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DISCRETE POINCARÉ INEQUALITIES FOR ARBITRARY MESHES IN THE

DISCRETE DUALITY FINITE VOLUME CONTEXT∗

ANH HA LE†‡ AND PASCAL OMNES‡

Abstract. We establish discrete Poincaré type inequalities on a two-dimensional polygonal domain covered

by arbitrary, possibly nonconforming meshes. On such meshes, discrete scalar fields are defined by their values

both at the cell centers and vertices, while discrete gradients are associated with the edges of the mesh, like in the

discrete duality finite volume scheme. We prove that the constants that appear in these inequalities depend only on

the domain and on the angles between the diagonals of the diamond cells constructed by joining the two vertices of

each mesh edge and the centers of the cells that share that edge.
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1. Introduction. Let Ω be a two-dimensional polygonal domain. Let us introduce the

following two Poincaré inequalities which will be mentioned throughout this article: the

Friedrichs (also called Poincaré) inequality

∫

Ω

u2(x)dx ≤ cF

∫

Ω

|∇u(x)|2dx, ∀u ∈ H1
0 (Ω),(1.1)

and the Poincaré (also called mean Poincaré) inequality

∫

Ω

u2(x)dx ≤ cP

∫

Ω

|∇u(x)|2dx, ∀u ∈ H1(Ω) such that

∫

Ω

u(x)dx = 0,(1.2)

where cF and cP are constants depending only on Ω. These two inequalities play an important

role in the theory of partial differential equations. Here,H1(Ω) is the Sobolev space of L2(Ω)
functions with generalized derivatives in (L2(Ω))2, and H1

0 (Ω) is the subspace of H1(Ω)
with zero boundary values in the sense of traces on ∂Ω. More details on the Sobolev spaces

H1(Ω), H1
0 (Ω) may be found, e.g., in [1].

This article considers discrete versions of Poincaré inequalities for the so-called dis-

crete duality finite volume (DDFV) method with discretization on arbitrary meshes, as pre-

sented, e.g., in [11]. Originally developed for the discretization of (possibly heterogeneous,

anisotropic, nonlinear) diffusion equations on arbitrary meshes [3, 6, 11, 15, 16, 20], this tech-

nique has found applications in other fields, like electromagnetics [17], div-curl problems [9]

and Stokes flows [8, 18, 19], drift diffusion and energy transport models [4].

The originality of these schemes is that they work well on all kinds of meshes, includ-

ing very distorted, degenerating, or highly nonconforming meshes; see the numerical tests

in [11]. The name DDFV comes from the fact that these schemes are based on the definition

of discrete gradient and divergence operators which verify a discrete Green formula.

Details about this method are recalled in Section 2. In this introduction, let us only

mention that in the DDFV discretization scalar functions are discretized by their values both

at the centers and at the vertices of a given mesh, and their gradients are evaluated on the
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so-called “diamond-cells” associated with the edges of the mesh. Each internal diamond-cell

is a quadrilateral; its vertices are the two nodes of a given internal edge and the centers of the

two cells which share this edge. Each boundary diamond cell is a degenerated quadrangle

(i.e., a triangle); its vertices are the two nodes of a given boundary edge and the center of the

corresponding cell and that of the boundary edge.

Then, the discrete version of the L2 norm on the left-hand side of (1.1) and (1.2) is the

half-sum of the L2 norms of two piecewise constant functions, one defined by the discrete

values given at the centers of the original (“primal” in what follows) cells, and the other

defined by the discrete values given at the vertices of the primal mesh, to which we associate

cells of a dual mesh. Moreover, the discrete version of the gradient L2 norm on the right-hand

side of (1.1) and (1.2) is the L2 norm of the piecewise constant gradient vector field defined

by its discrete values on the diamond-cells.

In the finite volume context, discrete Poincaré-Friedrichs inequalities have previously

been proved in [12, Lemma 9.1, Lemma 10.2] and [14], respectively for so-called “admis-

sible” meshes (roughly speaking, meshes such that each edge is orthogonal to the segment

joining the centers of the two cells sharing that edge; see the precise definition in [12, Defi-

nition 9.1]) and for Voronoi meshes. Similar results on duals of general simplicial triangula-

tions are proved in [21]. In the DDFV context, a discrete version of (1.1) is given for arbitrary

meshes in [3]. However, the discrete constant cF which appears in that paper depends on the

mesh regularity in a rather intricate way; see [3, Formula (2.6) and Lemma 3.3].

The main result of our contribution is the proof of discrete versions of both (1.1) and (1.2)

in the DDFV context, with constants cF and cP depending only on the domain and on the

minimum angle in the diagonals of the diamond cells of the mesh.

Our proof of the discrete version of (1.1) is very similar to those given in [12] or [21].

We also prove a discrete version of (1.1) in a slightly more general situation when the domain

is not simply connected and the discrete values of the function vanish only at the exterior

boundary of the domain and are constant on each of the internal boundaries; this will have a

subsequent application in the last section of the present work.

However, the task is more difficult for the mean-Poincaré inequality. Like in [12], it is

divided into three steps. The first is the proof of this inequality on a convex subdomain; in the

second, our proof differs from that in [12] because we actually do not need to prove a bound

on the L2 norm of the difference of discrete functions and their discrete mean value on the

boundary of a convex subset, but rather an easier bound on the L1 norm of this difference.

The final step consists of dividing a general polygonal domain into several convex polygonal

subdomains and in combining the first two steps to obtain the result.

As a consequence, we derive a discrete equivalent of the following statement (which is a

particular case of a result given in [13]). Let us consider open, bounded, simply connected,

convex polygonal domains (Ωq)q∈[0,Q] of R2, such that Ωq ⊂ Ω0 for all q ∈ [1, Q], and

Ω̄q1∩Ω̄q2 = ∅ for all (q1, q2) ∈ [1, Q]2 with q1 6= q2. Let Ω be defined by Ω = Ω0\(∪
Q
q=1Ωq).

Let us denote by Γ = ∂Ω = ∪Q
q=0Γq , with Γq = ∂Ωq for all q ∈ [0, Q]. Then, there exists a

constant C, depending only on Ω, such that for all vector field v in H(div,Ω) ∩H(rot,Ω),
with v · n = 0 on Γ and (v · τ , 1)Γq

= 0 for all q ∈ [1, Q], there holds

||v||L2(Ω) ≤ C(||∇ · v||L2(Ω) + ||∇ × v||L2(Ω)).

The discrete equivalent has applications in the derivation of a priori error estimates for the

DDFV method applied to the Stokes equations ([10]).

Let us mention that, although 3D extensions of the DDFV scheme have been pub-

lished [2, 5, 6], the extension of our results to 3D is beyond the scope of this article.
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FIGURE 2.1. A nonconforming primal mesh and its associated dual mesh (left) and diamond-mesh (right).

The paper is organized as follows. Section 2 introduces some notations and definitions

related to the meshes, to discrete differential operators and to discrete functions. In Section 3,

discrete Poincaré inequalities are presented. First, we prove a discrete Poincaré inequality for

discrete functions vanishing at the boundary of the polygonal domain, then we extend this

result to the slightly more general case mentioned above, and we prove the discrete mean

Poincaré inequality with the 3 steps described above. Finally, we present in Section 4 an

application of the previous results to the derivation of another discrete inequality, relating the

norm of discrete vector fields defined on the diamond cells and verifying special boundary

conditions, to that of their divergence and curls defined on the primal and dual meshes. In

Appendix A, we present the details of the proof of a lemma required for our main results.

2. Notations and Definitions. The following notations are summarized in Figure 2.1

and Figure 2.2. Let Ω be defined as above and be covered by a primal mesh with polygonal

cells denoted by Ti, i ∈ [1, I]. With each Ti, we associate a point Gi located in the interior

of Ti. Let us denote by Sk, with k ∈ [1,K], the nodes of the cells. With any Sk, we associate

a dual cell Pk by joining the points Gi associated with the primal cells surrounding Sk to the

midpoints of the edges of which Sk is a node.

With any primal edge Aj with j ∈ [1, J ], we associate a so-called diamond-cell Dj

obtained by joining the vertices Sk1(j) and Sk2(j) of Aj to the points Gi1(j) and Gi2(j) asso-

ciated with the primal cells that shareAj as a part of their boundaries. WhenAj is a boundary

edge (there are JΓ such edges), the associated diamond-cell is a flat quadrilateral (i.e., a tri-

angle) and we denote by Gi2(j) the midpoint of Aj (thus, there are JΓ such additional points

Gi). The unit normal vector to Aj is nj and points from Gi1(j) to Gi2(j). We denote by A′
j1

(resp. A′
j2) the segment joining Gi1(j) (resp. Gi2(j)) and the midpoint of Aj . Its associated

unit normal vector, pointing from Sk1(j) to Sk2(j), is denoted by n
′
j1 (resp. n

′
j2). We also

define vectors τ j , τ ′
j1 and τ

′
j2 such that (nj , τ j), (n

′
j1, τ

′
j1) and (n′

j2, τ
′
j2) are orthonor-

mal, positively oriented basis of R2. In the case of a boundary diamond-cell, A′
j2 reduces to

{Gi2(j)} and does not play any role. Finally, for any diamond-cell Dj , we shall denote by

Miαkβ
the midpoint of Giα(j)Skβ(j), with (α, β) ∈ {1, 2}2, Mj the midpoint of Sk1(j)Sk2(j)

and θj1 (resp θj2 ) is defined to be the angle, smaller than π/2, between segment Sk1(j)Sk2(j)

and segment Gi1(j)Mj (resp Gi2(j)Mj). We shall use the following definition.

DEFINITION 2.1. We denote by θ∗ > 0 the largest angle in the mesh such that

θj1 ≥ θ∗ and θj2 ≥ θ∗, for all j ∈ [1, J ].

Now we shall associate discrete scalar values to the points Gi and Sk and discrete two-

dimensional vector fields to the diamond-cells. This leads us to the following definitions.



ETNA
Kent State University 

http://etna.math.kent.edu

DISCRETE POINCARÉ INEQUALITIES 97
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FIGURE 2.2. Notations for the inner diamond-cell (left) and a boundary diamond mesh (right).

DEFINITION 2.2. Let φ = (φTi , φ
P
k ) and ψ = (ψT

i , ψ
P
k ) be in R

I × R
K . Let v = (vj)

and w = (wj) be in
(

R
J
)2

. We define the following scalar products and associated norms

(φ, ψ)T,P :=
1

2





∑

i∈[1,I]

|Ti|φ
T
i ψ

T
i +

∑

k∈[1,K]

|Pk|φ
P
k ψ

P
k



 ,

‖φ‖2T,P := (φ, φ)T,P ,

(w,v)D :=
∑

j∈[1,J]

|Dj |wj · vj , ‖v‖2D := (v,v)D.

DEFINITION 2.3. Let φ = (φTi , φ
P
k ) be in R

I+JΓ

× R
K . We define the trace φ̃ of φ

on the boundary edges Aj ⊂ Γ by φ̃j := 1
4

(

φPk1(j)
+ 2φTi2(j) + φPk2(j)

)

. We also define a

discrete scalar product for the traces of v · n and φ̃ on the boundaries Γq

(v · n, φ̃)Γq,h :=
∑

j∈Γq

|Aj | (vj · nj) φ̃j

and on Γ

(2.1) (v · n, φ̃)Γ,h :=
∑

q∈[0,Q]

(v · n, φ̃)Γq,h.

In the proof of discrete Poincaré inequalities, we often use the piecewise constant func-

tions based on the discrete functions defined at the centers of each mesh; we make the fol-

lowing definitions

DEFINITION 2.4. Let φ ∈ R
I+JΓ

× R
K . The piecewise constant functions φT (x) and

φP (x) are defined as follows

φT (x) = φTi , ∀x ∈ Ti and i ∈ [1, I];

φP (x) = φPk , ∀x ∈ Pk and k ∈ [1,K].

We recall here the discrete gradient [7, 11] and (vector) curl operators [9] which have

been constructed on the diamond cells.
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DEFINITION 2.5. Let φ = (φTi , φ
P
k ) be in R

I+JΓ

. Its discrete gradient ∇D
h φ and

discrete curl ∇D
h × φ are defined by their values in the cells Dj through

(∇D
h φ)j :=

1

2|Dj |

{

[φPk2
− φPk1

](|A′
j1|n

′
j1 + |A′

j2|n
′
j2) + [φTi2 − φTi1 ]|Aj |nj

}

,

(∇D
h × φ)j := −

1

2|Dj |

{

[φPk2
− φPk1

](|A′
j1|τ

′
j1 + |A′

j2|τ
′
j2) + [φTi2 − φTi1 ]|Aj |τ j

}

.

In the proof of our results, we shall use the following theorem [9, Theorem 4.7].

THEOREM 2.6 (Discrete Hodge decomposition). Let (vj)j∈[1,J] be a discrete vector

field defined by its values on the diamond-cells Dj . There exist unique

φ = (φTi , φ
P
k )i∈[1,I+JΓ],k∈[1,K],

ψ = (ψT
i , ψ

P
k )i∈[1,I+JΓ],k∈[1,K],

and (cTq , c
P
q )q∈[1,Q] such that

(2.2) vj = (∇D
h φ)j + (∇D

h × ψ)j , ∀j ∈ [1, J ],

∑

i∈[1,I]

|Ti|φ
T
i =

∑

k∈[1,K]

|Pk|φ
P
k = 0,

(2.3) ψT
i = 0, ∀i ∈ Γ0, ψP

k = 0, ∀k ∈ Γ0,

and

(2.4) ∀q ∈ [1, Q], ψT
i = cTq , ∀i ∈ Γq, ψP

k = cPq , ∀k ∈ Γq.

Moreover, the decomposition (2.2) is orthogonal. We shall also need the following construc-

tion of discrete divergence and (scalar) curl operators on both primal and dual cells.

DEFINITION 2.7. Let v = (vj) be defined in (R2)J by its values on the diamond-cells.

We define

(

∇T
h · v

)

i
:=

1

|Ti|

∑

j∈∂Ti

|Aj |vj · nji,

(

∇P
h · v

)

k
:=

1

|Pk|

(

∑

j∈∂Pk

(

|A′
j1|vj · n

′
j1k + |A′

j2|vj · n
′
j2k

)

+
∑

j∈∂Pk∩Γ

|Aj |

2
vj · nj

)

,

(

∇T
h × v

)

i
:=

1

|Ti|

∑

j∈∂Ti

|Aj |vj · τ ji,

(

∇P
h × v

)

k
:=

1

|Pk|

(

∑

j∈∂Pk

(

|A′
j1|vj · τ

′
j1k + |A′

j2|vj · τ
′
j2k

)

+
∑

j∈∂Pk∩Γ

|Aj |

2
vj · τ j

)

.
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The following result [9, Proposition 4.1], which consists of discrete Green formulas, has

motivated the name “discrete duality”.

THEOREM 2.8 (Discrete Green formulas). For φ = (φT , φP ) ∈ R
I+JΓ

× R
K and

v ∈ (R2)J , it holds that

(v,∇D
h φ)D = −(∇T,P

h · v, φ)T,P + (v · n, φ̃)Γ,h,(2.5)

(v,∇D
h × φ)D = (∇T,P

h × v, φ)T,P − (v · τ , φ̃)Γ,h.(2.6)

3. Discrete Poincaré Inequalities. We first start with a discrete version of (1.1). Our

result is a special case of that proved in [3, Lemma 3.3], but our expression of the discrete

constant cF is more accurate and simple, in that its dependence on the geometry of the cells

occurs only through the angles between the diagonals of the diamond-cells. This is an impor-

tant result in the DDFV context, since also a priori error estimation of the discrete solution of

the Laplace equation obtained with this method only depends on the cell geometries through

angles in the diamond-cells; see [11].

THEOREM 3.1 (Discrete Poincaré-Friedrichs inequality). Let Ω be an open bounded

polygonal domain; let us consider u = (uTi , u
P
k ) ∈ R

I+JΓ

× R
K such that

uPk = 0, ∀k ∈ Γ and uTi = 0, ∀i ∈ Γ.

Let θ∗ be defined by Definition 2.1. Then, there exists a constant C only depending on Ω and

θ∗ such that

‖u‖T,P ≤ C‖∇D
h u‖D.(3.1)

Proof. Let uT (·) and uP (·) be the piecewise constant functions defined in Definition 2.4.

Then obviously ‖u‖2T,P = (‖uT ‖2L2(Ω) + ‖uP ‖2L2(Ω))/2, so that, in order to prove (3.1), it

suffices to prove

‖uT ‖L2(Ω) ≤ C‖∇D
h u‖D,(3.2)

‖uP ‖L2(Ω) ≤ C‖∇D
h u‖D.(3.3)

We shall first prove (3.2). Let d1 = (0, 1)t and d2 = (1, 0)t; for x ∈ Ω, let D1
x and D2

x be the

straight lines going through x and parallel to the vectors d1 and d2. For any edge j ∈ [1, J ]

and any x ∈ Ω, let us define χT,1
j (x) and χT,2

j (x) by

(3.4) χT,ℓ
j (x) =

{

1, if Aj ∩ Dℓ
x 6= ∅,

0, if Aj ∩ Dℓ
x = ∅,

for ℓ = 1, 2. For any x = (x1, x2) ∈ Ω, we note that χ1
j (x) only depends on x1 and χ2

j (x)
only depends on x2.

From the first formula of Definition 2.5 and simple geometry, it is easy to see that

(3.5) (∇D
h u)j ·

−−−−−−−−→
Gi1(j)Gi2(j) = uTi2(j) − uTi1(j), ∀j ∈ [1, J ].

Then, for any i ∈ [1, I] and a.e. x ∈ Ti, let us follow the straight line Dℓ
x until it intersects the

boundary Γ, and let us denote by v1(i) := i, v2(i), . . . , vn−1(i), the indices of the primal cells

that it intersects (in the order they are intersected), and by vn(i) the index in [I + 1, I + JΓ]
corresponding to the first boundary segment intersected by Dℓ

x; see Figure 3.1. Then, since
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FIGURE 3.1. Straight line D
2
x intersecting primal cells from point x to the boundary.

uTvn(i)
= 0 because of the boundary conditions, we may write

uTi = uTv1(i)
= (uTv1(i)

− uTv2(i)
) + (uTv2(i)

− uTv3(i)
) + · · ·+ (uTvn−1(i)

− uTvn(i)
)

=

n−1
∑

m=1

(uTvm(i) − uTvm+1(i)
),

so that, since any couple (uTvm(i), u
T
vm+1(i)

) is a pair of neighboring values through an edge

Aj intersected by Dℓ
x, there holds, thanks to (3.5)

|uT (x)| = |uTi | ≤
J
∑

j=1

∣

∣

∣
(∇D

j u)j ·
−−−−−−−−→
Gi1(j)Gi2(j)

∣

∣

∣
χT,ℓ
j (x),

for ℓ = 1, 2. Then, setting vj :=
∣

∣

∣
(∇D

j u)j ·
−−−−−−−−→
Gi1(j)Gi2(j)

∣

∣

∣
, one has

(uT (x))2 ≤





J
∑

j=1

vj χ
T,1
j (x)









J
∑

j=1

vj χ
T,2
j (x)



 .

Integrating the above inequality over Ti and summing over i ∈ [1, I], yields

(3.6) ‖uT ‖2L2(Ω) ≤

∫

Ω









J
∑

j=1

vj χ
T,1
j (x)









J
∑

j=1

vj χ
T,2
j (x)







 dx.

Let α = inf{x1 : (x1, x2) ∈ Ω} and β = sup{x1 : (x1, x2) ∈ Ω}. For each x1 ∈
(α, β), we denote by H(x1) the set of x2 such that x = (x1, x2) ∈ Ω. From the fact that
∫

H(x1)
χT,2
j (x2)dx2 ≤ |Aj | and

∫ β

α
χT,1
j (x1)dx1 ≤ |Aj |, we infer that (3.6) may be written
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in the following way:

‖uT ‖2L2(Ω) ≤

∫ β

α

dx1

∫

H(x1)

dx2





J
∑

j=1

vj χ
T,1
j (x1)

J
∑

j=1

vj χ
T,2
j (x2)





≤

∫ β

α

J
∑

j=1

vj χ
T,1
j (x1)





∫

H(x1)

J
∑

j=1

vj χ
T,2
j (x2)dx2



 dx1

≤

∫ β

α

J
∑

j=1

vj χ
T,1
j (x1)





J
∑

j=1

vj

∫

H(x1)

χT,2
j (x2)dx2



 dx1

≤

∫ β

α

J
∑

j=1

vj χ
T,1
j (x1)





J
∑

j=1

vj |Aj |



 dx1

≤





J
∑

j=1

vj |Aj |





J
∑

j=1

vj

∫ β

α

χT,1
j (x1)dx1 ≤





J
∑

j=1

vj |Aj |









J
∑

j=1

vj |Aj |



 .

We thus obtain

(3.7) ‖uT ‖2L2(Ω) ≤





J
∑

j=1

|(∇D
h u)j .

−−−−−−−−→
Gi1(j)Gi2(j)| |Aj |





2

.

Finally, using the Cauchy-Schwarz inequality, we obtain

‖uT ‖2L2(Ω) ≤





J
∑

j=1

|(∇D
h u)j |

2|Gi1(j)Gi2(j)| |Aj |









J
∑

j=1

|Gi1(j)Gi2(j)| |Aj |



 .

Since |Dj | =
1
2 (|Aj | |Gi1Mj | sin θj1 + |Aj | |Gi2Mj | sin θj2), we have that |Aj | |Gi1Gi2 | ≤

2|Dj |
sin θ∗

, by Definition 2.1 and the triangle inequality. Moreover, since
∑J

j=1 |Dj | = |Ω|, there

holds

‖uT ‖2L2(Ω) ≤
4

sin2 θ∗
|Ω|

J
∑

j=1

|(∇D
h u)j |

2|Dj |.

We have completed the proof of inequality (3.2), with C = 2
sin θ∗

|Ω|1/2. We now turn to

inequality (3.3). We shall use a very similar process to that employed in the proof of (3.2). A

slight difference comes from the fact that dual cells may be non-convex, and that the straight

lines Dℓ
x may thus intersect twice the boundary A′

j1 ∪ A
′
j2 between two adjacent dual cells

(see Figure 3.2), in which case it is not useful to introduce the difference uPk2(j)
− uPk1(j)

in

the calculation. We thus define χP,1
j (x) and χP,2

j (x) by

χP,ℓ
j (x) =

{

1, if either A′
j1 ∩ Dℓ

x 6= ∅ or A′
j2 ∩ Dℓ

x 6= ∅ ,

0, if
(

A′
j1 ∪A

′
j2

)

∩ Dℓ
x = ∅,

for ℓ = 1, 2. In the above definition, it is meant that the “either-or” is exclusive: if Dℓ
x

intersects both A′
j1 and A′

j2, then χP,ℓ
j (x) = 0. From the first formula of Definition 2.5, it is
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uP
k1(j)

uP
k2(j)

A′

j1

A′

j2

Mj

Gi1(j)

Gi2(j)

FIGURE 3.2. The straight line D
2
x intersects twice the boundary A′

j1 ∪A′
j2 of a non convex dual.

easy to see that

(∇D
j u)j ·

−−−−−−−−→
Sk1(j)Sk2(j) = uPk2(j)

− uPk1(j)
, ∀j ∈ [1, J ].

Thus, for any k ∈ [1,K] and a.e. x ∈ Pk, one has

|uPk | ≤
J
∑

j=1

|(∇D
h u)j ·

−−−−−−−−→
Sk1(j)Sk2(j)| χ

P,ℓ
j (x), ℓ = 1, 2.

Using a similar process as in the proof of (3.2), and taking into account that

∫ β

α

χP,1
j (x1)dx1 ≤ |A′

j1 |+ |A′
j2 | and

∫

H(x1)

χP,2
j (x2)dx2 ≤ |A′

j1 |+ |A′
j2 |,

we obtain

‖uP ‖2L2(Ω) ≤





J
∑

j=1

|(∇D
h u)j | |Aj |(|A

′
j1 |+ |A′

j2 |)





2

.

This allows to obtain, similarly as above,

‖uP ‖2L2(Ω) ≤
4

sin2 θ∗
|Ω|

J
∑

j=1

|(∇D
h u)j |

2|Dj |,

which concludes the proof of inequality (3.3), with C = 2
sin θ∗

|Ω|1/2.

We now turn to a generalization of Theorem 3.1, which will be useful in the last section

of this work.

THEOREM 3.2 (Discrete Poincaré-Friedrichs inequality). Let us consider open, boun-

ded, simply connected, convex polygonal domains (Ωq)q∈[0,Q] of R2, such that Ωq ⊂ Ω0 for
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all q ∈ [1, Q], and Ω̄q1 ∩ Ω̄q2 = ∅ for all (q1, q2) ∈ [1, Q]2 with q1 6= q2. Let Ω be defined by

Ω = Ω0\(∪
Q
q=1Ωq). Let us denote by Γ = ∂Ω = ∪Q

q=0Γq, with Γq = ∂Ωq for all q ∈ [0, Q].

Let u = (uT , uP ) ∈ R
I+JΓ

× R
K be such that

(3.8)
uPk = 0, ∀k ∈ Γ0, uTi = 0, ∀i ∈ Γ0,

uPk = cPq , ∀k ∈ Γq, uTi = cTq , ∀i ∈ Γq, ∀q ∈ [1, Q].

For θ∗ given by Definition 2.1, there exists a constant C depending only on Ω and θ∗ such

that (3.1) holds.

Proof. Like in Theorem 3.1, it suffices to prove both (3.2) and (3.3). We shall only

prove (3.2), since the proof of (3.3) follows exactly the same lines.

The only difference in the proof of (3.2) in Theorem 3.2 with respect to Theorem 3.1

is that the straight line Dℓ
x may now intersect one or several internal boundaries Γq , with

q ∈ [1, Q], before intersecting the external boundary Γ0; see Figure 3.3. For the sake of

simplicity, we shall consider only one intersection with an internal boundary Γq (since the

alternative may be treated exactly in the same way), and we denote by vnq
(i) and vnq+1(i)

the indices in [I + 1, I + JΓ] corresponding to those intersected boundary edges of Γq . We

may still write

uTi =

n−1
∑

m=1

(uTvm(i) − uTvm+1(i)
),

but now the couple (uTvnq (i)
, uTvnq+1(i)

) is not a pair of neighboring values through an edge

Aj intersected by Dℓ
x. However, these two values are equal because of (3.8), so that

uTi =
∑

m∈[1,n−1]
m 6=nq

(uTvm(i) − uTvm+1(i)
).

Now, any couple (uTvm(i), u
T
vm+1(i)

) in the above sum is a pair of neighboring values through

an edge Aj of the mesh intersected by Dℓ
x, so that there holds, thanks to (3.5),

|uTi | ≤
J
∑

j=1

∣

∣

∣
(∇D

j u)j ·
−−−−−−−−→
Gi1(j)Gi2(j)

∣

∣

∣
χT,ℓ
j (x),

for ℓ = 1, 2, and we finish the proof just like in the proof of (3.2).

Let us now turn to a discrete version of (1.2). As announced in the Introduction, the

proof will be divided into three steps. The first step is to prove it in the case of a convex

polygonal domain (Theorem 3.3), then we shall prove an inequality related to the mean value

on the boundary of a convex polygonal domain (Theorem 3.5), and we shall conclude by the

general case of a possibly non-convex polygonal domain (Theorem 3.6).

THEOREM 3.3 (Discrete mean Poincaré inequality for a convex polygonal domain). Let

Ω be an open bounded polygonal connected domain, and let ω be an open convex polygonal

subset of Ω, with ω 6= ∅. Let u = (uTi , u
P
k ) ∈ R

I+JΓ

×R
K ; the associated piecewise constant

functions uT , uP are defined through Definition 2.4. Let θ∗ be defined through Definition 2.1.

Let us define the following mean-values:

mT
ω (u) :=

1

|ω|

∫

ω

uT (x) dx, mP
ω (u) :=

1

|ω|

∫

ω

uP (x) dx.
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=
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FIGURE 3.3. Straight line D2
x intersecting primal cells from point x to the boundary through internal boundary

Γq .

xBD

ACy

B

A

D

xAC

yBD

x

C

y

ω

O

x

x
1

2

FIGURE 3.4. Notation for points A, B, C, D and points xAC , xBD , yAC , yBD .

Then, there exists a constant C only depending on Ω and θ∗ such that

(3.9) ‖uT −mT
ω (u)‖L2(ω) ≤ C‖∇D

h u‖D,

and

(3.10) ‖uP −mP
ω (u)‖L2(ω) ≤ C‖∇D

h u‖D.

(Choosing ω = Ω proves the discrete equivalent of (1.2) if Ω is convex.)

Proof. We only prove inequality (3.9). The proof of (3.10) may be adapted just like in

the proof of Theorem 3.1. We first note that

∫

ω

|uT (x)−mT
ω (u)|

2dx =

∫

ω

∣

∣

∣

∣

uT (x)−
1

|ω|

∫

ω

uT (y)dy

∣

∣

∣

∣

2

dx

≤
1

|ω|

∫

ω

∫

ω

|uT (x)− uT (y)|2dydx.

(3.11)

We define points A, B, C, D belonging to ω in the following way

xA = inf{x1 : (x1, x2) ∈ ω}, xC = sup{x1 : (x1, x2) ∈ ω},

yB = inf{y2 : (y1, y2) ∈ ω}, yD = sup{y2 : (y1, y2) ∈ ω}.
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Up to a rotation of ω, we may always suppose that those four points are distinct, except if

ω is triangular; in that case, up to a rotation of ω, we may set A = B and the proof is exactly

the same as that below.

For any x = (x1, x2) ∈ ω, we define xAC ∈ [AC] such that (xAC)1 = x1 and xBD ∈
[BD] such that (xBD)2 = x2. The notations are summarized in Figure 3.4. These points are

used because, since xAC does not depend on x2, nor xBD on x1, they will help us simplify

the quadruple integral in the right-hand side of (3.11) into double integrals. Moreover, since

these points are all located on the two fixed straight lines [AC] and [BD], the evaluation of

the remaining integrals may be treated in a systematic way, as it will be shown below.

Applying the triangle inequality leads to

|uT (x)− uT (y)| ≤ |uT (x)− uT (xBD)|+ |uT (xBD)− uT (yAC)|

+ |uT (yAC)− uT (y)|,
(3.12)

and also to

|uT (x)− uT (y)| ≤ |uT (x)− uT (xAC)|+ |uT (xAC)− uT (yBD)|

+ |uT (yBD)− uT (y)|.
(3.13)

From (3.12) and (3.13), we have

∫

ω

∫

ω

|uT (x)− uT (y)|2dxdy ≤
9
∑

i=1

Ii,(3.14)

where I1–I9 are defined and estimated in the following.

Treatment of I1

I1 =

∫

ω

∫

ω

|uT (x)− uT (xBD)| |uT (x)− uT (xAC)| dxdy.(3.15)

Using again (3.4) and (3.5), we may write

|uT (x)− uT (xAC)| ≤
J
∑

j=1

χT,1
j (x)

∣

∣

∣
(∇D

h u)j ·
−−−−−−−−→
Gi1(j)Gi2(j)

∣

∣

∣
(3.16)

and

|uT (x)− uT (xBD)| ≤
J
∑

j=1

χT,2
j (x)

∣

∣

∣(∇D
h u)j ·

−−−−−−−−→
Gi1(j)Gi2(j)

∣

∣

∣ .(3.17)

Henceforth, we set for convenience vj =
∣

∣

∣
(∇D

h u)j ·
−−−−−−−−→
Gi1(j)Gi2(j)

∣

∣

∣
. Recalling that χT,1

j (x)

only depends on x1 and χT,2
j (x) only depends on x2, and noting that the integrand in (3.15)

does not depend on y, there holds

I1 ≤ |ω|





∫ xA

xC

J
∑

j=1

χT,1
j (x)vjdx1









∫ yD

yB

J
∑

j=1

χT,2
j (x)vjdx2





≤ |ω|





J
∑

j=1

vj

∫ xA

xC

χT,1
j (x)dx1









J
∑

j=1

vj

∫ yD

yB

χT,2
j (x)dx2



 .
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We use that
∫ xC

xA

χT,1
j (x)dx1 ≤ |Aj |

and

(3.18)

∫ yD

yB

χT,2
j (x)dx2 ≤ |Aj |,

and obtain

I1 ≤ |ω|





J
∑

j=1

|Aj |vj





2

.(3.19)

Treatment of I2

I2 =

∫

ω

∫

ω

|uT (x)− uT (xBD)| |uT (xAC)− uT (yBD)| dxdy.

Using inequality (3.17), we have

I2 ≤

∫

ω

∫

ω





J
∑

j=1

χ2
j (x) vj



 |uT (xAC)− uT (yBD)| dxdy.

By definition, χ2
j (x) only depends on x2 (which is in [yB , yD]), while xAC only depends on

x1 (which is in [xA, xC ]); of course, yBD does not depend on x, so that

I2 ≤





J
∑

j=1

vj

∫ yD

yB

χT,2
j (x)dx2





∫

ω

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy.

Thanks to (3.18), we thus have

I2 ≤





J
∑

j=1

|Aj |vj





∫

ω

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy.

Since yBD only depends on y2 and xAC does not depend on y, the integration with respect to

y1 (which is in [xA, xC ]) is straightforward and yields

I2 ≤ (xC − xA)





J
∑

j=1

|Aj |vj





∫ yD

yB

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy2.(3.20)

Treatment of I3

I3 =

∫

ω

∫

ω

|uT (x)− uT (xBD)| |uT (yBD)− uT (y)| dxdy.

This integral clearly decouples into two independent integrals

I3 =

∫

ω

|uT (x)− uT (xBD)| dx

∫

ω

|uT (yBD)− uT (y)| dy,
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which may be treated like in the estimation of I1 thanks to (3.17), (3.18), and the fact that

χT,2 only depends on x2. We obtain

I3 ≤ (xC − xA)
2





J
∑

j=1

|Aj |vj





2

.(3.21)

Treatment of I4

I4 =

∫

ω

∫

ω

|uT (xBD)− uT (yAC)| |u
T (x)− uT (xAC)| dxdy.

We may proceed very similarly to the estimation of I2 and we obtain that

I4 ≤ (yD − yB)





J
∑

j=1

|Aj |vj





∫ xC

xA

∫ yD

yB

|uT (xBD)− uT (yAC)| dx2dy1.(3.22)

Treatment of I5

I5 =

∫

ω

∫

ω

|uT (xBD)− uT (yAC)| |u
T (xAC)− uT (yBD)| dxdy.

On the one hand, xBD and yAC do not depend on x1; on the other hand, xAC and yBD do

not depend on x2, so that the integration with respect to x decouples into

I5 ≤

∫

ω

(∫ yD

yB

|uT (xBD)− uT (yAC)| dx2

)(∫ xC

xA

|uT (xAC)− uT (yBD)| dx1

)

dy.

We also note that yBD and xAC do not depend on y1 and that yAC and xBD do not depend

on y2, so that the integration with respect to y decouples into

I5 ≤

∫ xC

xA

∫ yD

yB

|uT (xBD)− uT (yAC)| dx2dy1

∫ yD

yB

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy2.

(3.23)

Treatment of I6

I6 =

∫

ω

∫

ω

|uT (xBD)− uT (yAC)| |u
T (yBD)− uT (y)| dxdy.

We may proceed very similarly to the estimations of I2 and I4 and we obtain that

I6 ≤ (xC − xA)





J
∑

j=1

|Aj |vj





∫ xC

xA

∫ yD

yB

|uT (xBD)− uT (yAC)| dx2dy1.(3.24)

Treatment of I7

I7 =

∫

ω

∫

ω

|uT (yAC)− uT (y)| |uT (x)− uT (xAC)| dxdy.

We may proceed very similarly to the estimation of I3 and we obtain that

I7 ≤ (yD − yB)
2





J
∑

j=1

|Aj |vj





2

.(3.25)
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Treatment of I8

I8 =

∫

ω

∫

ω

|uT (yAC)− uT (y)| |uT (xAC)− uT (yBD)| dxdy.

We may proceed very similarly to the estimations of I2, I4 and I6 and we obtain that

I8 ≤ (yD − yB)





J
∑

j=1

|Aj |vj





∫ yD

yB

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy2.(3.26)

Treatment of I9

I9 =

∫

ω

∫

ω

|uT (yAC)− uT (y)| |uT (yBD)− uT (y)| dxdy.

We may proceed very similarly to the estimations of I1 and we obtain that

I9 ≤ |ω|





J
∑

j=1

|Aj |vj





2

.(3.27)

In order to conclude the proof of Theorem 3.3, we need the following lemma, a proof of

which is postponed to Appendix A.

LEMMA 3.4. There exists a constant C1, depending only on Ω, such that

∫ yD

yB

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy2 ≤ C1 diam(ω)





J
∑

j=1

|Aj |vj



 ,

∫ xC

xA

∫ yD

yB

|uT (xBD)− uT (yAC)| dx2dy1 ≤ C1 diam(ω)





J
∑

j=1

|Aj |vj



 .

Applying Lemma 3.4 and combining estimations (3.19) to (3.27) with the bound (3.14)

results in

∫

Ω

∫

Ω

|uT (x)− uT (y)|2dxdy ≤ C2
2





J
∑

j=1

|Aj |vj





2

,

whereC2
2 = (4+4C1+C

2
1 ) diam

2(ω). Now this inequality may be treated exactly like (3.7),

and there holds

∫

ω

∫

ω

|uT (x)− uT (y)|2dxdy ≤
4C2

2

sin2 θ∗
|ω|

J
∑

j=1

|(∇D
h u)j |

2|Dj |.

From (3.11), we have

∫

ω

(uT (x)−mT
ω (u))

2dx ≤
4C2

2

sin2 θ∗

J
∑

j=1

|(∇D
h u)j |

2|Dj |,

which implies the desired result with C = 2C2

sin θ∗
.
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FIGURE 3.5. Notation for points A, B, C, D and points xAC , σBD .

The second step in the proof of a discrete version of (1.2) is to establish an inequality

related to the mean value on the boundary of a convex polygonal domain

THEOREM 3.5 (Mean boundary inequality). Let Ω be an open bounded polygonal con-

nected subset of R2, and let ω be an open polygonal convex subset of Ω and I ⊂ ∂ω, with

|I| > 0; |I| is the one-dimensional Lebesgue measure of I. Assume that I is included in a

hyperplane of R2. Let u = (uT , uP ) ∈ R
I+JΓ

× R
J be given and the associated piecewise

constant functions uT and uP be defined through Definition 2.4. Let γT (u)(σ) = uTi for all

σ ∈ T i ∩ ∂ω. (If σ ∈ T i ∩ T i′ , then the choice of uTi or uTi′ in the definition of γT does not

matter.) Let γP (u)(σ) = uPk for all σ ∈ P k ∩ ∂ω. (If σ ∈ P k ∩ P k′ , then the choice of uPk
or uPk′ in the definition of γP does not matter.) Let mT

I (u) (resp mP
I (u)) be the mean value

of γT (u) (resp γP (u)) on I . Let θ∗ be defined through Definition 2.1. Then, there exists a

constant C, only depending on Ω, ω, I, and θ∗, such that

‖uT −mT
I (u)‖L1(ω) ≤ C‖∇D

h u‖D,(3.28)

‖uP −mP
I (u)‖L1(ω) ≤ C‖∇D

h u‖D.(3.29)

Proof. Since I is included in a hyperplane, it may be assumed, without loss of generality,

that I = {0}× [a, b] and ω ⊂ R+ ×R; the convexity of ω is used here. We choose points A,

B, C, and D, belonging to ω, such that

xA = inf{x1 : (x1, x2) ∈ ω}, xC = sup{x1 : (x1, x2) ∈ ω},

yB = inf{x2 : (x1, x2) ∈ ω}, yD = sup{x2 : (x1, x2) ∈ ω}.

It may happen, in particular cases, that those four points are not distinct, but this does

not change the general idea of the proof. If A = B and I = [BD], then it even simplifies the

proof, since in that case we do not have to introduce the point σBD defined below.

For any x = (x1, x2) ∈ ω and σ = (σ1, σ2) ∈ I, we define xAC ∈ AC such that

(xAC)1 = x1, and σBD ∈ BD such that (σBD)2 = σ2. The notations are summarized in

Figure 3.5. The following triangle inequality holds:

|uT (x)− γuT (σ)| ≤ |uT (x)− uT (xAC)|+ |uT (xAC)− uT (σBD)|

+|γuT (σ)− uT (σBD)|.
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Moreover, there holds

‖uT −mT
I (u)‖L1(ω) =

∫

ω

∣

∣

∣

∣

uT (x)−
1

|I|

∫

I

γuT (σ)dσ

∣

∣

∣

∣

dx

=

∫

ω

∣

∣

∣

∣

1

|I|

∫

I

[uT (x)− γuT (σ)]dσ

∣

∣

∣

∣

dx

≤
1

|I|

∫

ω

∫

I

∣

∣uT (x)− γuT (σ)
∣

∣ dσdx,

so that, taking into account the above triangle inequality, we obtain

‖uT −mT
I (u)‖L1(ω) ≤

1

|I|

∫

ω

∫

I

|uT (x)− uT (xAC)| dσdx

+
1

|I|

∫

ω

∫

I

|uT (xAC)− uT (σBD)| dσdx

+
1

|I|

∫

ω

∫

I

|γuT (σ)− uT (σBD)| dσdx.

We first observe that the function |uT (x) − uT (xAC)| does not depend on the variable σ.

Then, using similar techniques to those which led to (3.16) and the fact that
∫ xC

xA
χT,1
j (x)dx1 ≤

|Aj |, there holds

1

|I|

∫

ω

∫

I

|uT (x)− uT (xAC)| dσdx ≤ diam(ω)





J
∑

j=1

|Aj |vj



 ,(3.30)

where we recall the notation vj = |(∇D
h u)j ·

−−−−−−−−→
Gi1(j)Gi2(j)|.

Then, we know that the function |γuT (σ) − uT (σBD)| only depends on the variable σ,

and, using similar techniques to those which led to (3.17) and the fact that
∫

I
χT,2
j (σ)dσ ≤

|Aj |, we have

1

|I|

∫

ω

∫

I

|γuT (σ)− uT (σBD)| dσdx ≤
|ω|

|I|





J
∑

j=1

|Aj |vj



 .(3.31)

Now, xAC does not depend on the variable x2, so that

1

|I|

∫

ω

∫

I

|uT (xAC)−u
T (σBD)| dσdx ≤

diam(ω)

|I|

∫ xC

xA

∫

I

|uT (xAC)−u
T (σBD)| dσdx1.

Applying an inequality like in Lemma 3.4 leads to

1

|I|

∫

ω

∫

I

|u(xAC)− u(σBD)| dσdx ≤
C1 diam

2(ω)

|I|





J
∑

j=1

|Aj |vj



 .(3.32)

Using (3.30), (3.31) and (3.32), we conclude that

‖uT −mT
I (u)‖L1(ω) ≤

[

diam(ω) +
|ω|

|I|
+
C∗ diam2(ω)

|I|

]





J
∑

j=1

|Aj |vj



 .
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Then, the Cauchy-Schwarz inequality yields (3.28). Similarly, we also obtain (3.29).

Now, we come to the final step of our result.

THEOREM 3.6 (Mean Poincaré inequality). Let Ω be an open bounded polygonal con-

nected subset of R2; let u = (uT , uP ) be in R
I+JΓ

× R
K , and uT (x), uP (x) be defined

through Definition 2.4. Let θ∗ be defined through Definition 2.1. Then, there exists a constant

C only depending on Ω and θ∗ such that

(3.33) ‖uT −mT
Ω(u)‖L2(Ω) ≤ C‖∇D

h u‖D

and

(3.34) ‖uP −mP
Ω(u)‖L2(Ω) ≤ C‖∇D

h u‖D,

where mT
Ω(u) (resp. mP

Ω(u)) is the mean-value of uT (resp. uP ) on Ω.

Proof. Since Ω is polygonal, there exists a finite number of disjoint convex polygonal

sets, denoted by {Ω1, ...,Ωn}, such that Ω = ∪n
i=1Ωi. Let Ii,j = Ωi ∩ Ωj and B be the set

of couples (i, j) ∈ {1, ..., n}2 such that i 6= j and the one-dimensional Lebesgue measure of

Ii,j , denoted by |Ii,j |, is strictly positive.

Let mi denote the mean value of uT on Ωi, i ∈ {1, ..., n}, and mi,j denote the mean

value of uT on Ii,j , (i, j) ∈ B. Note that mi,j = mj,i for all (i, j) ∈ B. Theorem 3.3 gives

the existence of Ci, i ∈ {1, ..., n}, only depending on Ω (since the Ωi only depend on Ω) and

θ∗, such that

‖uT −mi‖L2(Ωi) ≤ Ci ‖∇
D
h u‖D, ∀i ∈ {1, ..., n}.(3.35)

Applying the Cauchy-Schwarz inequality, we have

‖uT −mi‖L1(Ωi) ≤ |Ωi|
1/2Ci ‖∇

D
h u‖D, ∀i ∈ {1, ..., n}.

Moreover, Theorem 3.5 gives the existence of Ci,j , (i, j) ∈ B, only depending on Ω and θ∗,

such that

‖uT −mi,j‖L1(Ωi) ≤ Ci,j ‖∇
D
h u‖D, ∀(i, j) ∈ B.

Then, one has, by the triangle inequality

|Ωi| |mi −mi,j | = ‖mi −mi,j‖L1(Ωi) ≤
(

|Ωi|
1/2Ci + Ci,j

)

‖∇D
h u‖D,(3.36)

for all (i, j) ∈ B. Applying again the triangular inequality and using the fact that mi,j =
mj,i, we get from (3.36) that there exists a constant C ′

i,j , only depending on Ω and θ∗, such

that

|mi −mj | ≤ C ′
i,j ‖∇

D
h u‖D,(3.37)

for all (i, j) ∈ B.

Since Ω is connected, we can always connect any (i, j) ∈ {1, ..., n}2 by a finite set of

couples belonging to B. Applying the triangular inequality and related inequalities (3.37),

we obtain the existence of Ki,j , only depending on Ω and θ∗, such that |mi − mj | ≤

Ki,j‖∇
D
h u‖D, for all (i, j) ∈ {1, ..., n}2, and therefore the existence of a constant Mi,

only depending on Ω and θ∗, such that

∣

∣mT
Ω(u)−mi

∣

∣ =

∣

∣

∣

∣

∣

∣

1

|Ω|

∑

j∈[1,n]

|Ωj |(mj −mi)

∣

∣

∣

∣

∣

∣

≤Mi‖∇
D
h u‖D.(3.38)
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Then, (3.35), (3.38) and the triangle inequality yield

‖uT −mT
Ω(u)‖L2(Ωi) ≤ ‖uT −mi‖L2(Ωi) + |Ωi|

1/2
∣

∣mT
Ω(u)−mi

∣

∣

≤
(

Ci +Mi|Ωi|
1/2
)

‖∇D
h u‖D.(3.39)

Summing up the squares of inequalities (3.39) over i ∈ {1, ..., n} yields (3.33). We ob-

tain (3.34) in a similar way. This completes the proof.

COROLLARY 3.7. Let Ω be an open bounded polygonal connected subset of R2; let

u = (uT , uP ) be in R
I+JΓ

× R
K and such that

I
∑

i=1

|Ti|u
T
i =

K
∑

k=1

|Pk|u
P
k = 0.

Let θ∗ be defined through Definition 2.1. Then there exists a constant C only depending on Ω
and θ∗ such that

‖u‖T,P ≤ C‖∇D
h u‖D.

4. Applications. The so-called “div–curl” problem, which consists of finding a veloc-

ity field from the knowledge of its divergence and curl, together with appropriate boundary

conditions, has important applications in electrostatics and magnetostatics as well as in fluid

dynamics; the discrete duality discretization allows us to solve this problem numerically on

arbitrary 2D meshes; see [9]. The next theorem shows the stability of such a numerical pro-

cedure.

THEOREM 4.1 (Discrete Div-Curl stability). Let Ω be a two-dimensional polygonal

domain with exterior boundary denoted by Γ0 and internal connected components denoted

by Γq , with q ∈ [1, Q]. There exists a constant C depending only on Ω and θ∗ defined by

Definition 2.1, such that for any discrete vector field (vj)j∈[1,J] with v · n = 0 on Γ and

(v · τ , 1)Γq,h = 0, for all q ∈ [1, Q], there holds

(4.1) ||v||D ≤ C
(

||∇T,P · v||T,P + ||∇T,P × v||T,P

)

.

Proof. Let (vj)j∈[1,J] be given with v · n = 0 on Γ and (v · τ , 1)Γq,h = 0, for

all q ∈ [1, Q]. According to Theorem 2.6, there exists φ = (φTi , φ
P
k )i∈[1,I+JΓ],k∈[1,K],

ψ = (ψT
i , ψ

P
k )i∈[1,I+JΓ],k∈[1,K] and (cTq , c

P
q )q∈[1,Q] such that (2.2) holds, the decomposition

being orthogonal. Then, there holds

||v||2D = (v,∇D
h φ)D + (v,∇D

h × ψ)D,(4.2)

||∇D
h φ||D ≤ ||v||D, and ||∇D

h × ψ||D = ||∇D
h ψ||D ≤ ||v||D.(4.3)

Using the discrete integration by part properties (2.5) and (2.6) in (4.2), we obtain

(4.4) ||v||2D = −(∇T,P
h ·v, φT,P )T,P +(v ·n, φ̃)Γ,h+(∇T,P

h ×v, ψT,P )T,P −(v ·τ , ψ̃)Γ,h.

In (4.4), both boundary terms vanish. The first because v · n = 0 on Γ. As far as the second

is concerned, from (2.4) and the definition of the boundary scalar product (2.1) we have

(v · τ , ψ̃)Γ,h = (v · τ , ψ̃)Γ0,h +
∑

q∈[1,Q]

(

cTq + cPq
2

)

(v · τ , 1)Γq,h,
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so that (2.3) and the fact that (v · τ , 1)Γq,h = 0, for all q ∈ [1, Q], allow us to conclude that

(v · τ , ψ̃)Γ,h = 0. Thus, we have

(4.5) ||v||2D = −(∇T,P
h · v, φT,P )T,P + (∇T,P

h × v, ψT,P )T,P .

Using the Cauchy-Schwarz inequality in (4.5), and applying Theorem 3.2 for ψ and Corol-

lary 3.7 for φ, we get (4.1) from (4.3).

Appendix A. Proof of Lemma 3.4. We shall only give the proof of the first inequality

in Lemma 3.4, since the proof of the other inequality follows exactly the same lines. If the

four points (A,B,C,D) are distinct, then we may denote by I the intersection of AC and

BD, and the angle α between the diagonals AC and BD is different from 0. This is also the

case for the angles βi and γi displayed in Figure A.1. If ω is a triangle, up to a rotation we

have that A = B and we set I = A = B. Then, the angles α, β1, and γ1 are all different

from 0 and evaluating the term G in (A.1) reduces to the evaluation of H1, which simplifies

the proof. Let us go back to the general case. We set

G =

∫ yD

yB

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy2 = H1 +H2 +H3 +H4,(A.1)

where

H1 =

∫ yD

yI

∫ xC

xI

|uT (xAC)− uT (yBD)| dx1dy2,

H2 =

∫ yD

yI

∫ xI

xA

|uT (xAC)− uT (yBD)| dx1dy2,

H3 =

∫ yI

yB

∫ xI

xA

|uT (xAC)− uT (yBD)| dx1dy2,

H4 =

∫ yI

yB

∫ xC

xI

|uT (xAC)− uT (yBD)| dx1dy2.

We only estimate the first term in the right-hand side of equation (A.1), since the others may

be treated similarly. For any xAC ∈ IC and yBD ∈ ID, let xM (resp. yP ) be the intersection

of DC with the straight line going though xAC (resp. yBD) and parallel to the segment [ID]
(resp. [IC] ), and let xM1

(resp. yP1
) be the intersection of ID (resp. IC) with the straight

line going through xM (resp. xP ) and parallel to the segment IC (resp. ID). Then, we shall

examine two cases, according to where the broken line xACxMxM1
intersects the broken line

yBDyP yP1
at point N .

Case 1: The broken line xACxMxM1
intersectsDC at xM before it intersects the broken

line yBDyP yP1
; see Figure A.1. Then, the triangle inequality leads to

|uT (xAC)− uT (yBD)| ≤ |uT (xAC)− uT (xM )|+ |uT (xM )− uT (N)|

+ |uT (N)− uT (yP )|+ |uT (yP )− u(yBD)|.

Let the function χj from R
2 × R

2 to {0, 1} be defined by

χj(x, y) =

{

1, if [x, y] ∩Aj 6= ∅,

0, if [x, y] ∩Aj = ∅.

Recalling once again the notation vj = |(∇D
h u

T )j ·
−−−−−−−−→
Gi1(j)Gi2(j)|, we have that

|uT (xM )− uT (N)| ≤
J
∑

j=1

χj(xM , N) vj ≤
J
∑

j=1

χj(xM , xM1
) vj ,(A.2)
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xM1

yP1

γ2

β3

β2

γ3 γ4

 B

C

I

β1

γ

BD

4

2

α

A 1
x

x

α1

y

β

x
D

P

xAC

2α

1

Ν

y

M

FIGURE A.1. xACxMxM1
intersects DC before it intersects yBDyP yP1

.

due to the fact that since N ∈ [xMxM1
] then χj(xM , N) ≤ χj(xM , xM1

). Similarly, we

obtain that

|uT (N)− uT (yP )| ≤
J
∑

j=1

χj(yP , yP1
) vj .(A.3)

We also have

|uT (xAC)− uT (xM )| ≤
J
∑

j=1

χj(xAC , xM ) vj(A.4)

and

|uT (yP )− uT (yBD)| ≤
J
∑

j=1

χj(yBD, yP ) vj .(A.5)

From (A.2)–(A.5), we have

|uT (xAC)− uT (yBD)| ≤
J
∑

j=1

χj(xAC , xM ) vj +
J
∑

j=1

χj(xM , xM1
) vj

+
J
∑

j=1

χj(yBD, yP ) vj +
J
∑

j=1

χj(yP , yP1
) vj .

Case 2: The broken line xACxMxM1
intersects the broken line yBDyP yP1

at N before

it intersects DC; see Figure A.2. We use the triangle inequality to obtain

|uT (xAC)− uT (yBD)| ≤ |uT (xAC)− uT (N)|+ |uT (N)− uT (yBD)|.(A.6)
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γ2

β3

β2

γ3 γ4

yP1

xAC

xM

yP

xM1

BDy

 B

C

I

β1

γ

4

2

α

A 1
x

α1

β

x
D

2α

1

Ν

FIGURE A.2. xACxMxM1
intersects yBDyP yP1

before it intersects DC.

Similarly to Case 1, since N ∈ [xACxM ] and N ∈ [yBDyP ], there holds

|uT (xAC)− uT (N)| ≤
J
∑

j=1

χj(xAC , xM ) vj ,(A.7)

|uT (N)− uT (yBD)| ≤
J
∑

j=1

χj(yBD, yP ) vj .(A.8)

Adding (A.7) to (A.8), and combining with (A.6), we have

|uT (xAC)− uT (yBD)| ≤
J
∑

j=1

χj(xAC , xM ) vj +

J
∑

j=1

χj(yBD, yP ) vj .

Thus, in both cases, we always obtain

|uT (xAC)− uT (yBD)| ≤
J
∑

j=1

χj(xAC , xM ) vj +

J
∑

j=1

χj(xM , xM1
) vj

+
J
∑

j=1

χj(yBD, yP ) vj +
J
∑

j=1

χj(yP , yP1
) vj .

We thus always have

H1 =

∫ yD

yI

∫ xC

xI

|uT (xAC)− uT (yBD)| dx1dy2 ≤ L1 + L2 + L3 + L4,(A.9)
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β1

1
xd1

γ1

x
2

jA

1α

d3

2d

I

C

α
α

D

FIGURE A.3. How to estimate the term
∫ xC
xI

χj(xAC , xM )dx1.

where L1, L2, L3, and L4 are defined as follows:

L1 =

∫ yD

yI

∫ xC

xI

J
∑

j=1

χj(xAC , xM ) vjdx1dy2,

L2 =

∫ yD

yI

∫ xC

xI

J
∑

j=1

χj(xM , xM1
) vjdx1dy2,

L3 =

∫ yD

yI

∫ xC

xI

J
∑

j=1

χj(yBD, yP ) vjdx1dy2,

L4 =

∫ yD

yI

∫ xC

xI

J
∑

j=1

χj(yP , yP1
) vjdx1dy2.

Observing that χj(xAC , xM ) only depends on the variable x1, we find

L1 ≤ (yD − yI)

∫ xC

xI

J
∑

j=1

χj(xAC , xM ) vjdx1

= (yD − yI)

J
∑

j=1

∫ xC

xI

χj(xAC , xM )dx1vj .

Let us take a look at Figure A.3 and its associated notations. Simple geometrical arguments

show that
∫ xC

xI

χj(xAC , xM )dx1 =: d1 = d2 cosα1 = d3
cosα1

sinα
≤

cosα1|Aj |

sinα
.

This results in

L1 ≤ (yD − yI)
cosα1

sinα





J
∑

j=1

|Aj |vj



 .(A.10)
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d5

1β

A j

d3

2d

d4

x

C

D

d1

x
2

1
I

α

α1

β1

γ1

α

FIGURE A.4. How to estimate the term
∫ xC
xI

χj(xM , xM1
)dx1.

Moreover, there holds

L2 ≤ (yD − yI)

∫ xC

xI

J
∑

j=1

χj(xM , xM1
) vjdx1

= (yD − yI)

J
∑

j=1

∫ xC

xI

χj(xM , xM1
)dx1vj .

Let us take a look at Figure A.4 and its associated notations. Simple geometrical arguments

show that

∫ xC

xI

χj(xM , xM1
)dx1 =: d1 = d2 cosα1 = d3

cosα1

sinα

= d4
cosα1 sin γ1

sinα
= d5

cosα1 sin γ1
sinα sinβ1

≤
cosα1 sin γ1|Aj |

sinα sinβ1
,

so that there holds

L2 ≤
cosα1 sin γ1
sinα sinβ1

(yD − yI)





J
∑

j=1

|Aj |vj



 .(A.11)

Similarly,

L3 ≤
cosα2

sinα
(xC − xI)





J
∑

j=1

|Aj |vj



 ,(A.12)

L4 ≤
cosα2 sinβ1
sinα sin γ1

(xC − xI)





J
∑

j=1

|Aj |vj



 .(A.13)
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From (A.9)–(A.13), we conclude that there exists a constant C depending only on the geom-

etry of ω (since the angles depend only on the geometry of ω) such that

H1 ≤ C diam(ω)





J
∑

j=1

|Aj |vj



 .(A.14)

Using similar techniques, we also obtain that

H2 ≤ C diam(Ω)





J
∑

j=1

|Aj |vj



 ,(A.15)

H3 ≤ C diam(Ω)





J
∑

j=1

|Aj |vj



 ,(A.16)

H4 ≤ C diam(Ω)





J
∑

j=1

|Aj |vj



 .(A.17)

Combining (A.14)–(A.17) with (A.1), we have

∫ yD

yB

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy2 ≤ C1 diam(Ω)





J
∑

j=1

|Aj |vj



 ,

where C1 = 4C, which concludes the proof of Lemma 3.4.
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[6] Y. COUDIÈRE, C. PIERRE, O. ROUSSEAU, AND R. TURPAULT, A 2D/3D discrete duality finite volume

scheme. Application to ECG simulation, Int. J. Finite Vol., 6 (2009), electronic only. Available at

http://www.latp.univ-mrs.fr/IJFV/IMG/pdf/IJFV_Pierre-et-al_revised.pdf.
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