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ERROR ESTIMATES FOR A TWO-DIMENSIONAL SPECIAL FINITE ELEMENT
METHOD BASED ON COMPONENT MODE SYNTHESIS *

ULRICH HETMANIUK T AND AXEL KLAWONN #

Abstract. This paper presents a priori error estimates for a specit ftement discretization based on compo-
nent mode synthesis. The basis functions exploit an orthelgtetomposition of the trial subspace to minimize the
energy and are expressed in terms of local eigenproblems. phieraerror bounds state the explicit dependency
of constants with respect to the mesh size and the first negl@igenvalues. A residual-based a posteriori error
indicator is derived. Numerical experiments on academic problillustrate the sharpness of these bounds.
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1. Introduction. Classical Lagrangian finite element methods are challebgquob-
lems

V- (AX)Vux) = f(x)  in®,

1.1
(&.1) u =0 on o,

where the coefficient matriA is rough or highly oscillatingso that a standard application
of the finite element method needs a highly refined mesh tdreafficient accuracy. Over
the last couple of years, many discretization methods heea Iproposed to enable the ac-
curate, efficient, and robust solution of these complex lprab. Approximation subspaces
that incorporate specialized knowledge of the coefficieatrim A give rise to effective fi-
nite element methods. Examples include the multiscaleefieiément 15, 21], the mixed
multiscale finite elementl], the heterogeneous multiscale finite eleméwi,[adaptive mul-
tiscale methodsZ8], and the generalized finite element meth8d4, 6]. Babuska, Caloz,
and Osborn, p. 947] denote such finite element methsgscial

Hetmaniuk and Lehouc] proposed to build a conforming approximation space by
local eigenfunctions for the partial differential operato(1.1). Eigenbases are often efficient
in terms of Kolmogorown-width (see MelenkZ6]), and local eigenfunctions are supposed to
span a good approximation space. The discretizatioGhi§ based upon the classic idea
of component mode synthesis (CMS), introducedli, 3] and used, e.g., by Gervasio et
al. [16] in the spectral projection decomposition method. Stgrtiom a partition of the do-
main{2, component mode synthesis methods exploit an orthogorahugosition off/} (2)
to solve the minimization problem

(1.2) argmin (1/ (Vu(x))" A(x)Vo(x) dx —/ f(x)v(x) dx) :
verl (@) \2 Ja Q
For two-dimensional problems, the conforming approxigraspace proposed i2(] com-
binesbubble eigenfunctionfocalized inside one element), energy-minimizing exiems
of vertex-specificrace functions (localized on the elements sharing theexgrand energy-
minimizing extensions oédge-bubble eigenfunctiorflocalized on an edge and the adja-
cent elements). Numerical experiments 20,[24] illustrate the efficacy of this CMS-based
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approach. The first goal of this paper is to present a priodrezstimates for this local
eigenfunction-based discretization. The error bound® stee explicit dependency of con-
stants with respect to the mesh size and the first negleajed\&ilues.

Special finite element methods allow great flexibility inittdefinition. These numerical
methods often contain a parameter, such asénex-specifitrace function or the number of
eigenfunctions, motivated by heuristics arguments. Arieffit choice of parameter(s) may
not be known in advance and could be estimated adaptiveingltite computations. The
second objective of this paper is to derive an a posterioor@ndicator that could guide the
selection of the number d&fubble eigenfunctionrendedge-bubble eigenfunctians

The rest of the paper is organized as follows. Secfioeviews notations and the local
eigenfunction-based discretization. Sectiypresents a priori error estimates and a residual-
based a posteriori error indicator. Finally, numericalexkpents illustrate the sharpness of
these bounds.

2. Review of a special finite element method based on comporienode synthesis.
Let © be a bounded polygonal domain in the plarewhose boundarys? is composed of
straight lines. On this domain, the Sobolev spalié$Q)) and HY (2) are defined in a stan-
dard way (withk > 0). Fractional order Sobolev spacE3 (2) are defined by interpolation.
Denote

a(u,v) = /Q (Vu(x)" Ax)Vo(x)dx  Vu,v € H}(Q),

the bilinear form induced byli(1). The coefficient matrixA is assumed to be symmetric
positive definite, to b&! on (2, and to satisfy

1) 0<omn€ € <ETAX)E<amnd € Vx € Qandé € R\ {0}.

Given f € L?(Q2), the problem {.2) is rewritten as

argmin (1a(v, v) — (f,v)) ,
veHL(Q) \2

where(-, -) denotes the standard inner productiot{Q?). The associated optimality system

is the variational formulation ofl(1): find v € H}(Q) such that

(2.2) a(u,v) = (f,v) Vv e HJ ().

We refer to the solutions ofi(1), (1.2), and @.2) as equivalent in a formal sense. Throughout
the paper, the regularity assumption is:

ASSUMPTIONL. Givenf € L?(Q), there exists, > %such that the solution belongs
to H*0 (Q) N H} ().

This regularity assumption implies some conditions fordbenain{2. For example, whef
is convex, Assumptiof holds withs, = 2; see Grisvard]7, Theorem 3.2.1.2].

Consider a family(7),, of conforming partitions of? into a finite number of triangles
or convex quadrilaterals with straight edges. The mesh /sigethe maximal diameter of
the elementd< in 7;,. Here every elemenk is assumed to be a non-empty bounded open
set. The family(7;),, is assumed to be shape regular, i.e., the ratio of the diarobany
elementK in 7, to the diameter of its largest inscribed ball is bounded bymstanto
independent o and of7;,. The interfacd” is defined as

I = < U 8K> \ 9N

KeTh
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Given two distinct element& and K’ in 7T, the intersectiori N K’ is empty, a vertex, or a
complete edge with two vertices.

Let Vi be the subspace of local functions whose restrictioris teelong toFH{ (K') and
which are trivially extended througho(,

Vi = {v € HY(©): vlic € HY(K) and vl =0}

Any member function of has a zero trace on the bounda@§ and on the interfacé.
Let Wr be the subspace of trace functionsIofor all functions inH} (). DenoteVr the
subspace of energy-minimizing extensions of trace funstmnI”,

Vi = {EqT € H)(Q): 7 € W},
where the extensioR () solves the minimization problem

inf a(v,v) subjectto v|p =7.
veH(Q2)

The energy-minimizing extensiall, (7) satisfies, in the weak sense,

-V - (A(x)VEqT(x)) =0 in K,VK € T,
(2.3) Eqr =171 onl,
Eqr=0 onof2.

This property indicates that functionslify are governed by the underlying partial differential
equation. Note that any non-zero member functiolohas a non-zero trace dh
A key result is the orthogonal decomposition

(2.4) H(Q) = <@ VK> o V.

KeTh

The decomposition2(4) is orthogonal with respect to the inner product -) because

a(v,w) =0 Vo € Vi,Vw € Vg, (K # K'),
a(v,or) =0 Vv € Vi,Yor € Vp.

The former equality follows because the supports of the ivmtionsy andw are disjoint.
The latter equality follows by definition of the extensidh3d). Although not often stated in
this form, result2.4) is at the heart of the analysis and development of domaiordposition
methods for elliptic partial differential equationsd, 29, 31] and modern component mode
synthesis method&[10].

An approximating subspace consistent with the decompoditi4) arises from selecting
basis functions in the subspacég andVr. To build this approximating subspace, we in-
troduce two different sets of eigenvalue problems. Firstdefinefixed-interfacesigenvalue
problems: find z. i, A« k) € Vk x R such that

a(Ze, i, V) = Mk (20, 1,0) Vv € Vi
Next, for any open edge C I, the edge-basedoupling eigenvalue problem is: find

(Tuer Ane) € Hoéo(e) x R such that

1
0 (Ea (7o) . Eo () = A / reende ¥ € Hie),

e
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FiG. 2.1.Example of an edge-bubble eigenfunction along an interilgee.

FiG. 2.2. Trace ofp p alongI" for a domain partitioned into 16 elements.

wherer; denotes the trivial extension ghby 0 onI'. The eigenvalue§); x }52, and{\; . }°,
are assumed to be ordered into nondecreasing sequencesg&éhmodes.. x andr, . form
orthonormal bases for the?-inner product on the eleme and the edge, respectively.
Figure2.lillustrates an example for an eigenfunctign

To complete the approximating subspace, egatex-specififunction o p is defined as
the harmonic extension satisfying

-V (A(x)Vep(x)) =0 in K,
wp =20 onof,
op #0 onT,

ep(P') =dpp,

for any elementk, wheredp p/ is the Kronecker delta function. Herep is chosen to
be linear on each edgée. OnT, the trace forpp has local support along the boundaries
of elements sharing the vertgdX. The resulting functionop will also have as support the
elements sharing the poift Figure2.2illustrates an example of the tracewp.

1Efendiev and Hou15] discuss other choices farp.
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The conforming discretization spat®&cms, proposed in20], is consistent with the or-
thogonal decompositior?(4) and is defined as follows:

Vacms = ( @ span {z; x; 1 <i < IK})

KeTy
(@ span {@p}) & (@ span{FEq (T;¢);1 <i < Ie}>] ,

PeQ eCcIl’

2]

wherelx andI, are positive integefs The letter A in ACMS stands for approximate. Note
that the vertices® and the edges are taken in the interior d. The basis functions have
local support and the homogeneous Dirichlet boundary ¢immdis built into Vacus.

In summary, the conforming finite-dimensional subsptgeus C Hi () exploits the
orthogonal decompositior2 (4) for incorporating information from the variational fora-, - ).
The subspacEBxcus contains information within elements via thebbleeigenfunctions. The
functionsyp and Eq (7;..) carry information among several and two elements, resfedygti

3. Error estimates. The goal of this section is to derive error estimates for tifferd
ence of the exact solutianof (2.2) and the approximate solutiancus € Vacus defined by

(3.1) a (uACMs, 11) = (f, U) Yov € VACMS-
The orthogonal decompositio.6) implies that
(3.2) a (U — UACMS; U — UACMS) =a (UB — UACMS,B, UB — UACMS,B)
+ a (ur — uacmsT, Ur — UACMS,T)
where the solution satisfies
U =upg + ur, ’U,B€<@ VK> and ur € Vp,
K67—h

and the approximationiacus € Vacws is written as

UACMS = UACMS,B + UACMS,T, UACMS, B € ( @ VK) and uacmsr € Vr.
KeTh

The two error terms in3.2) are treated separately.
LEMMA 3.1. The componentsz anduacwms, g Satisfy

fII7 flI7
3.3) a(up — uacms,B;UB — UACMS,B) < H”L& < COh? H”L&v
: : A i
KeTs I, K KeTs, Omin, K1K
whereC' is a constant andvyin, x verifies
(3.4) 0<amnxé €<€TA(x)¢ Vxe K andé e R? {0}.

2WhenI is 1, the subspacgan {ziyK; 1<i< IK} is equal to{0} (the same convention holds fé).
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Proof. By Galerkin orthogonality, the error satisfies

a(up — uacms,B, UB — Uacms,B) < a(up — w,up — w)

Yw € <@ span {z; k31 <i < IK}> )

KeTn
For every elemeni(, define the projection operat®y,. as follows

IT—1

2 . _ . -
(3.5) Wwel(K): Pro()=Y < /K zviU> -

i=1

Replacingw by P;,. (ug), the projection error fot sz verifies

a(up — Pry (up) ,up — Pry (up))

= K;h /K (Vup — VPr, (up))’ A (Vug — VP, (up)).

On elementk, properties of the family of eigem‘unctior(lsb-,K)+OO

,—; indicate that

/K (Vug — VPr, (uB))TA (Vup — VP, (up)) = Jf:o i K (/K uBzi7K>2.

i=IK

For every eigenvector; x, we have

1
/ UBZi,K: 7/ (VUB)TAVZi)K:
K A

i, K

K
1
- /K Frix

/K (Vug — VP, (up))” A (Vug — VP, (up))

e 2 N =P (Dlegey 17200
=3 5 ([ ) < < ~
i=T K

1
—Ix i, K Al K T AIkK

i K /K (=V - (AVup)) zix

Hence, we get

Thus, the projection errarg — Py, (up) satisfies

71172
alup = Pry (un) up = Pre (up) = Y, .
KeTy I K

By (3.4), the eigenvalue; f is larger thany,in x times thei-th eigenvalue of the Lapla-
cian onK. By combining the bound of Bourquin on eigenvalues for thplaeian P, p. 74]
and the shape regularity of the familyy, ), , there exists a consta@tindependent of< and:
such that

1
(36) )\i,K > Camin,Kﬁ~

This estimate concludes the proof. [
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This result uses only the regularity assumption th&t- (AVu) = f belongs tal.? ().
Whenf is more regular, a sharper bound for the projection erratexirhe lower bound(6)
is valid for all eigenvalues, while Weyl's formula for eigeiues is asymptotic; see Bour-
quin [10, Equation (95)].

Next, the error inr is estimated.

LEMMA 3.2. The componentsr anduacus,r satisfy

2
[l 570 (1
(37)  a(ur —uacvsr, ur — uacwsr) < Csy0ah®° 77 Z e s w
Ker minecoxnr Az, e’

when the solutiom belongs taH*° (Q) N H} ().
Proof. By Galerkin orthogonality, the error satisfies

a (ur — uacms,r, ur — uacms,r) < a (ur —w,ur —w) YVw € Vr.

Recall that the functiomr is equal toEq, (u|r). Using the same characterization foyields

a (UF — w,ur — Z / VEQ ’UJ|F — U)‘F)) AVEQ('LL|F — w‘p)
KeT

1
When the restriction|. — w|. belongs taH 3, (e) for every edge: C T', we have o

Ea (ulr = wlr) = Eo (Wlok —wlox) = Y Fo (ule —wl.),
eCOK

whereu|. — w|. is the trivial extension ofu — w)|. by 0 onI". This relation yields

a(ur —w,ur —w)
Z / ( Z VEq (u|e —wle )) < Z VEq (U|e/:_7/1)|e>>
KeTh eCOK ccoK
and
a(ur —w,ur —w)
(3.8) ey Y / Vi . ))TA(VEQ (u|/——\_1/u|))
KeTn eCOK

where the Cauchy-Schwarz inequality has been used. The@sugfp:|. — w|. is included
ine. Its energy-minimizing extension has a local suppoftin; UK . », whereK, ; andK. »
are the two elements whose boundaries share thecedRgarranging the terms i8.@) gives

a(ur —w,ur — w)

(3.9) <CZ/“uK VEq (ule —wl. ))T A (VEq (ule —ul.))

To construct such a functiom, we proceed as follows. Léf, be the piecewise linear
interpolation operator ofi and define the projection operafdy, , for each interior edge,
as follows

I.—1

werr©: =Y ( [rn)n.

i=1
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We replace the functiow by
w = Eq (Ih (ur) + Y Ty, (ur — I (w))) € Vo N Vacws,
eCll

Whereﬁle (n) is the extension by 0 dfl;, (n) onT. For this choice ofv, we have
1
ule — wle € Hgy(e)

for every edgee C T.
Assumption 1 indicates thatFq(u|r) belongs toH*°(Q2). Hence, the restriction

ule — Zn(u)le is contained inH3Z,(e) N H'(e) for every edgee C T'. The relations §.9)
and A.2) yield

U —
(3.10) a(ur —w,ur —w) < Cyy.0.A Z | ”Hl

eCl’ e,e

Properties of the interpolation operafy give

< CR?0m3) Jul?

2 so—2 2
= Zn ()l (o) < CR*72) Jul gy 103 (o)

see SteinbactB[)]. Relation 3.10 becomes

ecor Il 70-3
a (UF — w, ur — ’lU) < 0‘9070,Ah2(507%) Z eC H®0~ 2 (e) .

min A
KeT, eCOKNI N\, ,e

A theorem of Arnold et al.7, Theorem 6.1] indicates that we have

2 2
S Nl ey < C el

eCOK

because: is continuous o2 and satisfies the conditions for traces on a polygon. Finedly
get

2
U s
a (uF —w,up — ’lU) S CSO’gﬂAh2SU_3 H”}I—O(I() D
KZGTh, minecornr A, e

To the best of the authors’ knowledge, a lower bound on alketthge-bubblesigenval-
uesA, . is not available. Based on the discussion in BourgQjrp[ 89] and on egde-related
eigenvalues for particular geometries (see, for example . 412]), one could expect that

l
(311) )\l,e Z Camin? B

1
where the constartt’ does not depend anor (. The error 8.7) would become

2
h2s0=2 1wl Freo (1
(3.12) a (ur — uacms,r, ur — uacms,r) < Csy.o.A .70()1.,
min KeT, MiMecorNT Le

providing a rate of? whenu belongs tof? (2).
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REMARK 3.3. The resultin Lemma.2does not exhibit an optimal behavior with respect
to the edge-basetbuplingeigenvalues wheg, > % Indeed, bounds on the eigendecompo-
sition do not take into account the smoothness pfbeyondH* (I'). Such analysis for the
Steklov-Poinca operator seems difficult to establish.

Combining (8.2) and the previous two lemmas yields the error estimate for

PROPOSITION3.4. Assume that the solutianof (2.2) belongs toH; () N H*° (),
with sg > % Then the error between the solutian and the approximate solution

uacms € Vacwms satisfies

1£0Z2x
a(u — uacms, U — uacms) < Z — L)

A
KeTy, I, K

2
w7
2s0—3 || H\O(K)
+ Cy, 5. AR50 E —_—
s Minecorr M, e
KETh e

where the constar, , o does not depend omandh.

Note that the approximatiamncys converges ta even without anypubbleeigenfunction
(i.e.,Ix = 1). For every elemenk, the first eigenvalug, r verifies\; x > C'%x=, which
yields

h2
Qmin

: ||“Hi[-*o(K)
+ Copoah®™ ™ Yy ———— 2
s0,0,A MiNecorAr AL e
KEeT, = ©

a(u — upcms, u — uacms) < C Hf||2Lz(Q)

Whenlx = I, = 1, the approximatiomacys still converges ta: thanks to thevertex-specific
functions. This particular case was provedi,[22].

REMARK 3.5. The error estimates in Propositidd are closely related to the pioneering
work of Bourquin B, 9, 10] on component mode synthesis. The main difference liesen th
way the information is transferred among elements. Bouraisies eigenmodes dn for
the Steklov-Poinc#&r operator. Here theertex-specifidunctionspp and theedge-bubble
eigenfunctions carry information among elements and haca support.

The choice of basis functions iWixcys determine the efficiency of the discretization
method. The number of eigenfunctions cannot be known inremd/and should be estimated
adaptively during the computations. The following propiosi introduces an a posteriori
error indicator that could guide how to select the numbédutifbleeigenfunctions anddge-
bubbleeigenfunctions.

ProOPOSITION3.6. The error between anduacus satisfies

If = Prc (H)72
Va(u— uacws, u — uacms) < Ce oA { Z LA(K)

A
KeTn T K

(3.13) +h* Z 1f = Prx (f)”iZ(K) ( Z )\2125>

KeTn eCOKNI “le,e

1
2

H Je (uzAVuACMS)

I7:
+h2€ - (e) ;
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wheres > 0 andJ.(¢)) denotes the jump of a given functigracross the edgein the direc-
tion of the unit normal vector.. The constanC. , o depends om, o, and the coefficient
matrix A.

The proofis given in AppendiB. Bound 3.13) indicates that the right hand side defines
an a posteriori error indicator. This error indicator isable, i.e., the error is bounded from
above by multiples of the indicator. Proving the effectiaff the error indicator remains an
open question.

REMARK 3.7. In practice, the basis functions are computed nuniBriog introducing
a nested finer grid. The selection of this nested finer gridatgpboth the accuracy and the
complexity of the algorithm. Finding error estimates anasteriori error indicators for such
a two-grid scheme remains an open problem that is beyonc:tipef this paper; seé ]
and [L9] for a recent study applied to the multiscale finite elemeethad. A complexity
comparison between a two-grid scheme and the standarccafpti of the finite element
method would require a specific study with careful numeregberiments. However, to
estimate the merit of the two-grid scheme over the standaptication of the finite element
method, flop count expressions are briefly discussed in tine style as the comparison of
Hou and Wu P1, Section 4.2].

If 2 denotes the fine mesh size, then the fine grid yi€ls\/2h=2) degrees of free-
dom. The computational complexity associated with thedsesh application of the finite
element method over the fine grid is dominated by the operataint for solving the linear
system,

O ((MQh—Q)(x) _ O(MQah_Qa),

wherea € [1, 3] depends on the specific linear solver usékhe complexity for the two-grid
scheme based on component mode synthesis is

O(h=2%) + max [O(M2*h~2), O(M®h~2), O(M2+1h~2)] |

where O(h—2%) is the cost of solving the algebraic equatidhl]. The other term esti-
mates the cost for computing the basis functions z. x, and Eq(7. .), respectively. The
complexity for computing all theertex-specifiéunctionsep is O(M?**h~2). Thebubble
eigenfunctions:.. ;¢ require, at mostQ(M°h~2) operations. Note that this cost is an over-
estimate because it does not exploit the fact that daly< M? eigenmodes of a sparse
pencil are needed)(M?**+1h~2) estimates the complexity for computing teége-bubble
eigenfunction®q (7. ¢ ).

Whena = 1, the two-grid scheme is not attractive from an operatiomntgoint of
view. However, solvers witly = 1 are not common or available for a general coefficient
matrix A. As soon asy > 1, a two-grid scheme has some merit, especially whéns
smaller tharh 3.

4. Numerical experiments. In this section, numerical experiments illustrate the ghar
ness of the previous bounds at academic examples. When tbesstation is not known
explicitly, the energy,

1

E) = i/Q(Vv(x))TA(x) Vou(x) dx—/gf(x)v(x) dx,

represents an intrinsic metric for comparing the qualitapproximations to the exact solu-
tion. Computing the difference between the energy of theprded solution and the energy

3For a finite element discretization in two dimensions, a spsobeer is usually characterized by = %; see,
for example, Heathl[8, Table 11.4].
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10"

—— Discretization Error
—— Line of Slope -1/2

101

H* semi-norm of absolute error

107 L L
10° 10" 10” 10° 10"
Number of bubble eigenfunctions

FiG. 4.1.Convergence curve for solutigd.1) with « = 1.51 andh = 1 (squared domain).

of the exact solutiong* = £(u), is equivalent to computing the norm of the error for the
energy inner product,

The minimum energy* is obtained by extrapolating energies for finite elementtsahs on
fine meshes.

4.1. Convergence towards a smooth solutionin this section, consider the problem
—Au=f in Q=10,1] x[0,1], wu=0 on 99,

where the domaifD, 1] x [0, 1] is partitioned by square elements.
First, the functionf is chosen so that the exact solution is

(4.2) u(@,y) = ((z=2%) (y—v")",

wherea > % Figure4.lillustrates the convergence whenly oneelement is used and the
number ofbubbleeigenfunctions is increased. When= 1.51 =~ %4—5, the right hand sid¢
belongs tol? (). The convergence curve exhibits a decrease proportionﬂ:}owhich is
predicted by the bound(3).

Whenf = 1, the right hand side now beIongsIfb% (Q). In Figure4.2, the convergence,
whenonly oneelement is used and the numbebobbleeigenfunctions is increased, exhibits

a higher convergence rate, which is described by the piojeetror of f,

1F =Pifllze _ 12
VA1 - VAL

Keepingf = 1 and using only ondubbleeigenfunction and onedge-bubblesigen-
function, Figure4.3 illustrates the convergence when the number of elementxisased.
As expected, the convergence curve exhibits a decreaserfional to the mesh sizk.

The next study keep$g = 1 and uses = % and4096 bubbleeigenfunctions for every
element. Figuréel.4illustrates the convergence when the numbegdge-bubbleigenfunc-
tions is increased. The convergence curve exhibits a pldieaause the number of bubble
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Absolute error

10" F —L? norm of projection error for f ~.

—— H* semi-norm of discretization error
Line of slope -1/4

- @ -Line of slope -3/4

10 :
10’ 10' 10° 10
Number of bubble eigenfunctions

FIG. 4.2.Convergence curve wheh= 1 andh = 1 (squared domain).

10
—%H" semi-norm

10

Absolute error

107

FiG. 4.3.Convergence curve wheh= 1 (squared domain).

10 T T
=% H' semi-norm
—e—Line of slope ~3/2

Absolute error
e
5
L

6| L L

2 o

T
0
Number of edge-bubble eigenfunctions

FIG. 4.4.Convergence curve wheh= 1, h = % and 4096 bubble eigenfunctions are used (squared domain).
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10

107

Absolute error
=
O‘
S

—*H? semi-norm
=7~ A posteriori error indicator
—Liney = ch®®

n

I
107 107
Mesh size

10

FiG. 4.5.Convergence curve for a fixed number of bubble and edge-b@ipbnfunctions (L-shaped domain,

f=1).

eigenfunctions is fixed. Before reaching this asymptote ciirve decreases Iimfg. This
rate is higher than the prediction i8.(2. Bourquin P, p. 45] indicates that, for smooth

functions, a superconvergence phenomenon is expectedheitrecise raté. 2.

4.2. Problem on a L-shaped domain.In this section, consider the problem

~Au=1 in Q([0,1]><[0,1])\<[;,1}x{i,l]), wu=0 on 99,

where the domairf) is partitioned by square elements. The exact solution Igsldo
H3 (Q) N HE (Q). For this problem, the approximate value &ris

£* = —6.689868958058575 x 1073,

Proposition3.4, bound 8.6), and conjecture3 1] indicate that the error is bounded as fol-
lows

Ba

h2 3 2
ax, I, lull5 gy

2
— 11200y +C

(4.2)  a(u—wuacms,u — uacms) < C
The following experiments illustrate the sharpness of tassilt.

Using only onebubble eigenfunction and onedge-bubblesigenfunction, Figuret.5
illustrates the convergence when the number of elementsiisased. As expected, the con-
vergence curve exhibits a decrease proportionb%toThe a posteriori error indicatoB (13
(with e = 0) decreases also proportionallyhé. The ratio between the error indicator and
the semi-norm varies between 4 and 10.

Next, only onebubbleeigenfunction is used while the mesh sizés decreased. The
number ofedge-bubbleigenfunctions is set to the integer part%LofFigure4.6iIIustrates the
convergence when the number of elements is increased. Sincel. = O(+), bound ¢.2)
suggests a convergence ratehofwhich is matched by the numerical experiment. The plot
confirms that the impact ddubbleeigenfunctions depends only on the regularity of the right
hand sidef.
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:
107k / |

10 —*-H' semi-norm
=%~ A posteriori error indicator
—Liney=Ch

Absolute error

I
107 10
Mesh size

FIG. 4.6.Convergence curve wheh= 1 for a fixed number of bubble eigenfunctions (L-shaped domnain

10" ! !
g
lgs 7

10°
—*H? semi-norm
=~ A posteriori error indicator
—Liney= cr?
_, -

I
10° 10 10° 10
Number of edge-bubble eigenfunctions per edge

Absolute error

10

FIG. 4.7. Convergence curve for a varying number of edge-bubble &igetions (L-shaped domairf, = 1,
h =1 I, =256).
I

Finally, in the next experiment, the numbersafge-bubbleigenfunctions is varied while
the mesh sizé: is set toi and the number dbubbleeigenfunctions to 256. Figur7 il-
lustrates the convergence when the numbegdgfe-bubblesigenfunctions is uniformly in-
creased. The semi-norm of the error and the a posteriori eicator decrease proportion-

_2
ally to I. ® before reaching a plateau set by the constant numbkeulableeigenfunctions.

Bound @.2) suggests only a decrease proportiondl?té. This discrepancy is due to relation
(A.2) which does not exploit smoothness beydiid (T).

4.3. Problem with varying coefficient. Finally, consider the problem

—V(e(x)Vu(x)) = -1 inQ =10,1] x [0,1],

4.3
(43) u=20 onof,
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TABLE 4.1
Error evolution for problem(4.3) as the mesh sizeis reduced.

Mesh size| & (v) — &* Nint Nedge
h=7 |[681x1072 | 1.80x 107! | 1.8 x 107
h=g5 [204x1072 | 424 %1072 | 3.6x 1074
h=4 |694x1073 | 1.31x 1072 | 6.34 x 1077
h=3 | 135x107% | 358 x 1073 | 6.98 x 1076

where the coefficient is
2—|—185in( ) N 2+51n(27”’)
2+18COS( ) 2—1—185111(2”)

c(z,y) =

with e = %. The domaint? is partitioned by square elements. This problem was ihjtial
studied in P1]. The exact solution belongs t&? () N H¢ (). For this problem, the
approximate value fof* is

E* = —4.826726636113407 x 1073.

The objective of this subsection is to assess the qualiti@gtror indicator in Proposi-
tion 3.6. Denote

1f = Pre (D220
Al K

Nint = Z

KeTy

and

Nedge = Z Hf 7DIK HL2(K ( Z

KeT, eCOKNT Ie-ﬁ

|J v¢ AVupcws) H;(e)

o)z
eCl’ I"e
Table 4.1 describes the reduction of errors and error indicators esrtbsh size is refined.
Oneedge-bubblesigenfunction for each edge and hobbleeigenfunctions are used. The
energy differences and the indicatgy,, exhibit a reduction proportional th?>. As can be
seen in Figuret.4, a superconvergence phenomenon for the edge part of esrpossible;
see Bourquing, p. 45]. Here, the edge indicatgr,,. is decreasing slightly faster tha
for this range of mesh sizes.
Table 4.2 illustrates the same information when the numbeedde-bubblesigenfunc-
tions is uniformly increased. The mesh size is sl te % and nobubbleeigenfunction is
used. For this setup, the energy differences reach a plateiteithe edge indicatoy.q,. is

decreasing slightly faster thdmax. I.) ', the prediction in8.12).

5. Conclusion. This paper derives a priori error estimates for a speciaefiaiement
discretization based on component mode synthesis. Thetagmior bounds state the explicit
dependency of constants with respect to the mesh size affidstheeglected eigenvalues. A
residual-based a posteriori error indicator is also preseMNumerical experiments illustrate
that the error indicator is reliable.

Such indicator could guide the adaptive selection for theler of bubbleand edge-
bubbleeigenfunctions. In practice, the basis functions and digenions used in this special
finite element method are computed numerically by introdgy@ nested finer grid. To en-
hance the practicality of these special finite elementsyéuvorks will study error estimates
and a posteriori error indicators for the resulting twadggcheme.
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TABLE 4.2
Error evolution for problen(4.3) as the number of edge-bubble eigenfunctions is increased an %.

Edge-bubble eigenfunctions & (v) — &£* Nint Nedge
1 2.04x 1072 | 424 x 1072 | 3.65 x 1074
2 1.81 x 1072 | 424 x 1072 | 1.69 x 10~*
4 1.62 x 1072 | 424 x 1072 | 5.25 x 107°
8 1.59 x 1072 | 424 x 1072 | 1.63 x 107°

FiG. A.1. Example of domai.

Acknowledgments. U. Hetmaniuk acknowledges the partial support by the Nation
Science Foundation under grant DMS-0914876.

Appendix A. Review of properties of the Steklov-Poincag operator.

In this section, properties of the Steklov-Poiricaperator are compiled. Further details
and references are included in Bourquij[and Khoromskij and WittumZ5)].

Consider a bounded polygonal domain < R? partitioned into two regions,
D = D; U D,. The subdomain®; and D, are bounded convex polygons with straight
edges. The interfacgé = D; N D, is illustrated in FigureA. 1.

For anyr € HO%0 (9), the energy-minimizing extensiai, (7) € H' (D;) is defined as
the unigue solution to the problem

7V(AVE1 (T)):O inDl7 Ey (T):T OnS, Ey (7’):0 ondD;NaD.
The energy-minimizingts (1) € H! (D,) is defined similarly inDy. The matrix A is

uniformly symmetric positive definite o as described by2(1).
Introduce the symmetric bilinear form

b(r,n) = /D VE, (r)" AVE; (n) + /D VE, (1) AVE;, (n),

1
for any functionr andn in Hg, (S). The continuity and coercivenessipére consequences
of the continuity of the energy-minimizing extension, ottlrace operator 0¥, and of
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properties ofA. Given that the injection oHO%O () into L? (S) is compact (see Bour-
quin [10, p. 390-391)), there exists a self-adjoint unbounded fimgeeratorB on L2 (S)
with compact inverse such that

b(ron) = [ (B, e 12(S)
S
and for any arbitrary- in the domain of the operatds,
D(B) = {r € H2 (S); Br = vTAVE, (r) + vTAVE; (1) € L? (S)} ,

wherev, respectivelyv,, is the unit outer normal vector @D, respectivelyo D,. Note
that the operatoB can be decomposed as follows

BT = Bi7 + Byt With By7 = vl AVE, (1) and Byt = v2 AVE, (1)

for any element in D(B).

Whenn belongs toHO%O (S) N H! (S), the compatibility conditions for traces on a poly-
gon [2, Theorem 6.1] indicate thatsatisfies

ilop, € H (0Dy) and 7j|op, € H' (0D).
Then we have

1Bl 25y < 1B1illl 2o,y + B2l 2o,

(A1) ~ ~
< Callillgop,y + Callill g op,) < Callnllgs)

whereC's denotes a generic constant that may depend on the coeffiominix A. The
constantCa does not depend on the length $for on the diameter oD; see Néas R7,
Theorem 1] for the bound betwed:7j|| ;- 5, ) and ||| ;1 (5, Wherek = 1,2.

Spectral decomposition. Spectral theory yields a familwn):f1 forming an orthogo-
nal basis off 2, (S) andL? (S) and a sequence of real numbé@g);ﬁi’j such that

b(%,??):@n/ssbn??» VT)GHO%(S),
and

/gz)fl:l and 0<6; <6 <---.

s

The eigenfunctions also satisf§p,, = 0,,¢,,; see Bourquin10, p. 392].
Forn € L? (S), define the projection

() = Z ([0 ) 6.

When Bn belongs tal?(S), we write

/Smbn - ein/snw(bn) - %[S(Bn)qbw
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Forn € HO%O (S) with Bny € L*(S), it holds that

=112 ()~ Ty (1) = S 6, (/Snm)z: f,}n(/swnm)z

n=L n=L

1 2 1 2
< —||Bn—1. (B < —|B .
=0, | Bn L 77)HL2(S) =9, | 77||L2(S)

In particular, whem) € Hd%o (S) N HL(9), relation @.1) implies thatBn belongs taL?(S).
In this case, the projection error satisfies

C
(A.2) b(n—1g(n),n—Hg(n) < T? HnH?P(S)'

Bounds in dual spaces will also be needeaneerO%O (S), we write

+o0 2 +oo 2
1
b= e =3 (o) = 32 g% ()

L n=L ™
1 “+o0 2
< 0 ( / nqbn)

for0 <s < % Using the equivalence between the norms

+oo . 2
1
$Z (1+ 629) (/S n¢n> and |[nl[f.g) for 0<s< 5

n=1
(see, for example, Khoromskij and Witturdg, Section 1.7]), we obtain

Cs,A
(A.3) I — T ()32 (s) < % 72 )

for 0 < s < 3, whereC o does not depend on the length$f
1 /
After continuously extending the projectid, to H~ 2 (S) = (H(?O (S)) , Similar
estimates hold it ~ = (S),

C

2 1 2 s,A 2
(A.4) by =Tz (D4 ) < % 7 =ML ()2(s) < s 1711572 s)

for0 <s < % whereC s does not depend on the lengthsf

Appendix B. Proof of Proposition 3.6.
Proof. Recall that the exact solutiansatisfies

a(u,v) = /va, Yo € H} (Q)

and thatP;,. is the projection operator defined B.%). The functionf can be decomposed
as follows

F=3 P (H)+ D [f = Puc ()]

KeTy, KeTy,
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such that

[ro=% [ Punor ¥ [ (r=Punpe

KeTn KeTn

— Z /KPIK(f)UB,K+ Z /KPIK(f)UF

KeTy, KeTy,

+ 5 [ =P ons+ 3 [ 1 =Pu (or,

KeTy KeTn

where the decomposition

v = E v,k + Ur
KeTy,

has been used. The orthogonality of eigenfunctiang yields

/Q Jo= K;—h /KPIK () Pr (v.x) + K;’;L /K Py (f)vr
> J LU= Prc (o = P o) + py) | =P (Pl

At the same time, the approximate solutiogtus € Vacms satisfies

a (uacms, v) = Z / (VUACMS,B)T AVPr. (UB,K)+/ (VUACMS,F)T AVur.
KeT, 'K Q@

Integration by parts of the second term over every elemégives

a (uacms, v) = Z / (Vuacws.z)” AVPr, (v k)
KeT, VK

+ Z Z (VZAVUACMS,F) ur.

KETy eCOK V€

Combining all the previous relations, we have

a(u — uacms, v) = Z /K [f = Pr (f)] v, x — Pr (B, K)]

KeTy

+ 2 [P+ X[ 0Pl
(B.1) KeT, ' K KeT, 7 K
+ Z /KPIK (f)Pry (vB,K) — Z /K(VUACMS,B)TAVPIK (vB.K)

KeTy KeTy,

- Z Z (VZAVUACMS,F) ur.

KeT, eCOK "€

On every elemeni, the bubble functiomacus, z Satisfies

—V - (AVuacws,B) = Pr, (f) -
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Hence, we get

/ (VUACMS,B)T AVPr,. (vBk) = / Pric (f) Pryc (vB,K)
K K

and
/ Pry (f)or = —/ V - (AVuacums,B) vr
K K
(B.2) :/ (VUAMCS,B)T AVur — Z (VEAVUACMS,B) ur
K eCOK V¢
=- Z /(VeTAVuACMS,B)vF

eCOK v €

by orthogonality. Equation$3(1) and B.2) yield

a(u—upcws, v) = /K [f = Pr (Ol ve,x — Pry (vB,K)]

KeTy

£y /K[f—PIK<f>]vF

KeTn

T T
- Z Z / (Ve AVUACMS,B + v, AVUACMS,F) ur
KeTy, eCOK Y *®

and

a(u— uacus,v) = /K [f = Pre (N [vB.x — Py (vB.K)]

KeTy

+ Z /K Lf = Prie (F)]vr — Z Je (v AVuacus) or,

KeTy ecre¢

whereJ. (1) denotes the jump of a given functianacross the edgein the directionv..
Next, we write

a(u — uacms, v — vacus) = /K [f = Pre (Nl lvB.x — Py (vB,K)]

KeTy

(B.3) + Z /K [f = Prx (f)] (or — vacms,r)

KeTh

- Z / Je (VI AVuacus) (vr — vacwsr)

ecve

for all functionsv € H& (©2) andvacms € Vacms. Now the right hand side is bounded term
by term to define an a posteriori error indicator.
First, on every element’, we have

/ U~ Pr (F)] o35 — Pr (0550
K

<|f =P (f)||L2(K) lv,x = Pry (UB7K)||L2(K)
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and
1= Prc (e =~ Py (v
K
f V’UB K AVUBJ(
<Nf = Prie (Nllpzcx \/ = h
I, K
or
/ [f = Pre (Dl [vB,x — Pryc (vB,K)]
K
(B.4)

- 1f = Pric (Dl 2y

< / (V)" AVo.
VA K K

Before bounding the second and third terms&B, vacus r is set as follows

vacms,r = Fo (Q (vr) + Z Iy, (vr — Q (Ur))> ,

eCTl’

where the operato@ is the L2-projection into the finite-dimensional subspace spanned b
the piecewise linear functions dh
On every elemeni, the second term of(3) is bounded,

/K [f = P (D] e = vacws,r] < f = Prie (Pl L2k lor — vacws.oll gz i -

Definez as the unique solution i} (K) of
-V (sz) = Ur — UACMS,T' in K.

SinceK is convex, the function belongs tof/?(K). We have
llor — UACMS,F||2L2(K) = / (Vz)" AV (vr — vacwsr)

— Z /V AVZ UF_'UACMSF)

eCOK

= — Z /V AVZ UF_UACMSF)

eCOK
becauser — vacms r IS @an energy-minimizing extension. Next, we write

(B.5) llor — UACMSFHLz(K) < Z llor — vacms,rll , - HVTAVZH

H2(
eCOK

For every edge C 0K, we have

HVTAVZHH%(e) < Ca 2l g2y < Callor — UACMS,F||L2(K) )

Plugging this relation intog.5), we get

[lor — UACMS,F”Lz(K) <Ca Z llor — vacms |

H 3 (e)"
eCOK
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The bound A.4) on the projection error now yields

Jor = Q)3
||'UF_UACMS,F||L2(K) <Cea Z T
eCOK I.,e

with 0 < e < % Using properties of the projection operatdmgives

hE
||UF - vACMS,F”Lz(K) S Cg,A Z Tic |UF|H%(6) )
eCOK "lese

see Steinbacl8pP, Eqn (12.19) on p. 271]. Using the continuity of the tracerapm modifies
the inequality as follows

hE
lor = vacws Pl 2y < CCea llvr g i) ( > A15> :
eCOK "ese

The second term oB(.3) is bounded by

[f = Prx (f)] [or — vacus,r]

(B.6) he
< Ceallf = Prc (DMl 2oy 10l () ( Z )\1—5) :

eCOK "lese

For every interior edge C T, the third term of B.3) satisfies

/Je (VZAVuAcms) (vr — vacms,T)

< || Je (vE AVuacus) ||L2(e) llor — vacws,rll 2 e

Combining the boundA.3) with s = % — ¢ and properties of the projection opera@ield

hE
(B.7) [or — vacws,rll 2y < Ce, A)\ —[or] 1
I.,e

H2(e)

where0 < & < .
Combining 8.3), (B.4), (B.6), and B.7) gives

If = Pric (Dl z2re) T
a(u — upcms, v) < E / (Vo)" AVvu
KeT, VAL K K

hE
+C:a Z 1 = Prac (2200 ( > )\15> ol g (i)

KeTh eCOKND "e,e

+C€AZ

eCF [e

TAVUACMS) HLQ(E) ‘UF IH% (e)
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for any functionv € H} () ande > 0. The Cauchy-Schwarz inequality implies

a(u — UACMS; V)

e E:nf—ﬁkum;m>

a(v,v) rer Al K
e 2 1
0230 M = Pre Dl | 22 o=
KeT, eCOKND "e,e
1
T 2 2
L Z [Je (v AVuacws) HL?(e)
)\1—26 ’
eCll’ Ic.e
where we used
2 2 C T
S ol = ol < 7= [ (Vo) AV

KE,]-}L
and
WPy < S Py <O e < —— [ (V)T AV
Dl HE(e) = > v H2(0K) = pBRL HY(K) = g ] WYY v
eCcTl KeTn KeTn

The energy norm of the errar— uacus is bounded from above by a multiple of

1f = Prc (D720 ) 1
3 En2 ST =Pre (Do | Y. =
Al K A
KeTn o KeTh eCOKNI "e,e
1
17 (v AVuacws) |72 ) ) *
2 ¢\7e L2(e)
+ h c Z )\1726 I:l
ecl’ Ie,e
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