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A NOTE ON PRECONDITIONERS AND SCALAR PRODUCTS IN KRYLOV
SUBSPACE METHODS FOR SELF-ADJOINT PROBLEMS IN HILBERT SPACE *

ANDREAS GUNNELf, ROLAND HERZOG/, AND EKKEHARD SACHS

Abstract. The conjugate gradient and minimal residual methods for theisalof linear systemslz = b are
considered. The operater is bounded and self-adjoint and maps a Hilbert spdaato its dualX *. This setting
is natural for variational problems such as those involvingdr partial differential equations. The derivation cf th
two methods in Hilbert spaces shows that the choice of a pdittomer is equivalent to the choice of the scalar
product inX.
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1. Introduction. In this note we consider Krylov subspace methods for thetisolwf
linear equations

(1.1) Ar=1b inX*.

The unknownr belongs to a Hilbert spack, andX* denotes its dual. The linear operatbr
mapsX to X*, and it is assumed to be bounded, i4.c £(X, X*), and self-adjoint. The
right-hand sidé belongs taX *. This is a natural setting for a variational formulation ofree
boundary-value problems involving linear second-ordiéptét partial differential equations
as illustrated by the examples below.

We shall consider the solution of.() by the conjugate gradient (CG) and minimal
residual (MNRES) methods depending on whether or not positive definitensssr¢ivity)
of A is assumed. These methods were originally introducet4n0] for the caseX = R".
Generalizations to infinite-dimensional Hilbert spacegehaeen considered in[5, 7, 8, 11,
13, 18, 19] and the references therein; see also the referencégjin

In most of the above publications, a probléi = c is considered, wher8 is assumed
to map.X into itself. Clearly, this complies with the present sajtishen we se3 := RA,
whereR € L£(X*, X) denotes the Riesz isomorphism. This point of view is takéreast
implicitly, in [1, 11, 16] and in [2, Section 3]. In this presentation, we prefer the setting)(
and we keep the Riesz map explicit. This will make it easiginpoint the fact that the Riesz
isomorphism precisely takes the role of a preconditiordsq in finite dimensions it is often
preferred to keep the preconditioner explicit rather tllamerge it with the system matrix.)

As a matter of fact, Krylov subspace methods in Hilbert spdoe (1.1) cannot be for-
mulated without referring to the Riesz isomorphism/pretitoner since4? has no meaning
due to non-matching mapping properties. Since in turn tiesRinap is defined by the scalar
product inX (or X*), we conclude that selecting a preconditioner for problém)(is the
same as selecting the scalar producXifor X*). If X = R™, an “unpreconditioned” method
is one where implicitly the Euclidean scalar product is used

In addition to this insight, we obtain an elegant derivatidithe preconditioned CG and
MINRES methods, which avoids altogether the temporary use of Ghylfactors. Finally,
our work also explains why it is natural to have positive d&dipreconditioners when solving
self-adjoint indefinite problems with MRES.
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The significance of the Riesz map or the scalar product, céispdy, is pointed out in
many publications to varying degrees. We mentibd [Chapter 16] andl[1], where the CG
method is described in a variational setting and the Riesnasphism appears implicitly in
the conversion of the residual to the gradient. 16]] the importance of the Riesz map is
substantiated by the role it plays in the proof of the Laxgviim lemma, which applies to
the case of positive definite but possibly non-self-adjojmrators4. Also recently in 5],
appropriate scalar products are studied, which can guieletbice of block-diagonal pre-
conditioners for self-adjoint saddle-point problems.

We are thus aware of the fact that our observation of pretioniig and choosing the
inner product inX being one and the same for CG andN#Eswould be considered folklore
by some. Nevertheless, it is our experience that this fasttiss widely known as one would
expect, and it seems difficult to find references which pinpiti This note was written to
serve as a reference.

The following two prototypical examples illustrate thatns@eringA € £(X, X*) is
natural for variational problems. The first example is Rmiss equation—Au = f on
a d-dimensional bounded domain, endowed for simplicity with homogeneous Dirichlet
boundary conditions. Its variational formulation is giveyn(1.1) with X = H} () and

(Au,v>:/Vu-Vvdx and (b,v):/fvdx.
Q Q

As usual,H} () denotes the space of Sobolev functions which are squargraftie up to
their weak first-order derivatives and which have zero bamndalues in the sense of traces.
The Poisson problem gives rise to a positive definite opefathen X is endowed with the
standardH ' -norm or H'-seminorm) so thatl(1) is amenable to solution by the CG method.

The Stokes problem in fluid dynamics, by contrast, leads tmaefinite system which
can be solved by MiRES. The associated variational formulation employs the Hilbe
spaceX = Hi(Q) x --- x H(Q) x L3(Q2) and is given by

<A(u,p)7(v,q)):/Vu:Vde—/pdivvdx—/qdivudx
Q Q Q

andb as above; see, for instancé, Bection 5]. Herd 2(2) is the space of square integrable
functions with zero mean.

This paper is structured as follows. Sectibaddresses the CG method in Hilbert spaces
for the self-adjoint and positive definite (coercive) caSection3 is devoted to the MNRES
method in Hilbert spaces for self-adjoint and possibly firdi problems.

Throughout£ (X, X*) andL(X) denote the spaces of bounded linear operators X *
or X — X, respectively. Moreover;, -) x- x of, for short,(-,-) denotes the duality pairing
of the Hilbert spaceX and its dualX*. We shall denote by € £(X*, X) the Riesz map.
Givenb € X*, its Riesz representation is defined @b, z)x = (b,z) for all z € X,
where(-, ) x is the scalar product iiX. Clearly, the Riesz map depends on the choice of
the scalar product irX .

Let us mention that we do not address here the CG methothdefinite systems in
so-called non-standard inner products as treated, fariast in fi, 22, 23, 24).

2. The conjugate gradient method.In this section,A € £(X, X*) is assumed self-
adjoint, i.e.,(Az,y) = (Ay,x), and positive definite (coercive), i.d Az, x) > §||x|% for
somes > 0 and allz,y € X. This implies that4 induces a norm|jz||4 = (Az,z)/?,
which is equivalent to the noriit|| x . The unique solution ofl( 1) is denoted byz..

The CG method, developed if4], can be conceived in several ways. We follow here
the derivation based on the one-dimensional minimizatiothe error in theA-norm for a
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predetermined search direction and the update of thesehsdimections using the direction
of steepest descent while maintainidgconjugacy of search directions.

Given an iterater, € X and a search directiop, € X, the CG method seeks to
minimize the value of

1 1 1
o) = 5(Az,a) = (b,2) = Sz — .5 = Sl
along the liner;, + apy. This minimum is attained at

(7%, Pk)
<Apkta pk> ’
wherer, := b — Az, € X* denotes the residual. The search direcfigris chosen as a

linear combination of the previous directipn_; and the direction of steepest descépt
for ¢ atxy,.

AL =

2.1. The direction of steepest descentt is now important to realize that treteepest
descent direction depends upon the scalar produéf. Let us denote by’ () the (Fréchet)
derivative of¢ at xj, which is, by definition, an element df*. The directional derivative
becomesy' (x1)d = (Axy, — b, d) for arbitrary directions! € X. The direction of steepest
descenti;, has, by its definition, the property that

(2.1) di minimizes¢’ (zx)d = (Azj, — b, d) = —(rg, d)

over alld € X of constant norm. To solve the proble.1), we apply the Riesz map to
obtain the representation

gb/((L‘k)d = —(RT’k,d)X.

The Cauchy-Schwarz inequality now readily shaiys= Rr to be the direction of steepest
descent forp at x;. Since the Riesz map depends on the scalar produt iso does the
direction of steepest descefit. Note that the direction of steepest descent & also known
as itsgradient We point out that even iR™ it is useful to distinguish the derivative of a
function (which does not depend on the scalar product) ftwergtadient (which does).

For instance, lefd € R™*" be symmetric, and consider it as a linear map{ Ax)
from X = R" to its dual. The directional derivative @fz) = J27Az — b”z in the direc-
tiond € R"is¢'(z)d = (Az—b)Td. Then we distinguish the derivativé(z) = Az — b € X’
from the gradien¥ ¢(x). The latter depends on the scalar producXinwhich is represented
by the symmetric positive definite matrik. We write (x,y)x or (z,y)p for the scalar
product of two elements,y € X. According to @.1), the directiond € X is the gradient
of ¢ atz if it minimizes

¢'(x)d = (Az —b)"d = (P~'(Az — b),d) ,

over alld € X of constant norm. This shows th&(z) = P~1(Az — b).

2.2. The conjugate gradient method finalized.Using a linear combination af;, and
the previous search direction 4, i.e.,

(2.2) pr = Rry + Brpr—1,
the requirementApy, pr.—1) = 0 of A-conjugacy of search directions leads to the choice
By (Api—1, Rry)

(Apk—1,prp—1)
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The procedure outlined above generates the followingté#srand Krylov subspaces of
dimensionk > 1:

pe—1 € Ki(RA; Rrg) = span{Rrg, (RA)Rrq,...,(RA)*'Rro} C X,
2k € xo + Kx(RA; Rro),
e € 1o + ARKL(AR;10) = 70 + span{(AR)ro, ..., (AR)*ro} C X*.

Here, the primal and dual Krylov subspaces are relateklj\R A; Rro) = RKy(AR; ).
It follows by standard arguments that the iterates alssfyati

(re,pj) =0 forallj=0,1,....k—1,
(ri,Rrj) =0 forallj=0,1,....k—1,
(Apg,p;) =0 forallj=0,1,...,k—1,

and thatr;, minimizesg over the entire affine spaeg+/C,. (RA; Rro). Using these relations,
one arrives at the final form of the CG method in a Hilbert spaee Algorithm2.1.
ALGORITHM 2.1 (CG Method for{.1) in a Hilbert Space).
Setrg :=b— Axg € X*
Setp() = Rrge X
Setk :=0
while not convergedio
<7"k> R’I“k>
(Apr, pr)
: Setxkﬂ = Tk + QP
7. Setrgyq =1 — apApg
(Tha1, Rrgq1)
<’I’k-7 R’I”k>
90 Setpry1 = Rriq1 + Brt1Pk
10 Setk:=k+1
11: end while

Comparing Algorithm2.1 to the standard forms of the CG method in the literature, it
stands out that the Riesz mdptakes precisely the role of the application of a precondi-
tioner P, i.e., the evaluation oP~! times a vector. Recalling that the Riesz map depends
on the scalar product, we conclude that the choice of a pdéttoner in the traditional pre-
conditioned CG method is actually equivalent to the chofdh@® scalar product itX'. Even
if X = R", the preconditioned and unpreconditioned variants of tBen@thod are one and
the same; they merely differ in the choice of the scalar pco@uX. The unpreconditioned
CG method corresponds to the implicit choice of the Euclidezalar product.

In infinite dimensions, the use of the Riesz map is essentfatinulating the CG method
for the solution of {.1). Without it, the residuat; € X* cannot be used ir2(2) to update
the search directiop, € X since these two vectors belong to different spaces.

The convergence properties of Algorittiriin a Hilbert space depend on the spectrum
of the preconditioned operat®¥A € £(X), which is self-adjoint, i.e.,

5. Setqy :=

8: Setﬂqul =

(RAz,y)x = (z, RAy)x.

The spectrum is the complement i € R : (RA — pI)~!existsinf(X)} in R. In
the finite-dimensional situation, the spectrum consisthefeigenvalues of the generalized
eigenvalue problemiz = AR~'z. Using the condition number, i.e., the quotient of the
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extremal points in the spectrum Bf4, one can reproduce the linear convergence bound of the
finite-dimensional preconditioned CG method; see, e5gSé¢ction 2.2] andd, Section 1.2].

We emphasize, however, that linear bounds based on thetimongiimber are not, in general,
descriptive for the practical convergence behaviour ofGBemethod; seell7, Section 5.6]

or [9, 15].

The significance of (the inverse of) as a preconditioner was recently also pointed out
in [16] and [18]. Good preconditioners (Riesz maps) are those which angcex by scalar
products inX close to theA-scalar product. This statement continues to hold whieis
replaced by one of its finite-dimensional subspaces as oes, @og., in conforming finite
element discretizations ol (1). We thus infer that practical preconditioners/scalaidpizts
for discretized versions of the operator equatidén = b can be derived by studying the
undiscretized problem.

3. The minimal residual method. In this section,A € £(X, X™*) is assumed self-
adjoint but it may be indefinite (non-coercive). Note th&t is naturally endowed with the
scalar product

(31) ("')X* = <"R'>a

in which the Riesz map pulls one of the factors frafii back intoX. We sometimes refer to
the induced nornijr|| x- = (r, Rr)'/? = ||r|| g as theR-norm.

The MINRES method, introduced in2[0], uses the same Krylov subspaces as the CG
method, but it seeks to minimize tli&norm of the residuat, € b — Az, € X*, i.e.,

7kl R = (r1, Rry)'/?,

over the shifted dual Krylov subspaces+ AK;(RA; Rro) = 1o + ARK(AR;1m9) C X*.
To carry out this minimization, MiRESbuilds an orthonormal basis (with respect to the inner
product 8.1)) of K1 (AR;7¢) C X*, which is denoted by}, € L£L(R*, X*) with “columns”
vie X" i=1,... k.
Orthonormality, i.e.{v;, Rv;) = d;;, is obtained via the Lanczos recursion

(3.2) ARVj, = ViTi, + Y1 0h16 = Vi1 T,

with &, = (0,...,0,1)T € R and a coefficient matrix of the form

o0 72
Y2 02\
Ty = NN % | e REHDXE,
T Ok
0 Yet1

The matrixT}, € R¥** in (3.2) equalsfk without the last row.
Using the basid/, the iteratese;, € o + Ki(RA; Rrg) = xo + RK(AR; 1) and
residuals;, can be written as

ry = x0 + RVi 3,
T =70 — ARVk:ljk
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for somey;, € R*. The objective of minimizing the residual in th@-norm can thus be
expressed as the minimization overglt R* of

lrellr = ||b — Azo — ARVLGk| R

= HTO - ARngHR

= |[ro = Vi Th3 | by (3.2)

= |lIrollrvs = Vier T# | sincev; = ro/|7oll»

= ||[Vies1 (Irollrér — T13) || whereé, = (1,0,...,0)T € RF*!
= |lIrollré1 — T || s by orthonormality

We conclude that the minimization of the residual in th@orm leads to a least-squares

problem inR**! with respect to the Euclidean norm regardless of the spawéhioh the

original problemAx = b is posed. Therefore, from here, the derivation of the Hilbpace
version of MNRES parallels the derivation of the classical finite-dimensiomethod. We
only mention that the least-squares problem is solved bytaiaing a QR factorization
of the matricesl;, by means of Givens rotations. For convenience, we statedimplete

algorithm as Algorithm3.1 It coincides with the (preconditioned) implementationeyi

in [6, Algorithm 6.1] except that in Algorithn3.1 we scale both quantities, and z;, such

that||vy||r = 1 andz, = Ruvy, are maintained throughout.

I I R S N U e

20:
21:

ALGORITHM 3.1 (MINRESMethod for (L.1) in a Hilbert Space).
Setvy :=0€ X*andwy :=w; :=0€ X
Setv; :=b— Axg € X*
Setz; := Ru;
Sety; := (v, 21)
Setz; := z1 /v andvy := vy /7
Setny := 71,50 :=51:=0,c0:=c1:=1
Setk =1
while not convergedio
Setdy, := (Azk,zk>
Setvy41 = Az, — 0V — VEVE—1
Setzk+1 = Rka
Setyey1 = (Vis1, 2ir1) />
Setziq1 = Zpg1/ Vi1 @NAUg1 = Vg1 /Y1
Setag := ¢k — ck_18k Yk andag = (ad + wzﬂ)l/Q
Setas 1= 0k + cp_1¢kYk ANdag 1= Sk 17k
Seter11 := ap/ar and s == Y11/
Setwi41 := (1/ay) [zk — Q3Wp_1 — OéQ’U)k]
Setry, 1= Tp—1 + Chp1Mh—1Wht1

1/2

Setny 1= —Spr1Mk—1
Setk =k +1
end while

We mention that the quantity

|le\ = ||Tk||R

gives access to th&-norm of the residual, which is minimized over the sequerigg@ving
shifted Krylov subspaces.
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As we have observed for the CG method, we conclude that theelbthe precondi-
tioner is equivalent to choosing the Riesz map, i.e., edgitdo choosing the scalar product
in X. This observation also recently guided the study of appatgscalar products for sym-
metric saddle-point problems i2%]. Finally, the exposition above explains why indefinite
systems, which are to be solved byN\RES, require self-adjoint positive definite precondi-
tioners; compare, e.g.3[Table 9.1].

REMARK 3.2. For non-symmetric problems in finite dimensions, th@asement of
the symmetric Lanczos by the Arnoldi process leads fromiés to the generalized min-
imal residual method (@RES) introduced in 1]. The coefficient matrixl}, will be upper
Hessenberg; see, for instancé, $ection 4.1.1] or17, Section 2.5.5]. Precisely the same
modifications will lead to ®RES for non-self-adjoint problems of typel (1) in a Hilbert
space setting.

4. Conclusions.In this paper we consider the CG andWkesmethods for self-adjoint
operator equationdz = b with A € L(X, X*), whereX is a Hilbert space. We present a
comprehensive derivation of these methods, which showtshibin CG and MNRES in-
evitably depend on the scalar product one chooses.inWe also see that the “precondi-
tioned” and “unpreconditioned” versions of these alganigh which are often presented as
distinct methods, are actually one and the same. The “uopdittoned” versions simply
correspond to the implicit choice of the Euclidean scaladpct, which, of course, is only
possible ifX = R™. We emphasize that the choice of a preconditioner for CG amRiEsis
equivalent to the choice of the scalar producKinThis choice, even for discretized versions
of the problem, can be guided by an analysis of the spectruriedaut for theundiscretized
problem, e.g., at the level of the partial differential efiprato be solved. This is the central
idea behindperator preconditioningechniques developed, for instance,2n15, 18]. Con-
dition numbers bounded independently of the mesh size cacliieved in this way, which
are, however, not in one-to-one correspondence with thedmsergence of Krylov subspace
methods.

In a forthcoming publication we will continue this work anddeess convergence results
for CG and MNREsincluding a new superlinear convergence result fonRES.
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