τ2

(1 + τ)2
α∗2

∑

λi≥τα∗

|(x†n, ui)|2
λ2i

.

Moreover,

ea(α
∗)2 ≤

∑

λi<τα∗

|(x†n, ui)|2 +
∑

λi≥τα∗

α∗2

(α∗ + λi)2
|(x†n, ui)|2

≤ 1

α∗2

∑

λi<τα∗ |(x†n, ui)|2
∑

λi≥τα∗

|(x†
n,ui)|2
λ2
i

α∗2
∑

λi≥τα∗

|(x†n, ui)|2
λ2i

+
∑

λi≥τα∗

α∗2

(α∗ + λi)2
|(x†n, ui)|2.

Combining the inequalities yields the proof.
As a corollary we have the following result:
COROLLARY 4.7. If there exists a constantCrcd such that

(4.10)
∑

λi≤ξ

|(x†n, ui)|2 ≤ Crcd ξ
2
∑

λi≥ξ

|(x†n, ui)|2
λ2i

∀ξ ∈ In,
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then (4.7), (4.8), (4.9) are satisfied (and thus(3.11) with ν = 1) for all α∗ ∈ 1
τ
In with

constantsC2
a = { (τ+1)2

τ2 ,
(τ+1)

τ
, 1
τ
}((τ+1)2Crcd+1) for ψQO, ψHR,1, andψHR,∞, respec-

tively.
We can collect the results into the main theorem which statessufficient conditions to

obtain discretization independent estimates.
THEOREM 4.8. Letν > 0, define

Ψ̃ν(x) := max{xν , x},

and letx†n satisfy either
1. a source condition‖x†n‖−ν ≤ c1 and (4.6), or
2. a regularity condition(4.10) on an intervalIn.

Then, if the parameter choice is the quasioptimality principle and(4.1) is satisfied for the
noiseyδ,n − yn on the intervalIn, we obtain the convergence rate estimates

(4.11) ‖xα,δ,n − x†n‖ ≤ C inf
α∈In

{

Ψ̃ν

(

‖xα,n − xα,δ,n‖+ ‖xα,n − x†n‖
)

Case 1,

‖xα,n − xα,δ,n‖+ ‖xα,n − x†n‖ Case 2.

If the parameter choice is the rule HR1, ψ = ψHR,1, and (4.2) is satisfied on the intervalIn,
then we obtain the convergence rate estimates

(4.12) ‖xα,δ,n − x†n‖ ≤ C inf
α∈In







Ψ̃ν

(

δ√
α
+ ‖xα,n − x†n‖

)

Case 1,
δ√
α
+ ‖xα,n − x†n‖ Case 2.

For the HR∞ rule, ψ = ψHR,∞, if (4.2) is satisfied and a source condition holds in either
case, withν ≤ 1

2 , we obtain the convergence rate estimate withcν as in(2.13)

(4.13) ‖xα,δ,n − x†n‖ ≤ C inf
α∈In







Ψ̃ν

(

δ√
α
+ cν‖x†n‖−να

ν
)

Case 1,
δ√
α
+ cν‖x†n‖−να

ν Case 2.

The constantsC can be chosen asC = max{2νCa + 1, 2Cd + 1}, with Cd as in Proposi-
tion 4.3andCa as in Corollary4.5or Corollary 4.7with τ = 1.

Slight improvements of these results are possible using theproofs of [10]. For instance,
with an additional condition on the noise,ψHR,1 satisfies (4.11); see [10, (4.19)].

In this theorem, we may allow (4.10) and (4.1) or (4.2) to hold only on a scaled inter-
val I ′n = τIn with τ > 0. In this case the constantsC depend onτ by the expressions stated
in Proposition4.3, Corollary4.5, and Corollary4.7.

Using standard bounds, it is easy to see that (4.11) is a better estimate than (4.12), which
is better than (4.13). Moreover, it should be noted that we only find optimal ratesif the
noise level is such that the optimal choice of the parameter (in general this is close to thatα
which balances the two terms in (4.11)–(4.13)) is in the intervalIn. This requires the noise
conditions (4.1), (4.2) to hold on a sufficiently large interval, which is, unfortunately, not
always the case; see below.

4.1. Generalized cross validation.We have established convergence rates for the qua-
sioptimality and Hanke-Raus rules. Let us now discuss briefly the generalized cross valida-
tion. We remind of the similarity (2.11) of the GCV-functional with the HR∞ functional up
to a factor depending onα. We have the following result.
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PROPOSITION4.9. Let the assumptions of Theorem4.8 for the Hanke-Raus functional
ψHR,∞ hold. Letα∗ be chosen by the GCV-functional according to(2.4). Then we have the
estimate

‖xα,δ − x†n‖ ≤ C inf
α∈In

Ψ̃ν(1 +

√

max{α
∗

α
,
α

α∗ })







Ψ̃ν

(

δ√
α
+ cν‖x†n‖−να

ν
)

Case 1,
δ√
α
+ cν‖x†n‖−να

ν Case 2.

Proof. Consider the factor

ψGCV (α, yδ)

ψHR,∞(α, yδ)
=: ρ(α) =

√
αη(α) =

1

α
1
2

(

1
n

∑n
i=1

1
λi+α

) .

Under the assumptions of Theorem4.8, (3.11) and (2.8) are satisfied forψHR,∞. We proceed
as in Theorem2.1. Letα ∈ In be arbitrary and consider first the caseα∗ ≤ α. Using (2.4),
subadditivity, (2.13), and (2.12), we obtain with a generic constantC,

‖xα∗,δ,n − x†n‖ ≤ ea(α
∗) + ed(α

∗) ≤ ea(α) +
Cd

ρ(α∗)
ψGCV (α

∗, yδ − y)

≤ ea(α) +
Cd

ρ(α∗)
(ψGCV (α

∗, yδ) + ψGCV (α
∗, y))

≤ ea(α) +
Cd

ρ(α∗)
ψGCV (α, yδ) + CdC(α

∗)ν

≤ (Cd + 1)C(α)ν +
Cdρ(α)

ρ(α∗)

(

δ√
α
+ C(α)ν

)

≤ C

(

1 +
ρ(α)

ρ(α∗)

)(

δ√
α
+ C(α)ν

)

.

In the caseα∗ > α, we obtain similarly,

‖xα∗,δ,n − x†n‖ ≤ ed(α) +
Ca

ρ(α∗)
ψGCV (α

∗, y)

≤ δ√
α
+ Ca

(

δ√
α∗ +

ψGCV (α, yδ)

ρ(α∗)

)ν

≤ Ca

δ√
α
+ Ca

(

δ√
α
+

ρ(α)

ρ(α∗)

(

δ√
α
+ C(α)ν

))ν

≤ C

(

1 +
ρ(α)

ρ(α∗)

)ν

Ψ̃ν

(

δ√
α
+ C(α)ν

)

.

Now we bound the factorρ(α)
ρ(α∗) . It can be verified that

α

α+ λi
≥
{

α
α∗+λi

if α ≤ α∗,
α∗

α∗+λi
if α > α∗.

Thus,

ρ(α)2 =
α

(

1
n

∑n
i=1

α
α+λi

)2 ≤ α

min{α, α∗}2
1

(

1
n

∑n
i=1

1
α∗+λi

)2

=
αα∗

min{α, α∗}2 ρ(α
∗)2 = max{α

∗

α
,
α

α∗ }ρ(α
∗)2.
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Note that this rate estimate is of limited use, since it involves the estimated parameter valueα∗,
which is not known a priori. We expect that a deeper convergence rate analysis is more in-
volved for the GCV-functional. One reason for this is that the GCV-functional is designed to
estimate the residual‖Anxα,δ,n−yn‖ rather than the expression that we actually want to min-
imize,‖xα,δ,n−x†‖. A further analysis would require to boundα∗ in terms of the optimalα,
but quite probably this needs more requirements than just noise and regularity conditions. An
extensive analysis—even proving optimal order estimates—for the GCV-functional was done
by M. Lukas; see, e.g., [12, 13, 14]. This was shown using quite specific bounds on the rates
of decay of the noise components, the components of the exactsolution and the decay of the
singular values. Moreover, experiments comparing parameter choice rules indicated that the
GCV-functional usually performs worse than the other rules.

5. Noise condition and random noise.We now study the discrete noise conditions
(4.1), (4.2) in more detail for the case of random noise. A highly relevant noise model is white
noise for which we derive probabilistic estimates for the noise conditions. If additionallyx†n
satisfies one of the assumptions of Theorem4.8, this leads to the result that the bounds (4.11),
(4.12), or (4.13) hold with the same probability as the noise condition.

We assume that all Fourier components of the noise are independent and normally dis-
tributed with mean zero and unknown varianceσ,

(5.1) (yδ − y, vi) = ei ∼ N(0, σ2), independent, i = 1, . . . N.

LEMMA 5.1. Let the white noise model(5.1) hold. For anyξ ∈ [λmin, λmax] we define

(5.2) z(ξ) = min{i ∈ N |λi ≤ ξ}.
Suppose that for somek,m ∈ N with m > 2k there exists a constant̃Cm such that for all
ξ ∈ In,

(5.3) ξ2
z(ξ)−1
∑

i=1

1

λi
≤ C̃m

⌊N+1−z(ξ)
m

⌋
∑

s=1

λN−m(s−1).

Then(4.1) is satisfied with a constantCncd with probabilityp,

(5.4) p ≥ 1−
(

k
∏

i=1

2i− 1

m− 2i

)(

C̃m

Cncd

)k

.

Moreover, if for somek ∈ N there exists a constant̃Ck such that for allξ ∈ In,

(5.5) ξ

z(ξ)−1
∑

1=1

1

λi
≤ C̃k(N − z(ξ) + 1− 2k),

then(4.2) is satisfied with a constantCncd with probabilityp,

(5.6) p ≥ 1−
k
∏

i=1

(2i− 1)

(

C̃k

Cncd

)k

.

Proof. The probability that (4.1) is satisfied with the constantCncd can be estimated as
follows

P((4.1)) = 1− P

(

ξ2

∑

λi>ξ
1
λi
e2i

∑

λi≤ξ λie
2
i

≥ Cncd, for someξ ∈ In

)

.
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Let ξ ∈ In be fixed,k ∈ N be arbitrary. Then by Markov’s inequality and independence,

P

(

ξ2

∑

λi>ξ
1
λi
e2i

∑

λi≤ξ λie
2
i

≥ Cncd

)

= P





(

∑

λi>ξ
1
λi
e2i

∑

λi≤ξ λie
2
i

)k

≥ Ck
ncd

ξ2k





≤ ξ2k

Ck
ncd

E











∑

λi>ξ

1

λi
e2i





k





E





(

1
∑

λi≤ξ λie
2
i

)k


 .

By the convexity of the power function we obtain that

E





∑

λi>ξ

1

λi
e2i





k

=





∑

λi>ξ

1

λi





k

E





∑

λi>ξ

1
λi

∑

λj>ξ
1
λj

e2i





k

≤





∑

λi>ξ

1

λi





k

∑

λi>ξ

1
λi

∑

λj>ξ
1
λj

Ee2ki =





∑

λi>ξ

1

λi





k

σ2k2k
Γ(k + 1

2 )

Γ( 12 )

=





∑

λi>ξ

1

λi





k

σ2k (2k)!

2kk!
=





∑

λi>ξ

1

λi





k

σ2kΠk
i=1(2i− 1).

Now to the second factor. Since theλi are ordered monotonically decreasing, we can estimate
for arbitrary but fixedm ∈ N, m > 2k, with z = z(ξ) as in (5.2),

∑

λi≤ξ

λie
2
i =

N
∑

i=z

λie
2
i =

N+1−z
∑

i=1

λN+1−ie
2
N+1−i

≥
⌊N+1−z

m
⌋

∑

l=1

m
∑

k=1

λN+1−(m(l−1)+k)e
2
N+1−(m(l−1)+k)

≥
⌊N+1−z

m
⌋

∑

l=1

λN+1−(m(l−1)+1)

m
∑

k=1

e2N+1−(m(l−1)+k)

=

⌊N+1−z
m

⌋
∑

s=1

λN−m(s−1)





⌊N+1−z
m

⌋
∑

l=1

τl

m
∑

k=1

e2N+1−(m(l−1)+k)



 ,

where we set

τl =
λN−m(l−1)

∑⌊N+1−z
m

⌋
s=1 λN−m(s−1)

.

Obviously it hold that
∑⌊N+1−z

m
⌋

l=1 τl = 1 and hence we can use the convexity of the func-
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tion 1
xk to find

E





(

1
∑

λi≤ξ λie
2
i

)k




≤ 1
(

∑⌊N+1−z
m

⌋
s=1 λN−m(s−1)

)k
E





1
∑⌊N+1−z

m
⌋

l=1 τl
∑m

k=1 e
2
N+1−(m(l−1)+k)





k

≤ 1
(

∑⌊N+1−z
m

⌋
s=1 λN−m(s−1)

)k

⌊N+1−z
m

⌋
∑

l=1

τlE

(

1
∑m

k=1 e
2
N+1−(m(l−1)+k)

)k

.

The last factor can be calculated using the noise model (5.1),

E

(

1
∑m

k=1 e
2
N+1−(m(l−1)+k)

)k

=
1

σ2k

1

2k
Γ(m2 − k)

Γ(m2 )
=

1

σ2k

1

Πk
j=1(m− 2j)

.

Combining the estimates yields the result for (4.1). We can follow the main steps also for the
case of (4.2). The only difference is that we have to estimate

E





(

1
∑

λi≤ξ e
2
i

)k


 =
1

σ2k

1

2k
Γ(N−z+1

2 − k)

Γ(N−z+1
2 )

=
1

σ2k

1

Πk
j=1(N − z + 1− 2j)

≤ 1

σ2k
(N − z + 1− 2k)−k,

where we have to restrict ourselves to2k < N − z + 1.
Let us remark that the coefficientsm, k are tuning parameters, to make the probability

as high as possible. In particular, if̃Cm andC̃k are known, one can try to setm = 2k + 1
and maximize the probability estimates overk, if the simplest choicek = 1, m = 3 does not
yield appropriate estimates of the probability. Moreover,we may also vary the constantCncd

to conclude that (4.11)–(4.13) hold with a constantC with certain probability. The results of
Lemma5.1in combination with Theorem4.8are consistent with what one would expect: the
bounds on the right-hand side of (5.4), (5.6) are monotonically increasing withCncd and so
are the constantsC in (4.11)–(4.13). Thus a good error bound with smallC holds with a lower
probability than a bad error bound with largeC. Note that the right-hand sides in (5.4), (5.6)
may become negative, in which case the lemma is vacuous.

5.1. Case studies.We can further investigate the constants in (5.3) and (5.5) when a cer-
tain decay of the singular values andλi is assumed. In particular, we want to investigate about
the intervalIn, where these inequalities hold with moderate and discretization independent
constants. It turns out that in many cases an interval of the form

ξ ∈ In = [λz, λ1]

can be taken, where1 ≤ z < N andN is the total number of singular values. Below we
derive appropriate estimates for the indexz leading to discretization independent bounds.

We assume that

σ2
i = λi = φ(i),
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with a monotonically decreasing functionφ : R+ → R
+. In this case we can estimate the

sums in (5.3) and (5.5) by integrals:

z(ξ)−1
∑

1=1

1

λi
≤
∫ z(ξ)−1

1

1

φ(t)
dt+

1

φ(z(ξ)− 1)
≤
∫ z(ξ)

1

1

φ(t)
dt,(5.7)

⌊N+1−z(ξ)
m

⌋
∑

s=1

λN−m(s−1) ≥
∫ ⌊N+1−z(ξ)

m
⌋+1

1

φ(N −m(s− 1)) ds

=
1

m

∫ N

N−m⌊N+1−z(ξ)
m

⌋
φ(τ) dτ ≥ 1

m

∫ N

z(ξ)−1+m

φ(τ) dτ,(5.8)

ξ2 ≤ φ(z − 1)2.(5.9)

Case 1.Mildly ill-posed problems.
Assume a typical example of a mildly ill-posed problem, where the rate of the decay of the
singular values is polynomial, i.e.,φ(t) = 1

tp
with p > 1. Then the constant in (5.3) can be

estimated by bounding the ratio (using (5.7)–(5.9))

ξ2
∑z(ξ)−1

1=1
1
λi

∑⌊N+1−z(ξ)
m

⌋
s=1 λN−m(s−1)

≤ m
p− 1

p+ 1

zp+1 − 1

(z − 1)2p
(

1
(z−1+m)p−1 − 1

Np−1

)(5.10)

= m
p− 1

p+ 1

zp+1 − 1

(z − 1)p+1

(

z − 1 +m

z − 1

)p−1
1

1−
(

z−1+m
N

)p−1

≤ m
p− 1

p+ 1

(

1 +
1

z − 1

)p+1(

1 +
m

z − 1

)p−1
1

1−
(

z−1+m
N

)p−1 .

In the same way we obtain for (5.5),

1

p+ 1

1

(z − 1)p
(z + 1)p+1 − 1)

N − z − 2k
≤ 1

p+ 1

(

z + 1

z − 1

)p
1

N
z
− 1− 2k

z

.

Thus, ifθ < 1 andz0 > 1, and ifξ is such that

(5.11) 1 +
m

z
1

p+1

0 − 1
≤ z(ξ) ≤ 1 + θN −m,

then we find that with

C̃m = z
2p
0 m

p− 1

p+ 1

1

1− θ

that (5.3) is satisfied, and if

1 +
1

2(z
1
p

0 − 1)
≤ z(ξ) ≤ (θ + 1)(N − 2k),

then (5.5) holds with a constant

C̃m ≤ 1

p+ 1
z
p
0

1

θ
.
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Case 2.Exponentially ill-posed problems.
We assume thatφ(t) = e−γt for someγ > 0. Estimating the ratio as in (5.10) by integrals
yields

m(e−β(z−1))2
eβz − eβ

e−β(z−1+m) − e−βN
≤ m

eβ

e−βm − e−β(N−(z−1)
≤ m

eβ(m+1)

1− e−β(N−(z−1)+m
.

Hence, ifz(ξ) is such that

z(ξ) ≤ N + 1−m− γ,

then (5.3) is satisfied with anN -independent constant

C̃m = m
eβ(m+1)

1− e−βγ
.

The same holds for (5.5), since (5.3) implies (5.5).
Case 3.The backward heat equation.

Here we assume that the decay rate of the singular values is like that of the backward heat
equation:φ(t) = e−βt2 , β > 0.

Let us first consider (5.5). The ratio (5.10) can be bounded by

1

N + 1− z − 2k
e−β(z−1)2

∫ z−1

0

e−βy2

dy + e−β(z−1) ≤
1 + 1

β

N + 1− z − 2k
.

This follows from estimates for the so-called Dawson integral,

e−x2

∫ x

0

ey
2

dy ≤ 1,

(which also can be bounded by1
x

). Hence, if

z(ξ) ≤ N + 1− 2k − θ,

then (5.5) holds with constant

C̃k =
1 + 1

β

θ
.

The situation for (5.3) is different in this case. The reason is that we were not ableto find
lower bounds for the denominator of (5.10),

eβ(z−1)2
∫ N

z−1+m

e−βτ2

dτ

by anN -independent constant. In fact, form > 0 this value is bounded from above by an
exponentially decaying terme−βz asz → ∞, which cannot be compensated by a similar
factor in the numerator. Hence, there is little hope that (5.3) holds for the backward heat
equation. We can at best take an interval whereξ is within the first few eigenvalues[λ3, λ1]
(note the extremely fast decay of the singular value), whichby construction yields a (maybe
bad) butN -independent constant.
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6. Discussion.We have established a convergence theory for certain noise level-free
parameter choice rules in the discrete case. Here we focusedon the quasioptimality principle
and the Hanke-Raus rules. The generalized cross validationdoes not fit well into our analysis,
and we believe that it is in practice inferior to the other rules in the case of ill-conditioned
problems.

Comparing the results, we observed that the quasioptimality principle yields the best
estimates (of oracle type), while the HR1 rule has the boundδ√

α
instead of the propagated

error term in Theorem4.8. The HR∞ rule is even worse. Although these factors are all of the
same order, this gives a hint that the quasi-optimality rulehas a lower error in many situations.
This can also be seen from the experimental results in [16], where the HR1 rule performs well
but its error is usually larger by a factor (less than 10) thanthat of the quasioptimality rule.
However, it is important to notice that the Hanke-Raus rulesrequire a weaker noise condition
than the quasioptimality rule.

Our analysis sheds light on the question, how the parameter choice rules should be im-
plemented. The main problem is to specify what we consider anappropriate minimum, i.e.,
how to select the intervalIn in (2.4) to avoid the choiceα∗ = 0. This issue might look like
a minor one, but we believe it is the reason, that in case studies [4, 8, 16] the experimen-
tally observed convergence results for noise level-free parameter choice rules are not always
conclusive.

Let us discus several proposed rules-of-thumb for the practical implementation. For in-
stance, Hansen and Hanke [8] proposed to useIn = [αmin, λmax], whereαmin is a point of
a ”peak”, i.e., a local maximum of the parameter choice functional. Such a maximum will
usually appear only atαmin > λmin and hence it automatically rules out the choiceα∗ = 0.
The problem here is that a maximum at the lower eigenvalues isnot a very stable quantity be-
cause it might disappear when the structure of the noise at the lower eigenvalues is perturbed
only a tiny bit. Variants of this idea are to quantify the meaning of an appropriate maximum
and only consider thoseαmin, where the maximum has a relative large value, controlled by
some factors (see the work of Palm, Hämarik and Raus [6, 7, 16]; compare also the climbing
approach [16]). In general this is not a bad idea, since the appearance of apeak close toλmin

is a strong hint that a noise condition is satisfied. However,even if no such peak appears,
heuristic parameter choice methods can be successful. The ”to the right of the first peak”-rule
does not indicate what to do then.

What we propose instead is to look forα∗ in a fixed intervalIn, thus the optimumα∗

does not need to be an interior minimum but can also be at the end points ofIn. Of crucial
importance is the choice of this interval, since it has to be related to the noise-structure and
the decay of the singular values. One suggestion in the literature is to minimize over the
interval [γσ2

min, 1] with a chosen factorγ > 1. This has been proposed by Neubauer [15]
and Palm [16]. Again, this is in many cases appropriate (for instance, itagrees with our
choice in the case of mildly ill-posed problems) but may failin practically relevant situations.
Instead, the analysis in Section5.1 suggests the following approach: choose the intervalIn
as [λnmax

, λnmin
] for some integersnmin, nmax, 1 ≤ nmin < nmax < N that can be de-

rived from the lower and upper boundsnmin ≤ z(ξ) ≤ nmax in Section5.1. This means
that the interval is constructed via the index seti = 1, . . . N of λi. Doing so (or similarly)
is a quite reliable choice that works in many cases. However,as the previous analysis in-
dicates, the quasioptimality principle fails even with this choice for problems of the type of
the backward heat equation (when the singular values decay as e−i2 ). Here, only the Hanke-
Raus rules work well. This observation is underpinned by empirical facts: the study in [16]
showed that the quasioptimality principle has a very large error for the backward heat equa-
tion problem. A further source of failure could be that the lower bound forz in (5.11) is
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not independent ofp, i.e., for mildly ill-posed problem with largep we have to defineIn by
cutting out some of thelarger singular values(depending onp) additionally to the smaller
ones:nmin = nmin(p) > 1. It is questionable if this is of much importance in practice, since
such a situation is only relevant when the optimal regularization parameter is close to the
largest singular values. This only happens when the noise itself is of the order of the first
singular values.

Let us mention that the analysis of Section5 is also possible in the case of colored
noise,ei ∼ N(0, σi), when the decay ofσi is known. The only difference is that the sums
in (5.3), (5.5) have to be scaled appropriately byλi

σi
or λiσi. By a unitary transformation, the

case of correlated noise(ei)i ∼ N(0,Γ) with known covariance matrixΓ can be handled as
well.

We did not discuss the regularity condition too much, since it does not seem to be too
important for choosingIn. The comments in [10] about this issue are also adequate in the
discrete case.
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