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A NOTE ON PRECONDITIONERS AND SCALAR PRODUCTS IN KRYLOV
SUBSPACE METHODS FOR SELF-ADJOINT PROBLEMS IN HILBERT SPACE ∗

ANDREAS GÜNNEL†, ROLAND HERZOG†, AND EKKEHARD SACHS‡

Abstract. The conjugate gradient and minimal residual methods for the solution of linear systemsAx = b are
considered. The operatorA is bounded and self-adjoint and maps a Hilbert spaceX into its dualX∗. This setting
is natural for variational problems such as those involving linear partial differential equations. The derivation of the
two methods in Hilbert spaces shows that the choice of a preconditioner is equivalent to the choice of the scalar
product inX.
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1. Introduction. In this note we consider Krylov subspace methods for the solution of
linear equations

(1.1) Ax = b in X∗.

The unknownx belongs to a Hilbert spaceX, andX∗ denotes its dual. The linear operatorA
mapsX to X∗, and it is assumed to be bounded, i.e.,A ∈ L(X,X∗), and self-adjoint. The
right-hand sideb belongs toX∗. This is a natural setting for a variational formulation of some
boundary-value problems involving linear second-order elliptic partial differential equations
as illustrated by the examples below.

We shall consider the solution of (1.1) by the conjugate gradient (CG) and minimal
residual (MINRES) methods depending on whether or not positive definiteness (coercivity)
of A is assumed. These methods were originally introduced in [14, 20] for the caseX = Rn.
Generalizations to infinite-dimensional Hilbert spaces have been considered in [1, 5, 7, 8, 11,
13, 18, 19] and the references therein; see also the references in [12].

In most of the above publications, a problemBx = c is considered, whereB is assumed
to mapX into itself. Clearly, this complies with the present setting when we setB := RA,
whereR ∈ L(X∗, X) denotes the Riesz isomorphism. This point of view is taken, at least
implicitly, in [ 1, 11, 16] and in [2, Section 3]. In this presentation, we prefer the setting (1.1),
and we keep the Riesz map explicit. This will make it easier topinpoint the fact that the Riesz
isomorphism precisely takes the role of a preconditioner. (Also in finite dimensions it is often
preferred to keep the preconditioner explicit rather than to merge it with the system matrix.)

As a matter of fact, Krylov subspace methods in Hilbert spaces for (1.1) cannot be for-
mulated without referring to the Riesz isomorphism/preconditioner sinceA2 has no meaning
due to non-matching mapping properties. Since in turn the Riesz map is defined by the scalar
product inX (or X∗), we conclude that selecting a preconditioner for problem (1.1) is the
same as selecting the scalar product inX (orX∗). If X = Rn, an “unpreconditioned” method
is one where implicitly the Euclidean scalar product is used.

In addition to this insight, we obtain an elegant derivationof the preconditioned CG and
M INRES methods, which avoids altogether the temporary use of Cholesky factors. Finally,
our work also explains why it is natural to have positive definite preconditioners when solving
self-adjoint indefinite problems with MINRES.
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The significance of the Riesz map or the scalar product, respectively, is pointed out in
many publications to varying degrees. We mention [10, Chapter 16] and [11], where the CG
method is described in a variational setting and the Riesz isomorphism appears implicitly in
the conversion of the residual to the gradient. In [16], the importance of the Riesz map is
substantiated by the role it plays in the proof of the Lax-Milgram lemma, which applies to
the case of positive definite but possibly non-self-adjointoperatorsA. Also recently in [25],
appropriate scalar products are studied, which can guide the choice of block-diagonal pre-
conditioners for self-adjoint saddle-point problems.

We are thus aware of the fact that our observation of preconditioning and choosing the
inner product inX being one and the same for CG and MINRESwould be considered folklore
by some. Nevertheless, it is our experience that this fact isnot as widely known as one would
expect, and it seems difficult to find references which pinpoint it. This note was written to
serve as a reference.

The following two prototypical examples illustrate that consideringA ∈ L(X,X∗) is
natural for variational problems. The first example is Poisson’s equation−△u = f on
a d-dimensional bounded domainΩ, endowed for simplicity with homogeneous Dirichlet
boundary conditions. Its variational formulation is givenby (1.1) with X = H1

0 (Ω) and

〈Au, v〉 =

∫

Ω

∇u · ∇v dx and 〈b, v〉 =

∫

Ω

fv dx.

As usual,H1
0 (Ω) denotes the space of Sobolev functions which are square integrable up to

their weak first-order derivatives and which have zero boundary values in the sense of traces.
The Poisson problem gives rise to a positive definite operator (whenX is endowed with the
standardH1-norm orH1-seminorm) so that (1.1) is amenable to solution by the CG method.

The Stokes problem in fluid dynamics, by contrast, leads to anindefinite system which
can be solved by MINRES. The associated variational formulation employs the Hilbert
spaceX = H1

0 (Ω)× · · · ×H1
0 (Ω)× L2

0(Ω) and is given by

〈A(u, p), (v, q)〉 =

∫

Ω

∇u : ∇v dx−

∫

Ω

pdiv v dx−

∫

Ω

q div u dx

andb as above; see, for instance, [6, Section 5]. HereL2
0(Ω) is the space of square integrable

functions with zero mean.
This paper is structured as follows. Section2 addresses the CG method in Hilbert spaces

for the self-adjoint and positive definite (coercive) case.Section3 is devoted to the MINRES

method in Hilbert spaces for self-adjoint and possibly indefinite problems.
Throughout,L(X,X∗) andL(X) denote the spaces of bounded linear operatorsX→X∗

or X →X, respectively. Moreover,〈·, ·〉X∗,X or, for short,〈·, ·〉 denotes the duality pairing
of the Hilbert spaceX and its dualX∗. We shall denote byR ∈ L(X∗, X) the Riesz map.
Given b ∈ X∗, its Riesz representation is defined by(Rb, x)X = 〈b, x〉 for all x ∈ X,
where(·, ·)X is the scalar product inX. Clearly, the Riesz mapR depends on the choice of
the scalar product inX.

Let us mention that we do not address here the CG method forindefinitesystems in
so-called non-standard inner products as treated, for instance, in [4, 22, 23, 24].

2. The conjugate gradient method. In this section,A ∈ L(X,X∗) is assumed self-
adjoint, i.e.,〈Ax, y〉 = 〈Ay, x〉, and positive definite (coercive), i.e.,〈Ax, x〉 ≥ δ ‖x‖2X for
someδ > 0 and allx, y ∈ X. This implies thatA induces a norm,‖x‖A = 〈Ax, x〉1/2,
which is equivalent to the norm‖·‖X . The unique solution of (1.1) is denoted byx∗.

The CG method, developed in [14], can be conceived in several ways. We follow here
the derivation based on the one-dimensional minimization of the error in theA-norm for a
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predetermined search direction and the update of these search directions using the direction
of steepest descent while maintainingA-conjugacy of search directions.

Given an iteratexk ∈ X and a search directionpk ∈ X, the CG method seeks to
minimize the value of

φ(x) =
1

2
〈Ax, x〉 − 〈b, x〉 =

1

2
‖x− x∗‖

2
A −

1

2
‖x∗‖

2
A

along the linexk + αpk. This minimum is attained at

αk :=
〈rk, pk〉

〈Apk, pk〉
,

whererk := b − Axk ∈ X∗ denotes the residual. The search directionpk is chosen as a
linear combination of the previous directionpk−1 and the direction of steepest descentdk
for φ atxk.

2.1. The direction of steepest descent.It is now important to realize that thesteepest
descent direction depends upon the scalar productinX. Let us denote byφ′(xk) the (Fréchet)
derivative ofφ at xk, which is, by definition, an element ofX∗. The directional derivative
becomesφ′(xk)d = 〈Axk − b, d〉 for arbitrary directionsd ∈ X. The direction of steepest
descentdk has, by its definition, the property that

(2.1) dk minimizesφ′(xk)d = 〈Axk − b, d〉 = −〈rk, d〉

over all d ∈ X of constant norm. To solve the problem (2.1), we apply the Riesz map to
obtain the representation

φ′(xk)d = −(Rrk, d)X .

The Cauchy-Schwarz inequality now readily showsdk = Rrk to be the direction of steepest
descent forφ at xk. Since the Riesz map depends on the scalar product inX, so does the
direction of steepest descentdk. Note that the direction of steepest descent ofφ is also known
as itsgradient. We point out that even inRn it is useful to distinguish the derivative of a
function (which does not depend on the scalar product) from the gradient (which does).

For instance, letA ∈ Rn×n be symmetric, and consider it as a linear map (x 7→ Ax)
from X = Rn to its dual. The directional derivative ofφ(x) = 1

2x
TAx − bTx in the direc-

tiond ∈ Rn isφ′(x)d = (Ax−b)T d. Then we distinguish the derivativeφ′(x)=Ax− b ∈X ′

from the gradient∇φ(x). The latter depends on the scalar product inX, which is represented
by the symmetric positive definite matrixP . We write (x, y)X or (x, y)P for the scalar
product of two elementsx, y ∈ X. According to (2.1), the directiond ∈ X is the gradient
of φ atx if it minimizes

φ′(x)d = (Ax− b)T d =
(
P−1(Ax− b), d

)
P

over alld ∈ X of constant norm. This shows that∇φ(x) = P−1(Ax− b).

2.2. The conjugate gradient method finalized.Using a linear combination ofdk and
the previous search directionpk−1, i.e.,

(2.2) pk = Rrk + βkpk−1,

the requirement〈Apk, pk−1〉 = 0 of A-conjugacy of search directions leads to the choice

βk := −
〈Apk−1, Rrk〉

〈Apk−1, pk−1〉
.
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The procedure outlined above generates the following iterates and Krylov subspaces of
dimensionk ≥ 1:

pk−1 ∈ Kk(RA;Rr0) = span{Rr0, (RA)Rr0, . . . , (RA)k−1Rr0} ⊂ X,

xk ∈ x0 +Kk(RA;Rr0),

rk ∈ r0 +ARKk(AR; r0) = r0 + span{(AR)r0, . . . , (AR)kr0} ⊂ X∗.

Here, the primal and dual Krylov subspaces are related byKk(RA;Rr0) = RKk(AR; r0).
It follows by standard arguments that the iterates also satisfy

〈rk, pj〉 = 0 for all j = 0, 1, . . . , k − 1,

〈rk, Rrj〉 = 0 for all j = 0, 1, . . . , k − 1,

〈Apk, pj〉 = 0 for all j = 0, 1, . . . , k − 1,

and thatxk minimizesφ over the entire affine spacex0+Kk(RA;Rr0). Using these relations,
one arrives at the final form of the CG method in a Hilbert space; see Algorithm2.1.

ALGORITHM 2.1 (CG Method for (1.1) in a Hilbert Space).

1: Setr0 := b−Ax0 ∈ X∗

2: Setp0 := Rr0 ∈ X
3: Setk := 0
4: while not convergeddo

5: Setαk :=
〈rk, Rrk〉

〈Apk, pk〉
6: Setxk+1 := xk + αkpk
7: Setrk+1 := rk − αkApk

8: Setβk+1 :=
〈rk+1, Rrk+1〉

〈rk, Rrk〉

9: Setpk+1 := Rrk+1 + βk+1pk
10: Setk := k + 1
11: end while

Comparing Algorithm2.1 to the standard forms of the CG method in the literature, it
stands out that the Riesz mapR takes precisely the role of the application of a precondi-
tionerP , i.e., the evaluation ofP−1 times a vector. Recalling that the Riesz map depends
on the scalar product, we conclude that the choice of a preconditioner in the traditional pre-
conditioned CG method is actually equivalent to the choice of the scalar product inX. Even
if X = Rn, the preconditioned and unpreconditioned variants of the CG method are one and
the same; they merely differ in the choice of the scalar product in X. The unpreconditioned
CG method corresponds to the implicit choice of the Euclidean scalar product.

In infinite dimensions, the use of the Riesz map is essential in formulating the CG method
for the solution of (1.1). Without it, the residualrk ∈ X∗ cannot be used in (2.2) to update
the search directionpk ∈ X since these two vectors belong to different spaces.

The convergence properties of Algorithm2.1 in a Hilbert space depend on the spectrum
of the preconditioned operatorRA ∈ L(X), which is self-adjoint, i.e.,

(RAx, y)X = (x,RAy)X .

The spectrum is the complement of{µ ∈ R : (RA − µ I)−1 exists inL(X)} in R. In
the finite-dimensional situation, the spectrum consists ofthe eigenvalues of the generalized
eigenvalue problemAx = λR−1x. Using the condition number, i.e., the quotient of the
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extremal points in the spectrum ofRA, one can reproduce the linear convergence bound of the
finite-dimensional preconditioned CG method; see, e.g., [6, Section 2.2] and [5, Section 1.2].
We emphasize, however, that linear bounds based on the condition number are not, in general,
descriptive for the practical convergence behaviour of theCG method; see [17, Section 5.6]
or [9, 15].

The significance of (the inverse of)R as a preconditioner was recently also pointed out
in [16] and [18]. Good preconditioners (Riesz maps) are those which are induced by scalar
products inX close to theA-scalar product. This statement continues to hold whenX is
replaced by one of its finite-dimensional subspaces as one does, e.g., in conforming finite
element discretizations of (1.1). We thus infer that practical preconditioners/scalar products
for discretized versions of the operator equationAx = b can be derived by studying the
undiscretized problem.

3. The minimal residual method. In this section,A ∈ L(X,X∗) is assumed self-
adjoint but it may be indefinite (non-coercive). Note thatX∗ is naturally endowed with the
scalar product

(3.1) (·, ·)X∗ = 〈·, R ·〉,

in which the Riesz map pulls one of the factors fromX∗ back intoX. We sometimes refer to
the induced norm‖r‖X∗ = 〈r,Rr〉1/2 = ‖r‖R as theR-norm.

The MINRES method, introduced in [20], uses the same Krylov subspaces as the CG
method, but it seeks to minimize theR-norm of the residualrk ∈ b−Axk ∈ X∗, i.e.,

‖rk‖R = 〈rk, Rrk〉
1/2,

over the shifted dual Krylov subspacesr0 +AKk(RA;Rr0) = r0 +ARKk(AR; r0) ⊂ X∗.
To carry out this minimization, MINRESbuilds an orthonormal basis (with respect to the inner
product (3.1)) of Kk(AR; r0) ⊂ X∗, which is denoted byVk ∈ L(Rk, X∗) with “columns”
vi ∈ X∗, i = 1, . . . , k.

Orthonormality, i.e.,〈vi, Rvj〉 = δij , is obtained via the Lanczos recursion

(3.2) ARVk = VkTk + γk+1vk+1~e
T
k = Vk+1T̂k,

with ~ek = (0, . . . , 0, 1)T ∈ Rk and a coefficient matrix of the form

T̂k =




δ1 γ2

γ2 δ2 �

� � γk

γk δk

0 γk+1



∈ R(k+1)×k.

The matrixTk ∈ Rk×k in (3.2) equalsT̂k without the last row.
Using the basisVk, the iteratesxk ∈ x0 + Kk(RA;Rr0) = x0 + RKk(AR; r0) and

residualsrk can be written as

xk = x0 +RVk~yk,

rk = r0 −ARVk~yk
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for some~yk ∈ Rk. The objective of minimizing the residual in theR-norm can thus be
expressed as the minimization over all~y ∈ Rk of

‖rk‖R = ‖b−Ax0 −ARVk~yk‖R

=
∥∥r0 −ARVk~y

∥∥
R

=
∥∥r0 − Vk+1T̂k~y

∥∥
R

by (3.2)

=
∥∥‖r0‖Rv1 − Vk+1T̂k~y

∥∥
R

sincev1 = r0/‖r0‖R

=
∥∥Vk+1

(
‖r0‖R~e1 − T̂k~y

)∥∥
R

where~e1 = (1, 0, . . . , 0)T ∈ Rk+1

=
∥∥‖r0‖R~e1 − T̂k~y

∥∥
Rk+1 by orthonormality.

We conclude that the minimization of the residual in theR-norm leads to a least-squares
problem inRk+1 with respect to the Euclidean norm regardless of the space inwhich the
original problemAx = b is posed. Therefore, from here, the derivation of the Hilbert space
version of MINRES parallels the derivation of the classical finite-dimensional method. We
only mention that the least-squares problem is solved by maintaining a QR factorization
of the matricesT̂k by means of Givens rotations. For convenience, we state the complete
algorithm as Algorithm3.1. It coincides with the (preconditioned) implementation given
in [6, Algorithm 6.1] except that in Algorithm3.1 we scale both quantitiesvk andzk such
that‖vk‖R = 1 andzk = Rvk are maintained throughout.

ALGORITHM 3.1 (MINRESMethod for (1.1) in a Hilbert Space).

1: Setv0 := 0 ∈ X∗ andw0 := w1 := 0 ∈ X
2: Setv1 := b−Ax0 ∈ X∗

3: Setz1 := Rv1
4: Setγ1 := 〈v1, z1〉

1/2

5: Setz1 := z1/γ1 andv1 := v1/γ1
6: Setη0 := γ1, s0 := s1 := 0, c0 := c1 := 1
7: Setk := 1
8: while not convergeddo
9: Setδk := 〈Azk, zk〉

10: Setvk+1 := Azk − δkvk − γkvk−1

11: Setzk+1 := Rvk+1

12: Setγk+1 := 〈vk+1, zk+1〉
1/2

13: Setzk+1 := zk+1/γk+1 andvk+1 := vk+1/γk+1

14: Setα0 := ckδk − ck−1skγk andα1 := (α2
0 + γ2

k+1)
1/2

15: Setα2 := skδk + ck−1ckγk andα3 := sk−1γk
16: Setck+1 := α0/α1 andsk+1 := γk+1/α1

17: Setwk+1 := (1/α1)
[
zk − α3wk−1 − α2wk

]

18: Setxk := xk−1 + ck+1ηk−1wk+1

19: Setηk := −sk+1ηk−1

20: Setk := k + 1
21: end while

We mention that the quantity

|ηk| = ‖rk‖R

gives access to theR-norm of the residual, which is minimized over the sequence of growing
shifted Krylov subspaces.
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As we have observed for the CG method, we conclude that the choice of the precondi-
tioner is equivalent to choosing the Riesz map, i.e., equivalent to choosing the scalar product
in X. This observation also recently guided the study of appropriate scalar products for sym-
metric saddle-point problems in [25]. Finally, the exposition above explains why indefinite
systems, which are to be solved by MINRES, require self-adjoint positive definite precondi-
tioners; compare, e.g., [3, Table 9.1].

REMARK 3.2. For non-symmetric problems in finite dimensions, the replacement of
the symmetric Lanczos by the Arnoldi process leads from MINRES to the generalized min-
imal residual method (GMRES) introduced in [21]. The coefficient matrixT̂k will be upper
Hessenberg; see, for instance, [6, Section 4.1.1] or [17, Section 2.5.5]. Precisely the same
modifications will lead to GMRES for non-self-adjoint problems of type (1.1) in a Hilbert
space setting.

4. Conclusions. In this paper we consider the CG and MINRESmethods for self-adjoint
operator equationsAx = b with A ∈ L(X,X∗), whereX is a Hilbert space. We present a
comprehensive derivation of these methods, which shows that both CG and MINRES in-
evitably depend on the scalar product one chooses inX. We also see that the “precondi-
tioned” and “unpreconditioned” versions of these algorithms, which are often presented as
distinct methods, are actually one and the same. The “unpreconditioned” versions simply
correspond to the implicit choice of the Euclidean scalar product, which, of course, is only
possible ifX ∼= Rn. We emphasize that the choice of a preconditioner for CG and MINRES is
equivalent to the choice of the scalar product inX. This choice, even for discretized versions
of the problem, can be guided by an analysis of the spectrum carried out for theundiscretized
problem, e.g., at the level of the partial differential equation to be solved. This is the central
idea behindoperator preconditioningtechniques developed, for instance, in [2, 15, 18]. Con-
dition numbers bounded independently of the mesh size can beachieved in this way, which
are, however, not in one-to-one correspondence with the fast convergence of Krylov subspace
methods.

In a forthcoming publication we will continue this work and address convergence results
for CG and MINRES including a new superlinear convergence result for MINRES.
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