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ESTIMATING THE ERROR OF GAUSS-TUR AN QUADRATURE FORMULAS
USING THEIR EXTENSIONS *

ALEKSANDAR S. CVETKOVICT AND MIODRAG M. SPALEVICT

Abstract. We consider extensions of Kronrod-type and extensionsrarieby generalized averaged Gaussian
quadrature formulas for Gauss-aurquadrature formulas. Existence and uniqueness of théses@ns are con-
sidered. Their numerical construction is proposed. It isfite¢ general method and is based on a combination
of well-known numerical methods for Gauss-aor Gauss, Gauss-Kronrod, Anti-Gauss, and generalizedgae
Gaussian quadratures. We employ these extensions for gstjntlaé remainder terms in the Gauss-duquadra-
tures. Numerical results are presented.
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1. Introduction. Letd\ be a given nonnegative measure on the realfimgth compact
or unbounded support for which all moments = [, t* dA(t) (k = 0,1,...) exist and are
finite with 1o > 0. If A is an absolutely continuous function, thék(t) = w(t) dt, wherew
is a given nonnegative and integrable weight function olrersmallest intervdk, b] which
contains the support of. Even though our results in this paper hold for angefined as
above, we will present them for the most common case when) = w(t) dt. As usual,
for k € Ny, let P, denote the set of polynomials of degree at nmiost

In 1950, P. Tuan [40] proposed an interpolatory quadrature formula of the type

n  2s

(1.1) [ i Y Y 410w (s € N,

v=1 =0

which has the highest possible algebraic degree of prediaibP). In this paper we consider
a generalization of formulal(1) by including a weight function, i.e.,

n 2s

b
(1.2) [ =33 4, 0wm) (5 € o).

v=1 i=0

In the Gauss-Tun quadrature formulal(2), 7, are the zeros of a polynomial, of
degreen known as ars-orthogonal polynomial, which satisfies the orthogonai@hation

b
/ 2 (p(tw(t)dt =0, forallp e P,_;,

and theA, , are determined through interpolation. 7if and A4, ,, are chosen in this way,
the ADP for (1.2) is 2(s + 1)n — 1. The coefficients4; ,, in the Gauss-Tém quadrature
formula (L.2), however, are not all positive in general. In the case- 0, formula (.2
reduces to well-known Gaussian quadrature.

Numerically stable methods for constructing noggsand coefficients4; ,, in Gauss-
Turan quadrature formulas with multiple nodes and their géizetaons can be found in
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[15, 18, 28, 37] (see also 13]). For the asymptotic representation of the coefficiests,
see B1]. Some interesting results concerning this quadraturadiéat and its applications can
be found in P5, 36] and the references therein, as well aslif, 1, 31].

The estimation of the error in a quadrature formula is an irgo problem. The purpose
of this paper is to consider a Kronrod extension or an extensbtained using generalized
averaged Gaussian quadrature formulas for GausaATguadrature formulas. These exten-
sions can be applied to estimate the error in the originas&dwéan quadrature. A numerical
construction of these extensions for Gaussahuguadrature formulas is proposed in this arti-
cle. Itis the first general method, and it is based on the coatioin of well-known numerical
procedures for Gauss-Tam, Gauss, Gauss-Kronrod, Anti-Gauss, and generalizedgaa
Gaussian quadratures.

2. A Kronrod extension of Gauss-Tui@n quadrature formula. Following Kronrod's
idea, Li [24] considered an extension df.@) of the form

b n 2s n+1
2.1) / Fwt)ydt =33 B fO(n) + S Cif ) (s €No),
a v=1i=0 j=1

where ther, are the same nodes as ing), and the new nodes and new weights3; ,,, C;
are chosen to maximize theDP of (2.1). It is shown by Li P4] that whenw is any weight
function on[a, b}, we can always obtain the maximum deg2egs + 1) +n + 1 by letting7;
be the zeros of the polynomial, . ; that satisfies the orthogonality property

b
/ T (T2 ) p(t)w(t)dt =0, forallp € P,,.

At the same time it is shown that, ., always exists and is unique up to a multiplicative
constant. In the special case wheft) = (1 — t2)~1/2, Li [24] determineds,, ., explicitly
and obtained the weights i2.() for s = 1 ands = 2. The weights in the remaining
cases > 3 were obtained later by Shs§].

We are going to propose a different theoretical approach imesrder to lay the founda-
tion for numerical calculations of the quadrature form@d) with high-precision arithmetic.
Itis well known (see16]) that the nodes in Gauss-Tar quadrature formulas are all real, dis-
tinct, and internal in the intervdk, b]. We need a couple of facts concerning the theory of
qguadratures with multiple nodes, which, in particular, teams Gauss-T@n quadrature for-
mulas. We recall the following theorem established by Gdtizand Ossicini17].

THEOREM 2.1. For any given set of odd multiplicities, ..., v,, i.e.,v; = 2s; + 1,
ands; € Ny, j =1,...,n, there exists a unique quadrature formula of the form

n v;j—1

(2.2) /bw(t)f(t) dt ~ Z Z aifO(x;), a<z <...<mzp<b,

j=1 i=0

of ADP = 14 + ...+ v, +n — 1, which is the well known Chakalov-Popoviciu quadrature
formula; sed5, 34]. The nodes:, ..., x,, of this quadrature are determined uniquely by the
orthogonality property

/ "

[1¢ =20 pt)ydt =0, foralpeP, ;.
k=1

n
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The corresponding (monic) orthogonal polynoniig_, (¢ — =) is known in the clas-
sical literature ag-orthogonal polynomial, witlr = o,, = (s1,...,s,), wheren indicates
the size of the array ang, = 2s, + 1, s, € Ng, k= 1,...,n, inthe preceding formula.

Bojanov and Petrova?] (see also 27]) stated and proved the following important the-
orem that reveals the relation between the standard ifgegoyg quadratures of type(2)
and the quadratures for Fourier coefficients, which is ofipalar interest for the problem
that we consider here. Namely, we will show that a Kronrockesion 2.1) of (1.2) has
the same nodes as the corresponding Gauss-Kronrod quadfatmula with the weight
function (7, )>*w. A similar result holds if—instead of extensions of Kronnyge—we use
extensions obtained by generalized averaged Gaussiaratuiadformulas.

THEOREMZ2.2. For any given sets of multiplicities := (1, ..., ug), 7 := (Y1, ..+, Vn),
and nodeg;; < - <y, 11 < -+ < x,, there exists a quadrature formula of the form

n vj—1

b
/ WA (t;y) f(t) dt = chﬂf (xj),

j=1 =0

whereA” (t;y) = Hﬁqzl(t—ym)”m, with ADP = N if and only if there exists a quadrature
formula of the form

b k  pm— n vj—l1
/ 0T~ S S bt ) + 37 S a5 (ay)
a m=1 A=0 j=1 i=0

which hasADP = N + py1 + -+ + pg. In the casey,, = z; for somem and j, the
corresponding terms in both sums can be combined into one§thne form

Pmtri—1

A=0

We are now in the position to state and prove the followingthm, which represents the
central point in the paper.

THEOREM 2.3. Letw,, be ans-orthogonal polynomial with respect to the weight func-
tion w whose zeros; < 7 < ... < 7, are the nodes of a quadrature formula.2). Then
there exists an interpolatory quadrature formula of thenfor

n+1

(2.3) /f )mn (8] w(t)dt ~ ZDfTV+ZHfTJ (s € No)

with nodes7; that are ordered, i.eq; < 72 < ... < 7, Which hasADP = N if and only if
there exists a quadrature formula of the form

b n n+1
(2.4) / F)w(t)dt =~ ZDz fOn)+ 3" Hf(7) (s € No),
a v=11i=0 Jj=1

which hasADP = N + 2ns.

Proof. Sincew(t) dt is a nonnegative measures,, (t))**w(t) dt is a nonnegative mea-
sure as well, i.e.(m,(t))**w(t) is a new weight function (cf. 10]). According to Theo-
rem2.2, there exits a quadrature formula of the fortn3] which hasADP = N if and only
if there exists a quadrature formula

b n 2s—1 n+1

zZZwa +ZMfTV+ZPfTJ (s € Ny),
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i.e., of the form 2.4), which hasADP = N + 2ns. a

Let the quadrature formul& (3) be the standard Gauss-Kronrod quadrature with respect
to the weight functior(r,,)?*w, which hasADP = 3n + 1. According to Theoren2.3, the
guadrature formula of the forn2 (@), namely formula2.1), hasADP = 2ns + 3n + 1. In
this case we havel; = Cj, 7j =7, j = 1,2,...,n+ 1.

In the theory of standard Gauss-Kronrod quadrature forspirigparticular for 2.3), the
Stieltjes polynomialst,,; := H’;jll (t — 7;), whose zeros are the nodes= 7;, play an
important role. Also, of foremost interest are weight fuoies for which the Gauss-Kronrod
guadrature formula has the property that

(i) all » + 1 nodesr; (i.e., zeros of the Stieltjes polynomia),;,) are in(a, b) and are
simple.
Also desirable are weight functions which additionally josétisfy
(i) theinterlacing propertyi.e., the nodes; andr, separate each other (the-1 zeros
of 7,1 separate the zeros of thes-orthogonal polynomiat,, (t) = [T _, (t—7.)),
and

(iii) all quadrature weights are positive.

The most important case of Gauss-Kronrod quadrature fasnhs been considered from
the computational point of view by Lauri@3| and later by Calvetti et al.3]. Laurie’s al-
gorithm works in the case when all quadrature weights in tagss-Kronrod quadrature for-
mula are positive. Then all zeros of the Stieltjes polyndmia real, simple, belong t@:, b)
(except possibly, 7,+1), and the interlacing property holds. Otherwise, the algor is
being stopped with the message “Gauss-Kronrod does ndt.eXise Matlab code for this
methodkr onr od. m(or in the case of symbolic calculatios&r onr od. n) can be found

in the toolbox by Gautschill] (assembled as a companion piece to the bd&g ] as well

as in the Mathematica packa@et hogonal Pol ynom al s presented in§, 26]. In our
case of the Gauss-Kronrod quadrature formal&)( the coefficients of the three-term recur-
rence relation subject to the weight functiom,)?*w that we need for an implementation

of Laurie’s method can be determined in the same manner deiwork of Gautschi and
Milovanovit [15]; see also the Matlab codésir an. m st ur an. min [14]. However, for

the general case this method can be time-consuming and magh¢ad to a successful con-
struction. An alternative approach is to use the methods {&8] or [37] in order to compute
7, and then to construct the three-term recurrence coeffgientthe weight(r,, )%*w us-
ing a moment-based method such as the Chebyshev algoritimimplementation of the
Chebyshev algorithm can be found in the pack&ye¢ hogonal Pol ynoni al s in the
function aChebyshevAl gori t hmor in the routinechebyshev. min the correspond-
ing Matlab toolbox. There is still another possibility foramputation based on Christof
fel modifications of the measure, which we further discusSeattion4. We note that
the Christoffel modification algorithm can be used in maehpmecision arithmetic in con-
trast to the Chebyshev algorithm, which requires highecipien arithmetic. The Pack-
ageOr t ogonal Pol ynomi al s implements the Christoffel modification algorithm in the
functionaChri st of f el Al gori t hmand the Matlab toolbox has it implemented in the
filechri2. m

The positive interpolatory quadrature formula3), if it exists, is uniquely determined.

According to Theoren.3 itsnodes, (v =1,...,n),7; =7; (j =1,...,n+1) arein fact
the nodes of the quadrature formufal), =, with multiplicity 2s +1 (v = 1,...,n) and7;
with multiplicity one(j = 1,...,n+1). The coefficients in the quadrature formu2al) can

be calculated using the method fro&8] for interpolatory quadrature formulas with multiple
nodes of variable multiplicity. Therefore, the quadratimenula constructed in this manner
is uniquely determined. As it is known, in the general casguafdrature with multiple nodes,
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not all quadrature weights have to be positive. TherefareKfonrod extensions of Gaussian
quadrature formulas with multiple nodes of the ty@el), we cannot expect property (iii) to
hold in the general case.

3. An extension of Gauss-Tuan quadrature formulas obtained using generalized
averaged Gaussian quadrature formulas.The existence of a positive Gauss-Kronrod quad-
rature formula, i.e., a Gauss-Kronrod quadrature formuth @ll quadrature weights being
positive (the property (iii) above), dependswrand there are several known instances where
positive weights do not exists, e.g., for the Gauss-Laguend Gauss-Hermite casés]. For
the Gegenbauer weight ) (t) = (1 — t2)®, Peherstorfer and Petra@2 have shown that
Gauss-Kronrod formulas for sufficiently large andv > 5/2 do not exist. Analogous results
for the Jacobi weight function(®?) () = (1 —¢)*(1 +t)” can be found in their papes¥],
particularly the nonexistence for largeof Gauss-Kronrod formulas whenin(«, 5) > 0
andmax(a, 8) > 5/2. In such situations, it is of interest to find an adequatezéive to
the corresponding Gauss-Kronrod quadrature formula. \&enar aware of any theoretical
results concerning this problem for quadrature formukas$) (of Kronrod-type. It seems that
this is a very difficult problem from the theoretical pointvaéw.

An alternative approach are the Anti-Gaussian formulasdhiced by LaurieZ2], which
have been slightly generalized 9] pnd in Spalevi’s paper B8]. Such formulas always exist
and are positive. A modification of the Anti-Gaussian forasuthat leads in a special case to
symmetric Gauss-Lobatto formulas has been considered bgtGand Reichel in4].

In [38] a very simple numerical method is proposed for the constmof the averaged
Gaussian quadrature formulas. &9], effort has been taken in order to determine whether the
averaged Gaussian formulas are an adequate alternative ¢ortresponding Gauss-Kronrod
quadrature formulas to estimate the remainder term of askausule.

The ADP of the generalized averaged Gaussian quadrature formrdasged in 38|
is in generalADP = 2n + 2. Now let the quadrature formul®.() be the generalized
averaged quadrature with respect to the weight function**w constructed in 3g]. It
hasADP = 2n + 2, and according to Theorefh3, the quadrature formula of the forrd.g),
namely the quadrature formul&.(), hasADP = 2ns + 2n + 2. In this case we have
coefficients and nodeﬁj =C;, 75="75,7=12,...,n+1. Again, we use the meth-
ods from P8, 37] in order to computer,, and then construct three-term recurrence coeffi-
cients subject to the weight functidi,,)?*w. These are needed for the implementation of
Spaleve’'s method B8], which uses moment-based methods such as the Chebysbettaty
The weights in the quadrature formula 1) can be calculated using the method frd2][for
interpolatory quadrature formulas with multiple nodeswiériable multiplicities.

4. Numerical results. A very popular method for obtaining a practical error estiria
the numerical integration by standard quadrature is towseajtiadrature formulad and B,
where the nodes in formul® form a proper subset of those in formulg and where the
rule A is of higher degree of precision. Kronrod originated thighod; see 20]. For more
details concerning this theory for standard quadraturaditas see, e.g.2p, 29, 30, 38, 39].

The differencd A(f) — B(f)|, wheref is the integrand, is usually quite a good estimate of
the error for the ruleB. Here, let the ruleB be the Gauss-Tan quadrature rulel(2) and

the rule A be an extension2(1), i.e., a Kronrod extension or an extension obtained using
generalized averaged Gaussian quadrature formulas.

For the construction of2( 1), the Mathematica package t hogonal Pol ynomi al s
presented ing, 26] is used. We demonstrate the construction of the quadr&dureila for the
Legendre weight function with = 8 ands = 2. First we use the functioaTur anNodes,
which computes the nodes of the Gaussafuquadrature rule for the given measure. The
format of the function calaTur anNodes is as follows.
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TABLE 4.1
Nodes and weights in the formula.{) for the Legendre weight function with= 8 ands = 2. Numbers in
parentheses represent exponents in the lfise

nodes
Ty Ty
Gauss-Tuan +.97351341389220656237 +.81887893183941851633
+.54466490130324525777 +.19085290843984904479
Ty Ty
Kronrod +.99822290664226966427 +.91312742966813842749
+.69453148147735680361 +.37468411056055517193
0
weights
{ Bi,u Bi,u
0 .58386175714956789764(—1) .15089370723807276066
0 .22074279238149145536 .25860501785904752596
1 F.39014622164968142227(—3) | F.83891790441786127084(—3)
1 F.82125588688818075943(—3) | F.33535947356365552771(—3)
2 .71919503334752507270(—5) .11322886240186814938(—3)
2 .35125693562506992715(—3) .56357216956268884559(—3)
3 F.23883755204324643150(—7) | F.34341240517473823534(—6)
3 F.71953009372658394643(—6) | F.40311953782588033969(—6)
4 .11870030713306244483(—9) 13777802473954649246(—7)
4 .92258193720323290033(—7) .20363103482496320695(—6)
C; C;
.52356392061325635414(—2) .48662615167843382200(—1)
.86208495603928504804(—1) .11125708395348622280
.12001694575008158983

aTur anNodes[ 8, {alLegendre}, 2, Worki ngPreci sion->50,
Preci si on->45, Al gori t hnSi gma- >l ncr easeDegr ee]

This function constructs nodes for the Gaussahuquadrature rulel(2) forw = 1, n = 8,
ands = 2. It applies an algorithm presented if]. It should be noted that variable precision
arithmetic is used. The reason for employing variable gieniarithmetic is the application
of the Chebyshev algorithm, which we discuss below. Tdbllshows the Gauss-Tamn nodes
obtained using the previous function call. Note that theasaate given witl20 decimal digits
precision. Alternatively to the algorithm 28] used here, the method presenteddi [can
be used withAl gor i t hnSi gma- >Honot opy, but this is more time-consuming although
it is more general and can be applied to arbitrary weighttions.

When the nodes of the Gauss-&qnmuadrature rule have been constructed, we can com-
pute moments of the weight functign,,)?w. In order to apply the Chebyshev algorithm for
the computation of the three-term recurrence relationfimberfits, we need to calculate the
moments up to the ord@n + 1. The moments can be computed using Gaussian quadrature
rules for the weight functiow. If the weight functionw belongs to the class of those for
which a three-term recurrence is known in analytic form—as ihe case for the Legendre
weight function, then we can apply the functia@aussi anNodes\Wei ght s as follows.

{nG wG =aGaussi anNodesWei ght s[ n, { aLegendr e},
Wor ki ngPr eci si on->50, Preci si on->50]
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HerenG andwG are the computed Gaussian nodes and weights. As can be sedaves
to work in variable precision arithmetic. In our case we us@decimal digits for the man-
tissa, which is in accordance with the number of decimaltsligmployed in the compu-
tation of Gauss-Tam nodes. Also note that we compute a Gaussian quadraterdaut
ing ADP =ns+n+ 1. If 2¥, wf, i = 1,...,ns +n + 1, are the constructed nodes and

weight of the Gaussian quadrature rule for the weight flameti, we compute

b ns+n+1
/ () wt)dt = > wl (@) (m(2)*, k=0,....2n+1.
@ i=1
When moments are computed, we use the funciGhebyshevAl gorit hm to find the
coefficients of the three-term recurrence relation.
aChebyshevAl gorit hnf mom Wor ki ngPr eci si on- >50]

The application of Chebyshev’s algorithm requires highcimien arithmetic. Actually, it
can be observed that we have us&ddecimal digits precision in the calls to the functions
aTur anNodes andaChebyshevAl gori t hmin order to obtairR0 decimal digits of the
coefficients of the three-term recurrence. This is geneth# case in computations involv-
ing Chebyshev’s algorithm when the number of requestec ttanen recurrence coefficients
is larger than ten. It should be mentioned here that thetseaimodified Chebyshev algo-
rithm (see L3, p. 76]) which has—with good tuning—a much better numericatabteristics
than the ordinary Chebyshev algorithm. However, there &xiags problem finding good se-
guences of modified moments. The interested user is refesrfd for more information.
An implementation of the modified Chebyshev algorithm cafobed in both software pack-
ages. However, due to limited space, we are not going intildet
However, there is an alternative approach which can be usédsabased on the ap-
plication of Christoffel modifications of the measure wiltetquadratic factors. For further
information, the reader might consultd, pp. 135] or the original works of Christoffel pre-
sented in§, 7], which are reformulated as algorithms iril] 12]. Let w be the weight function
with three-term recurrence coefficients and 5., k € Ny, then the three-term recurrence
coefficientsiy, i, k € Ny, for the weight(t — ¢)2w(t) can be computed numerically stable
using the above mentioned Christoffel algorithm. We canstroiet three-term recurrence
coefficients for the weight functiofir,,)2*w usingns applications of Christoffel modifica-
tions. Assume that the three-term recurrence coefficiemtthk measure are known and
setw := w. We apply a series of Christoffel modifications to computettiree-term recur-
rence coefficients for the weights(t) := (t — 7,)?w(t),v = 1,...,n,5 = 1,...,s. The
packagelr t hogonal Pol ynoni al s has implemented the Chistoffel modification with a
guadratic factor in the functioaChr i st of f el Al gori t hm For example, the following
sequence of code can be used for the construction of threeréeurrence coefficients of the
weight (7, )**wg, Wwherewy is Hermite weight function.
{al H, beH} =Transpose[aHernmi te["ttr"]/ @abl e[ k, {k, 0,nn}];
For[i=1,i<=n, ++i ,
For[j =1, ] <=s, ++j,
{al H, beH} =aChri st of fel Al gorithn{nn--,
{aQuadraticReal ,nT[[i]]},
al H, beH,
Wor ki ngPr eci si on- >$Machi nePr eci si on] ;
1
1
Note that we are working in double precision arithmetic, aredassume that the variabi@
holds a list of Tuan nodes for the Hermite weight function. Assuming this fafrthe
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TABLE 4.2
Error estimation using the difference of the Gaussafuguadrature rule and its Kronrod extension for the
integral (4.12).

s=2 n==~6
n | estimate error s | estimate error
6 | .35174(—5) .35253(—5) 2 | .35174(—5) 35253(—5)
10 | .95272(—10) .952815(—10) 4 | .95027(—9) 95177(-9)
14 | .23752562(—14) .2375268(—14) 6 | .28504(—12) .28539(—12)
18 | .5796464(—19) .5796466(—19) 8 | .90176(—16) .90264(—16)
22 | .1401631557(—23) .1401631596(—23) | 10 | .29464(—19) .29488(—19)

construction of three-term recurrence coefficients with 8 ands = 2, we obtain three-term
recurrence coefficients witht decimal digits precision while working with double preoisi
numbers. In the same manner, even better results can beedtar the Legendre weight
function.

Nowadays, an application of higher precision arithmetisiraply a matter of choice.
There is wide variety of software packages which implemebitrary precision arithmetic.
Starting with high level languages such as Mathematica adihg with C software pack-
ages such as the GNU multiprecision package (GMP). MoretaBMP can be found at
http://gmplib.org. GMP is actually the working horse used/fathematica for the implemen-
tation of arbitrary precision arithmetic. According to sieetrends, we decided to present a
construction based on Chebyshev’s algorithm since it ireqaimple and gives some sense of
uniformity. This is especially convenient for the non-spésts in the area of the computa-
tional theory of orthogonal polynomials.

We just need to apply Laurie’s algorithm for the construcid Gauss-Kronrod quadra-
ture rules (seeZd]) to compute the Jacobi matrix, whose eigenvalues are rfoddse quadra-
ture rule .3). The packagér t hogonal Pol ynomi al s can be used for this purpose with
the command

aLaurie[n, al, be, Wr ki ngPreci si on->50]
whereal andbe are three-term recurrence coefficients for the weight)?*w. After an
application of Laurie’s algorithm, we can construct thesitig nodes for the Gauss-Kronrod
guadrature rule by using the functi@Zer o, which computes eigenvalues of the Gauss-
Kronrod matrix. The missing nodes of the Gauss-Kronrod cptade rule are presented in
the Tablet.1 As for the Gaussian nodes, the nodes are given2Qittecimal digits precision.

Finally, we can compute weights of the quadrature r2lé)(using an interpolation prop-
erty. For example, the functical nt er pol at i onWei ght s in the Mathematica package
Ot hogonal Pol ynoni al s can be used. The computed weights are given in the Ta-
ble 4.1 Numbers in parentheses represent exponents in thelbase

To illustrate the possibility of an error estimation, weatdate the integral

1
dt

41) L :/ 11

“1t+7

= log 21 ~ 3.0445224377234229965005979803657054343...

o=

Table4.2 displays the results of the error estimation using diffeesnbetween Gauss-THur
quadrature rule represented by equati@r)(and Kronrod extension of the Gauss-dnr
guadrature rule represented by equatidri)( In the first two columns, we present results
for variablen and fixeds = 2; the second two columns show the behavior of the error esti-
mate for fixedn = 6 and variables. As can be seen, the error estimate is quite accurate.
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TABLE 4.3
Quadrature rule 2.1), n = 8, s = 2, for the Hermite weight function based on the Anti-Gaussjaadrature
formula.

nodes
Gauss-Tuan T, T,
+.51681136909405826789(1) +.34836231485926327975(1)
+.20317347623297887471(1) +.66893558851736928468
Anti-Gaussian 7, 7,
+.63342943088252741257(1) +.42938819278505047838(1)
+.27471245421883808223(1) +.13464957031164851511(1)
0
weights
{ Bi,u Bi,l/
0 .36175515137157045962(—10) .16750466449875911971(—4)
0 .22298920872663214573(—1) .59073792759942283728
1 F.10156104835511174186(—10) | F.41614132181940995042(—5)
1 F.41438045323230060806(—2) F.42505466030715357444(—1)
2 .12253977340516115977(—11) .54025501379426880713(—6)
2 .67462832585667770868(—3) .16841301453891941760(—1)
3 F.73364318178749481946(—13) | F.34862739064811316798(—7)
3 F.38565517760469799699(—4) F.41767093230057802043(—3)
4 .19217294376648553599(—14) .13257166120337859521(—8)
4 .24969557547643169509(—5) .81926585192629552560(—4)
C; C;
.33157509907727129273(—17) .50643909703274783901(—8)
.23467083711191469645(—3) .68090277501526014491(—1)
.40969674615003533584

The construction of the quadrature formula1j under the assumption that the un-
derlying formula is Anti-Gaussian can be achieved usingilamtechniques. The Pack-
ageOrt hogonal Pol ynoni al s has the functioraAnt i Gaussi anNodesWi ght s,
which can be used for the construction of the nodes and wighhe formula 2.3). For
the successful construction, we need the three-term mweercoefficients for the weight
function (,,)%*w. These recurrence coefficients can be constructed usirigsimethods as
above. Once the nodes, v = 1,...,n,7;,j = 1,...,n + 1, are found, we can apply the
functional nt er pol at i onWei ght s to compute the missing weights for the quadrature
rule (2.4). Table4.3displays the results of the construction for the Hermiteghefunction.

The feasibility of an error estimation in Gauss-dnrquadrature rules is presented in
Table4.4. The integral used for this demonstration is

[ —t?
(4.2)1, = / ﬁ dt = ewErfc(1) ~ 1.34329342164673517043712359441059...

As can be seen from the table, the error estimate is quiteraecias it happened with the
previous quadrature formula.

During the performed numerical constructions with the Hegrnweight function, one
interesting theoretical result appeared. We present itemext theorem.
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TABLE 4.4
Error estimation using the difference of the Gaussarfuguadrature rule and its Anti-Gaussian extension for
the integral @.2).

s=2 n==~6
n | estimate error s | estimate error
6 | .6819(—3) .6734(=3) | 2 | .6819(—=3) .6734(—3)
10 | .2403(—4) .2377(—4) | 4 | .1954(—3) .1957(—3)
14 | .1498(—5) .1484(—5) | 6 | .9441(—4) .9530(—4)
18 | .1333(—6) .1323(—6) | 8 | .5847(—4) .5931(—4)
22 | .1521(=7) .1511(=7) | 10 | .4159(—4) .4233(—4)

THEOREM 4.1. Letn € N be fixed. Letry, & € Ny, be the sequence of monie
orthogonal polynomials with respect to the weight functien(¢))?*e~*" supported on the
real line and leto, = 0 and 8y, k € N, be the coefficients in the recurrence relation

7Tk,+1(t) = tﬂ-k(t) - Bkﬂ-n—l(t)v k e N.

ﬂn:n<s+;).

Proof. The proof relies on the fact that the weight functian, (£))2*¢ " is semiclassi-
cal. It can be easily shown that

Then

(a7 = (25 + 1)) () — 2t (1)) (o (1))

If we integrate the previous equation multiplied #y k£ = 0, ..., n, over the real line, we
get, due to orthogonality,

o0

/ (@5 4 1) () (£) — 2 (D) (o (1)t = / ((rale)? ) i a

_ 71€/ O () e dt =0, k=0,....n.

— 00

Hence, it must hold that
(25 + 1)(my,) — 2tm, = —2mp01 = —2(t7p — BuTn-1), (2s+1)(m)" = 2Bnmn_1.

Using this equation we gét, = (2s + 1)n/2. d

This theorem can be used to measure the efficiency of the Ghebylgorithm since we
can compare results of the Chebyshev algorithm and the gaha for 5, for the Hermite
weight function.

Acknowledgment. We would like to thank the anonymous referees and Lothartgeic
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