Electronic Transactions on Numerical Analysis. ETNA

Volume 41, pp. 133-158, 2014. Kent State University
Copyright 0 2014, Kent State University. http://etna.math.kent.edu
ISSN 1068-9613.

ZEROS AND SINGULAR POINTS FOR ONE-SIDED COQUATERNIONIC
POLYNOMIALS WITH AN EXTENSION TO OTHER R* ALGEBRAS*

DRAHOSLAVA JANOVSKAT AND GERHARD OPFER

Abstract. For finding the zeros of a coquaternionic polynomiabf degreen, wherep is given in standard
formp(z) = 3" ¢;27, the concept of a (real) companion polynomjaif degree2n, as introduced for quaternionic
polynomials, is applied. I£q is a root ofg, then, based ong, there is a simple formula for an elementith the
property thap(z)p(z) = 0, thusz is a singular point op. Under certain conditions, the saméas the property
thatp(z) = 0, thusz is a zero ofp. There is an algorithm for finding zeros and singular poiffits.dr'his algorithm
will find all zeros z with the property that in the equivalence class to whidhelongs, there are complex elements.
For finding zeros which are not similar to complex numbers, Neistmethod is applied, and a simple technique for
computing the exact Jacobi matrix is presented. We also shawitiere is no “Fundamental Theorem of Algebra”
for coquaternions, but we state a conjecture that a “Weaki&mental Theorem of Algebra” for coquaternions is
valid. Several numerical examples are presented. It is alsarshow to apply the given results to other algebras
of R* like tessarines, cotessarines, nectarines, conectatamggerines, cotangerines.
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mial for coquaternionic polynomials, singular points for atgrnionic polynomials, Newton method for coquater-
nionic polynomials, exact Jacobi matrix for coquaterniorotypomials, “Weak Fundamental Theorem of Algebra”
for coquaternions, zeros of polynomials in ottt algebras (tessarines, cotessarines, nectarines, conestdan-
gerines, cotangerines)

AMS subject classifications.12E15, 12Y05, 65J15

1. Introduction. In this paper we will use the notatiofls R, C, H for the integers, the
real number system, the complex numbers, and the quatsynmespectively. Coquaternions
were introduced in 1849 by Sir James Co¢K|£819-1895) §]. They may be regarded as
elements oRR* of the form

a = a1+a2i+a3j+a4k7 a1,0a2,03, 04 €R7

which we also abbreviate by = (aq, a2, a3, a4) and which obey the multiplication rules
given in Tablel.1

The algebra of coquaternions will be abbreviatedthy,. The explicit multiplication
rule for the product:b of two coquaternions = (ay, as, as,as), b = (b1, ba, bs, by) derived
from Tablel.lis

ab = a1by — asbs + asbs + asby
+ (a1be + agby — azbs + agbs)i
+ (a1bz — azby + azby + asbs)j
+ (a1bs + azbz — azby + asby )k,

which implies that
(1.1) a® = a3 — a3 + a3 + aj + 2a; (azi + azj + ask).
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TABLE 1.1
Multiplication table for coquaternionsColoredentries differ in sign from the quaternionic case.

1 i j k
11 1 j k
ili -1 k —j
ilj -k 1 —i
k|k j i |1

As elements oR* we havel :=(1,0,0,0), i:=(0,1,0,0), j:=(0,0,1,0), k:=(0,0,0,1). If

a coquaternion has the foran= (a1, 0, 0,0), we will call it real and identify it witha,. The
real coquaternions and no others have the property thattimaynute with all coquaternions.
In algebraic terms this means that tbenterof H., is R. The first component; of a
coquaternior: = (a1, az, as, aqs) Will be calledreal part of « and abbreviated b3t(a). The
second componemt, will be called theimaginary partof « and denoted bg(a). Complex
numbersa; + a»i will be identified witha := (a1, a2,0,0) € Heoq and vice versa, and the
coquaternioru will then be calleccomplex We will use the notations

(1.2)  absy(a) :=a? + a3 — a3 — a3, a:=conj(a):= (a1, —az, —as, —ay),

where botha andconj(a) are called theonjugate ofa, and it should be noted thabss is
not the square of a norm sinads, may take on negative values. The following additional
properties hold as well:

(1.3) aa = aa = absa(a), absg(ab) = absa(ba) = abss(a)absa(b),  R(ab) = R(ba).
A coquaternioru will be calledinvertibleif abss(a) # 0, and in this case
1 a

1
_ (a~1) =
“ ~ absy(a)’ absa(a™) absa(a)’

A noninvertible coquaternion is also callsthgular. An invertible coquaternion is called
nonsingular A producta,as ---ag, k > 1, is singular if and only if one of the factors is
singular. This follows from the second identity ih.§). A more detailed survey of properties
of coquaternions is given inl[l]. Applications to physical problems are treated 2 §].
Information regarding general algebraic systems can bedfau([l, 4, 7, 17].

Let

n

(1.4) p(z) = chzj, z, ¢j €, Heoq, forj =0,1,...,n, withcg # 0, ¢, # 0,
=0

be a coquaternionic polynomial. The conditions @nc,, in (1.4) ensure thap(0) # 0
and that the degree of is not smaller tham. Because of the noncommutativity of the
elements inH..q, we call this polynomiabne-sidedsince there are other forms of poly-
nomials with terms of the forma;z7d;, calledtwo-sided or even with terms of the form
cozcizeaz - - - ¢j—12¢5, Which are called anonomials of degreg. An arbitrary finite sum of
monomials of any degree is calledyaneral coquaternionic polynomiaSince we are deal-
ing here only with one-sided coquaternionic polynomials, will omit the word one-sided
in the following. Solutions of(z) = 0 will be calledzerosof p. Before we start any general
investigation, we will treat the most simple quadratic csisee it sheds already some light
on the general case.
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ExAMPLE 1.1. Let
2
(15) p(Z) =z ¢ Z = (Zla225237z4)a c= (61762563564) 6[HIC()q;

and let us look for those with p(z) = 0. We will call thesez square roots of: and use the
notation,/c. The equation(z) = 0 splits into four real equations (sek. 1))

(1.6) 22— 22422+ 22 =c,
(17) Qlej = Cj, ] = 273,4.

(a) Letc # 0 be nonreal, i.e.¢; # 0 for at least ongj € {2,3,4}. Then, (L.7) implies
thatz; # 0 and

Zi = Lj
J 22117

Co 2 C3 2 Cq 2
2 — — —_— — =
1 <2Zl) + (22’1) + (22’1) “r

The last equation can also be written as

J=2,3,4,

2, 2, 2
4 2, ~CGgtc3tcg

z] —c12] + 1 =0.

The standard solution formula yields

(18) 2 =2 (e vabs(0)

Sincez; # 0 must be real, the existence of a solutiondepends on the validity of the
conditions

(1.9) (i) absa(c) > 0, (i) ¢1 — +/absa(c) > 0, (iii) ¢1 + v/absa(c) > 0,

and this result is summarized in Lemrhal.

(b) Lete = R(c), i.e.,c = (¢1,0,0,0). In this case,1.7) has several solutions:
(b1) z; = 0 andz; arbitrary, forj = 2, 3,4, or
(b2) z; =0, for j = 2,3, 4, andz; arbitrary.

In case (bl), equationg.@), (1.7) yield

(1.10) 21=0, —25+422+422=ci.

In case (b2), equationg ), (1.7) yield

(1.11) Zi=c, z=0,7=234.

Case (b2) will not have a solution if;, < 0, but case (b1) will have infinitely many so-
lutions. Forc = 0, for instance, we obtain fromL(10 that /¢ = (0, 22, 23.24) With
—25 + 253 +2; =0.

The just encountered phenomenon that polynomials may héinéély many zeros is a
typical feature for all coquaternionic polynomials wittateoefficients.
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THEOREM 1.2. Let p be a coquaternionic polynomial as defined(ih4) where all
coefficients:;, j = 0,1,...,n, are real. Then,

p(z) =0=p(h~'zh) =0 for all nonsingularh € Heoq.

In particular, if z is nonreal,p has infinitely many zeros.
Proof. From the fact that all real elements (and no others) commvitteall elements
in Heoq, Wwe deduce

hip(z)h = h~t Zcz] h= ch
fZCJ J *p(h 1Zh)

The set{u € Heoq : u = h~'zh for all nonsingularh € H.,,} contains either exactly one
element ifz € R, or, otherwise, it contains infinitely many elements. 0O

LEMMA 1.3. Letp be given as in(1.5) with ¢ := (¢1,0,0,0) € Hqoq. Then there exist
infinitely many zeros = (0, 22, 23, z4) Of p defined in(1.10. If ¢; > 0, there are up to two
additional zeros,/c = (4/¢1,0,0,0). For ¢; < 0, there are no additional zeros.

Proof. Follows from the solution formulad (10, (1.19). a

LEMMA 1.4.Letp be given as ir{1.5) with ¢ € Heoq \R.

() If (i) of (1.9 is not valid,p has no zeros.
(I 1If (i) is valid but(ii) and(iii) are not valid,p has no zeros.
(1) If (i) and(ii) are valid,p has up to four zeros.
(IV) If (i) and(iii) are valid, but(ii) is not valid,p has up to two zeros.

Proof. In view of the solution formulal(.8) for z;, which yields two solutions if the
expression in parentheses is positive, the cases (I)(I¥) are clear. In (ll1), the validity of
(i) implies the validity of (iii). |

To summarize, infinitely many square roots will always odturis real and in no other
cases. The cases (1), (Il) of Lemriat are conditions such that there is no square root at all.

ExAmMPLE 1.5. For each case mentioned in Leming there is an example:

(I): c:=(1,2,3,4) has no square root sinadsz(c) = —20 < 0;
(I1) : ¢:=(-2,1,2,0) has no square root sinabsz(c) = 1 > 0, but
c1 — y/absa(c) = =3 < 0, cl+\/m:—l<0;

(III) : ¢:= (2,1, 2,0) has four square roots sinabsx(c) =1 > 0,
c1 —/absy(c) =1 >0, ¢ + \/absy(c) = 3 > 0,
Ve=4v2(1/2,1/2,1,0), Ve = +V6(1/2,1/6,1/3,0);

(IV): ¢:=(4,6,5,1) has two square roots singbss(c) = 26 > 0,

—V/absa(c) =4 — V26 < 0, a := ¢ + \/absa(c) = 4+ V26 > 0,

)

COROLLARY 1.6. There is no “Fundamental Theorem of Algebra” for coquaterms.
Proof. There is a well known “Fundamental Theorem of Algebra” faatgrnions by
Eilenberg and Niven from 1944] ensuring that all general quaternionic polynomials of
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degreen > 1 have at least one zero provided that there is only one momnaenia of the
highest degree. However, in the coquaternionic case, the first two partsashinal.4 show
that there are coquaternionic, quadratic polynomialsauittany zeros. 0

2. Similarity and quasi-similarity of coquaternions. In Lam [14, p. 52] and in Ja-
novska and Opfer 11], we find thatH., is isomorphic tdR?*2, where this isomorphism is
defined by

~ A ) o a1 +ag asg+as
(2.1) i(a) =1(a1,az2,as,a4) := [_a2 tas ap— CLJ .
The mapping : He,q — R?*? is invertible. LetB := {z“ Z”} € R?*2 pe arbitrary.
21 22
Then,
,\_ 1
I~(B) = §(b11 + b2, bia — bar, biz + a1, bin — baa).
Note that
(2.2) abss(a) = det(i(a)), 2R(a) = tr(i(a)),

wheredet andtr stand fordeterminantandtrace respectively. We will transfer the concept
of similarity of matrices to coquaternions.

DEFINITION 2.1. Two coquaternions, b will be called similar, denoted by ~ b, if
the corresponding matricdéa),1(b) are similar, or in other words, if there is a nonsingular
(=invertible) coquaterniorh such thate = A~ 'bh. By

[a] := {b: b= h"'ah, forallinvertible h € Heo}

we denote the equivalence class of all coquaternions whigkienilar toa.
The fact that this definition of similarity yields asquivalence relatiorwas shown by
Horn and Johnsord[ p. 45]. We have the following property:

(23) a=R(a) & [a] = {a),

which means that the equivalence cl@gsconsists of one single element if and onlyifs
real.
LEMMA 2.2.Leta ~ b. Then

(2.4) R(a) = R(b), absy(a) = absy(b).

Proof. Both parts follow easily from conditions given ifh.@). 0

In contrast to the quaternionic case, the conditichd) @re not sufficient for similarity.
Takea = («,0,0,0), b = («, 5,4, 3) for an arbitrarya € R. Since[a] consists of one single
element only (se€(3)), a, b are not similar. However2(4) is valid.

Similarity is a very useful tool when investigating propest of matrices such as the
determination of the rank of a matrix. However, in this irigegtion we are mainly interested
in a consequence of similarity, namely in the propertiestinaad in ¢.4) which in some
cases are also valid for nonsimilar matrices or nonsimibguaternions.

DEFINITION 2.3. Two coquaternions, b are said to beguasi-similay written asa ~ b,
if (2.4) is valid.
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LEMMA 2.4.The relation? is an equivalence relation.

Proof. The three properties of equivalence relatians; a (reflexivity),a < b < b < a
(symmetry)a < b, b4 ¢ = a L ¢ (transitivity) are easily verified. [

The corresponding equivalence classes are denoted by

[a]y == {b:b L a}.
We have the following simple properties:
a~b=ab, [dClal,

Because of the first condition iR (), distinct real numbers are in different equivalence
classes with respect to and to~. In a later section (Sectiof) we will see that there is
only a small difference between similarity and quasi-samity.

3. Reformulation of coquaternionic polynomials via matrix equivalents. Let the
matrix A € R?*2 pe arbitrary. Then (see Horn and Johns&p| 87]),

(3.1) AV € (I,A), jeNu{o},

where(- - -) is the linear span of the elements between the brackets. ldracateristic poly-
nomial of A is (see 2.2))

Ya(2) = 2% —tr(A)z + det(A) = 2% — 2a, 2 + absy(a).

The Cayley-Hamilton Theorem (see Horn and John8pp.[86]) implies the matrix identity
A% = —absy(a)I + 2R(a)A. Because of the isomorphism betweet*? andH.,,, and the
relation 3.1), we have

(3.2) 2 =a;+ Bz, j=0,1,...,
where the coefficients can be determined by the recursion

(33) ag =1, ﬂo = 07
(3.4) Qi1 = —absz(z)ﬁj, Bj+1 =a; + 28%(,2)6]*, 7=0,1,...

We observe that all coefficients;, 3;, j > 0, are real and, more important, they depend only
on(z) andabsa(z) and not fully onz.

LEMMA 3.1. Leta,b € Heoq anda L b. Then,a’ and b’ have the same recursion
coefficientsy;, 8;, j > 0 as defined ir{3.2).

Proof. The quasi-similarity implies that the coefficiefit$z), abss(z) occurring in 8.4)
are the same fos andb. Thus, the recursion coefficients;, 3; are the same foux andb.

0

There is another difference between coquaternions anéwuais. In the corresponding

quaternionic equivalence clasge there are always complex elements provided ¢hatR;

see [L3].
LEMMA 3.2.Leta = (a1, a2, a3, as) € Heoq\C. ThenA := [a], N C # 0 if and only if

a3 — a3 —a3 > 0.

In this caseA = {b*,b~}, whereb® = a; + \/a3 — a? — a2 i.
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Proof. Letb € A. Then,b := by + boi, a; = R(a) = R(b) = by, and

a} + a3 — a3 — aj = absy(a) = absy(b) = b} + b3 < b3 = a3 — a3 — a3 > 0.
By similar argumentsg3 — a3 — a3 < 0 impliesA = 0. 0
Thus, infa := (1, 2, 3,4)], there is no complex number.
We replacez’ in the definition of the polynomiab in (1.4) by the recursion formula
for 27 and obtain

p(2) = ¢7 = cila;+B2) =D ajei+ [ D Bici | 2
(3.5) =0 =0 =0 =0
=: A(R(z),absy(z)) + B(R(z), absa(2))z.

Here, the two newly defined quantitie$, B, depend only ofR(z) andabsy(z). Therefore,
we have included this dependence in parentheses.

LEMMA 3.3. The quantitiesA(R(z), absz(z)), B(R(z), abss(z)) defined in(3.5) are
constant on the quasi-similar equivalence cléasgs.

Proof. The properties4.4) are valid for all elements in the same quasi-similar equiva
lence clas$z],.

Leta = (a1, a2, as,aq). In contrast to 2.3) we have

(3.6) a€lal), & a3 —ai —aj=0.

Thus, there is no quasi-similar equivalence class with onkyelement. Let = (a4,0, 0, 0).
Then for allb € [a],, we have according ta3(6) thatabss(a) = absy(b) = a?. Condi-
tion (3.6) also implies that there is no complex element with nonvangs imaginary part
in [al]q.

LEMMA 3.4.Letp(z) = 0. Then,

(3.7)  p(2) = A(R(20),absa(z0)) + B(R(20), absa(20))z = 0, for all zg € [2]4,
(38 Bz=0< A=0, Bz=0= Bissingular
(39 B=0=A=0.

If B=0or Bz =0, thenallz, € [z], are zeros op. Here we have omitted the arguments
of A, Bin (3.9), (3.9.

Proof. (3.7) follows from (3.5 and the second part of Lemn2a2. In (3.8), Bz = 0
implies thatB is singular because # 0. In (3.9), B = 0 = A = 0 is obvious. The cases
B =0andBz = 0imply p(z9) = 0 for all zy in [z],,. d

DEFINITION 3.5. Letz € Heoq\R. If p(29) = 0 for all zy € [z],, then we say that
generates a class of hyperbolic zeors: is a hyperbolic zerolf there is exactly one zero
in [z]4, we call this zerasolated

There is an instance of a hyperbolic zero in Example equation {.10. The con-
ditions given there (second condition ifi.{0), expressed as an equation for a hyperbo-
laz? — y? = ¢, are the reason for using the wdrgperbolic

EXAMPLE 3.6. Letp be a coquaternionic polynomial with only real coefficientéen
all nonreal zeros gp are hyperbolic. See Theoreh?.

LEMMA 3.7. Letwu,v be two distinct zeros of a coquaternionic polynomiain the
same quasi-similar equivalence clgs$, = [v],. Letz € [u],. Then,B is singular in the
representatiorp(z) = A + Bz (with the arguments ofl, B omitted). MoreoverB = 0 if
u — v is nonsingular. IfB = 0, all elements ifu], = [v], are zeros op and all zeros are
hyperboalic.
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Proof. It follows thatp(u) = A+ Bu = 0, p(v) = A+ Bv = 0, with the conse-
quence thap(u) — p(v) = B(u — v) = 0, because4, B are constant ofu],. Thus,B is
singular. Ifu — v is nonsingular, then it follows tha® = 0. If B = 0, then the statement
follows from Lemma3.4. Two distinct zeros in the same equivalence class can nevexab.
Thus, [u], consists of (infinitely many) hyperbolic zerosaf a

We can refine the representatidh) of the coquaternionic polynomial by applying
thecolumn operatorol : Heoq — R**1 defined by

(3.10) col(h) =

whereh = (hq, ho, hs, ha) € Heoq. The following lemmais very useful in this context.
LEMMA 3.8.Let B, z be two coquaternions.
(o) There is a realt x 4 matrix C, such that

col(Bz) = Ccol(z) and
(3.11) C = [col(B), col(Bi), col(Bj), col(Bk)].

(8) The matrixC is singular if and only ifB is singular.

(v) If B # 0is singular, themrank(C) = 2.

Proof. («) and (3) follow from [11, equation (5.2) and Theorem 5.1%)(Let B # 0 be
singular. One can explicitly show that the last two columh€aan be expressed as a linear
combination of the first two columns. 0O

The application of theol operator to 8.5 now yields

col(p(z)) = col(A) + col(Bz) = col(A) + Ccol(z),

whereC is defined in Lemm&.8.
THEOREM 3.9. Let [z], contain a zero of the coquaternionic polynomgal Then all
zeros ofp in [zy], can be found by solving the linear inhomogeneous system

(3.12) Ccol(z) = —col(A), subject toz € [z9],-

(i) Let B be nonsingular. Then there is exactly one (isolated) zego[z],, which can
be computed by

conj(B)A

_ _p-lg_
(3.13) z=—-BA abs (B)

& col(z) = —C™'col(A),

whereA, B is short for A(R(zo), absz(20)), B(R(z0), abs2(z0)), respectively, and whe@
is defined in(3.11).

(ii) Let B be singular. Then the linear system give§3riL2) has a solution if the extended
matrix [C, col(A)] has the same rank &s.

Proof. This follows from Lemma3.8, from equation §.7) in Lemma3.4, and simple
facts from linear algebra. [

4. Symmetric and normal coquaternions. A comparison of simarity and quasi-
similarity. We will make a very short excursion to symmetric and normgluedernions and
show that, in most cases, similarity and quasi-similanityidentical notions.
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DEFINITION 4.1. A coquaterniornu is called symmetricor normalif the matrixi(a)
defined in(2.1) has these properties, respectively. Thus symmetric and normal if

i(a) =1(a)T, 1(a)i(a)™ —1(a)Ti(a) = 0,

respectively, wher{a)T denotes the transpose if:).

LEMMA 4.2. A coquaternior: is symmetric if and only i&(a) = 0. A coquaternioru
is normal if and only if3(a) = 0 ora € C.

Proof. The condition for symmetry follows immediately frord.(). Leta € Hq be
arbitrary ant = (a1, as, as.aq). Then,

(a)i(a)T —1(a)™(a) = —4as {_Zi Zﬂ 0

Thus, a coquaternion is normal if and only if it is symmetnicomplex. Leta, b € Heoq
be normal. Then, the conditions ig.{) are sufficient for similarity ofz, b; see Horn and
Johnson §, p. 109, Problem 15]. Thus; ~ b < a < b if « andb are normal. Two
normal coquaternions = (a1, 0, a3, as), b = (b1, b2,0,0) are similar if and only ifu; = b,
andb; = a3 = a4 = 0, which means: = b € R. Two distinct complex numbers are
similar (=quasi-similar) if and only if they are conjugateneplex to each other. Two normal
coquaternions = (a1, 0, a3, a4),b = (b1,0, bs, by) are similar (=quasi-similar) if and only if

ay = by, a3+ai=>b3+b3.

LEMMA 4.3.Leta, b € Heoq\R and let(2.4) be valid. Ther ~ b.

Proof. The assumption2(4) implies that the two characteristic polynomials fiou)
andi(b) (see2.1) are identical. The assumption ¢ R is in matrix terms equivalent to
(a) # oI, a € R, wherel is the identity matrix ifR?*2. In other wordsj(a) does not belong
to the center oR?*2. The two possible canonical Jordan normal form§ ef andi(b) are

o oy @l Y.

The assumptions imply that # y, and thus all eigenvalues (in both forms) have geomet-
ric multiplicity one; see Horn and Johnso®, [p. 135]. This means that similarity ~ b

is equivalent to the two condition®.¢) and, thus, equivalent to quasi-similarity provided
botha,b ¢ R. a

5. Singular points of coquaternionic polynomials. The zero point iR, C, H is in all
these three cases the only singular point in the sense thasiho inverse. This is one of
the reasons why polynomials in these three spaces areigatest for its zeros. This applies
also to eigenvalues in matrix spaces oRerC because they are zeros of the corresponding
characteristic polynomials. In the spalle,,, however, there are infinitely many singular
points. Therefore, itis not surprising that we will encangointsz such thap(z) is singular,
i.e., absa(p(z)) = 0, butp(z) # 0, wherep is defined in {.4). We will conjecture in
Sectionl11, that all coquaternionic polynomials of degree> 1 have at least one singular
point.

DEFINITION 5.1. Letp be given as ir{1.4). We say that € H., is asingular point for
pif

(5.1) abss(p(2)) = p(2)p(z) = 0.
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Itis clear, that a zero gf is also a singular point fgs. In contrast to the polynomial equation
p(z) = 0, which may be regarded as four real equations in four reatonmks, equations( 1)
is only one equation in four real unknowns. Thus, it is not iypomial equation.

EXAMPLE 5.2. Letp(z) := 2?2 — ¢, wherec is a given coquaternion. Then,

absa(p(2)) = (2% — ¢)(22 — ¢) = absy(2?) — 2R(cz%) + absy(c).

Now, absy(22) = (absa(z))?, which follows from (L.3). The middle term in the previous
identity is

R(cZ?) = R(22¢) = c1(27 — 22 + 22 + 23) + 221(cozo — 323 — C424).
Altogether,

absa(p(2)) = (21 + 25 — 23 — 2)" — 2e1(2] — 23 + 25 + 2])

—4z1(coz2 — 323 — c424) + absa(c).

If we choose: = (1,2, 3,4) as in Examplel.5, part (1), andz = (21, 22, 23, 24) With
1
21222223224:ﬂ:§\/5,

thenz? = 2.5(1,1,1,1), p(z) = 22 — ¢ = (1.5,0.5, —0.5, —1.5) andabsy (p(z)) = 0. Thus,

z is a singular point fop(z) := 22 — ¢, thoughp is a polynomial without any zeros. The
same applies to = (—2,1,2,0) in Examplel.5, part (Il). In this case = 0.5(1,1,—1,1)
yieldsp(z) = 22 — ¢ = 0.5(5, —1, —5, 1) andabss(p(z)) = 0.

THEOREMD5.3. Letz; € R be a zero of a coquaternionic polynomjaand letv € [z],.
Thenabsy(p(v)) = 0. Hencep is a singular point fom.

Proof. An element € [z], has the formv = 2y + u, whereu = (0, us, us, u4) with
absg(u) = u3 — uZ — u? = 0. As a consequendg(v) = R(zo) = 20, absz(v) = absa(z0).
If p(z0) = A(R(z0),absa(z0)) + B(R(z0),absa(z0))z0 = 0, then (using Lemm&.3)
p(v) = A+ B(zg +u) = A+ Bzy + Bu = Bu andabsy(Bu) = absy(B)absa(u) = 0.

0

COROLLARY 5.4. Letz, be a zero of a coquaternionic polynomjsand let[z], contain

areal element. Then all elements: [z, are singular points fop.

THEOREM 5.5. Let there be az € H,q such thatA(R(z),absz(z)) = 0, and
B(R(z), absa(2)) is singular, whered, B are defined in(3.5). Thenz is singular forp.
Proof. In this situation we have

abss(p(2) = p(=)p(3) = (A + B2)(AT B2)
= BzBz = BzZB = absy(B)absy(z) =0. O

6. The companion polynomial. Theorem3.9 describes a simple formula for comput-
ing a zero of a coquaternionic polynomjalprovided that one knows an equivalence class
[20]4 C Heoq that contains a zero qgf. This knowledge will be provided by the so-called
companion polynomial op, which will be introduced in this section and will be denoted
by ¢. The concept of a companion polynomial is very successfuteating one-sided
guaternionic polynomials; seé3]. It was originally already introduced by Niven in 1941
[16] and later used by Pogorui and Shapiro in 2004 o find an alternative proof for the
number of zeros of a one-sided quaternionic polynomialshandy Gordon and Motzkin
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in 1965 B]. The companion polynomiaj is a polynomial with real coefficients, the roots of

which determine—under certain conditions—equivalenceselasvhich contain zeros pf
DEFINITION 6.1. Letp be the polynomial of degreegiven in(1.4). The polynomial

of degree< 2n defined by

(6.1) 9(z) = > Geadth,  zecC
j,k=0
will be called thecompanion polynomial gb. The zeros of will be calledrootsof g.
LEMMA 6.2. The coefficients af defined in(6.1) are all real, andg can be written as

2n min(k,n)
6.2)  q(z)=> bz" bpi= > G ;R k=01,....2n
k=0 j=max(0,k—n)

Proof. Equation 6.2) is obtained from§.1) by puttingx := j + k, observing the restric-
tions0 < k < 2n, 0 < j,k < n, and in the end renamingask. For a fixedd < k& < 2n,
there aremin{k + 1,2n + 1 — k} terms in the representation bf given in 6.2). If k is
odd, the number of terms is even, and in this casgif_; is one of the terms, then there is
another, distinct term;_;c;, and the sum is real. K is even, the number of terms is odd.
We use the same argument as before and note that in this esdglan additional, single
real termeice. a

The companion polynomiaj should only be regarded as a polynomial o@&rnot
overH,.q. The highest coefficient of the companion polynomgied ba,, = ¢,,¢, = absa(cy).
Thus, ife, is singular, the degree of the companion polynomial is leae2n. If ¢ is singu-
lar, then the constant term @fs by = absa(cg) = 0 andg(0) = 0. Itis even possible that the
companion polynomiaj vanishes identically. The companion polynomjaian be computed
by q(z) := p(z)p(z) assuming that € R and using that in this case,= z commutes with
all coefficients. This implies that a real zerogappears as a double rootgf

EXAMPLE 6.3. Letp(z) = bz% —c. Theng(z) = absy(b)z* — 2R(be) 22 + abss (c) andq
vanishes ifabsz (b) = absy(c¢) = R(b¢) = 0. In this case

absa(p(z)) = absy(b)absa(2?) — 2R(b2%€) + absy(c) = —2R(b2%¢),

andabsz(p(z)) vanishes for alt € R. Now letb = 1. Then, for the roots of ¢ we have

22 =R(c) £/ —cE+ G+

Puto := ++/—c% + ¢ + ¢} and assume that € R. Then,z? = ¢; + o € R, and

cl—c3+citcit2c0 —2¢; —2c10 ¢ +c5—c5—c3=0.

absa(22) —2%R(22%¢) absa(c)

Thus, the real roots of ¢ are singular points fap.

LEMMA 6.4.Letg(z) = 0 for somez € R. Thenz is a singular point fop. If ¢ vanishes
identically, then allz € R are singular points fop.

Proof. ¢(z) = p(z)p(z) = absa(p(z)) = 0 sincez € R. a

LEMMA 6.5. Letp have the formp(z) = A(R(z),absz(z)) + B(R(z),absy(2))z;
see(3.5. Then the companion polynomialcan be written as (omitting the argumentsAof
and B)

(6.3) q(2) = absy(A) + 2R(BA)z + absy(B)z2.
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Proof: Letz/ = a; + S;z; see B.2—(3.4). Then,

n n n
)= 3 o =3 (S a2 - 3o no
=0 k=0 j

4,k=0

= Z@(A + Bz)(a; + Bjz) ey, B € R]
3=0

=> a5 A+ BiGGAz+ Y a;e; Bz + Y B;c; B2
§=0 §=0 §=0 §=0
= AA + BAz + ABz + BBz |

We will show thatz 4 2 if 2], contains a zero, which is computed by the formula
given in Theoren8.9.

LEMMA 6.6. Letzg = z + iy be a root ofq with y # 0 and B(R(zo), absa(z)) be
nonsingular. Then fot defined in(3.13, we haver € [z],, i.e.,

R(z0) = N(z), absay(z) = absa(z).

Proof. PutA := A(R(zp),absa(z0)), B := B(R(z0), absz2(z0)). Lemmab.5implies
q(20) = absy(A) 4+ 2R(BA)zo + absy(B)z3 = 0.

Denote

v:=BA =: (v1,v9,v3,0v4), 20=:(x,4,0,0), wherey # 0.
Splitting ¢(zo) into real and imaginary part yields

(6.4) R(q(20)) = absa(A) + 2v12 + absy(B) (2 — y?) = 0,
(6.5) $(q(20)) = 2(R(BA) + absy(B)z)y = 0 = vy = —absy(B)z.

From the definition ot it follows that

o %(EA) - U1 o o
(z) = Cabsy(B)  absy(B) = R(z),

where the last part follows fron6(5). Thus, the first part is shown. Now from.(3 we
conclude that

abso(A)

(6.6) absz(2) = absa(=B7HA) = Ty

If we insertv; = —abso(B)z from (6.5) into (6.4), then we obtain
absy(A) — 2absy(B)2? 4 absy(B) (2?2 — %) = absy(A) — absy(B)absa(2) = 0,

and together with@.6) the second partybss(zg) = absa(z), follows. a
LEMMA 6.7. Letthe companion polynomighave a pair of complex conjugate roa@.
Then formula3.13) yields the same value farfor both root3z35.
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Proof. The formula forz depends only oft(zp) and onabss(zp), which are the same
for both rootsz3 . o

LEMMA 6.8. Let p be a given coquaternionic polynomial (sge4)), and letq be the
companion polynomial gf. Letz, € C be aroot ofy, let B(R(zy), absa(z0)) be nonsingular,
and letz be determined by formui@.13. Then,

(6.7) absg(A) = absy(Bz), R(ABz) = —absa(A).

Proof. The definition 8.13 of 2 implies thatBz = — A, which proves both parts.
a
THEOREM6.9. Letp be a given coquaternionic polynomial (sged)), and letq be the
companion polynomial gf, see(6.1), (6.2). Letz, € C be aroot ofy, let B(R(zp), abs2(z0))
be nonsingular, and let be determined by formulg.13. Then,

(6.8) p(2) p(2) = absy(p(2)) = 0.
If zo ¢ R, then
(6.9) p(z) = 0.

Proof. We have

p(2)p(2) = (A+ Bz)(A + Bz) = absy(A) + ABz + Bz A + absy(Bz)
= absg(A) + 2R(ABz) + absy(Bz).

Conditions 6.7) yield p(z) p(z) = 2absy(A) — 2absy(A) = 0, which proves §.8). In the
second case, Lemnta6is valid, and following 8.5), we find that

p(z) = A(R(z2),absa(z)) + B(R(z),absa(z))z
= A(R(z),absa(z))
+ B(R(2),abs2(2)) (—B(R(20), absa(20))) " A(R(20), absa(20))
= A(R(20), absa(29))
— B(R(20), absa(20))(B(R(20), absa(20))) "  A(R(20), absa(20))
=0,

which proves 6.9). a

The assumption in Lemm@6 that z, is not real is essential. Hy € R, then we have
equation 6.8). However, this does not exclude the case) = 0.

THEOREM6.10.Letp(z) = 0, wherep is defined in(1.4). Assume that

(6.10) A:=1[,nC#0.

Then there is &g € A with ¢(z9) = 0 andgq as in Definition6.1.

Proof. (a) Letz € R. ThenA = {z} andq(z) = p(z)p(z) = 0.
(b) Letz ¢ R andB(R(z), absa(z)) = 0 or B(R(z),absz(z))z = 0. Then

A(R(z),absz(z)) =0 andabsz(B(R(z),absz(z))) =0

according to Lemma&.4. Let z; € A. The companion polynomial in the representatiérsf
yieldsg(zo) = 0.
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(c) Letz ¢ R and B be nonsingular. In this case
p(z) = A(R(2),abss(2)) + B(R(2),absy(2))2 =0 andz = —B~'A,

omitting the arguments. The quadratic polynomialgdan the form ©.3) has real coefficients
and can be solved by standard techniques with the zero

R(BA) i

A1 =—
(6.11) o absa(B)  |absg

abso(AB) — (R(BA))2.
The radicand is positive i ¢ R. Equation 6.11) yields

R(z0) = _i(sf(?) — R(=).

We use 6.11) again, and sincey € C, we have

R(BA) )2 absy(AB) — (R(BA))?  absy(A)
)

absy(20) = |20|* = (absQ(B (absy(B))2 ~ absy(B)

Property 6.10 is governed by Lemma.2 a

The previous theorem tells us that we find all zerop @fy employing the companion
polynomial provided that the zero has a complex number ieqtsvalence class. Or in other
words, Theoren®.10says that all zeros of p with the propertyz2 — 23 — 27 > 0 can be
found by applying the companion polynomial, but all otheasrot be found. More precisely,
the assumption\ # () (see 6.10) is equivalent ta:3 = 23 — 23 — 23 > 0, which implies that
1+ coi € C, Wherecy := +4/23 — 23 — z3. Thus, the complex zeros gfcan be recovered
from the zeros op. If we have a look at Examplé.5, part (Ill), we see that all four square
roots./c given there do not satisfy conditiof.(0, whereas the two rootgc of part (IV) do
satisfy 6.10).

EXAMPLE 6.11. Let us treat the most trivial case
p(z) =z—-c, C= (61,62,03704)-

In terms of B.5), we havep(z) = A + Bz with A = —¢, B = 1. Both, A and B do not
depend orx € H.,,. The assumptions of Theorednd are met in this case singealways
has a zero. Formul&(13 yields the correct answer= c. Let us now apply the companion
polynomialg(z) = 2% —2¢; 2 +absa(c), the roots of which are; » = ¢ 4 +/—c3 + ¢2 + c2.
If we apply Theoren6.9, we also obtain the correct answer, however, independetiteof
rOOtSzl)g.

EXAMPLE 6.12. Let the quadratic coquaternionic polynomidde defined by the coef-
ficientscy = 1,¢; = (—15,6, —6,—25)/25, co = 1. Then, the companion polynomial

q(z) = 2* — (6/5)2° + (43/25)2* — (6/5)z + 1

has two pairs of complex conjugate roots,= a1 + b1i, 2 = ao £ boi. For the first pair,
we haveA; = (0,0,0,0),B; = (4/5,6/25,—6/25,—4/5), and for the second pair, we
have A, = (0,0,0,0), By = (—4/5,6/25,—6/25,—4/5). Both, By, B, are singular and
Theoremb.5applies.

Experiments with random integer coefficients for the coguaonic polynomial show
that cases wherB is singular are very rare.
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7. Application to the quadratic case. Let us treat the quadratic case
(7.1) p(z) == c22? + 12 + ¢, co, 2 # 0.
Equation 8.5) applied to {.1) yields
p(2) = co — absa(z)ca + (c1 + 2R(2)c2)z := A(absa(2)) + B(R(2))z.
The companion polynomial of p is (omitting the arguments of and B)
q(2) = abss(c2)2* + 2R(182)2° + (2R(coCz) + absa(cr))2?

+ 2R (coc1)z + absa(co)
= absy(A) + 2R(BA)z + absy(B)2?,

where the second equation is derived fr@h8)(. The appearance of the factgrat 22 in (7.1)
is only justified if absy(c2) = 0. In this caseg has degree< 3, and the formalism just
described has to be applied.

Let absy(c2) # 0. We may assume that = 1 and®(c;) = 0. The latter condition
can always be achieved by introducing the transformatien v — %. The transformed
quadratic polynomial in: has the property that the real part of the coefficient at theali
term is zero; see also Niveld ). Thus, if abs(c2) # 0, we can transform7.1) into the
simpler form

p(z) =2 +c1z+co, co#0,R(er) =0,

and if ¢; is real, we have; = 0, and in this case the complete solution is described in the
two Lemmasl.3, 1.4. Let¢; be nonreal. Then the above polynomjalpecializes to

(7.2) q(2) = 2* + (2R(co) + absa(c1)) 2% + 2R (coer) 2 + absa(co).

If ¢cg € R, then the linear term cancels and the rootsf ¢ defined in {.2) obey

1
22— B (—200 — absa(c1) + \/abSQ(Cl)(abSQ(Cl) + 460) ) .
For singulare; it follows thatz? = —cq. If ¢, ¢; are both nonreal, equatiof.p) has to be
further investigated by the given means.

8. Newton’s method for finding coquaternionic zeros and the dtermination of the
exact Jacobi matrix. Let p be the coquaternionic polynomial.@). Since the method of
using the companion polynomialto find zeros o is restricted to those zeros which share
a complex number in their equivalence class, we turn to tmepctation of the zeros qf
by Newton’s method in order to find the remaining zeros, if arist. Letp’(z,h) be the
(Fréechet-) derivative op. Theorem8.1 below describes how to find it. In short, Newton’s
method consists of solving the real, linédrx 4) system

col(p(zr)) + col(p'(zx, h)) = 0, Zk41 =2+ h, k=0,1,...,

for h, wherez is theinitial guessand wherecol is defined in 8.10. If J(z) is the Jacobi
matrix of the mapping : R* — R*, then

col(p'(z,h)) = J(2)col(h),



ETNA
Kent State University
http://etna.math.kent.edu

148 D. JANOVSKA AND G. OPFER

whereJ(z) is a real(4 x 4) matrix. How do we find it? We refer to a paper by Lauterbach
and Opfer L5].

THEOREM8.1. Letp be a given coquaternionic polynomial with coefficients . ., ¢,
for n > 1. Define

(8.1) Nj(zh) = Y Z*hat j>1, L(zh) =) ¢Ai(z,h),
k+e=j—1 j=1
k,£>0
whereL : Heoq — Heoq IS @ linear mapping oveR with respect toh. Its matrix representa-
tion is the Jacobi matrix o,

(8.2) J(2):= iMj(z) € R*™* where
j=1
(8.3) M;(z) := Z [col(272"), col(2¥12Y), col(2Fj21), col(zFk21)].

k4e=5—1
k,£>0

Proof. The quantity);(z, k) is the derivative o/, for j > 1. Itis a linear mapping
over R with respect toh since real numbers (and no others) commute with coquatesnio
Therefore the derivative qf is p’(z,h) = L(z,h). The identity 8.3) for M, (z) is equa-
tion (5.4) in [L1]. a

The right hand side oX; (z, k) is obtained by computing: + )’ and deleting all terms
which are not linear imh. The result is the derivative of/. To mention two examples,
Xa(z,h) = zh + hz, A3(z,h) = 22h + zhz + hz?. An application of the method just
described to the quaternionic algebraic Riccati equasdreated in10].

LEMMA 8.2.Letz,cj € Z* C Heoq, fOr j = 1,2,...,n. ThenJ(z) € Z**4,

Proof. The formula for computing the Jacobi matidXz) involves only additions and
multiplications of the data, c;, for j = 1,2, ..., n; see 8.1)—(8.3). a

The property given in Lemm@&.2 is not shared by the numerical version of the Jacobi
matrix which is columnwise computed by

p(z + aej) — p(z)

;i =1,234,a~10"",

wheree; € Heoq, 7 = 1,2,3,4, represent the four units d@.,, and« is a real number of
the order of the square root of the machine precision.

ExaMPLE 8.3. We take a cubic polynomialwith data from Examplé.0.3 Then, for
the starting value, = (0,0, 0,0), the Jacobi matrix is

2 -3 5 7
3 27 -5
Ho)=15 7 9 _3
7 -5 3 2

After six Newton steps we arrive at the zeravhich is listed in the third row of Tablé0.3
and which satisfie§p(z)|| = 1.8609 - 10~14, where||.|| is the Euclidean norm ii*.

9. The algorithms for finding zeros and singular points of cogaternionic polyno-
mials. The techniques to find zeros and singular points for the deguianic polynomiap
with the methods described in the foregoing sections is sanized by the following algo-
rithms.
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ALGORITHM 9.1. Algorithm | for finding zeros and singular points for cagernionic
polynomials by means of the companion polynomial.

1. Leteg, ey, ..., ¢, be the coquaternionic coefficients of the polynomial
2. Compute the real coefficientg, by, ..., bs, of the companion polynomiaj by
equation 6.2).

3. If the companion polynomial vanishes, all points R are singular points fop,
stop here, otherwise continue.
. Compute all (real and complex) rootsqfThere are at mo$n roots.
. Delete all complex roots with negative imaginary parte Temaining roots will be
denoted by, 7o, ..., 7, m < 2n.
6. Define an integer vectend (indicator) of lengthm and set all entries to zero.
for j=1tomdo

g b

7. Computed;, B; at the rootr; by using formulasg.3), (3.4), and @.5).

8. Computep; = —Aijf1 if B; is nonsingulargbs,(B;) # 0), otherwise put
p; = r; and identifyp; with a coquaternion.

9. Check whethep(p;) = 0; in this case seind(j) = 2 (p, is a zero ofp).

Otherwise, check whether; is a singular point fop (absz(p(p;)) = 0). In
this case seind(j) = 1.
end for j

REMARK 9.2. The result of Algorithm | is a vector of coquaternignsand an integer
vectorind;, j =1,2,...,m with

0 if p; is neither a zero gf nor a singular point fop,
ind; = {1 if p; is asingular point fop but not a zero op,
2 if p; is a zero ofp.

In the above algorithm we have not paid special attentioméocase when one of the zeros
of pisreal. In this case, a real double root appears in the sebts ofq. For the above algo-
rithm to work smoothly, one should use a so-cateérloading techniquevhich is available
in several programming systems. Overloading means thaglémentary arithmetic oper-
ations and functions can be extended to coquaternionsrgéipé standard notation such
as+, —,*, /. In particular, one needs a subprogram with which one caluaacoquater-
nionic polynomials at coquaternions. If the overloadinghteique has been implemented,
then polynomial evaluation can be done simply by the apfiineof Horner’s scheme. For
finding the roots of a real polynomial (such as the companiggrmial), standard pro-
grams are available. However, the standard program in MAlig\calledr oot s and it
suffers from a severe loss in accuracy if there are multipiés: A remedy is hinted irlf].

If one uses the overloading technique, typically, the diédinifor a vector of coquaternions
readsc(j) =coquaterniofic;1, ¢;2, ¢;j3,¢ja]), j = 1,2,. ..

ALGORITHM 9.3. Algorithm Il for finding zeros of coquaternionic polymals by
means of Newton’s method.

1. Leteg, ey, ..., ¢, be the coquaternionic coefficients of the polynomial
2. Define a listL of already known zeros gf, possibly empty at the beginning or filled
with zeros obtained from Algorithm I.
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3. Define a number of trialswo_trials, a maximal number of Newton iterations
max_Newton, and a stopping criterioarit_stop.
for j=1tono_trials do
4, Define an initial guess = z,, computey = p(z), andynorm = ||y||
(Euclidean norm). Set= 0.
whi | e ynorm > crit_stop and{ < max_Newton do

5. ¢ ={ + 1; execute one Newton step:= Newton(z).
Computey = p(z), ynorm = ||y||.
end while
6. If £ < max_Newton or ynorm < crit_stop, check whether the last com-
puted: is already contained in the lit. If not, add it toL.
end for j

REMARK 9.4. The result of this algorithm will be a ligt of zeros ofp, which in
general is not exhaustive. The starting value is—accordirtlge experience of the authors—
best selected by a random, integer choice, where the istapeuld be restricted to a small
interval, say to—5, 5]. It is possible (in rare cases) that the Jacobi matrix isudarg This
can be easily overcome by choosing a new initial guess.

10. Numerical examples.We present some examples of cubic coquaternionic poly-
nomials to show that the number of zeros and singular pomtspaited by the companion
polynomial and by Newton’s methods is rather unpredictaievertheless, there is some
pattern we would like to show. The examples are ordered wipect to the number of zeros
which one finds by using the companion polynomial. The cpwading zeros are printed in
color.

ExampLE 10.1 (no zeros). The cubic coquaternionic polynomiatlith coefficients
co = (2,-2,2,3), ¢; = (—4,-5,1,1), co = (=1,0,-5,—-1), ¢3 = (2,2,—1,0) hasno
zerossimilar to complex numbers and six singular points. Appyiewton’s method with
the exact Jacobi matrix yields the eight zeros listed indabl1 None of them is similar to
a complex number.

ExampLE 10.2 (one zero). The cubic coquaternionic polynomiatith coefficients
co=(1,-5,-2,0),¢c1 = (3,3,-2,4), co = (—4,—3,-5,2), c3 = (—3, —4, 1, —2) hasone
zerowhich is similar to a complex number, four singular pointsg @ix zeros computed by
Newton’s method, not similar to a complex number. The seeeoszare listed in Tabl&0.2

ExamMpPLE 10.3 (two zeros). The cubic coquaternionic polynomialith coefficients
co = (7,6,5,1), c1 = (2,3,5,7), ca = (4,-3,2,1), ¢3 = (1, 3,2,4) hastwo zeroswhich
are similar to a complex number, two singular points, and zere computed by Newton’s
method, listed in Tablé0.3

ExAaMPLE 10.4 (three zeros). The cubic coquaternionic polynomialth coefficients
co = (0,2,0,5), ¢; = (0,1,0,1), co = (=2,—4,4,1), c3 = (1,0,4,—2) hasthree zeros
which are similar to a complex number, no singular points.e Tiiree zeros are listed in
Table10.4. No zeros were found by applying Newton’s method (severalsand trials).

We made many more tests with coquaternionic polynomialsegieen > 3 which
attained the maximal number of zeros found by the companion polynomial. In all these
cases we did not find additional zeros computed by Newtonthoae This applies also to
Examplel.5, part (1V).

CONJECTURE10.5. Let p be a coquaternionic polynomial of degreewhich hasn
zeros which are similar to complex numbers. Then, there aradditional zeros not similar
to complex numbers.

Another observation is the following: if a coquaternionmymomial p has many zeros
which are not similar to complex numbers, then there are favlyzeros which are similar to
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complex numbers. This applies, in particular, to Exanipk part (lll). However, this is a
very vague statement, which needs more attention.

TABLE 10.1
Eight zeros of a cubic coquaternionic polynomiediefined in Exampl&0.1, all found by Newton’s method.

0.920792194877860, -0.477350655832754,  2.42845879G890 -1.654108298624764
2.450727144208431, 0.977395660928656, 0.3173017678454-1.652159929881599
0.038499359300800, -0.459455816622210, 0.517633403455 0.178975644511005
0.040708445821269, -0.839407205920705, -0.3289224F3K) 1.295950832229326
0.709019332932411, -0.294621664264792, -0.112477@P683  0.461335678870540
-0.448518057687961,  1.536978387850394, 2.034978402668 0.749577465189058
0.410896918015976, -0.063043960237222, 0.222327782840 0.635721599205228
-1.489226503509231, -0.051244615268034, 0.4221278208% -0.252540209891112

TABLE 10.2
Seven zeros of a cubic coquaternionic polynomialefined in Examplé.0.2 the last six found by Newton'’s
method.

-0.084025738354299,  1.111175126311441, -0.574783888@  0.584853095346396
-1.280365616247547,  0.020877114875100, 0.503907308375 2.157051290547817
-0.285608645398092,  1.407387895553819, 1.602481968888 -0.292825912129321

0.734696869093826, -0.802514241229524, -0.73950783547 0.370330803674946
-1.480332927529147, -0.481980935905488, 0.94515815321  1.843761755812835
-2.300671130739401, 0.360373154160493, -0.067402Z7014  1.246070549138632
-0.085641334116581, 3.501590113862619, 3.63986969B898 0.231312656003601

TABLE 10.3
Three zeros of a cubic coquaternionic polynomiaf Examplel0.3 the last one found by Newton’s method.

-1.618852521797113,  6.463899263531390, 2.829324925355 5.651970856832540
0.418326476405790, -1.691555573954496, 0.998887538357 0.395365114055260
-0.099473954608707, -1.081012068817781, -0.78223TB&¥?, -1.127180514797187

TABLE 10.4
Three zeros of a cubic coquaternionic polynomiatiefined in Exampl&0.4all found by using the companion
polynomial.

-1.466507448592167,  1.324915491617470, 1.1232238B3260 -0.564677198394439
0.781247091809576, 0.634161128551769, -0.200695586235 0.065867128807512
-0.156844906375301, -2.299180524759707, 1.30407287445 -1.766122605663109

11. On the number of zeros and singular points.We have already seen that coquater-
nionic polynomials may have no zeros; see Coroltagy On the other hand there is a max-
imum number of zeros which contain complex numbers in theesponding equivalence
class.

THEOREM 11.1. A coquaternionic polynomigl of degreen > 1 has at most. zeros
in equivalence classes which contain complex numbers. Gimbarn will be attained if all
roots of the companion polynomiglare either pairs of complex conjugate numbers or pairs
of real numbers and the corresponding quantitiegre nonsingular.

Proof. Let the companion polynomiglhave degred < 2n. It may have2m, < d real
double rootsms < d complex roots, andng < d real single roots. The total number of
roots is2my + 2ms + m3 = d. Only the real double roots and the complex roots may lead to
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a zero ofp. Thus,m; + mq = (d — m3)/2 < n is the maximum number of zeros pf The
maximum number is attaineddf= 2n andms = 0. O

THEOREM 11.2.Letp be a coquaternionic polynomial of degreeand let the compan-
ion polynomialg have degred < 2n. If n, is the number of zeros pfandn; is the number
of singular points forp not identical with those zeros and where both zeros and &ngu
points are computed from the rootsg@fthen2n, + n, < d. In particular, ns < 2n, which
means that there are at ma&t singular points forp that are different from zeros g@f and
which are computed by means of the companion polynamial

Proof. Singular points fop are derived from single, real roots @f See Theorens.9.

]

Our experiments led us to the following conjecture.

CONJECTURE11.3. All coquaternionic polynomialg (defined in(1.4)) which do not
reduce to a constant have singular points.

Sincep(0) = ¢o the conjecture is true ify is singular. Let, be nonsingular. In this case
a proof could consist of showing that there is & H.. such that

(11.1) absa (p(0))absa(p(z)) = absa(cg)absa(p(z)) < 0.

In our tests we always found a very simpleuch that {1.1) was valid. It was sufficient to
choose either one of the four unit vectors (possibly muéigbby 2) forz or one of the square
roots ofz = 0 (see Examplé..1).

This conjecture (if true) could be called the “Weak Fundataenheorem of Algebra”
for coquaternions.

12. Extension to algebras inR*. If we go from the algebra of coquaternions to other
algebras ifR*, we observe many similarities with the coquaternionic cadee algebras to
be considered are given in Taldlg.1 The full multiplication table of the eight listed algebras
can be obtained by multiplying the last three columns in &@dlal.1 by j, k, i, respectively.
The table is obtained by allowing all eight combinationsighs=+1 for the square#, j2, k>
and keeping the produé} = k the same for all algebras. The names given to the algebras
with numbers 2 to 4 are from Cockle, 1849,[the names for the algebras 5 to 8 are from
Schmeikal, 201471], who also establishes the connection to Clifford algelmdss paper.
In a first draft, these algebras were called New Algebra 1 to Wigebra 4 by the present
authors.

The first mentioned algebra, the algebra of quaternionss paek to Hamilton, 1843.
The problem of finding zeros of unilateral and bilateral paignials in quaternionic variables
has been treated by the authors alreadyLi) 13].

The 8 algebras separate into 4 noncommutative ones, nahnaesky tvith numbers 1,2,5,6,
and into four commutative ones, those with numbers 3,4\W@note that the center of all 8
algebras is or contair®, which means that the real numbers commute with all members o
all algebras. In all eight cases we define the conjugate ofgabeaic element as in (L.2).

LEMMA 12.1. Let A be one of the four noncommutative algebras of Taldlel (num-
ber 1, 2,5, or 6) and: € .A. Then the productconj(a) = conj(a)a is real and

(12.1) al= M if conj(a)a # 0.
conj(a)a
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Proof. Asin (1.2) we putabss(a) := conj(a)a, and by applying the multiplication rules,
we obtain
a? +a3 +a3 + a3 for quaternions,
a? +a3 —a3 —a3 for coquaternions,
at — a3 +a3 —a? for nectarines,

a? — a3 —a3 +a% for conectarines.

(12.2) absa(a) =

Equation (2.1) follows by multiplying from the left or right bya and from the fact that
conj(a)a is real. 0

TABLE 12.1
EightR* algebras with multiplication rules.

No | Name of algebra Shortname i2 j> k? ij jk ki
1 | Quaternions H -1 -1 -1 k i j
2 | Coquaternions  Heoq -1 1 1 k -—i j
3 | Tessarines H s -1 1 -1 k i —j
4 | Cotessarines Heotes 1 1 1 k i j
5 | Nectarines Hyee 1 -1 1 k i —j
6 | Conectarines Heon 1 1 -1 k —i —j
7 | Tangerines Hian 1 -1 -1 k -i j
8 | Cotangerines Heotan -1 -1 1 k —-i —j

Itis clear that all 8 algebras contafas a subalgebra by defining the set of elements of
the forma = (a4,0,0,0),a; € R. However, this is not in general true for the figld

LEMMA 12.2. The cotessarinell...s (algebra number 4) do not contain the field of
complex number€ as a subalgebra. Let = (z,y) € C. Then,C is a subalgebra of one of
the remaining seven algebrasif A is reduced to the following form:

(z,v,0,0) for A = quaternions, or
(z,0,y,0) for A= quaternions, or
(2,0,0,y) for A = quaternions
(z,9,0,0) for A= coquaternions
(z,9,0,0) for A= tessarines, ar

(12.3) p= (my) > (2,0,0,y) for A =tessarines
(z,0,y,0) for A= nectarines
(2,0,0,y) for A= conectarines
(z,0,y,0) for A =tangerines or
(z,0,0,y) for A= tangerines
(z,9,0,0) for A= cotangerines ar
(2,0,,0)

for A = cotangerines

Proof. We set the imaginary payt of z at the positions where the squaiésj?, k? in
Table12.1are equal to-1. However, there is not such a position in the case of cotieesar
d
Thus, in the noncommutative algebras coquaternions, meesa and conectarines, the
complex numbers have the form= = + iy, z = = + jy, 2= = x + ky, respectively. In the
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guaternionic case, a complex number may have one of these filmms. The real numbers
x,y are again calledeal partandimaginary partof the complex numbet.

The task of finding zeros (or singular points) of polynomjaldefined with coefficients
from one of the honcommutative algebras (numbg, 5, 6) can now be achieved as de-
scribed for coquaternions. The complex solutions of the ganmon polynomial must be
inserted in the corresponding algebra according to the gileen in (2.3.

The fact that (quasi-) similarity classes may not contaimglex numbers is prevalent in
all noncommutative algebras apart from quaternions; coenpeorent.10and Lemma3.2

LEMMA 12.3. Let A be one of the noncommutative algebras andg C with real
part a; and imaginary part,. In order thatb = (by, by, b, by) € A is quasi-similar toa, it
is necessary and sufficient that = b, and

+b2 + b2 + b2 for quaternions
+b3 — b2 — b3 for coquaternion

2
Ao =
27 ) b2+ b2 — b2 for nectarines
—b3 — b3 + b7 for conectarines
Proof. Follows from (L2.2). 0

For the commutative cases, the companion polynomial is etitdefined since in these
casesonj(a)a is not real. In addition, in commutative algebras all simijaclasses shrink
to one point. The commutative cases are treated in a subsespaion.

Leta € A, and.A one of the eight algebras, whete= (a, b, ¢, d). Since the mapping
l: A— Adefined by

l(z) =az,z e A
is linear inz (overR), there must be a matrixI € R***, depending o, such that
(12.4) col(l(x)) = Mcol(z).
We will denote the four unit standard vectors again as
e1:=1:=(1,0,0,0), e :=i:= (0,1,0,0),e3 := j := (0,0,1,0), ¢4 := k := (0,0,0,1).
By puttingz = ¢;,5 = 1,2, 3,4, in (12.4) we obtain thej-th column ofM, such that
M := [col(aeq ), col(cves), col(aes), col(cvey)],

and these eight matrices are given in Tat#e2using the notatiom: A — R**4,

The inverses of elements of the noncommutative algebrasiogly be computed by
equation {2.1). The inverses of elements in one of the four commutativelalas can be
computed by rules given in Tabl€.3 The computations were facilitated by usimgp! e.

The determinant of H...s) factors into the form

det(I(Heotes)) = (a1 +as—az—aa)(a1 —az—az+as)(a1+as+az+as) (a1 —as+az—aq),
such thatdet(1(Heotes)) = 0 if and only if jay + as| = |asz + a4| OF |a; — az| = |az — ay4].

Since all other determinants have the fodet = 22 — 432, they also factor into the form
det = (z — 2y)(z + 2y), where the meaning af, y has to be read from Tablk2.3
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TABLE 12.2
Representations of the above eight algebra@rr 4.

a —b —c —d a —b ¢ d
b a —d c b a d —c
1(H) = c d a —bl° (Heoq) = c d a —b |’
| d —c b a | | d —c b a
[a —b ¢ —d]] fa b ¢ d]
b a d c b a d c
1(Htes) = ¢ —d a —b s I(Hcotes) = c d a b 5
| d c b a | L d ¢ b a |
[ a b —c d] fa b ¢ —d
b a —d c¢ b a d —c
1(Haee) = c d a b |’ 1(Heon) = c —d a b |’
| d —c b a | Ld —c b a |
f[a b —c —d] fa =b —c d]
b a —d -—c b a —d —c
1(Hean) = c d a b |’ 1(Heotan) = ¢c —d a —b
| d c b a ld ¢ b a
TABLE 12.3

Rules for computing the inverses! = b/ det = (b1, by, b3, bs)/det of a = (a1, a2, as,as) € Ainthe
four commutative algebragd.

o | Algebra| a=! = (b1, ba, bs, bs)/ det
3 Htes det - (a% + a% + CL% + 02)2 - 4(0’10‘3 + a2a4)2
bi= ai( a}+a3—d3+a?) —2aaza4
by = —az( a? + a3+ a3 —a?) + 2a1a3a4
(
(

by = as(—a? + a3+ a3+ a}) — 2a1aza4
by = —ay( a? — a3+ a3 + a?) + 2a1aza3

4 | Heotes | det = (a2 + a% —a? —a2)? — 4(araz — azay)?
b1 = aq( al - a% - a% —a?) + 2azazay
by = as(—a? + a2 — a3 —a?) + 2ajazay
bz = az(—a? — a2 + a3 —a?) + 2ajazay

)

by = as(—a} — a3 — a3 + a3) + 2a1a2a3

7 | Hian det = (a? + a2 + a3 + a4) — 4(aras + azaq)?
by = ai( al — a2 + a3 + a4) — 2asasay
by = as(—a?+ a2 + a3 + a4 — 2aqasay
bs = —a3( al + a2 + a3 - a4 + 2a1a2a4
by = —ay( a?+ a3 — a3 + a?) + 2a1aza3

b= ai( a1+a2+a3—a4 + 2aga3a4
by = —az( a? + a2 — a3 + a4 — 2a1a3a4
( a% - a2 + a3 + a4 — 2aja9a4

—a? + a3 + a3 + a?) + 2a1aza3

b3 = —as
by = ay

1)
1)
1)
8 Heotan det = (al + a2 + a3 + (14) - 4(&10,4 — a2a3)2
i)
1)
7)
1)
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In (2.1) we have already seen, that the algebra of coquaterniosaisirphic to the alge-
bra of all real2 x 2 matrices. This is also true for the algebra of nectarinescanéctarines,
though the representation differs as follows (using4d — R2*?):

A a—d b+4c R a—c b+d
(12.5) '(Hnec):[bc aer}’ '(H”“):[bd a+c}

This can be verified by putting = (a,b,¢,d) = ¢;, j = 1,2, 3,4, and checking the multi-
plication rules of Table.2.1

The noncommutative algebras numi2eb, 6 (coquaternions, nectarines, conectarines)
are all isomorphic to the set of realx 2 matricesR?*? with representations given i (1),
(12.5. Thus, it is sufficient to study one of these algebras in oistudyR?*2,

12.1. Polynomials with coefficients from commutative algetas. A polynomial p
with coefficients from a commutative algeh#dgalways has the formil(4). We are interested
in finding the zeros of a givep and their number for the commutative algebras presented in
this section. This will be called theolynomial problemWe show that the three commutative
algebrastcs, Hian, Heotan are isomorphic and recall a result of 1891 by Se@fd, [which
settles the polynomial problem for the three mentionedmatge

LEMMA 12.4.The three algebraBl;es, Hiay, Heotan are isomorphic.

Proof. Leta = (a1,as,a3,a4) € R* and define two mappings, &= exchangeg,
e = exchangg : R* — R* by e (a) = (a1,a3,a2,a4), &(a) = (a1,a4,—as,as).
Note, that the two mappings are bijective Witple: e;,j = 1,2. Besidesu € R, let
b= (bl, ba, b3, b4) € R%,

(A) In Hyes let ¢ = ab. Then, inH,, we havec = e;(e;(a)e;(b)). Or, in an equivalent
formulation, g (ab) = e, (a)e; (b). Thus,H;.s andHy,, are isomorphic.
(B) In Hy.y lete = ab. Then, inHota, We haver = ex(ex(a)ex (). Thus,Hi,,, andHeotan
are isomorphic.
This implies that all three algebras are pairwise isomarphi
(C) In Hies let ¢ = ab. Then inHeotan We havee = ey (e;(e(e1(a)) ex(er (b)) ). O

Segre P7] introduced in his papebicomplex humbergnumeri bicomplesyiand used
a definition (on p. 456) which is identical with the definitiohthe algebrd oi., (num-
ber 8 in Table12.1) of this papet. In all eight algebras we havig = k. Therefore,
a = (a1, az2,as3,a4) can be expressed in the form

(12.6) a=2x+7yj, x=a+asi, y=az+ a4,

and inHes, Heoran We havei? = —1 such thatz, y are complex numbers in the usual sense.
Thedirect sumC @ C is the set of pair$z, y) of complex numbers with the standard vector
space operations and a new multiplication

a2.7) (z,y) * (u,v) := (zu,yv), x,y,u,v € C,

wherexu, yv are the standard products of complex nhumbers.

THEOREM12.5.The direct sun€ @ C with the multiplication rulg12.7) is isomorphic
Wlth Htesv Htana Hcotan .

Proof. Leta, b € Hiqs With the representations= = + yj, b = v+ vj; see (2.6). Then,

ab = zu + yv + (xv + yu)j.

25ee alstt t p: // en. wi ki pedi a. or g/ wi ki / Bi conpl ex_nunber .
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Define the mapping
(12.8) A:Hies - CaC by Az +yj) = (x +y,x — ).

The inversed—! exists for all

—~

r,s) e CeCand

z+yj=A"'(rs) = ([7“1+51+(7“2+52)i} + [7"1 —S1+(7“2—52)i]j>-

N =

Thus, A is bijective. We have to show thatt(ab) = A(a) x A(b). Now,

A(adb) = (zu + yv + (xv + yu), zu + yv — (zv + yu))
= Ala) x A(b) = ((z +y)(u+), (x —y)(u—v)).

The remaining part of the proof follows from Lemma.4. 0

COROLLARY 12.6. The number of zeros of a polynomial of degreen in
Hies, Hean, Heotan iS at most? and at least one.

Proof. Letp(z) = > ,_,ar * 2* be a polynomial inC & C and leta, = (bs,c,)
andz = (u,v). Then,p(z) = > _;_,(be,ce) * (uf,v*) = (0,0) splits into two complex
polynomialsp; (u) = Y ;_,beu’ = 0,p2(v) = S,_,cov® = 0. If the zeros ofp; are
Uy, uz, ..., u, and those ofp, are vy,vs,...,v,, then the zeros ofp are (u,,vs),
r,s =1,2,...,n. Because of the isomorphism betwe@mp C andHes, Hyan, Heotan, the
statement of the theorem follows. [

For examples of zeros of polynomialslify,.,, see [L9g].
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