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DISCRETIZATION INDEPENDENT CONVERGENCE RATES FOR
NOISE LEVEL-FREE PARAMETER CHOICE RULES FOR THE
REGULARIZATION OF ILL-CONDITIONED PROBLEMS  *

STEFAN KINDERMANNT

Abstract. We develop a convergence theory for noise level-free paemogibice rules for Tikhonov regu-
larization of finite-dimensional, linear, ill-conditiongztoblems. In particular, we derive convergence rates with
bounds that do not depend on troublesome parameters such@asdheingular values of the system matrix. The
convergence analysis is based on specific qualitative asgmman the noise, the noise conditions, and on certain
regularity conditions. Furthermore, we derive several sigffit noise conditions both in the discrete and infinite-
dimensional cases. This leads to important conclusions &aditual implementation of such rules in practice. For
instance, we show that for the case of random noise, theaggation parameter can be found by minimizing a
parameter choice functional over a subinterval of the spet{whose size depends on the smoothing properties of
the forward operator), yielding discretization indepamdeonvergence rate estimates, which are of optimal order
under regularity assumptions for the exact solution.

Key words. regularization, parameter choice rule, Hanke-Raus rulasigptimality rule, generalized cross
validation
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1. Introduction. The selection of the regularization parameter for regudgion meth-
ods is of high importance for ill-posed problems. Severalhoés for this task are known;
see, e.g., q]. It is standard to use parameter choice rules which depenth® knowl-
edge of the noise level. Here instead, we discuss so-catlex evel-free (or heuristic,
or data-driven) parameter choice rules, which do not usedise level at all, for instance,
the quasioptimality principle, the Hanke-Raus rules, amdegalized cross validation. For a
long time, such methods have been considered of minor impecetsince it is well-known
that they cannot yield convergence in the worst case fqrafled problems. However, re-
cently [10, 11, 15] a successful, quite general theory has been developeddbrrales within
the framework of a restricted noise analysis (using scedalloise conditions). It is the aim
of this paper to extend this theory to the case of discreteoitiditioned problems. Such
problems typically (but not exclusively) arise by disczety ill-posed problems and are very
important. The transfer of the convergence theory from tifieite-dimensional case to the
finite-dimensional one is not as straightforward as mighextgected at first look. The reason
is that the standard noise conditions as formulated@]1, 15] are never satisfied in the dis-
crete case. A central topic in this paper is to replace thesditons by ones that are useful in
a finite-dimensional setting. The aim is to develop a corenrecg theory proving convergence
rates that are robust with respect to the discretizatien, éstimates with constants that do
not depend on “bad” parameters such as the condition nurvhéh usually blows up as the
discretization becomes finer.

We establish such a convergence theory by imitating theiteftimensional theory
and using appropriate noise conditions and regularity itiomd. Our analysis is based on
Tikhonov regularization but can be extended to other metlasdvell.

The paper is organized as follows: In Sectidbwe set the stage, define the parameter
choice rules that we consider, and state the main abstragergence theorem. The next
section, SectioRd, is an extension of the study of the noise and regularity itimmd in [10].
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We develop alternative formulations of these in the infuditmensional case. This section is
rather independent of the other ones and puts previougsdsukch as the noise conditions
in [11] and scaling conditions of2]) onto a common ground. In Sectighwe state anal-
ogous noise and regularity conditions which are meaningftihe discrete case. The main
difference to the infinite-dimensional case is that thevaaié conditions only have to hold
in a subinterval of the spectrum away frdm Using this, we find convergence rates for the
quasioptimality principle and the Hanke-Raus rules, sinib the infinite-dimensional case
(Theorem4.8). Furthermore, we also show some rate estimates for gérentalross valida-
tion. In Sectiorb, we study the noise conditions under the assumption thatdtse is white
(independent and identically normally distributed) antineste the probability that they are
satisfied, which immediately leads in combination with Tie®e4.8 to convergence rates
which hold with a certain probability. By studying some tggli examples of ill-conditioned
problems in SectioB.1, we can consider the question if and in what sense a noisatimond
holds, and how the parameter choice rules are used in peadilus is elaborated on in the
final section.

2. Tikhonov regularization and parameter choice functionds. In the following, we
focus on ill-conditioned linear equations in Hilbert speice

(21) Anxn = Ysn,

where A,, is an operatortX,, — Y,, with finite-dimensional rangey,, is the unknown so-
lution, andys,, are given (possibly noisy) data. Note that we always asstmaie@.1) is
ill-conditioned (i.e.,A,, has a large condition number), hence in this paper we usethest
“discrete” and “ill-conditioned” as synonyms. Below we Iagrove results which also hold
in the infinite-dimensional case, e.g., in Sect®o indicate this situation, we will drop the
subscriptn and write A, x, y, X, Y, etc., when all involved Hilbert spaces are allowed to be
infinite-dimensional as well.

Formally, the problem2.1) is never ill-posed. Nevertheless ill-conditioned probe
show in many cases a similar behavior as ill-posed ones amllyfiave to be approached
by regularization. Indeed, suppose that the dgta in (2.1) are a contamination of some
exact datay,, by noise with noise leve,

Ys.n = Yn + €n, ||en|| =4.

Then solving 2.1) by means of the Moore-Penrose pseudo-inversg = Al ys ,, leads to
an error bound

ot
Tmin (An>

whereo .., (A, ) is the smallest singular value df, andz!, denotes the (unknown) solution
for exact data:f, = Afy,,. For discretized versions of ill-posed problems, this boisrgharp
and becomes very large as the discretization becomes firgr,that quite oftern,, 5 is of
no use at all. The remedy in this situation is to use regwtion, for instance, Tikhonov
regularization, and to compute

(2.2) (B g,

—1
(2.3) T, = (A,,TLA,L + oJ) Az;y(;,n,

wherea > 0 is the regularization parameter.
Usually, the regularized solutian, s, is a better estimate afL thanz,, s if the regu-
larization parameter is chosen appropriately. Severahoakstfor this choice are well-known
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such as a priori or a posteriori rules, which require the Kedge of the noise level; see,
e.g., b]. Recently, a convergence theory was developed for noigd-feee parameter choice
rules, which have the advantage that the noise level is ratate However, the price to pay is
that they only work if the data errey, satisfies some additionabise condition$10, 11, 15].
Itis the aim of this article to extend the analysis djto the case of discrete, ill-conditioned
problems 2.1).

The class of noise level-free rules we are considering hasele following form. The
regularization parameter = o* is selected by minimizing a certain functional

(24) at = argmirhe],nw(avyé,n)

over a compact interval,, C [0,00]. Note that in the discrete case, the interfialof pos-
sible regularization parameters has to excladee., I,, C [n, co[ with n > 0, contrary to
the infinite-dimensional case, where an interflakyy| can be chosen. This is an subtle but
important issue and will be addressed in more detail in 8esti and5, where examples of
possible intervalg,, are given.

The main goal of our analysis is to prove, if possildéscretization independerrror
estimates, i.e., estimates of the form

||xoz,6,n - xILH S f(5)7

wheref is robust in the sense that it stays bounded evely ibpproaches an operatdrof an
infinite-dimensional ill-posed problem. In particulgrshould not depend on constants such
as the smaller singular values 4f,. Note that £.2) is not discretization independent, since
the smallest singular value usually tend$)tasn increases ifd,, represents a discretization
of a forward operatod of an ill-posed problem.

In this paper we dmot consider convergence as— oo, in particular, we do not as-
sume thatA,, converges to some operatdrwith infinite-dimensional range. Nevertheless,
the results of this paper are still relevant in several §ibna: it can be the case that the prob-
lem (2.1) is given without reference to any discretization of a irérilimensional problem,
such that it is only of interest to compute the solutignin a stable way. Discretization in-
dependent error estimates are of great use because they egpled no matter how high
the condition number ofi,, is. The second case is that, is a suitable discretization of an
ill-posed problem with an operatet, which has the property thaf, converges to the solu-
tion 2! of the infinite-dimensional problem. This happens, foranse, when using the dual
projection methodq]. In this case, it is not difficult to use our results to proweergence
of x5, as the discretization becomes finer— oco. However, it is well-known that not
every discretizatiom,, of suchA leads to convergence mfm to zt; see the Seidman counter-
example L7]. In this case, our estimates are useless, but this doesnessarily mean that
heuristic parameter choice rules cannot be applied suctigss

We will focus on Tikhonov regularization, but the analysende extended to other
methods as well][0]. Furthermore, we will use the following notations: by adéx function
we mean a continuous, strictly increasing functipn R™ — R* with ¢(0) = 0. We will
denote byy,, the exact data and by}, the associated minimum norm solution,

Yn = Aniviw zl = Ailyna

n

ys,» Will denote the noisy data

Ysn = Yn + €n,
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with § the noise level

6= |lys,;n — ynll = llenll-

Moreover, z, s, Will denote the regularized solutior2.8), while z,, ,, is the regularized
solution with exact data

-1
Tam = (AZA,L + OJ) Afyn.
As it is standard, the total errdi,, 5., — «, || is split into two parts, the propagated data error

ed(a) = ”xa,é,n - xa,n”

and the approximation error

ea(@) = [|an —af |,
which yields the well-known error bound
(2.5) a5 — 2}l < eal@) + ea(@).

For a fixed parameter choice functional, the regularizaparametera* is selected
via (2.4). The main estimate of the total error is then given in théofaing theorem; see
also [LO, 11, 15].

THEOREM2.1.Letv : I,, x Y — R be subadditive, i.e.,

(e, z +w) < Y(a, 2) + (o, w),

nonnegativey («) > 0, and symmetricy) (o, —y) = ¥(«, y), and let a minimunma* in (2.4)
exist.

For any fixede,, € Y,,,z, € R(A,), let there exist a monotonically decreasing func-
tionp, ., : RT —R* and a monotonically increasing functign . : R* —R" such that

(2.6) (o, en) < ple,(a) Yael,
(2.7) (o, zn) < pro, () Yoae .
Moreover, fory,, = A,x! fixed, let there exists a s&f C Y,, (the set of “admissible
noise”), a constant’;, and an index function® such that
(28) ed(a*> < de(a*vyé,n - yn) vy&n —Un € N,
(2.9 ea(a”) < @(P(a™,yn)).

Then, ifys , — y» € N we have the error estimate

(2.10) [[zarsn —at|| < inf 4 CaPuvsn—un (@) +2Capry, (@) +ea(a) o™ <a,
“ o€l | D (py,ys.—yn (@) + 2014, (@) +eq(e)  ifa*>a.
Proof. The proof is an adaption of those b, 15]. Note thate;(«) is monotonically de-
creasing and, («) is monotonically increasing. Let € I,, be arbitrary but fixed. 1&* < «,
then by monotonicity it holds that, (a*) < e, (a). By the properties and estimatesand
the monotonicity of; ,,, we find

ea(a”) < Cap(a”, ysn — yn) < Ca (Y(a", ysn) + (™, yn))
< Cat(@,Ys,n) + Captoy, (@) < Ca (phys—ya (@) + Pry, (@) + Capry, (@)
< Cdpi,yg,nfyn (Oé) + 2Cde,yn (a)
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With (2.5) the result follows for the case* < «. Now assume that* > «. Then the role
of e4 ande, are reversed:

eq(a”) < eq(a),
ea(a*) S ¢ (w(a*a y5,7L) + d](a*a Ysn — yn)) S d (¢(av yé,n) + pj,,y,;m,fyn (OZ*))
< D (P, (@) + PLys =9 (@) T PLiys—yn (@) . 0O

REMARK 2.2. The functiongy ,, andp, ,; . —,,. are usually known and independent
of n. Calculating the infimum inZ.10) then leads to discretization independent convergence
(rates) if all the prerequisites of this theorem hold witfindependent constants. Here, the
most difficult part is to showZ.8) and @.9). The estimate on the noise terrg, ), is in gen-
eral impossible without restricting the noise to asetThe condition thays ,, —y,, € N such
that 2.8) holds, is termed aoise conditiorand the boundZ.10) is a bound in theestricted
noise caseThe corresponding inequalit?.@) is a condition on the exact solution. Note that
in general the desirable choidgx) = C,x does not hold with a discretization independent
constant, but onlyp(z) = C,z” with v < 1. Because of this, the right-hand side &f10
only yields suboptimal rates. However, if so-callegularity conditiong(also called decay
conditions in [LO, 11]) on the exact solution hold, then an estimaed( with ®(z) = C,x
and a discretization independent constaptis possible, leading to optimal order estimates.

REMARK 2.3. This theorem is neither specific to the discrete casemadikhonov
regularization. It remains valid in the infinite-dimensibicase and also for otheronotone
regularization methods; seg&(] for detalils.

2.1. Parameter choice functionals and their boundsWe are now in the position to
analyze specific parameter choice functionals and thegporeling estimates in Theorehi
in more detail. For the analysis, the parameter choice ifoinals are conveniently expressed
in terms of a spectral family of the operatdr Since we are focusing on the discrete case,
we only need to consider the singular value decompositiof, of

Let us denote byo;, u;, v;)Y ; the singular system ( with; the singular valuesy; the
left andv; the right singular vectors) of the operatdy, with finite-dimensional range. We
consider the following rules obtained via.{) and the corresponding parameter functionals:
the quasioptimalityrule [19, 20], wherey = g0, the Hanke-Raus rule HR[9], where
Y = Ypgr1, the Hanke-Raus rule HR [9], wherey = v pr o, andgeneralized cross
validation[21], wherey) = ¥ gcv. These functionals are defined as follows, using= o2.

012)\2‘

Yool ysn)® = m'(y5,n7vi)l2a

] =

i=1

©
I

N 2
2 _ 2 : @ NE:
wHR,l(aayé,n) - — ()\z + CY)B |(y5,n7vz)| 3
N «
2 _ 2: 2
wHR,oo(avy(?,n) = - ()\l T 04)2 |(y6,nvvz)| )
9 1 N « 2 9
wGCV(a’y&n) = 2 E : ()\z‘i’a) |(y5,’ﬂ7vi)‘ :

1 N o T
(N Zi:l a+/\i> =1

For each of these rules, the regularization parameter isecthby minimizing the functional
with respect tax as in @.4) using only the actual given datg,, as information.
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Note that for the computation of these functionals arfd the singular system is not
needed. For instance, the quasioptimality rule is in pcaatomputed by selecting a sequence
of geometrically decreasing regularization parameteys= aoq’ C I,,, with ¢ < 1, and
choosinge™ = «a;, wherei is the integer where the minimum of

||xai+1767" - If’m&"” 1=1,2,...

is attained. More precisely, this is the discrete quasiogiity rule [19], but the corresponding
functional can be treated quite similar to the original oflee rule HR can be computed by

wHR,l(a7 y5,71)2 - ail(yé,n - Anfﬂé{&n, Ysn — Anxoz,(s,n)7
employing one step of the iterated Tikhonov regularizafi@n
I(Ix{é,n = Ta,6,n + (AZ;ATL + O‘I)il (Ag(y(s,n - Anxa,é,n)) .

The rule HR, is particularly simple, since it is just an appropriatehscaled residual

77[}HR,oo(aa yé,n)2 = 0571”14”37&,6,” -

)

and in a similar way, the GCV-functional can be computed by

(2-11) wGCV(Oﬁ y&,n)Q = "7(0‘)2”An$a,6 - yé,n”Q
with
n(a) = (%trace((A;;An + aI)‘l))_

For more information, further functionals, and possible{ianing, we refer tod, 6, 7, 10,
16]. All of the above defined parameter choice functionals dndausly positive, symmet-
ric, and subadditive, and by continuity, a minimuwi in (2.4) always exists. In view of
Theorem2.1we are now interested in the corresponding estimates.

The propagated data error and the approximation error caxfressed in terms of the
spectral system as

N 2

ed(Oé)Q = Z (/\Z)2|(y5n - ynyvi)‘Qa ea(a)Z = Z (

‘(xiuui)F:
i=1 atA i=1 at )2

which immediately yields the following estimates of tygzed], (2.7):

Qo (o, Ysn — Yn) < eqla),

wQO(O‘ yn) a( )
Yar1(0,Ysn — Yn) < \j&’
dJHR 1(0[ yn) €q (Oé)
(2.12) it oo (s Yo — Yn) < \‘}
(2.13) Yrrmoe(oryn) < coallat | VO << o

Here||z] ||, is the norm of a “source element” in a source condition

(2.14) Iloh12, = (AT An) o) = Zw
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v —2v
and¢? = (207 4(1’2”)1 . Concerning)cov, we notice that it differs fromp sz o

only by a function depending am. Thus, we can use the bounds 1o r . t0 get

wGCV(aa Ysn — yn) S 77(04)5
1
voov (@ yn) < o llzf]l-m(@)a’ 3, Vo <v <o,

Furthermore, we notice that estimates {0t 1(«, ys — y) and Y r oo (¥, Ys.n — Yn) IN
terms ofe,(«) are also possible if additional (rather restrictive) caindis on the noise hold;
see, e.9.,J0, Lemma 4.9].

3. Noise conditions and regularity conditions.We now study the so-called noise con-
ditions, i.e., conditions ofs , — v, such that inequalities of the forra.g) hold. It was shown
in [11] that such estimates are possible with bounded constantisf@uasi-optimality prin-
ciple, and later for many other combinations of regulaicramethods and parameter choice
functionals [L0O].

At first we extend some known results on the noise conditionguimiequalities equiv-
alent to or sufficient forZ.8). We will derive these in the general infinite-dimensionase,
extending the analysis oi(, 11]; of course, the discrete setting is a special case of this. T
infinite-dimensional versions of the parameter choice fionels Yoo, Vg 1, VHR,cc are
obvious and can be found for instance 1]

LEMMA 3.1.LetA : X — Y be abounded operator between Hilbert spaces, and let the
regularization be Tikhonov regularization. The inequa(i.8) for ¢ = 1 g0 is equivalent to

2
< %on(a*,yé —y)?

(3.1) / Yoo(an,ys —y)* 2 —
1
and for the case) = i1, the inequality(2.8) is equivalent to

C? 9
< 7d¢HR,1(04*7y6 —y)".

(3.2) / Yur1(a’n,ys — 9)277 _2
1

Proof. Let I\ be a spectral family ofAA*. For the quasioptimality functionalyo we

use Fubini’s theorem to get
n—1
_ dF —yll?
/ Yqo(a’n,ys / / )\Jr Alys — vl 2

2
ot p—1 5 1 A )
F — = — —  _dF — .
// Dot 2 DBl =yl G/J(a*+)\)2d Mys — vl

Forvy = ¢ g1 we find similarly using?, the orthogonal projector ont@(A),

/ / AR Qs — )P

1 A
(w5~ 9)I? = 5/ T APl — ol

/ 1/}HR,1(O‘*777 Ys —

A=

Sinceey(a*)? = [ ﬁ dFy|lys — y||?, the assertion follows. 0O
From this lemma we can find several sufficient conditions ghett 2.8) holds. We
define

V(t) = / NdEsys — P, W) = / AR Qs — )|
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PROPOSITIONS3.2. Let the same assumptions as in Lenfnkhold. Fory = 9go,
each of the following conditions imp($.1) and hence?2.8).
e There exists aa > 0 and(Cy; < oo such that

02
(33)  woolanys—y)* <e(l+ 6)?%7_%@0(04*, ys —y)°, Vn=>1.

e There exists an > 0 and(Cy; < oo such that

[e'e] -1 CQ
(3.4) / V(nt)nn4 dn < LV(1) V> 0.
1

e There exists aa > 0 andCy < oo such that

2
(3.5) Vnt) < e(l+ e)%nZ_EV(t) WV >1,t>0.

e There exists a constant,. < oo such that

> 1 Che 7
@8 [ SRl -l < G [ Admlys -l veso
t

2 Jo
Here, (3.6) holds if and only if(3.5) holds.

Proof. The first condition §.3) implies 3.1) simply by integration. For3.4) we use
integration by parts and a change of variables

. %) 01*2)\
Yoo(a*,ys —y)* = /0 ( dFx|lys — yl|?

a* + )\)4

0o 04*2 o'} 05*2
= —dV(\) =4 ——=V(\)dX
/0 (a* 4+ \)4 ) A (a* + X)° (A) dA,

. ) 1 00 04*2
vgo(a’nus — 1) =1, /0 eV en de

from which the sufficiency of3.4) for (3.1) follows. Again by integration,3.5) implies (3.4).
The equivalence of3(6) and @.5) is a consequence of a celebrated theorem of Arinjo and
Muckenhoupt {]; see [L8]. The constant’,,. in (3.6) can be related t¢’; by inspection of
the proofs in L1]. a

In particular, the noise condition of Theoreiri can be formulated by defining” as the
set of allys — y such that one of the conditions in this proposition holdghwliscretization
independent constants). For the Hanke-Raus rule W&have similar characterizations.

PrRoOPOSITION3.3. Let the same assumptions as in Lenriahold. Fory = ¢¥np 1,
each of the following conditions imp($.2) and hencg?2.8).

e There existar > 0 andC; < oo such that

* 02 —€ *
(3.7) Yura(an,ys —y)* < 2%(1 + 6)?0177 “Yura(a ys —y)®, V> 2.

e There existar > 0 andC; < oo such that

o0 _ 2
(3.8) / W(nt)”ng2 dn < %W(t) Vit > 0.
2
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e There existar > 0 andC,; < oo such that
02
(3.9) W(nt) < 2%(1 + 6)7d7]17€W(t) VY > 2,Vt > 0.

e There exists a constant,. > 0 such that

> 1 Cre [*
@10 [ FanlQus -l < S [ anjews -l ve>o
t

Here,(3.10 holds if and only if(3.9) holds.

Proof. The implication 8.7) = (3.2) follows by multiplication of 8.2) by ”TQQ and
integration over > 2, noting that the part of the integral iB.@) overn € [1, 2] is negative.
In view of (3.8), we can proceed as for the quasioptimality case,

00 *2 e} *2
* 2 _ o — o _
Yar1(a®,ys —y)° = /0 7(0[* AP dW(\) = 3/0 @+ /\)4W()\) dA,
. B - 1 00 01*2
vralatngs — =31 [ W de

which implies (8.2) after integration. By integration ovey (3.9) implies (3.8). Finally, again
by the results of ], (3.10 is equivalent to §.9), when the condition holds for all > 1. But
it is straightforward to see that this is also equivalent® ¢ondition holding for all) > 2,

possibly with different constants. O

To complete the picture we recall results df] for the Hanke-Raus rule HR:

ProPOSITION3.4. If (3.10 or (3.9) holds, then(2.8) holds (possibly with a different
constantCy; than in(3.9)) for Y i g, oc-

The conditions .10 and @.6) were used in10, 11] to establish 2.8) for several regu-
larization methods. Our analysis shows the sufficiency efstaling-type conditions. This
type of conditions (but stronger ones) were employed|rtd prove convergence rates for
the quasioptimality principle.

The noise conditions are usually interpreted as restristtbat rule out “smooth noise”,
i.e., noise that is in the range d@f. This can be seen in the following proposition. Here we
denote again by) the orthogonal projector ontB(A).

PrRoOPOSITION3.5.If Q(ys —y) # 0 and if one of the condition@.4), (3.5), (3.6), (3.9),
(3.9, or (3.10 holds, thenQ(ys — y) ¢ R(A). In particular, if A has finite-dimensional
range, then none of these conditions can hold.

Proof. Since 8.5 or (3.6) imply (3.4), and @.9) or (3.10 imply (3.8), it is enough to
prove this proposition if eithei3(4) or (3.8) holds. Suppose th&}(ys — y) € R(A). Then

W (t) < o(t) andV (t) < o(t?).

In this case, assuming ), we find by the change of variables= »t that

2 / ROV / TV s - 1,0} dz < o).

24 24

The function(z, t) — max{z — ¢, 0} is nonnegative and monotonically increasing as 0.
By the monotone convergence theorem, we obtain that

Vv Vv
/ (2) dz = lim/ @ max{z —t,0} dz = 0,
0 t—0 Jo z

23
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which is impossible unles¥’(z) = 0 almost everywhere. Using(g) we can conclude
analogously the absurd consequence that

/ W) dz = lim/ W(SZ) max{z — 2t,0} dz = 0.
0 t—=0 Jo z

23
HenceQ(ys—y) & R(A). Clearly, this can only hold for nonze€d(ys—y) if R(A) # R(A),
i.e., only whenA has non-closed range and hence never in the discrete oposgid case.
|
In the following sections we will consider noise conditidhat make sense in the discrete
case.

3.1. Regularity conditions. Besides the noise condition, the estimate)is the sec-
ond main ingredient in Theorethl. The situation here is different to that i8.8) because
(2.9 is already satisfied for some index function if a source @@mdholds [LO]. Unfortu-
nately, this only yields suboptimal rates. Of particulaenest is the case whef.f) holds
with ®(x) ~ z, as this implies optimal order rates. Sufficient conditiémsthis situation
were stated inJ1] and were called decay conditions. Here, we will use the tergularity
condition instead. Thus, we are now interested in findingerties ofz! that allows us to
conclude that

(3.12) ea(a®) < Coutp(a*, Azl

holds for some of the parameter choice functionals. To bedm we again study the infinite-
dimensional case extending previous results1df [L1]. The following is an analogue of
Lemma3.1

LEMMA 3.6.LetA : X — Y be a bounded operator between Hilbert spaces, and let the
regularization be Tikhonov regularization. The inequal(i8.11) for ) = o is equivalent
to

e ot -1 C? .
(312 | o Aal P dn < S go(a’ s
1

and for the cas& = 1,1, the inequality(3.11) is equivalent to

> Oé* 2 1 CZ * 2
(3.13) IDHRJ(?,% -y) Edﬁ < 7¢HR,1(04 s —Y)°.
1

Proof. Denote byFE) a spectral family ofA* A. The approximation error can be ex-

pressed as,(a) = [ ﬁ dE,||zT||%. Hence, the lemma follows from

/OO (%)2)\2 n—1 1 o /°° (QT:)Q)\ 1 1 o
1 ( 1

: = dn=-—. O
SNt 2 T 6 r N2 ’

Y AT CEE Ve

From this we may derive sufficient conditions f&.11) in form of scaling conditions.
Let us define

- o q
VO = [ bl
t

PROPOSITION3.7. Let the same assumptions as in LenBr@hold. Each of the follow-
ing conditions imply(3.12 (and hencd3.11) for the quasioptimality rule).
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e There existarm > 0 andC, < oo such that

* 02
(3.14) on(%,AxT)Q <e(l+ E)ﬁn_ero(a*,AmTF Vn > 1.
e There existarm > 0 andC, < oo such that
©_t.n—1 C? -
3.15 / V(-)——dn < =2V(t) Vt>0.
(3.15) V) dn < V)
e There existarm > 0 andC,, < oo such that
=t C(% (7 2—e
(3.16) V(E) <e(l+ e)?V(t)n Vn>1,t > 0.

e There exist constants,.., t; such that

t e}
1
(3.17) !/ dE\||2zt|]? < Cpet? = dEy||lzt|]> Yo<t<t.

)\2
0 t
Moreover, each of the following conditions im@y.13 (and hencg3.11)) for the Hanke-
Raus rule HR.
e There existarm > 0 andC, < oo such that
o 2 Cg —c * \2
(318) wHR,l(?w&f ) S 6?7’] ¢HR,1(05 ,Al‘ ) Vn Z 1.

e There existarm > 0 andC, < oo such that

<t 1 2
3.19 / V(=)—=dn < =2V(t) Vt>0.
(3.19) V)< 5@
e There existar > 0 andC,, < oo such that
Sty Ca o

e Condition(3.17).
Proof. The conditions¥.14) and @.18) imply (3.12 and @.13), respectively, by integra-
tion. By an integration by parts we find that

0o *313
A ~
*AT2:4/ LA
¢Qo(a s AT ) o (a* +/\)5V()\) d)\,
%) *3/\2 _
* Az)? = / 22V (\)dr
Yuri(a”, Ax')" =3 | (a*+A)4V( ) dA,

which shows that3.15 and .19 imply (3.12 and @.13, respectively. By integration,
(3.16 and @.20 imply the corresponding inequalitie3.(5 and @3.19. The sufficiency of
(3.17) was already shown irLf,, 15]. a

Concerning the HR rule, the estimate3(11) was established undes.(7) in [10]. We
remark that regularity conditions of the forr.{7) have already been used ih(| 11]. It
should be noticed that if a source condition with saturaitmiex holds, i.e.,

<1
| sl <.
0

then @.17) is automatically satisfied; se&(, 11].
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4. Discrete case.Proposition3.5 indicates a difficulty that occurs in the discrete case.
Since them)(ys., — y») is always in the range ofl,, (Af is defined on the whole space),
the noise conditions as mentioned in Propositiohcannot be satisfied. This also can be
observed by a limit argument: in all cas¢$a,y;, — y,) tends to0 asa — 0 while
limgy—0 ea(@) = Al (ys.n — yn). More precisely, we have

LEMMA 4.1. If A, has finite-dimensional range, then for all € Y,, the function-
als Yo (a, 2) and ¢y g o (o, z) are monotonically increasing in for a € [0,02,,,,] with
1¥00(0,2) = 0, YuRr,0(0,2) = 0, and Yy g 1(a, z) is monotonically increasing in
for a € (0,202, ] With ¢k 1(0,2) = 0.

Thus, the estimate2(8) cannot be satisfied uniformly for alli* sufficiently small. This
is the reason why in the discrete case one has to restrice#iretsfor a minimum ofy to an
interval which does not contailh The following propositions are appropriate formulations
of noise conditions in the discrete case. They are analogo@st) and @3.10.

PrROPOSITION4.2. Let us define

ei = (Ys.n — Yns Vi)-

2
&
. Ai>Ta*r N, *2 4 2
inf { (147)2 + =227 N 2(1 4 7)4 y < C2,
720 ( ) ZA,iSTa* )\7622 ( ) ¢

then(2.8) holds forygo. If

2
ZA;, >Ta* %

. 3 % 2
) AR v
then(2.8) holds fory g g ;1. If
Tasrar 5
inf 7'+(1+7')20z*)‘i>7m*/\5 <C?

>0 Z)\igroﬁ €

then(2.8) holds fory g p, oo
Proof. Let 7 > 0 be arbitrary. Then

Ai i
cal@)’= Y TNt Y e
Ni<Ta* (CY + )\7') Ai>To* (O( + )\2)
*2
2 N L,
§(1+T) Z mei‘i’ Z )Tiei
AilTa* Ai>To*
< (L4 7)*Pgo(a”, ys — y)?

Zx>m* % (ys — y,vi)|2 ) , )
Z 1’ a™(1 +7 O O[*, 6 — 3
D ni<rar Ail (s =y, vi) ]2 (1+7)"qo(a",ys —y)

+

where the last inequality follows from

*2
Z 2 *2 4 Z aroA; 2
)\iei S « (1 +7‘) m@l

Ai<ta* Ai<ta*
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In a similar fashion we obtain

Ai
Z * 2 612
AilTa* (a + )\l)

< {7_ Z)\iST(X* Weg S TwHR,oo(a*7y5 - y)27

*2
T+ 7)Y <rar o€ < T+ 1)Yur1(a,ys —y)?,

S Jor(dt 72 Yxi<rar (O‘iﬁeg < a*(1+7)*mR0o (@, y5 — y)?
a1+ 735 <rar @rms < @ (L+7)%0mra(a”, ys —y)* 0
As a simple consequence we obtain a discrete version of ike nondition allowingx*
to be in an interval:
PrRoPOSITION4.3. In the case of the quasioptimality rule, = o, let the following
condition hold: there exists a constafl,.; and an intervall,, C [0, co) such that

(4.1) €3 < Crea Y. N VEE .

xi>e 7! Ai<Zg

> |2

Then, for anyr > 0, the noise conditioi2.8) holds for alla™* € %In with a constant

(14 7)* '

C(? = (1 + T)2 + C(ncd 2

In the case of the Hanke-Raus rulés= ¥z 1 Or ¥ = ¥ ur . l€t the following condition
hold: there exists a constant,.; and an intervall,, C [0, co) such that

2
(4.2) Y U <Cua Y & VEET,.

Ai>g ! Xi<é
Then for anyr > 0, the noise conditio2.8) holds for alla* € %In with a constant

1 3
C’g =7(1+7)+ C’ncd@,

in the case of) = ¢z 1 and with a constant

2
03 =7+ Cncdw7
T

in the case of) = YR -

Proof. A proof follows by setting = 7a*. 0

In Section5 we will look closer at the conditionst(1), (4.2) for the case of random
noise. Let us now consider the regularity (decay) conditicte discrete case. First, we are
interested in estimates of the form

(4.3) ea(a®) < Cop(a®, Axl)Y, 0<v <1,

for somer. The most important case,= 1, which yields optimal order rates, will be treated
in Propositior4.6. We recall the definition of.||_, in (2.14).
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ProPOSITION4.4. Let0 < v < 1 be fixed. If

@ -, — <2,
PO (2 A2 (@h w)l?)

then(4.3) is satisfied forygo. If

) o* + 3v
B ¢
0 (0 A u)?)

then(4.3) is satisfied for) g1 andy¥ g g -
Proof. A standard convergence rate estimate yields

2v

ea(@”)? < sup a2, < (=) TP lf ]I, e

T
z€R (1 + x)2

For arbitraryn > 0 we have

2 T N2
*AT\2 Z @] )2 > *22 i)

xn,uz
Oé +,'74 Z

Ai>n 'L

\ \/

which proves 4.4). Fory g1 and fory i r .. we have

%2y 3 T )2
« \2 _ a* + N2 %2 >‘i (wnvul)‘
¢HR,1(Q 7Axn) - El : (a* 3 ‘(In’ul)l Za EZ : (a* )\22

+)\») + )3
IE g
>a Z n Z
- 3
(a* +77 s
“Ni (96T u;)|?
') * A f 2: a i 2 > *2 v
¢HR, (Oé s iEn) zl:( +>\) ‘( nvu I Q Z Oé +)\ )\12

3

2@*2 n . Z SCIL,UZ)P’

@+ = N

which yields @.5). 0

The relevance of this proposition is that basically onlyscdétization independent source
condition is enough to obtaid (3) with uniform constants. More precisely,

COROLLARY 4.5.1f ||z} ||_, < ¢; and for some)

(4.6) oAk w)? > e,
Aizn

then for all a* < [0, aymaz), (4.3 is satisfied foano,wHR 1, YHR,00 With such av and

a constantC, = v¥(1 —v)1 V¢ ((a’";%”)) wherew = 4 for Yoo andw = 3 for
YHR1, VHR, 00
The condition 4.6) is not difficult to satisfy. It only means that the low frequy part

of x! does not become too small as the discretization becomes fivdien we want to
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have @.3) with v = 1, we can apply the previous proposition only when a sourcelition at
the saturation holds, i.e., whéin! || _; is bounded by a discretization independent constant.
However, even if this is not the case, we can use the followégglarity conditions and are
still able to satisfy 4.3) with v = 1:

PROPOSITION4.6. If

(D)2 ()2 o (@ u))?
(4.7) inf { 2) ( - 2) e 1] <2
T T T S [(z5,u4)|
AizTa* A2
then(4.3) is satisfied fornygo withv = 1. If
1 1 N ug))?
(4.8) e T (Tj ) 2xi<ra ( )2| +1] <c2,
T T T2a* D (af ui)]
Ni>Ta* A?
then(4.3) is satisfied for) ;g 1 withv = 1. If
1 1 2 T )12
(4.9) inf = (T; 3 Zonsra [T W)™ <c2,
T T Tk

Z |(In “z)‘Q
Ai>Ta*

then(4.3) is satisfied for) i g oo Withy =1
Proof. We estimate the functionalsfrom below as above

*2)\2 2 *2

;mKﬂwui)FZm Z m“ﬂ ui)|?,

Ai>Ta*

a*?\ T o*?
;ml(wi,ui)lzz 1+7) Z m‘(ﬂ u;)|?,

a*}\i Oé*2
ZmKILaUv)FZT Z m“ﬂﬂi)ﬁ

Ni>Ta*
and
a*? T2 9 |(xJr u;)|?
> ol ) 2 geegae® Y S
* N2 ’”’ 2 2
Ai>Ta* (a +)\'l) (1+T) A>Tk )\7
Moreover,
*2
)2 T2 @ T2
eq(a”)” < X;a* () i) +A;¥* m“xnauz)\
Z/\ o (@l u) P (2, wi)|”
=% a2 - Z (dw“i)‘Q-
ZM,ZTO&* n)’\izb Ai>Ta* A >Ta*

Combining the inequalities yields the proof. 0
As a corollary we have the following result:
COROLLARY 4.7.If there exists a constardt,..; such that

(4.10) S l(ah ) < Cra 2y ey, us) 17 x”’“Z Ve eI,

<€ N >¢€
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then (4.7), (4.8), (4.9 are satisfied (and thug3.11) with v = 1) for all o* € %In with

2
constants”? = { T THD 1y (2 4 1)2C, g+ 1) for 00, Yrr.1, ANk oo, rESPEC-
tively.
We can collect the results into the main theorem which steifscient conditions to
obtain discretization independent estimates.
THEOREM4.8. Letr > 0, define

U, (z) := max{2”, z},

and letz! satisfy either
1. a source conditiofiz] ||, < ¢; and(4.6), or
2. aregularity condition(4.10 on an intervall,,.
Then, if the parameter choice is the quasioptimality ppheiand (4.1) is satisfied for the

noiseys., — y, on the intervall,,, we obtain the convergence rate estimates

4.11)  |[zasn — ] < C inf

7, (”xa,n — ZTasnll + |Tamn — xLH) Case 1,
a€el,

Zan = Tasnll + |Tamn — IILH Case 2.

If the parameter choice is the rule HR) = ¢ 1, and (4.2) is satisfied on the intervdl,,
then we obtain the convergence rate estimates

0, (i+ Ton — T, ) Case 1,
@12)  fragn—obll < C ing {7 \Va Tl =l
€l | g+ 2o — o} Case 2.

For the HR. rule, ¢ = ¥y r «, if (4.2) is satisfied and a source condition holds in either
case, withv < % we obtain the convergence rate estimate wijtas in(2.13

U, (i +c, :13}: ,,,a”) Case 1,
(4.13) [Za5n —ah] < C inf ¢ 7AVe ]
afln | 2=+ eullxl || - a? Case 2.

The constantg€’ can be chosen a8 = max{2"C, + 1,2C; + 1}, with C,; as in Proposi-
tion4.3andC, as in Corollary4.50r Corollary 4.7with 7 = 1.

Slight improvements of these results are possible usingrbefs of [L0]. For instance,
with an additional condition on the noisgy 1 satisfies4.11); see [LO, (4.19)].

In this theorem, we may allow}(10 and @.1) or (4.2) to hold only on a scaled inter-
val I, = 71, with 7 > 0. In this case the constantsdepend onr by the expressions stated
in Propositior4.3, Corollary4.5, and Corollary.7.

Using standard bounds, it is easy to see thdt]) is a better estimate tha#.(L2), which
is better than4.13. Moreover, it should be noted that we only find optimal rafethe
noise level is such that the optimal choice of the paramategeneral this is close to that
which balances the two terms id.(1)—(4.13) is in the intervall,,. This requires the noise
conditions ¢.1), (4.2) to hold on a sufficiently large interval, which is, unforaaly, not
always the case; see below.

4.1. Generalized cross validation.We have established convergence rates for the qua-
sioptimality and Hanke-Raus rules. Let us now discuss lgrie# generalized cross valida-
tion. We remind of the similarityd.11) of the GCV-functional with the HR, functional up
to a factor depending on. We have the following result.
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PROPOSITION4.9. Let the assumptions of Theoreh® for the Hanke-Raus functional
YR, hold. Leta* be chosen by the GCV-functional according2c4). Then we have the
estimate

v, (L + ez —uoz”) Case 1,
s — il € C inf (14 fmax &, 2y 3 B A el
I= talall-ar Case 2.

Proof. Consider the factor

Yeov(ays) _ o _ 1
VHR 00 (@, Ys) ple) = Van(a) ok (%Z?ﬂﬁ)

Under the assumptions of Theoréng, (3.11) and @.8) are satisfied fot) i g, .. We proceed
asin Theoren2.1 Leta € I,, be arbitrary and consider first the case < «. Using .4),
subadditivity, .13, and @.12), we obtain with a generic constaft

. Cy
[Zar s — 2h | < ea(@®) + ea(a”) < eq(a) + 7p(a*)¢ccv(a*,ya )

Ca
pla)

<eq(a) + p(Coi)chv(Oéaya) + CqC(a™)”

(Yeev(a®,ys) + Yeov(a®,y))

< 6(1(04) +

v, Capla) (0 o)
< (Cqg+1)C(a)” + (@) (\/a-f—C( ))

<C (1 + ;’&%) (5& + C(a)”) .

In the casex* > «a, we obtain similarly,

Hxa*,é,n - xILH § €d(Oé) + p(T(1)¢GCV(a*ay)

0 wacv a, ya))”
W (o)

(e (o)
<C(1+ p(a)) ®V<5+C(a)”>.

< e

pla*) Va
Now we bound the factolj((f%)). It can be verified that
a_ P if a <af,
a+ N T afj:/\/ if a > a*.
Thus,
o « 1
pla)® = 5 < — w12 2
n o ming o, & n
(% Zi:l 06+)\1‘) { } (% Zi:l a*i)\i)
aa” 9 o« 2
= — — u|
mm{a,a*}zp( )" = max{—, —}p(a”)
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Note that this rate estimate is of limited use, since it imeslthe estimated parameter vadife
which is not known a priori. We expect that a deeper convargeate analysis is more in-
volved for the GCV-functional. One reason for this is tha GCV-functional is designed to
estimate the residudiid,, z 5., —y» || rather than the expression that we actually want to min-
imize, || za.5., — x'||. Afurther analysis would require to bound in terms of the optimady,

but quite probably this needs more requirements than juseramd regularity conditions. An
extensive analysis—even proving optimal order estimates+k#&GCV-functional was done
by M. Lukas; see, e.g.1p, 13, 14]. This was shown using quite specific bounds on the rates
of decay of the noise components, the components of the sahtion and the decay of the
singular values. Moreover, experiments comparing paranoivice rules indicated that the
GCV-functional usually performs worse than the other rules

5. Noise condition and random noise.We now study the discrete noise conditions
(4.2), (4.2) in more detail for the case of random noise. A highly reléveanise model is white
noise for which we derive probabilistic estimates for these@onditions. If additionally:],
satisfies one of the assumptions of Theorefthis leads to the result that the boundsl(),
(4.12), or (4.13 hold with the same probability as the noise condition.

We assume that all Fourier components of the noise are indepé and normally dis-
tributed with mean zero and unknown variamce

(5.1) (ys —y,v;) = e; ~ N(0,06%), independent i=1,...N.

LEMMA 5.1. Let the white noise modéb.1) hold. For anyé € [Min, Amaz] We define
(5.2) 2(§) =min{i e N| \; < ¢}

Suppose that for soriem € N with m > 2k there exists a constaut,, such that for all
5 6 I’nl

2(6)-1 | A=) )

(53) 52 Z )\ig C"m Z AN—rn(s—l)~
s=1

i=1 7°

Then(4.1) is satisfied with a constardt,,.; with probability p,

k: . ~ k
2 — 1 Cm
. >1-— .

Moreover, if for somé: € N there exists a constant;, such that for als € 1,

1 ~
. — < — —
(5.5) €2 5 SON -2 +1-20),
then(4.2) is satisfied with a constaidt,,.; with probability p,
. k
. >1— — .
(5.6) p>1 J:ll(Qz 1) (Cncd>

Proof. The probability that4.1) is satisfied with the constant,.; can be estimated as
follows

12
P((4.1))=1—P (52%”“@2 > Chreq, for somes e In> .
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Let¢ € I, be fixed,k € N be arbitrary. Then by Markov’s inequality and independence

2 1.2 k k
P Z/\ 2n>e X G /\ S =P Doni>€ e; > ngd
Z)\ <¢ Ai e ZAigg Ai€; 3

k

k
’ 1 1
< E R N ) ——
Chica ,\zgf Ai (Z,\igg A€} )

i

By the convexity of the power function we obtain that

k k k
1 1 )\i 2
2| ;
E vl > N E ) SN
> Ni>¢€ Ni>E HA>E N
k 1 y 1
1 ~ 1 Ik + 5
< 1 X . Ee2F — Z 2| g2kok ( ' 3)
Ai Z : . Ai F(*)
Ni>E Ni>E A>E Ai>€ 2
k k
1 ok (2)! 1 2k (9
= X O SR = Z ~ o P IIY_(26 — 1).
Ai>¢€ Ai>€

Now to the second factor. Since theare ordered monotonically decreasing, we can estimate
for arbitrary but fixedn € N, m > 2k, with z = z(£) as in 6.2),

N+1—2z
Z \e? = Z)\ e; Z )\N+1fie?\f+17i
Ai<é i=1
LN+1 Nil-z
> > Z AN 1 (m-14+8) EN-1— (m(t=1) +0)
=1 k=1
LN+1 Niloz
> Z AN +1—(m(1—1)+1) Z EN+1—(m(1—1)+k)
1=1 k=1
[HEi== ] [EE2==]
Z )‘Nfrn(sfl) Z Tl Z e?V+17(m(l71)+k) )
s=1 =1 k=1
where we set
AN —m(i-1
T = EESEE: =D

N+1—2z
Obviously it hold thatzltzlm 17, = 1 and hence we can use the convexity of the func-
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tion - to find

x

1 k
E P
(ZMSE )\16% >

1 1
E

N4l—=z k LiNt}L*ZJ m
(Zizf” : /\N—m<s—1)) etk - (m(t-1)4k)

IN

LN+172J k
1 - 1
| NAl=z k Z nE (Zm e2 ) .
(Zs:f" >\me(571)) = k=1 EN4+1—(m(—-1)+k)

The last factor can be calculated using the noise mdd#), (

: ! _LITB-R_ 1
2 k1 EN 1 (m(i—1)+k) ok 28 T(3) ok I05_ (m —2j)

Combining the estimates yields the result fér1f. We can follow the main steps also for the
case of 4.2). The only difference is that we have to estimate

k
E( 1 ) BRI et SN 1

PO o2k 2 TNz T gR T (N — 2+ 1 — 2j)
1 —_
< ﬁ(N—z+1—2k) k.
where we have to restrict ourselve2to< N — z + 1. O

Let us remark that the coefficients, & are tuning parameters, to make the probability
as high as possible. In particular,Gf,, andC}, are known, one can try to set = 2k + 1
and maximize the probability estimates o¥eif the simplest choicé = 1, m = 3 does not
yield appropriate estimates of the probability. Moreowsr,may also vary the constaft,.q
to conclude that4.117)—(4.13 hold with a constanf’ with certain probability. The results of
Lemmab.1in combination with Theorem.8are consistent with what one would expect: the
bounds on the right-hand side &.4), (5.6) are monotonically increasing witf1,,.; and so
are the constants in (4.11)—(4.13. Thus a good error bound with sméllholds with a lower
probability than a bad error bound with large Note that the right-hand sides i.4), (5.6)
may become negative, in which case the lemma is vacuous.

5.1. Case studiesWe can further investigate the constantsir8and 6.5 when a cer-
tain decay of the singular values akdis assumed. In particular, we want to investigate about
the intervall,,, where these inequalities hold with moderate and disabz independent
constants. It turns out that in many cases an interval ofdha f

g € ITL - [Aza)‘l]

can be taken, where < z < N and N is the total number of singular values. Below we
derive appropriate estimates for the indeleading to discretization independent bounds.
We assume that
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with a monotonically decreasing functien: R™ — RT. In this case we can estimate the
sums in b.3) and 6.5) by integrals:

z(§)—1 2(6)—1 2(€)
1 1 1 1
(5.7) —g/ —dt—l—iﬁ/ ——dt,
; Ni = o(t) o(2(6)—1) — Ji ()
LN+11;z(§)J LN+1T;Z(§)J+1
> w2 [ O(N —m(s — 1)) ds
s=1 1
1 [N 1 [N
(5.8) = — o(r)dr > —/ o(1)dr,
m N—ml_iNJrlr;z(g)J m z(&)—14+m
(5.9) € < ¢z —1)°

Case 1 Mildly ill-posed problems.
Assume a typical example of a mildly ill-posed problem, wehtire rate of the decay of the
singular values is polynomial, i.ep(t) = tip with p > 1. Then the constant irb(3) can be
estimated by bounding the ratio (usirg{)—(5.9))

z(&)—1
(5.10) PV I P ar-l

Niiz(e) =m 1
l:;:l " J )‘N—m(s—l) p + (Z - 1)2[) (

p—1 2Pt -1 (z—l—l—m)pl 1
=m
— 1)p+1 - z—14m\P—1
p+1(z—1) z—1 1— (=1gm)

_ p+1 p—1
<mP= Y (14 1 1+ L .
p+1 z—1 z—1 1_(z—l+'m)1’*1

In the same way we obtain fob.5),

1 1 (z+1)P+1—1)< 1 [(z+1)" 1
p+1l(z—1)» N—2z—-2k ~—p+1\z—-1) X

1 !
(z—14+m)rP—1 Np—1

Thus, if0 < 1 andzy > 1, and if¢ is such that

2 =1
then we find that with
_2p p— 1 1

Cm =20 p+11—46
that 6.3) is satisfied, and if

1

1+ T < z(8) < (0+1)(NV —2k),
2(zf — 1)

=
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Case 2.Exponentially ill-posed problems.
We assume that(t) = e~"* for somey > 0. Estimating the ratio as irb(10 by integrals
yields

Bz _ B B B(m+1)
7(3(2,71) 2 (& & € (&
m(e ) o—Ble—1+m) _ g—BN = M =Bm _ o—B(N—(2—1) = M o= B(N—(G—1)+m

Hence, ifz(£) is such that
then 6.3) is satisfied with anV-independent constant

| ePmi

m = M hy

The same holds fox(5), since 6.3) implies (6.5).

Case 3.The backward heat equation.
Here we assume that the decay rate of the singular valudseighiat of the backward heat
equation:p(t) = =A%, 3 > 0.

Let us first considerd.5). The ratio 6.10 can be bounded by

1
N+1—-2-2k

1+ 5

z—1
—B(z—1)? —By* 4 —B(x—1) <
‘ /0 e Cayte SNtl—z-2k

This follows from estimates for the so-called Dawson indéégr

xr
671’2/ edey <1,

0

(which also can be bounded l%)) Hence, if
2(£) S N+1-2k—0,
then 6.5) holds with constant

N 14+ 1
Cr=—5" R

The situation for .3) is different in this case. The reason is that we were not &bfend

lower bounds for the denominator ¢.(0),

1 2 N 2
H—1) / o7 g7
z—14+m

by an N-independent constant. In fact, for > 0 this value is bounded from above by an
exponentially decaying term?* asz — oo, which cannot be compensated by a similar
factor in the numerator. Hence, there is little hope tfa8)(holds for the backward heat
equation. We can at best take an interval wheiewithin the first few eigenvalugs\s, \]
(note the extremely fast decay of the singular value), whigleonstruction yields a (maybe
bad) but/NV-independent constant.
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6. Discussion.We have established a convergence theory for certain nevgd-free
parameter choice rules in the discrete case. Here we foausttk quasioptimality principle
and the Hanke-Raus rules. The generalized cross validddiesinot fit well into our analysis,
and we believe that it is in practice inferior to the otheteruin the case of ill-conditioned
problems.

Comparing the results, we observed that the quasioptiynatinciple yields the best
estimates (of oracle type), while the HRule has the bounelj—a instead of the propagated
error term in Theorem.8 The HR,, rule is even worse. Although these factors are all of the
same order, this gives a hint that the quasi-optimality halea lower error in many situations.
This can also be seen from the experimental resultsdh vhere the HR rule performs well
but its error is usually larger by a factor (less than 10) ttheat of the quasioptimality rule.
However, it is important to notice that the Hanke-Raus regegiire a weaker noise condition
than the quasioptimality rule.

Our analysis sheds light on the question, how the parambteéce rules should be im-
plemented. The main problem is to specify what we considexpgmopriate minimum, i.e.,
how to select the intervdl, in (2.4) to avoid the choicer* = 0. This issue might look like
a minor one, but we believe it is the reason, that in case esud] 8, 16] the experimen-
tally observed convergence results for noise level-frearpater choice rules are not always
conclusive.

Let us discus several proposed rules-of-thumb for the joaldmplementation. For in-
stance, Hansen and Hanl@ proposed to usé, = [amin, Amaz|, Wherea,,;, is a point of
a "peak”, i.e., a local maximum of the parameter choice fiomal. Such a maximum will
usually appear only at.,.;,, > A\..:n @nd hence it automatically rules out the chaice= 0.
The problem here is that a maximum at the lower eigenvalusatia very stable quantity be-
cause it might disappear when the structure of the noisedbther eigenvalues is perturbed
only a tiny bit. Variants of this idea are to quantify the miegnof an appropriate maximum
and only consider those,,;,,, where the maximum has a relative large value, controlled by
some factors (see the work of Palmardarik and Rausg] 7, 16]; compare also the climbing
approach16]). In general this is not a bad idea, since the appearanceedlaclose to\,,,;,
is a strong hint that a noise condition is satisfied. Howeseen if no such peak appears,
heuristic parameter choice methods can be successful.tdlleeg’right of the first peak”™-rule
does not indicate what to do then.

What we propose instead is to look faef in a fixed intervall,,, thus the optimuna*
does not need to be an interior minimum but can also be at tthéeints of/,,. Of crucial
importance is the choice of this interval, since it has toddated to the noise-structure and
the decay of the singular values. One suggestion in thealitez is to minimize over the
interval [yo2,,,,, 1] with a chosen factory > 1. This has been proposed by Neubaul] |
and Palm 16]. Again, this is in many cases appropriate (for instancegites with our
choice in the case of mildly ill-posed problems) but may ifajppractically relevant situations.
Instead, the analysis in Sectiénl suggests the following approach: choose the intefyal
as{\n,...: \n for some integer®,in, Nmaz, 1 < Nmin < Nmaz < N that can be de-
rived from the lower and upper bounds,;, < z(§) < nma. in Section5.1 This means
that the interval is constructed via the index et 1,... N of ;. Doing so (or similarly)
is a quite reliable choice that works in many cases. Howeithe previous analysis in-
dicates, the quasioptimality principle fails even withstichoice for problems of the type of
the backward heat equation (when the singular values deoay 3. Here, only the Hanke-
Raus rules work well. This observation is underpinned byigogb facts: the study inJ6]
showed that the quasioptimality principle has a very lamgerdor the backward heat equa-
tion problem. A further source of failure could be that thevdo bound forz in (5.11) is

m,in]
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not independent of, i.e., for mildly ill-posed problem with large we have to defind,, by
cutting out some of théarger singular valuegdepending orp) additionally to the smaller
oNesMmin = Nmin(p) > 1. Itis questionable if this is of much importance in practisiece
such a situation is only relevant when the optimal regusdidn parameter is close to the
largest singular values. This only happens when the naséf is of the order of the first
singular values.

Let us mention that the analysis of Sectibris also possible in the case of colored
noise,e; ~ N(0,0;), when the decay of; is known. The only difference is that the sums
in (5.3), (5.5) have to be scaled appropriately Q‘yor Aio;. By a unitary transformation, the
case of correlated noige;); ~ N(0,T") with known covariance matrik can be handled as
well.

We did not discuss the regularity condition too much, sini@oes not seem to be too
important for choosing,,. The comments inl[0] about this issue are also adequate in the
discrete case.

REFERENCES

[1] M. A. ARINO AND B. MUCKENHOUPT, Maximal functions on classical Lorentz spaces and Hardyesgjual-
ity with weights for nonincreasing functiongrans. Amer. Math. Soc., 320 (1990), pp. 727-735.

[2] F. BAUER AND S. KINDERMANN, The quasi-optimality criterion for classical inverse ptetms Inverse
Problems, 24 (2008), 035002 (20 pages).

[3] , Recent results on the quasi-optimality principlelnverse lll-posed Probl., 17 (2009), pp. 1129-1142.

[4] F. BAUER AND M. A. LUKAS, Comparing parameter choice methods for regularizationllgased prob-
lems Math. Comput. Simulation, 81 (2011), pp. 1795-1841.

[5] H. ENGL, M. HANKE, AND A. NEUBAUER, Regularization of Inverse Problepisluwer, Dordrecht, 1996.

[6] U.HAMARIK, R. PaLM, AND T. RAUS, On minimization strategies for choice of the regularizatfarame-
ter in ill-posed problemsNumer. Funct. Anal. Optim., 30 (2009), pp. 924-950.

[7] , Extrapolation of Tikhonov regularization methddath. Model. Anal., 15 (2010), pp. 55-68.

[8] M. HANKE AND P. C. HANSEN, Regularization methods for large-scale problei8arvey Math. Indust., 3
(1993), pp. 253-315.

[9] M. HANKE AND T. RAus, A general heuristic for choosing the regularization paraenen ill-posed prob-
lems SIAM J. Sci. Comput., 17 (1996), pp. 956-972.

[10] S. KINDERMANN, Convergence Analysis for minimization based noise leeelffarameter choice rules for
linear ill-posed problemsElectron. Trans. Numer. Anal., 38 (2011), pp. 233-257.
http://etna.nts. kent. edu/ vol . 38. 2011/ pp233- 257. di r/ pp233- 257. ht m

[11] S. KINDERMANN AND A. NEUBAUER, On the convergence of the quasioptimality criterion foergted)
Tikhonov regularizationinverse Probl. Imaging, 2 (2008), pp. 291-299.

[12] M. A. Lukas, Asymptotic optimality of generalized cross-validationdboosing the regularization param-
eter, Numer. Math., 66 (1993), pp. 41-66.

[13] , Comparisons of parameter choice methods for regularizatiith discrete noisy datdnverse Prob-
lems, 14 (1998), pp. 161-184.
[14] , Robust generalized cross-validation for choosing the lesgzation parameterinverse Problems, 22

(2006), pp. 1883-1902.

[15] A. NEUBAUER, The convergence of a new heuristic parameter selectioarait for general regularization
methodsInverse Problems, 24 (2008). 055005 (10 pages).

[16] R. PaLM, Numerical Comparison of Regularization Algorithms fonguag Ill-Posed ProblemsPh.D. Thesis,
Institute of Computer Science, University of Tartu, Tartatdhia, 2010.

[17] T. SEIDMAN, Nonconvergence results for the application of least-sgs@&stimation to ill-posed problemks
Optim. Theory Appl., 30 (1980), pp. 535-547.

[18] V. D. StepaNOV, The weighted Hardy’s inequality for nonincreasing funegoTrans. Amer. Math. Soc.,
338 (1993), pp. 173-186.

[19] A. TIKHONOV AND V. GLASKO, The approximate solution of Fredholm integral equationgheffirst kind
Zh. Vychisl. Mat. i Mat. Fiz., 4 (1964), pp. 564-571.

, Use of the regularization method in non-linear problerdsS.S.R. Comput. Math. Math. Phys., 5
(1965), pp. 93-107.

[21] G. WaHBA, Spline Models for Observational Dat&1AM, Philadelphia, 1990.

[20]



http://etna.mcs.kent.edu/vol.38.2011/pp233-257.dir/pp233-257.html

