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ERROR ESTIMATES FOR A TWO-DIMENSIONAL SPECIAL FINITE ELEMENT
METHOD BASED ON COMPONENT MODE SYNTHESIS ∗

ULRICH HETMANIUK † AND AXEL KLAWONN ‡

Abstract. This paper presents a priori error estimates for a special finite element discretization based on compo-
nent mode synthesis. The basis functions exploit an orthogonal decomposition of the trial subspace to minimize the
energy and are expressed in terms of local eigenproblems. The apriori error bounds state the explicit dependency
of constants with respect to the mesh size and the first neglected eigenvalues. A residual-based a posteriori error
indicator is derived. Numerical experiments on academic problems illustrate the sharpness of these bounds.
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1. Introduction. Classical Lagrangian finite element methods are challengedby prob-
lems

−∇ · (A(x)∇u(x)) = f(x) in Ω,

u = 0 on∂Ω,
(1.1)

where the coefficient matrixA is rough or highly oscillatingso that a standard application
of the finite element method needs a highly refined mesh to reach sufficient accuracy. Over
the last couple of years, many discretization methods have been proposed to enable the ac-
curate, efficient, and robust solution of these complex problems. Approximation subspaces
that incorporate specialized knowledge of the coefficient matrix A give rise to effective fi-
nite element methods. Examples include the multiscale finite element [15, 21], the mixed
multiscale finite element [1], the heterogeneous multiscale finite element [14], adaptive mul-
tiscale methods [28], and the generalized finite element method [3, 4, 6]. Babǔska, Caloz,
and Osborn [5, p. 947] denote such finite element methodsspecial.

Hetmaniuk and Lehoucq [20] proposed to build a conforming approximation space by
local eigenfunctions for the partial differential operator in (1.1). Eigenbases are often efficient
in terms of Kolmogorovn-width (see Melenk [26]), and local eigenfunctions are supposed to
span a good approximation space. The discretization in [20] is based upon the classic idea
of component mode synthesis (CMS), introduced in [13, 23] and used, e.g., by Gervasio et
al. [16] in the spectral projection decomposition method. Starting from a partition of the do-
mainΩ, component mode synthesis methods exploit an orthogonal decomposition ofH1

0 (Ω)
to solve the minimization problem

(1.2) argmin
v∈H1

0
(Ω)

(
1

2

∫

Ω

(∇v(x))T A(x)∇v(x) dx−
∫

Ω

f(x)v(x) dx

)
.

For two-dimensional problems, the conforming approximation space proposed in [20] com-
binesbubble eigenfunctions(localized inside one element), energy-minimizing extensions
of vertex-specifictrace functions (localized on the elements sharing the vertex), and energy-
minimizing extensions ofedge-bubble eigenfunctions(localized on an edge and the adja-
cent elements). Numerical experiments in [20, 24] illustrate the efficacy of this CMS-based
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approach. The first goal of this paper is to present a priori error estimates for this local
eigenfunction-based discretization. The error bounds state the explicit dependency of con-
stants with respect to the mesh size and the first neglected eigenvalues.

Special finite element methods allow great flexibility in their definition. These numerical
methods often contain a parameter, such as thevertex-specifictrace function or the number of
eigenfunctions, motivated by heuristics arguments. An efficient choice of parameter(s) may
not be known in advance and could be estimated adaptively during the computations. The
second objective of this paper is to derive an a posteriori error indicator that could guide the
selection of the number ofbubble eigenfunctionsandedge-bubble eigenfunctions.

The rest of the paper is organized as follows. Section2 reviews notations and the local
eigenfunction-based discretization. Section3 presents a priori error estimates and a residual-
based a posteriori error indicator. Finally, numerical experiments illustrate the sharpness of
these bounds.

2. Review of a special finite element method based on component mode synthesis.
Let Ω be a bounded polygonal domain in the planeR2 whose boundary∂Ω is composed of
straight lines. On this domain, the Sobolev spacesHk(Ω) andHk

0 (Ω) are defined in a stan-
dard way (withk > 0). Fractional order Sobolev spacesHs(Ω) are defined by interpolation.
Denote

a(u, v) =

∫

Ω

(∇u(x))T A(x)∇v(x)dx ∀u, v ∈ H1
0 (Ω),

the bilinear form induced by (1.1). The coefficient matrixA is assumed to be symmetric
positive definite, to beC1 onΩ, and to satisfy

(2.1) 0 < αminξ
T ξ ≤ ξTA (x) ξ ≤ αmaxξ

T ξ ∀x ∈ Ω andξ ∈ R2\ {0} .

Givenf ∈ L2(Ω), the problem (1.2) is rewritten as

argmin
v∈H1

0
(Ω)

(
1

2
a(v, v)− (f, v)

)
,

where(·, ·) denotes the standard inner product onL2(Ω). The associated optimality system
is the variational formulation of (1.1): find u ∈ H1

0 (Ω) such that

(2.2) a(u, v) = (f, v) ∀v ∈ H1
0 (Ω).

We refer to the solutions of (1.1), (1.2), and (2.2) as equivalent in a formal sense. Throughout
the paper, the regularity assumption is:

ASSUMPTION1. Givenf ∈ L2(Ω), there existss0 > 3
2 such that the solutionu belongs

toHs0 (Ω) ∩H1
0 (Ω).

This regularity assumption implies some conditions for thedomainΩ. For example, whenΩ
is convex, Assumption1 holds withs0 = 2; see Grisvard [17, Theorem 3.2.1.2].

Consider a family(Th)h of conforming partitions ofΩ into a finite number of triangles
or convex quadrilaterals with straight edges. The mesh sizeh is the maximal diameter of
the elementsK in Th. Here every elementK is assumed to be a non-empty bounded open
set. The family(Th)h is assumed to be shape regular, i.e., the ratio of the diameter of any
elementK in Th to the diameter of its largest inscribed ball is bounded by a constantσ
independent ofK and ofTh. The interfaceΓ is defined as

Γ =

(
⋃

K∈Th

∂K

)
\∂Ω.
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Given two distinct elementsK andK ′ in Th, the intersectionK ∩K ′ is empty, a vertex, or a
complete edge with two vertices.

Let VK be the subspace of local functions whose restrictions toK belong toH1
0 (K) and

which are trivially extended throughoutΩ,

VK =
{
v ∈ H1

0 (Ω): v|K ∈ H1
0 (K) and v|Ω\K = 0

}
.

Any member function ofVK has a zero trace on the boundary∂Ω and on the interfaceΓ.
Let WΓ be the subspace of trace functions onΓ for all functions inH1

0 (Ω). DenoteVΓ the
subspace of energy-minimizing extensions of trace functions onΓ,

VΓ =
{
EΩτ ∈ H1

0 (Ω): τ ∈WΓ

}
,

where the extensionEΩ(τ) solves the minimization problem

inf
v∈H1

0
(Ω)

a(v, v) subject to v|Γ = τ.

The energy-minimizing extensionEΩ(τ) satisfies, in the weak sense,

−∇ · (A(x)∇EΩτ(x)) = 0 in K, ∀K ∈ Th,
EΩτ = τ onΓ,

EΩτ = 0 on∂Ω.

(2.3)

This property indicates that functions inVΓ are governed by the underlying partial differential
equation. Note that any non-zero member function ofVΓ has a non-zero trace onΓ.

A key result is the orthogonal decomposition

(2.4) H1
0 (Ω) =

(
⊕

K∈Th

VK

)
⊕ VΓ.

The decomposition (2.4) is orthogonal with respect to the inner producta(·, ·) because

a(v, w) = 0 ∀v ∈ VK , ∀w ∈ VK′ , (K 6= K ′),

a(v, vΓ) = 0 ∀v ∈ VK , ∀vΓ ∈ VΓ.

The former equality follows because the supports of the two functionsv andw are disjoint.
The latter equality follows by definition of the extension (2.3). Although not often stated in
this form, result (2.4) is at the heart of the analysis and development of domain decomposition
methods for elliptic partial differential equations [16, 29, 31] and modern component mode
synthesis methods [7, 10].

An approximating subspace consistent with the decomposition (2.4) arises from selecting
basis functions in the subspacesVK andVΓ. To build this approximating subspace, we in-
troduce two different sets of eigenvalue problems. First, we definefixed-interfaceeigenvalue
problems: find(z∗,K , λ∗,K) ∈ VK × R such that

a(z∗,K , v) = λ∗,K (z∗,K , v) ∀v ∈ VK .

Next, for any open edgee ⊂ Γ, the edge-basedcoupling eigenvalue problem is: find

(τ∗,e, λ∗,e) ∈ H
1

2

00(e)× R such that

a (EΩ (τ̃∗,e) , EΩ (η̃)) = λ∗,e

∫

e

τ∗,eηde ∀η ∈ H
1

2

00(e),
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FIG. 2.1.Example of an edge-bubble eigenfunction along an interior edgee.

FIG. 2.2.Trace ofϕP alongΓ for a domain partitioned into 16 elements.

whereη̃ denotes the trivial extension ofη by 0 onΓ. The eigenvalues{λi,K}∞i=1 and{λi,e}∞i=1

are assumed to be ordered into nondecreasing sequences. Theeigenmodesz∗,K andτ∗,e form
orthonormal bases for theL2-inner product on the elementK and the edgee, respectively.
Figure2.1 illustrates an example for an eigenfunctionτe.

To complete the approximating subspace, eachvertex-specificfunctionϕP is defined as
the harmonic extension satisfying

−∇ · (A(x)∇ϕP (x)) = 0 in K,

ϕP = 0 on∂Ω,

ϕP 6= 0 onΓ,

ϕP (P
′) = δP,P ′ ,

for any elementK, whereδP,P ′ is the Kronecker delta function. HereϕP is chosen to
be linear on each edgee1. On Γ, the trace forϕP has local support along the boundaries
of elements sharing the vertexP . The resulting functionϕP will also have as support the
elements sharing the pointP . Figure2.2 illustrates an example of the trace ofϕP .

1Efendiev and Hou [15] discuss other choices forϕP .
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The conforming discretization spaceVACMS, proposed in [20], is consistent with the or-
thogonal decomposition (2.4) and is defined as follows:

VACMS =

(
⊕

K∈Th

span {zi,K ; 1 ≤ i < IK}
)

⊕
[(
⊕

P∈Ω

span {ϕP }
)

⊕
(
⊕

e⊂Γ

span {EΩ (τ̃i,e) ; 1 ≤ i < Ie}
)]

,

whereIK andIe are positive integers2. The letter A in ACMS stands for approximate. Note
that the verticesP and the edgese are taken in the interior ofΩ. The basis functions have
local support and the homogeneous Dirichlet boundary condition is built intoVACMS.

In summary, the conforming finite-dimensional subspaceVACMS ⊂ H1
0 (Ω) exploits the

orthogonal decomposition (2.4) for incorporating information from the variational forma(·, ·).
The subspaceVACMS contains information within elements via thebubbleeigenfunctions. The
functionsϕP andEΩ (τ̃i,e) carry information among several and two elements, respectively.

3. Error estimates. The goal of this section is to derive error estimates for the differ-
ence of the exact solutionu of (2.2) and the approximate solutionuACMS ∈ VACMS defined by

(3.1) a (uACMS, v) = (f, v) ∀v ∈ VACMS.

The orthogonal decomposition (2.4) implies that

(3.2) a (u− uACMS, u− uACMS) = a (uB − uACMS,B , uB − uACMS,B)

+ a (uΓ − uACMS,Γ, uΓ − uACMS,Γ) ,

where the solutionu satisfies

u = uB + uΓ, uB ∈
(
⊕

K∈Th

VK

)
and uΓ ∈ VΓ,

and the approximationuACMS ∈ VACMS is written as

uACMS = uACMS,B + uACMS,Γ, uACMS,B ∈
(
⊕

K∈Th

VK

)
and uACMS,Γ ∈ VΓ.

The two error terms in (3.2) are treated separately.
LEMMA 3.1. The componentsuB anduACMS,B satisfy

(3.3) a (uB − uACMS,B , uB − uACMS,B) ≤
∑

K∈Th

‖f‖2L2(K)

λIK ,K

≤ Ch2
∑

K∈Th

‖f‖2L2(K)

αmin,KIK
,

whereC is a constant andαmin,K verifies

(3.4) 0 < αmin,KξT ξ ≤ ξTA (x) ξ ∀x ∈ K andξ ∈ R2\ {0} .

2WhenIK is 1, the subspacespan
{

zi,K ; 1 ≤ i < IK
}

is equal to{0} (the same convention holds forIe).
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Proof. By Galerkin orthogonality, the error satisfies

a (uB − uACMS,B , uB − uACMS,B) ≤ a (uB − w, uB − w)

∀w ∈
(
⊕

K∈Th

span {zi,K ; 1 ≤ i < IK}
)
.

For every elementK, define the projection operatorPIK as follows

(3.5) ∀v ∈ L2 (K) : PIK (v) =

IK−1∑

i=1

(∫

K

zi,Kv

)
zi,K .

Replacingw by PIK (uB), the projection error foruB verifies

a (uB − PIK (uB) , uB − PIK (uB))

=
∑

K∈Th

∫

K

(∇uB −∇PIK (uB))
T
A (∇uB −∇PIK (uB)) .

On elementK, properties of the family of eigenfunctions(zi,K)
+∞
i=1 indicate that

∫

K

(∇uB −∇PIK (uB))
T
A (∇uB −∇PIK (uB)) =

+∞∑

i=IK

λi,K

(∫

K

uBzi,K

)2

.

For every eigenvectorzi,K , we have
∫

K

uBzi,K =
1

λi,K

∫

K

(∇uB)T A∇zi,K =
1

λi,K

∫

K

(−∇ · (A∇uB)) zi,K

=
1

λi,K

∫

K

fzi,K .

Hence, we get
∫

K

(∇uB −∇PIK (uB))
T
A (∇uB −∇PIK (uB))

=

+∞∑

i=IK

1

λi,K

(∫

K

fzi,K

)2

≤
‖f − PIK (f)‖2L2(K)

λIK ,K

≤
‖f‖2L2(K)

λIK ,K

.

Thus, the projection erroruB − PIK (uB) satisfies

a (uB − PIK (uB) , uB − PIK (uB)) =
∑

K∈Th

‖f‖2L2(K)

λIK ,K

.

By (3.4), the eigenvalueλi,K is larger thanαmin,K times thei-th eigenvalue of the Lapla-
cian onK. By combining the bound of Bourquin on eigenvalues for the Laplacian [9, p. 74]
and the shape regularity of the family(Th)h, there exists a constantC independent ofK andi
such that

(3.6) λi,K ≥ Cαmin,K
i

h2
.

This estimate concludes the proof.
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This result uses only the regularity assumption that−∇· (A∇u) = f belongs toL2 (Ω).
Whenf is more regular, a sharper bound for the projection error exists. The lower bound (3.6)
is valid for all eigenvalues, while Weyl’s formula for eigenvalues is asymptotic; see Bour-
quin [10, Equation (95)].

Next, the error inVΓ is estimated.
LEMMA 3.2. The componentsuΓ anduACMS,Γ satisfy

(3.7) a (uΓ − uACMS,Γ, uΓ − uACMS,Γ) ≤ Cs0,σ,Ah
2s0−3

∑

K∈Th

‖u‖2Hs0 (K)

mine⊂∂K∩Γ λIe,e
,

when the solutionu belongs toHs0 (Ω) ∩H1
0 (Ω).

Proof. By Galerkin orthogonality, the error satisfies

a (uΓ − uACMS,Γ, uΓ − uACMS,Γ) ≤ a (uΓ − w, uΓ − w) ∀w ∈ VΓ.

Recall that the functionuΓ is equal toEΩ(u|Γ). Using the same characterization forw yields

a (uΓ − w, uΓ − w) =
∑

K∈Th

∫

K

(∇EΩ(u|Γ − w|Γ))T A∇EΩ(u|Γ − w|Γ).

When the restrictionu|e − w|e belongs toH
1

2

00(e) for every edgee ⊂ Γ, we have onK

EΩ (u|Γ − w|Γ) = EΩ (u|∂K − w|∂K) =
∑

e⊂∂K

EΩ

(
˜u|e − w|e

)
,

where ˜u|e − w|e is the trivial extension of(u− w)|e by 0 onΓ. This relation yields

a (uΓ − w, uΓ − w)

=
∑

K∈Th

∫

K

(
∑

e⊂∂K

∇EΩ

(
˜u|e − w|e

))T

A

(
∑

e⊂∂K

∇EΩ

(
˜u|e − w|e

))

and

a (uΓ − w, uΓ − w)

≤ C
∑

K∈Th

∑

e⊂∂K

∫

K

(
∇EΩ

(
˜u|e − w|e

))T
A

(
∇EΩ

(
˜u|e − w|e

))
,

(3.8)

where the Cauchy-Schwarz inequality has been used. The support of ˜u|e − w|e is included
in e. Its energy-minimizing extension has a local support inKe,1∪Ke,2, whereKe,1 andKe,2

are the two elements whose boundaries share the edgee. Rearranging the terms in (3.8) gives

a (uΓ − w, uΓ − w)

≤ C
∑

e⊂Γ

∫

Ke,1∪Ke,1

(
∇EΩ

(
˜u|e − w|e

))T
A

(
∇EΩ

(
˜u|e − w|e

))
.

(3.9)

To construct such a functionw, we proceed as follows. LetIh be the piecewise linear
interpolation operator onΓ and define the projection operatorΠIe , for each interior edgee,
as follows

∀η ∈ L2 (e) : ΠIe (η) =

Ie−1∑

i=1

(∫

e

τi,eη

)
τi,e.
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We replace the functionw by

w = EΩ

(
Ih (uΓ) +

∑

e⊂Γ

Π̃Ie (uΓ − Ih (uΓ))
)

∈ VΓ ∩ VACMS,

whereΠ̃Ie(η) is the extension by 0 ofΠIe(η) onΓ. For this choice ofw, we have

u|e − w|e ∈ H
1

2

00(e)

for every edgee ⊂ Γ.
Assumption1 indicates thatEΩ(u|Γ) belongs toHs0(Ω). Hence, the restriction

u|e − Ih(u)|e is contained inH
1

2

00(e) ∩ H1(e) for every edgee ⊂ Γ. The relations (3.9)
and (A.2) yield

(3.10) a (uΓ − w, uΓ − w) ≤ Cs0,σ,A

∑

e⊂Γ

‖u− Ih (u)‖2H1(e)

λIe,e
.

Properties of the interpolation operatorIh give

‖u− Ih (u)‖2H1(e) ≤ Ch2(s0−
3

2
) |u|2

H
s0−

1

2 (e)
≤ Ch2(s0−

3

2
) ‖u‖2

H
s0−

1

2 (e)
;

see Steinbach [30]. Relation (3.10) becomes

a (uΓ − w, uΓ − w) ≤ Cs0,σ,Ah
2(s0− 3

2
)
∑

K∈Th

∑
e⊂∂K ‖u‖2

H
s0−

1

2 (e)

mine⊂∂K∩Γ λIe,e
.

A theorem of Arnold et al. [2, Theorem 6.1] indicates that we have
∑

e⊂∂K

‖u‖2
H

s0−
1

2 (e)
≤ C ‖u‖2Hs0 (K)

becauseu is continuous onΩ and satisfies the conditions for traces on a polygon. Finallywe
get

a (uΓ − w, uΓ − w) ≤ Cs0,σ,Ah
2s0−3

∑

K∈Th

‖u‖2Hs0 (K)

mine⊂∂K∩Γ λIe,e
.

To the best of the authors’ knowledge, a lower bound on all theedge-bubbleeigenval-
uesλ∗,e is not available. Based on the discussion in Bourquin [9, p. 89] and on egde-related
eigenvalues for particular geometries (see, for example, [10, p. 412]), one could expect that

(3.11) λl,e ≥ Cαmin
l

h
,

where the constantC does not depend one or l. The error (3.7) would become

(3.12) a (uΓ − uACMS,Γ, uΓ − uACMS,Γ) ≤ Cs0,σ,A

h2s0−2

αmin

∑

K∈Th

‖u‖2Hs0 (K)

mine⊂∂K∩Γ Ie
,

providing a rate ofh2 whenu belongs toH2 (Ω).
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REMARK 3.3. The result in Lemma3.2does not exhibit an optimal behavior with respect
to the edge-basedcouplingeigenvalues whens0 > 3

2 . Indeed, bounds on the eigendecompo-
sition do not take into account the smoothness ofu|Γ beyondH1 (Γ). Such analysis for the
Steklov-Poincaŕe operator seems difficult to establish.

Combining (3.2) and the previous two lemmas yields the error estimate foru.
PROPOSITION3.4. Assume that the solutionu of (2.2) belongs toH1

0 (Ω) ∩ Hs0 (Ω),
with s0 > 3

2 . Then the error between the solutionu and the approximate solution
uACMS ∈ VACMS satisfies

a (u− uACMS, u− uACMS) ≤
∑

K∈Th

‖f‖2L2(K)

λIK ,K

+ Cs0,σ,Ah
2s0−3

∑

K∈Th

‖u‖2Hs0 (K)

mine⊂∂K∩Γ λIe,e
,

where the constantCs0,σ,A does not depend onu andh.

Note that the approximationuACMS converges tou even without anybubbleeigenfunction
(i.e.,IK = 1). For every elementK, the first eigenvalueλ1,K verifiesλ1,K ≥ C αmin

h2 , which
yields

a (u− uACMS, u− uACMS) ≤ C
h2

αmin
‖f‖2L2(Ω)

+ Cs0,σ,Ah
2s0−3

∑

K∈Th

‖u‖2Hs0 (K)

mine⊂∂K∩Γ λIe,e
.

WhenIK = Ie = 1, the approximationuACMS still converges tou thanks to thevertex-specific
functions. This particular case was proved in [12, 22].

REMARK 3.5. The error estimates in Proposition3.4are closely related to the pioneering
work of Bourquin [8, 9, 10] on component mode synthesis. The main difference lies in the
way the information is transferred among elements. Bourquin uses eigenmodes onΓ for
the Steklov-Poincaré operator. Here thevertex-specificfunctionsϕP and theedge-bubble
eigenfunctions carry information among elements and have local support.

The choice of basis functions inVACMS determine the efficiency of the discretization
method. The number of eigenfunctions cannot be known in advance and should be estimated
adaptively during the computations. The following proposition introduces an a posteriori
error indicator that could guide how to select the number ofbubbleeigenfunctions andedge-
bubbleeigenfunctions.

PROPOSITION3.6. The error betweenu anduACMS satisfies

√
a (u− uACMS, u− uACMS) ≤ Cε,σ,A

{
∑

K∈Th

‖f − PIK (f)‖2L2(K)

λIK ,K

+ h2ε
∑

K∈Th

‖f − PIK (f)‖2L2(K)

(
∑

e⊂∂K∩Γ

1

λ2−2ε
Ie,e

)

+h2ε
∑

e⊂Γ

∥∥Je
(
νT
e A∇uACMS

)∥∥2
L2(e)

λ1−2ε
Ie,e





1

2

,

(3.13)
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whereε > 0 andJe(ψ) denotes the jump of a given functionψ across the edgee in the direc-
tion of the unit normal vectorνe. The constantCε,σ,A depends onε, σ, and the coefficient
matrixA.

The proof is given in AppendixB. Bound (3.13) indicates that the right hand side defines
an a posteriori error indicator. This error indicator is reliable, i.e., the error is bounded from
above by multiples of the indicator. Proving the effectivity of the error indicator remains an
open question.

REMARK 3.7. In practice, the basis functions are computed numerically by introducing
a nested finer grid. The selection of this nested finer grid impacts both the accuracy and the
complexity of the algorithm. Finding error estimates and a posteriori error indicators for such
a two-grid scheme remains an open problem that is beyond the scope of this paper; see [11]
and [19] for a recent study applied to the multiscale finite element method. A complexity
comparison between a two-grid scheme and the standard application of the finite element
method would require a specific study with careful numericalexperiments. However, to
estimate the merit of the two-grid scheme over the standard application of the finite element
method, flop count expressions are briefly discussed in the same style as the comparison of
Hou and Wu [21, Section 4.2].

If h
M

denotes the fine mesh size, then the fine grid yieldsO
(
M2h−2

)
degrees of free-

dom. The computational complexity associated with the standard application of the finite
element method over the fine grid is dominated by the operation count for solving the linear
system,

O
(
(M2h−2)α

)
= O(M2αh−2α),

whereα ∈ [1, 3] depends on the specific linear solver used3. The complexity for the two-grid
scheme based on component mode synthesis is

O(h−2α) + max
[
O(M2αh−2),O(M6h−2),O(M2α+1h−2)

]
,

whereO(h−2α) is the cost of solving the algebraic equation (3.1). The other term esti-
mates the cost for computing the basis functionsϕP , z∗,K , andEΩ(τ̃∗,e), respectively. The
complexity for computing all thevertex-specificfunctionsϕP is O(M2αh−2). Thebubble
eigenfunctionsz∗,K require, at most,O(M6h−2) operations. Note that this cost is an over-
estimate because it does not exploit the fact that onlyIK ≪ M2 eigenmodes of a sparse
pencil are needed.O(M2α+1h−2) estimates the complexity for computing theedge-bubble
eigenfunctionsEΩ(τ̃∗,e).

Whenα = 1, the two-grid scheme is not attractive from an operation count point of
view. However, solvers withα = 1 are not common or available for a general coefficient
matrix A. As soon asα > 1, a two-grid scheme has some merit, especially whenM is
smaller thanh−

1

3 .

4. Numerical experiments. In this section, numerical experiments illustrate the sharp-
ness of the previous bounds at academic examples. When the exact solution is not known
explicitly, the energy,

E(v) = 1

2

∫

Ω

(∇v(x))T A (x)∇v(x) dx−
∫

Ω

f (x) v(x) dx,

represents an intrinsic metric for comparing the quality ofapproximations to the exact solu-
tion. Computing the difference between the energy of the computed solution and the energy

3For a finite element discretization in two dimensions, a sparsesolver is usually characterized byα = 3

2
; see,

for example, Heath [18, Table 11.4].
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FIG. 4.1.Convergence curve for solution(4.1) with α = 1.51 andh = 1 (squared domain).

of the exact solution,E∗ = E(u), is equivalent to computing the norm of the error for the
energy inner product,

E (v)− E∗ =
a (u− v, u− v)

2
.

The minimum energyE∗ is obtained by extrapolating energies for finite element solutions on
fine meshes.

4.1. Convergence towards a smooth solution.In this section, consider the problem

−∆u = f in Ω = [0, 1]× [0, 1] , u = 0 on ∂Ω,

where the domain[0, 1]× [0, 1] is partitioned by square elements.
First, the functionf is chosen so that the exact solution is

(4.1) u (x, y) =
((
x− x2

) (
y − y2

))α
,

whereα > 3
2 . Figure4.1 illustrates the convergence whenonly oneelement is used and the

number ofbubbleeigenfunctions is increased. Whenα = 1.51 ≈ 3
2 +ε, the right hand sidef

belongs toL2 (Ω). The convergence curve exhibits a decrease proportional to1√
λI

, which is
predicted by the bound (3.3).

Whenf = 1, the right hand side now belongs toH
1

2 (Ω). In Figure4.2, the convergence,
whenonly oneelement is used and the number ofbubbleeigenfunctions is increased, exhibits
a higher convergence rate, which is described by the projection error off ,

‖f − PIf‖L2(Ω)√
λI

≤
‖f‖L2(Ω)√

λI
.

Keepingf = 1 and using only onebubbleeigenfunction and oneedge-bubbleeigen-
function, Figure4.3 illustrates the convergence when the number of elements is increased.
As expected, the convergence curve exhibits a decrease proportional to the mesh sizeh.

The next study keepsf = 1 and usesh = 1
2 and4096 bubbleeigenfunctions for every

element. Figure4.4 illustrates the convergence when the number ofedge-bubbleeigenfunc-
tions is increased. The convergence curve exhibits a plateau because the number of bubble
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FIG. 4.2.Convergence curve whenf = 1 andh = 1 (squared domain).
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2
, and 4096 bubble eigenfunctions are used (squared domain).
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FIG. 4.5.Convergence curve for a fixed number of bubble and edge-bubble eigenfunctions (L-shaped domain,
f = 1).

eigenfunctions is fixed. Before reaching this asymptote, the curve decreases likeI
− 3

2

e . This
rate is higher than the prediction in (3.12). Bourquin [9, p. 45] indicates that, for smooth

functions, a superconvergence phenomenon is expected withthe precise rateI
− 3

2

e .

4.2. Problem on a L-shaped domain.In this section, consider the problem

−∆u = 1 in Ω = ([0, 1]× [0, 1]) \
([

1

2
, 1

]
×
[
1

2
, 1

])
, u = 0 on ∂Ω,

where the domainΩ is partitioned by square elements. The exact solution belongs to
H

5

3 (Ω) ∩H1
0 (Ω). For this problem, the approximate value forE∗ is

E∗ = −6.689868958058575× 10−3.

Proposition3.4, bound (3.6), and conjecture (3.11) indicate that the error is bounded as fol-
lows

(4.2) a (u− uACMS, u− uACMS) ≤ C
h2

maxK IK
‖f‖2L2(Ω) + C

h
4

3

maxe Ie
‖u‖2

H
5

3 (Ω)
.

The following experiments illustrate the sharpness of thisresult.
Using only onebubbleeigenfunction and oneedge-bubbleeigenfunction, Figure4.5

illustrates the convergence when the number of elements is increased. As expected, the con-
vergence curve exhibits a decrease proportional toh

2

3 . The a posteriori error indicator (3.13)
(with ε = 0) decreases also proportionally toh

2

3 . The ratio between the error indicator and
the semi-norm varies between 4 and 10.

Next, only onebubbleeigenfunction is used while the mesh sizeh is decreased. The
number ofedge-bubbleeigenfunctions is set to the integer part of1

h
. Figure4.6illustrates the

convergence when the number of elements is increased. Sincemaxe Ie = O( 1
h
), bound (4.2)

suggests a convergence rate ofh, which is matched by the numerical experiment. The plot
confirms that the impact ofbubbleeigenfunctions depends only on the regularity of the right
hand sidef .
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FIG. 4.6.Convergence curve whenf = 1 for a fixed number of bubble eigenfunctions (L-shaped domain).
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FIG. 4.7. Convergence curve for a varying number of edge-bubble eigenfunctions (L-shaped domain,f = 1,
h = 1

4
, IK = 256).

Finally, in the next experiment, the number ofedge-bubbleeigenfunctions is varied while
the mesh sizeh is set to1

4 and the number ofbubbleeigenfunctions to 256. Figure4.7 il-
lustrates the convergence when the number ofedge-bubbleeigenfunctions is uniformly in-
creased. The semi-norm of the error and the a posteriori error indicator decrease proportion-

ally to I
− 2

3

e before reaching a plateau set by the constant number ofbubbleeigenfunctions.

Bound (4.2) suggests only a decrease proportional toI
− 1

2

e . This discrepancy is due to relation
(A.2) which does not exploit smoothness beyondH1 (Γ).

4.3. Problem with varying coefficient. Finally, consider the problem

−∇ (c (x)∇u (x)) = −1 in Ω = [0, 1]× [0, 1] ,

u = 0 on∂Ω,
(4.3)
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TABLE 4.1
Error evolution for problem(4.3) as the mesh sizeh is reduced.

Mesh size E (v)− E∗ ηint ηedge

h = 1
4 6.81× 10−2 1.80× 10−1 1.8× 10−3

h = 1
8 2.04× 10−2 4.24× 10−2 3.6× 10−4

h = 1
16 6.94× 10−3 1.31× 10−2 6.34× 10−5

h = 1
32 1.35× 10−3 3.58× 10−3 6.98× 10−6

where the coefficientc is

c (x, y) =
2 + 1.8 sin

(
2πx
ε

)

2 + 1.8 cos
(
2πy
ε

) +
2 + sin

(
2πy
ε

)

2 + 1.8 sin
(
2πx
ε

)

with ε = 1
8 . The domainΩ is partitioned by square elements. This problem was initially

studied in [21]. The exact solution belongs toH2 (Ω) ∩ H1
0 (Ω). For this problem, the

approximate value forE∗ is

E∗ = −4.826726636113407× 10−3.

The objective of this subsection is to assess the quality of the error indicator in Proposi-
tion 3.6. Denote

ηint =
∑

K∈Th

‖f − PIK (f)‖2L2(K)

λIK ,K

and

ηedge =
∑

K∈Th

‖f − PIK (f)‖2L2(K)

(
∑

e⊂∂K∩Γ

1

λ2Ie,e

)
+
∑

e⊂Γ

∥∥Je
(
νT
e A∇uACMS

)∥∥2
L2(e)

λIe,e
.

Table4.1 describes the reduction of errors and error indicators as the mesh size is refined.
Oneedge-bubbleeigenfunction for each edge and nobubbleeigenfunctions are used. The
energy differences and the indicatorηint exhibit a reduction proportional toh2. As can be
seen in Figure4.4, a superconvergence phenomenon for the edge part of errors is possible;
see Bourquin [9, p. 45]. Here, the edge indicatorηedge is decreasing slightly faster thanh3

for this range of mesh sizes.
Table4.2 illustrates the same information when the number ofedge-bubbleeigenfunc-

tions is uniformly increased. The mesh size is set toh = 1
8 and nobubbleeigenfunction is

used. For this setup, the energy differences reach a plateauwhile the edge indicatorηedge is
decreasing slightly faster than(maxe Ie)

−1, the prediction in (3.12).

5. Conclusion. This paper derives a priori error estimates for a special finite element
discretization based on component mode synthesis. The a priori error bounds state the explicit
dependency of constants with respect to the mesh size and thefirst neglected eigenvalues. A
residual-based a posteriori error indicator is also presented. Numerical experiments illustrate
that the error indicator is reliable.

Such indicator could guide the adaptive selection for the number ofbubbleandedge-
bubbleeigenfunctions. In practice, the basis functions and eigenfunctions used in this special
finite element method are computed numerically by introducing a nested finer grid. To en-
hance the practicality of these special finite elements, future works will study error estimates
and a posteriori error indicators for the resulting two-grid scheme.
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TABLE 4.2
Error evolution for problem(4.3) as the number of edge-bubble eigenfunctions is increased and h = 1

8
.

Edge-bubble eigenfunctions E (v)− E∗ ηint ηedge

1 2.04× 10−2 4.24× 10−2 3.65× 10−4

2 1.81× 10−2 4.24× 10−2 1.69× 10−4

4 1.62× 10−2 4.24× 10−2 5.25× 10−5

8 1.59× 10−2 4.24× 10−2 1.63× 10−5

FIG. A.1. Example of domainD.
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Appendix A. Review of properties of the Steklov-Poincaŕe operator.
In this section, properties of the Steklov-Poincaré operator are compiled. Further details

and references are included in Bourquin [10] and Khoromskij and Wittum [25].
Consider a bounded polygonal domainD ⊂ R2 partitioned into two regions,

D = D1 ∪ D2. The subdomainsD1 andD2 are bounded convex polygons with straight
edges. The interfaceS = D1 ∩D2 is illustrated in FigureA.1.

For anyτ ∈ H
1

2

00 (S), the energy-minimizing extensionE1 (τ) ∈ H1 (D1) is defined as
the unique solution to the problem

−∇ · (A∇E1 (τ)) = 0 in D1, E1 (τ) = τ onS, E1 (τ) = 0 on∂D1 ∩ ∂D.

The energy-minimizingE2 (τ) ∈ H1 (D2) is defined similarly inD2. The matrixA is
uniformly symmetric positive definite onD as described by (2.1).

Introduce the symmetric bilinear form

b (τ, η) =

∫

D1

∇E1 (τ)
T
A∇E1 (η) +

∫

D2

∇E2 (τ)
T
A∇E2 (η) ,

for any functionτ andη in H
1

2

00 (S). The continuity and coerciveness ofb are consequences
of the continuity of the energy-minimizing extension, of the trace operator onS, and of
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properties ofA. Given that the injection ofH
1

2

00 (S) into L2 (S) is compact (see Bour-
quin [10, p. 390–391]), there exists a self-adjoint unbounded linear operatorB on L2 (S)
with compact inverse such that

b (τ, η) =

∫

S

(Bτ) η, ∀η ∈ L2 (S)

and for any arbitraryτ in the domain of the operatorB,

D (B) =
{
τ ∈ H

1

2

00 (S) ; Bτ = νT
1 A∇E1 (τ) + νT

2 A∇E2 (τ) ∈ L2 (S)
}
,

whereν1, respectivelyν2, is the unit outer normal vector to∂D1, respectively∂D2. Note
that the operatorB can be decomposed as follows

Bτ = B1τ +B2τ with B1τ = νT
1 A∇E1 (τ) and B2τ = νT

2 A∇E2 (τ)

for any elementτ in D(B).

Whenη belongs toH
1

2

00 (S) ∩H1 (S), the compatibility conditions for traces on a poly-
gon [2, Theorem 6.1] indicate thatη satisfies

η̃|∂D1
∈ H1 (∂D1) and η̃|∂D2

∈ H1 (∂D2) .

Then we have

‖Bη‖L2(S) ≤ ‖B1η̃‖L2(∂D1)
+ ‖B2η̃‖L2(∂D2)

≤ CA ‖η̃‖H1(∂D1)
+ CA ‖η̃‖H1(∂D2)

≤ CA ‖η‖H1(S) ,
(A.1)

whereCA denotes a generic constant that may depend on the coefficientmatrix A. The
constantCA does not depend on the length ofS or on the diameter ofD; see Něcas [27,
Theorem 1] for the bound between‖Bkη̃‖L2(∂Dk)

and‖η̃‖H1(∂Dk)
, wherek = 1, 2.

Spectral decomposition.Spectral theory yields a family(φn)
+∞
n=1 forming an orthogo-

nal basis ofH
1

2

00 (S) andL2 (S) and a sequence of real numbers(θn)
+∞
n=1 such that

b (φn, η) = θn

∫

S

φnη, ∀η ∈ H
1

2

00 (S) ,

and
∫

S

φ2n = 1 and 0 < θ1 ≤ θ2 ≤ · · · .

The eigenfunctions also satisfyBφn = θnφn; see Bourquin [10, p. 392].
Forη ∈ L2 (S), define the projection

ΠL(η) =

L−1∑

n=1

(∫

S

ηφn

)
φn.

WhenBη belongs toL2(S), we write
∫

S

ηφn =
1

θn

∫

S

η (Bφn) =
1

θn

∫

S

(Bη)φn.
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Forη ∈ H
1

2

00 (S) with Bη ∈ L2(S), it holds that

b (η −ΠL (η) , η −ΠL (η)) =

+∞∑

n=L

θn

(∫

S

ηφn

)2

=

+∞∑

n=L

1

θn

(∫

S

(Bη)φn

)2

≤ 1

θL
‖Bη −ΠL (Bη)‖2L2(S) ≤

1

θL
‖Bη‖2L2(S) .

In particular, whenη ∈ H
1

2

00 (S) ∩H1(S), relation (A.1) implies thatBη belongs toL2(S).
In this case, the projection error satisfies

(A.2) b (η −ΠL (η) , η −ΠL (η)) ≤ CA

θL
‖η‖2H1(S) .

Bounds in dual spaces will also be needed. Forη ∈ H
1

2

00 (S), we write

‖η −ΠL (η)‖2L2(S) =

+∞∑

n=L

(∫

S

ηφn

)2

=

+∞∑

n=L

1

θ2sn
θ2sn

(∫

S

ηφn

)2

≤ 1

θ2sL

+∞∑

n=L

θ2sn

(∫

S

ηφn

)2

for 0 ≤ s < 1
2 . Using the equivalence between the norms
√√√√

+∞∑

n=1

(1 + θ2sn )

(∫

S

ηφn

)2

and ‖η‖Hs(S) for 0 ≤ s <
1

2

(see, for example, Khoromskij and Wittum [25, Section 1.7]), we obtain

(A.3) ‖η −ΠL (η)‖2L2(S) ≤
Cs,A

θsL
‖η‖2Hs(S)

for 0 < s < 1
2 , whereCs,A does not depend on the length ofS.

After continuously extending the projectionΠL to H− 1

2 (S) =
(
H

1

2

00 (S)
)′

, similar

estimates hold inH− 1

2 (S),

(A.4) ‖η −ΠL (η)‖2
H

−
1

2 (S)
≤ 1

θL
‖η −ΠL (η)‖2L2(S) ≤

Cs,A

θ1+2s
L

‖η‖2Hs(S)

for 0 ≤ s < 1
2 , whereCs,A does not depend on the length ofS.

Appendix B. Proof of Proposition 3.6.
Proof. Recall that the exact solutionu satisfies

a(u, v) =

∫

Ω

fv, ∀v ∈ H1
0 (Ω)

and thatPIK is the projection operator defined by (3.5). The functionf can be decomposed
as follows

f =
∑

K∈Th

PIK (f) +
∑

K∈Th

[f − PIK (f)]
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such that
∫

Ω

fv =
∑

K∈Th

∫

K

PIK (f) v +
∑

K∈Th

∫

K

[f − PIK (f)] v

=
∑

K∈Th

∫

K

PIK (f) vB,K +
∑

K∈Th

∫

K

PIK (f) vΓ

+
∑

K∈Th

∫

K

[f − PIK (f)] vB,K +
∑

K∈Th

∫

K

[f − PIK (f)] vΓ ,

where the decomposition

v =
∑

K∈Th

vB,K + vΓ

has been used. The orthogonality of eigenfunctionsz∗,K yields
∫

Ω

fv =
∑

K∈Th

∫

K

PIK (f)PIK (vB,K) +
∑

K∈Th

∫

K

PIK (f) vΓ

+
∑

K∈Th

∫

K

[f − PIK (f)] [vB,K − PIK (vB,K)] +
∑

K∈Th

∫

K

[f − PIK (f)] vΓ .

At the same time, the approximate solutionuACMS ∈ VACMS satisfies

a (uACMS, v) =
∑

K∈Th

∫

K

(∇uACMS,B)
T
A∇PIK (vB,K) +

∫

Ω

(∇uACMS,Γ)
T
A∇vΓ.

Integration by parts of the second term over every elementK gives

a (uACMS, v) =
∑

K∈Th

∫

K

(∇uACMS,B)
T
A∇PIK (vB,K)

+
∑

K∈Th

∑

e⊂∂K

∫

e

(
νT
e A∇uACMS,Γ

)
vΓ.

Combining all the previous relations, we have

a (u− uACMS, v) =
∑

K∈Th

∫

K

[f − PIK (f)] [vB,K − PIK (vB,K)]

+
∑

K∈Th

∫

K

PIK (f) vΓ +
∑

K∈Th

∫

K

[f − PIK (f)] vΓ

+
∑

K∈Th

∫

K

PIK (f)PIK (vB,K)−
∑

K∈Th

∫

K

(∇uACMS,B)
T
A∇PIK (vB,K)

−
∑

K∈Th

∑

e⊂∂K

∫

e

(
νT
e A∇uACMS,Γ

)
vΓ.

(B.1)

On every elementK, the bubble functionuACMS,B satisfies

−∇ · (A∇uACMS,B) = PIK (f) .
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Hence, we get
∫

K

(∇uACMS,B)
T
A∇PIK (vB,K) =

∫

K

PIK (f)PIK (vB,K)

and
∫

K

PIK (f) vΓ = −
∫

K

∇ · (A∇uACMS,B) vΓ

=

∫

K

(∇uAMCS,B)
T
A∇vΓ −

∑

e⊂∂K

∫

e

(
νT
e A∇uACMS,B

)
vΓ

= −
∑

e⊂∂K

∫

e

(
νT
e A∇uACMS,B

)
vΓ

(B.2)

by orthogonality. Equations (B.1) and (B.2) yield

a (u− uACMS, v) =
∑

K∈Th

∫

K

[f − PIK (f)] [vB,K − PIK (vB,K)]

+
∑

K∈Th

∫

K

[f − PIK (f)] vΓ

−
∑

K∈Th

∑

e⊂∂K

∫

e

(
νT
e A∇uACMS,B + νT

e A∇uACMS,Γ
)
vΓ

and

a (u− uACMS, v) =
∑

K∈Th

∫

K

[f − PIK (f)] [vB,K − PIK (vB,K)]

+
∑

K∈Th

∫

K

[f − PIK (f)] vΓ −
∑

e⊂Γ

∫

e

Je
(
νT
e A∇uACMS

)
vΓ,

whereJe(ψ) denotes the jump of a given functionψ across the edgee in the directionνe.
Next, we write

a (u− uACMS, v − vACMS) =
∑

K∈Th

∫

K

[f − PIK (f)] [vB,K − PIK (vB,K)]

+
∑

K∈Th

∫

K

[f − PIK (f)] (vΓ − vACMS,Γ)

−
∑

e⊂Γ

∫

e

Je
(
νT
e A∇uACMS

)
(vΓ − vACMS,Γ) ,

(B.3)

for all functionsv ∈ H1
0 (Ω) andvACMS ∈ VACMS. Now the right hand side is bounded term

by term to define an a posteriori error indicator.
First, on every elementK, we have

∫

K

[f − PIK (f)] [vB,K − PIK (vB,K)]

≤ ‖f − PIK (f)‖L2(K) ‖vB,K − PIK (vB,K)‖
L2(K)
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and
∫

K

[f − PIK (f)] [vB,K − PIK (vB,K)]

≤ ‖f − PIK (f)‖L2(K)

√∫
K
(∇vB,K)

T
A∇vB,K

λIK ,K

or
∫

K

[f − PIK (f)] [vB,K − PIK (vB,K)]

≤
‖f − PIK (f)‖L2(K)√

λIK ,K

√∫

K

(∇v)T A∇v.
(B.4)

Before bounding the second and third terms of (B.3), vACMS,Γ is set as follows

vACMS,Γ = EΩ

(
Q (vΓ) +

∑

e⊂Γ

ΠIe (vΓ −Q (vΓ))

)
,

where the operatorQ is theL2-projection into the finite-dimensional subspace spanned by
the piecewise linear functions onΓ.

On every elementK, the second term of (B.3) is bounded,
∫

K

[f − PIK (f)] [vΓ − vACMS,Γ] ≤ ‖f − PIK (f)‖L2(K) ‖vΓ − vACMS,Γ‖L2(K) .

Definez as the unique solution inH1
0 (K) of

−∇ · (A∇z) = vΓ − vACMS,Γ in K.

SinceK is convex, the functionz belongs toH2(K). We have

‖vΓ − vACMS,Γ‖2L2(K) =

∫

K

(∇z)TA∇(vΓ − vACMS,Γ)

−
∑

e⊂∂K

∫

e

νT
e A∇z (vΓ − vACMS,Γ)

= −
∑

e⊂∂K

∫

e

νT
e A∇z (vΓ − vACMS,Γ)

becausevΓ − vACMS,Γ is an energy-minimizing extension. Next, we write

(B.5) ‖vΓ − vACMS,Γ‖2L2(K) ≤
∑

e⊂∂K

‖vΓ − vACMS,Γ‖
H

−
1

2 (e)

∥∥νT
A∇z

∥∥
H

1

2 (e)
.

For every edgee ⊂ ∂K, we have
∥∥νT

A∇z
∥∥
H

1

2 (e)
≤ CA ‖z‖H2(K) ≤ CA ‖vΓ − vACMS,Γ‖L2(K) .

Plugging this relation into (B.5), we get

‖vΓ − vACMS,Γ‖L2(K) ≤ CA

∑

e⊂∂K

‖vΓ − vACMS,Γ‖
H

−
1

2 (e)
.
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The bound (A.4) on the projection error now yields

‖vΓ − vACMS,Γ‖L2(K) ≤ Cε,A

∑

e⊂∂K

‖vΓ −Q (vΓ)‖
H

1

2
−ε(e)

λ1−ε
Ie,e

with 0 < ε < 1
2 . Using properties of the projection operatorQ gives

‖vΓ − vACMS,Γ‖L2(K) ≤ Cε,A

∑

e⊂∂K

hε

λ1−ε
Ie,e

|vΓ|
H

1

2 (e)
;

see Steinbach [30, Eqn (12.19) on p. 271]. Using the continuity of the trace operator modifies
the inequality as follows

‖vΓ − vACMS,Γ‖L2(K) ≤ CCε,A ‖vΓ‖H1(K)

(
∑

e⊂∂K

hε

λ1−ε
Ie,e

)
.

The second term of (B.3) is bounded by

∫

K

[f − PIK (f)] [vΓ − vACMS,Γ]

≤ Cε,A ‖f − PIK (f)‖L2(K) ‖v‖H1(K)

(
∑

e⊂∂K

hε

λ1−ε
Ie,e

)
.

(B.6)

For every interior edgee ⊂ Γ, the third term of (B.3) satisfies

∫

e

Je
(
νT
e A∇uACMS

)
(vΓ − vACMS,Γ)

≤
∥∥Je

(
νT
e A∇uACMS

)∥∥
L2(e)

‖vΓ − vACMS,Γ‖L2(e) .

Combining the bound (A.3) with s = 1
2 − ε and properties of the projection operatorQ yield

(B.7) ‖vΓ − vACMS,Γ‖L2(e) ≤ Cε,A

hε

λ
1

2
−ε

Ie,e

|vΓ|
H

1

2 (e)

where0 < ε < 1
2 .

Combining (B.3), (B.4), (B.6), and (B.7) gives

a (u− uACMS, v) ≤
∑

K∈Th

‖f − PIK (f)‖L2(K)√
λIK ,K

√∫

K

(∇v)T A∇v

+ Cε,A

∑

K∈Th

‖f − PIK (f)‖L2(K)

(
∑

e⊂∂K∩Γ

hε

λ1−ε
Ie,e

)
‖v‖H1(K)

+ Cε,A

∑

e⊂Γ

hε

λ
1

2
−ε

Ie,e

∥∥Je
(
νT
e A∇uACMS

)∥∥
L2(e)

|vΓ|
H

1

2 (e)
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for any functionv ∈ H1
0 (Ω) andε > 0. The Cauchy-Schwarz inequality implies

a (u− uACMS, v)√
a (v, v)

≤ Cε,A

{
∑

K∈Th

‖f − PIK (f)‖2L2(K)

λIK ,K

+ h2ε
∑

K∈Th

‖f − PIK (f)‖2L2(K)

(
∑

e⊂∂K∩Γ

1

λ2−2ε
Ie,e

)

+h2ε
∑

e⊂Γ

∥∥Je
(
νT
e A∇uACMS

)∥∥2
L2(e)

λ1−2ε
Ie,e





1

2

,

where we used

∑

K∈Th

‖v‖2H1(K) = ‖v‖2H1(Ω) ≤
C

αmin

∫

Ω

(∇v)T A∇v

and

∑

e⊂Γ

|v|2
H

1

2 (e)
≤
∑

K∈Th

|v|2
H

1

2 (∂K)
≤ C

∑

K∈Th

|v|2H1(K) ≤
C

αmin

∫

Ω

(∇v)T A∇v.

The energy norm of the erroru− uACMS is bounded from above by a multiple of
{
∑

K∈Th

‖f − PIK (f)‖2L2(K)

λIK ,K

+h2ε
∑

K∈Th

‖f − PIK (f)‖2L2(K)

(
∑

e⊂∂K∩Γ

1

λ2−2ε
Ie,e

)

+ h2ε
∑

e⊂Γ

∥∥Je
(
νT
e A∇uACMS

)∥∥2
L2(e)

λ1−2ε
Ie,e

} 1

2

.

REFERENCES

[1] T. A RBOGAST, Mixed multiscale methods for heterogeneous elliptic problems, in Numerical Analysis of
Multiscale Problems, I. G. Graham, T. Y. Hou, O. Lakkis, and R. Scheichl, eds., vol. 83 of Lect. Notes
Comput. Sci. Eng., Springer, Heidelberg, 2012, pp. 243–283.

[2] D. A RNOLD, L. SCOTT, AND M. VOGELIUS, Regular inversion of the divergence operator with Dirichlet
boundary conditions on a polygon, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 15 (1988), pp. 169–192.
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