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Abstract. We give a new proof of an equality of certain max-min and min-max approximation problems in-
volving normal matrices. The previously published proofs of this equality apply tools from matrix theory, (analytic)
optimization theory, and constrained convex optimization. Our proof uses a classical characterization theorem from
approximation theory and thus exploits the link between the two approximation problems with normal matrices on
the one hand and approximation problems on compact sets in the complex plane on the other.
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1. Introduction. Let A be a real or complex square matrix, i.e.,A ∈ F
n×n with

F = R or F = C. Suppose thatf and ϕ1, . . . , ϕk are given (scalar) functions so
that f(A) ∈ F

n×n and ϕ1(A), . . . , ϕk(A) ∈ F
n×n are well defined matrix functions in

the sense of [9, Definition 1.2]. (In the caseF = R, this requires a subtle assumption
which is explicitly stated in (2.4) below.) LetPk(F) denote the linear span of the func-
tionsϕ1, . . . , ϕk with coefficients inF so that in particularp(A) ∈ F

n×n for each linear
combinationp = α1ϕ1 + · · ·+ αkϕk ∈ Pk(F).

With this notation, the optimality property of many useful methods of numerical linear
algebra can be formulated as an approximation problem of theform

(1.1) min
p∈Pk(F)

‖f(A)v − p(A)v‖,

wherev ∈ F
n is a given vector and‖ · ‖ denotes the Euclidean norm onFn. In (1.1) we seek

a best approximation (with respect to the given norm) of the vectorf(A)v ∈ F
n from the

subspace ofFn spanned by the vectorsϕ1(A)v, . . . , ϕk(A)v. An example of such a method
is the GMRES method [15] for solving the linear algebraic problemAx = b with A ∈ F

n×n,
b ∈ F

n, and the initial guessx0 ∈ F
n. Its optimality property is of the form (1.1) with

f(z) = 1, ϕi(z) = zi, for i = 1, . . . , k, andv = b−Ax0.
If the given vectorv has unit norm, which usually can be assumed without loss of gener-

ality, then an upper bound on (1.1) is given by

(1.2) min
p∈Pk(F)

‖f(A)− p(A)‖,

where‖ · ‖ denotes the matrix norm associated with the Euclidean vector norm, i.e., the
matrix 2-norm or spectral norm onFn×n. In (1.2) we seek a best approximation (with respect
to the given norm) of the matrixf(A) ∈ F

n×n from the subspace ofFn×n spanned by the

∗Received October 22, 2013. Accepted April 14, 2014. Published online on July 4, 2014. Recommended by
R. Freund. The work of the second author was supported by the Grant Agency of the Czech Republic under grant
No. P201/13-06684 S and by the project M100301201 of the institutional support of the Academy of Sciences of
the Czech Republic.

†Institute of Mathematics, Technical University of Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany
(liesen@math.tu-berlin.de).

‡Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věží 2, 18207
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matricesϕ1(A), . . . , ϕk(A). An example of this type is the Chebyshev matrix approximation
problem withA ∈ F

n×n, f(z) = zk, andϕi(z) = zi−1, i = 1, . . . , k. This problem was
introduced in [8] and later studied, for example, in [3] and [17].

In order to analyse how close the upper bound (1.2) can possibly be to the quantity (1.1),
one can maximize (1.1) over all unit norm vectorsv ∈ F

n and investigate the sharpness of
the inequality

max
v∈Fn

‖v‖=1

min
p∈Pk(F)

‖f(A)v − p(A)v‖ ≤ min
p∈Pk(F)

‖f(A)− p(A)‖(1.3)

= min
p∈Pk(F)

max
v∈Fn

‖v‖=1

‖f(A)v − p(A)v‖.

From analyses of the GMRES method it is known that the inequality (1.3) can be strict. For
example, certain nonnormal matricesA ∈ R

4×4 were constructed in [2, 16] for which (1.3)
is strict with k = 3, f(z) = 1, andϕi(z) = zi, i = 1, 2, 3. More recently, nonnormal
matricesA ∈ R

2n×2n, n ≥ 2, were derived in [4] for which the inequality (1.3) is strict for
all k = 3, . . . , 2n− 1, f(z) = 1, andϕi(z) = zi, i = 1, . . . , k.

On the other hand, the following result is well known.
THEOREM 1.1. Under the assumptions made in the first paragraph of the introduction,

if A ∈ F
n×n is normal, then equality holds in (1.3).

At least three different proofs of this theorem or variants of it can be found in the litera-
ture. Greenbaum and Gurvits proved it forF = R using mostly methods from matrix theory;
see [7, Section 2] as well as Section3 below for their formulation of the result. Using (ana-
lytic) methods of optimization theory, Joubert proved the equality for the case of the GMRES
method withf(z) = 1, ϕi(z) = zi, i = 1, . . . , k, and he distinguished the casesF = R and
F = C; see [11, Theorem 4]. Finally, Bellalij, Saad, and Sadok also considered the GMRES
case withF = C, and they applied methods from constrained convex optimization; see [1,
Theorem 2.1].

In this paper we present yet another proof of Theorem1.1, which is rather simple because
it fully exploits the link between matrix approximation problems for normal matrices and
scalar approximation problems in the complex plane. We observe that when formulating the
matrix approximation problems in (1.3) in terms of scalar approximation problems, the proof
of Theorem1.1 reduces to a straightforward application of a well-known characterization
theorem of polynomials of best approximation in the complexplane. While the proof of the
theorem forF = C can be accomplished in just a few lines, the caseF = R contains some
technical details that require additional attention.

The characterization theorem from approximation theory weuse in this paper and some
of its variants have been stated and applied also in other publications in this context, in par-
ticular in [1, Theorem 5.1]. To our knowledge the theorem has, however, not been used to
give a simple and direct proof of Theorem1.1.

Personal note.We have written this paper in memory of our colleague Bernd Fischer,
who passed away on July 15, 2013. Bernd’s achievements in theanalysis of iterative methods
for linear algebraic systems using results of approximation theory, including his nowadays
classical monograph [5], continue to inspire us in our own work. One of Bernd’s last pub-
lications in this area (before following other scientific interests), written jointly with Franz
Peherstorfer (1950–2009) and published in 2001 in ETNA [6], is also based on a variant of
the characterization theorem that we apply in this paper.

2. Characterization theorem and proof of Theorem1.1. In order to formulate the
characterization theorem of best approximation in the complex plane, we follow the treatment
of Rivlin and Shapiro [14] that has been summarized in Lorentz’ book [13, Chapter 2].
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Let Γ be a compact subset ofF, where eitherF = R or F = C, and letC(Γ) denote the
set of continuous functions onΓ. If Γ consists of finitely many single points (which is the
case of interest in this paper), theng ∈ C(Γ) means that the functiong has a well defined
(finite) value at each point ofΓ. Forg ∈ C(Γ) we denote the maximum norm onΓ by

‖g‖Γ ≡ max
z∈Γ

|g(z)|.

Now let f ∈ C(Γ) andϕ1, . . . , ϕk ∈ C(Γ) be given functions with values inF. As
above, letPk(F) denote the linear span of the functionsϕ1, . . . , ϕk with coefficients inF.
Forp ∈ Pk(F), define

Γ(p) ≡ {z ∈ Γ : |f(z)− p(z)| = ‖f − p‖Γ}.

A functionp∗ = α1ϕ1 + · · ·+αkϕk ∈ Pk(F) is called apolynomial of best approxima-
tion for f onΓ when

(2.1) ‖f − p∗‖Γ = min
p∈Pk(F)

‖f − p‖Γ.

Under the given assumptions, such a polynomial of best approximation exists; see, e.g., [13,
Theorem 1, p. 17]. The following well known result (see, e.g., [13, Theorem 3, p. 22] or [14,
pp. 672-674]) characterizes the polynomials of best approximation.

THEOREM 2.1. In the notation established above, the following two statements are
equivalent:

1. The functionp∗ ∈ Pk(F) is a polynomial of best approximation forf onΓ.
2. For the functionp∗ ∈ Pk(F) there existℓ pairwise distinct pointsµi ∈ Γ(p∗),

i = 1, . . . , ℓ, where1 ≤ ℓ ≤ k + 1 for F = R and1 ≤ ℓ ≤ 2k + 1 for F = C, andℓ
real numbersω1, . . . , ωℓ > 0 with ω1 + · · ·+ ωℓ = 1, such that

(2.2)
ℓ∑

j=1

ωj [f(µj)− p∗(µj)]p(µj) = 0, for all p ∈ Pk(F).

A well known geometric interpretation of the condition (2.2) is that the origin is con-
tained in the convex hull of the points

{(
[f(µ)− p∗(µ)]ϕ1(µ), . . . , [f(µ)− p∗(µ)]ϕk(µ)

)
∈ F

k : µ ∈ Γ(p∗)
}
;

see, e.g., [13, Equation (5), p. 21]. Here we will not use this interpretation but rewrite (2.2)
in terms of an algebraic orthogonality condition involvingvectors and matrices. Using that
condition we will be able to prove Theorem1.1in a straightforward way. We will distinguish
the cases of complex and real normal matrices because the real case contains some subtleties.

2.1. Proof of Theorem1.1 for F = C. Let A ∈ C
n×n be normal. ThenA is unitarily

diagonalizable,A = QΛQH with Λ = diag(λ1, . . . , λn) andQQH = QHQ = In. In
the notation established above, letΓ = {λ1, . . . , λn} and suppose thatp∗ ∈ Pk(C) is a
polynomial of best approximation forf onΓ so that statement 2 from Theorem2.1 applies
to p∗. With this setting, the matrix approximation problem (1.2) can be seen as the scalar best
approximation problem (2.1), i.e.,

min
p∈Pk(C)

‖f(A)− p(A)‖ = min
p∈Pk(C)

‖f(Λ)− p(Λ)‖ = min
p∈Pk(C)

‖f − p‖Γ .
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Without loss of generality, we may assume that the eigenvalues ofA are ordered so that
λj = µj for j = 1, . . . , ℓ. We denote

δ ≡ ‖f − p∗‖Γ = |f(λj)− p∗(λj)|, j = 1, . . . , ℓ.

Next, we define the vector

(2.3) v∗ ≡ Qξ, where ξ ≡ [ξ1, . . . , ξℓ, 0, . . . , 0]
T ∈ C

n, ξj ≡
√
ωj , j = 1, . . . , ℓ.

SinceQ is unitary andω1 + · · ·+ ωℓ = 1, we have‖v∗‖ = 1.
The condition (2.2) can be written as

0 =

ℓ∑

j=1

|ξj |2p(λj) [f(λj)− p∗(λj)] = ξHp(Λ)H [f(Λ)− p∗(Λ)] ξ

= vH∗ p(A)H [f(A)− p∗(A)] v∗ , for all p ∈ Pk(C),

or, equivalently,

f(A)v∗ − p∗(A)v∗ ⊥ p(A)v∗ , for all p ∈ Pk(C).

It is well known that this algebraic orthogonality condition with respect to the Euclidean inner
product is equivalent to the optimality condition

‖f(A)v∗ − p∗(A)v∗‖ = min
p∈Pk(C)

‖f(A)v∗ − p(A)v∗‖;

see, e.g., [12, Theorem 2.3.2].
Using the previous relations we now obtain

min
p∈Pk(C)

‖f(A)− p(A)‖ = δ =




ℓ∑

j=1

|ξj |2δ2



1/2

=




ℓ∑

j=1

|ξj |2 |f(λj)− p∗(λj)|2



1/2

= ‖ [f(Λ)− p∗(Λ)] ξ‖
= ‖Q [f(Λ)− p∗(Λ)]Q

HQξ‖
= ‖f(A)v∗ − p∗(A)v∗‖
= min

p∈Pk(C)
‖f(A)v∗ − p(A)v∗‖

≤ max
v∈Cn

‖v‖=1

min
p∈Pk(C)

‖f(A)v − p(A)v‖.

This is just the reverse of the inequality (1.3) for F = C, and hence the proof of Theorem1.1
for F = C is complete.

2.2. Proof of Theorem1.1 for F = R. If A ∈ R
n×n is symmetric, then we can

write A = QΛQT with a real diagonal matrixΛ and a real orthogonal matrixQ. The proof
presented in the previous section also works in this case. Inparticular, for a real matrixQ, the
vectorv∗ = Qξ constructed in (2.3) is real, and for a real matrixA, the maximization in (1.3)
is performed overv ∈ R

n.
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From now on we consider a general normal matrixA ∈ R
n×n. In the spectral decompo-

sitionA = QΛQH , the diagonal matrixΛ = diag(λ1, . . . , λn) and the unitary matrixQ are
in general complex. Since this would lead to a complex vectorv∗ = Qξ in (2.3), the previous
proof requires some modifications.

As above, letΓ = {λ1, . . . , λn}. SinceA is real, the setΓ may contain non-real points
(appearing in complex conjugate pairs), and thus we must allow complex-valued functions
f ∈ C(Γ) andϕ1, . . . , ϕk ∈ C(Γ). This means that we must work with Theorem2.1
for F = C, althoughA is real. However, we will assume that for each eigenvalueλj of A the
given functionsf andϕ1, . . . , ϕk satisfy

(2.4) f(λj) = f(λj) and ϕi(λj) = ϕi(λj), i = 1, . . . , k.

This is a natural assumption for real matricesA since it guarantees that the matricesf(A) and
ϕ1(A), . . . , ϕk(A) are real as well; see [9, Remark 1.9] (for analytic functions it is actually a
necessary and sufficient condition; see [9, Theorem 1.18]).

Now let q∗ =
∑k

i=1 αiϕi ∈ Pk(C) be a polynomial of best approximation forf onΓ.
Then, for any eigenvalueλj of A,

∣∣f(λj)−
k∑

i=1

αiϕi(λj)
∣∣ =

∣∣f(λj)−
k∑

i=1

αiϕi(λj)
∣∣ =

∣∣f(λj)−
k∑

i=1

αiϕi(λj)
∣∣.

Since bothλj andλj are elements ofΓ, we see that alsoq∗ ≡
∑k

i=1 αiϕi is a polynomial of
best approximation forf onΓ. Denote

δ ≡ ‖f − q∗‖Γ = ‖f − q∗‖Γ ,

then for any0 ≤ α ≤ 1 we obtain

δ ≤ ‖f − αq∗ − (1− α)q∗‖Γ = ‖α(f − q∗) + (1− α)(f − q∗)‖Γ
≤ α ‖f − q∗‖Γ + (1− α) ‖f − q∗‖Γ = δ,

which shows that any polynomial of the formαq∗+(1−α)q∗, 0 ≤ α ≤ 1, is also a polynomial
of best approximation forf onΓ. In particular, forα = 1

2 we obtain thereal polynomial of
best approximation

p∗ ≡ 1

2
(q∗ + q∗) ∈ Pk(R).

Usingp∗ ∈ Pk(R) and (2.4) we get

|f(z)− p∗(z)| = |f(z)− p∗(z)| = |f(z)− p∗(z)|, for all z ∈ Γ.

Therefore, the setΓ(p∗) of all pointsz which satisfy|f(z)−p∗(z)| = ‖f−p∗‖Γ is symmetric
with respect to the real axis, i.e.,z ∈ Γ(p∗) if and only if z ∈ Γ(p∗).

For simplicity of notation we denote

ζp(z) ≡ [f(z)− p∗(z)]p(z).

In the definition ofζp(z)we indicate only its dependence onp andz sincef is a given function
andp∗ is fixed. If p ∈ Pk(R), then the corresponding functionζp(z) satisfiesζp(z) = ζp(z)
for all z ∈ Γ.
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Now, Theorem2.1(with F = C) implies the existence of a set

G∗ ≡ {µ1, . . . , µℓ} ⊆ Γ(p∗) ⊆ Γ,

and the existence of positive real numbersω1, . . . , ωℓ with
∑ℓ

j=1 ωj = 1 such that

(2.5)
ℓ∑

j=1

ωj ζp(µj) = 0, for all p ∈ Pk(R),

where we have used thatPk(R) ⊂ Pk(C). To define a convenient real vectorv∗ similar to
the construction leading to (2.3), we will “symmetrize” the condition (2.5) with respect to the
real axis.

Taking complex conjugates in (2.5) and using thatζp(z) = ζp(z) for any z ∈ Γ, we
obtain another relation of the form

ℓ∑

j=1

ωj ζp(µj) = 0, for all p ∈ Pk(R),

and therefore

(2.6)
1

2

ℓ∑

j=1

ωj ζp(µj) +
1

2

ℓ∑

j=1

ωj ζp(µj) = 0, for all p ∈ Pk(R).

Here (2.6) is the desired “symmetrized” condition. We now define the set

Gsym
∗ ≡ {θ1, . . . , θm} ≡ G∗ ∪G∗,

where eachθi ∈ Gsym
∗ corresponds to someµj or µj , and clearlyℓ ≤ m ≤ 2ℓ. (The exact

value ofm is unimportant for our construction.) Writing the condition(2.6) as a single sum
over all points fromGsym

∗ , we get

(2.7)
m∑

i=1

ω̃i ζp(θi) = 0, for all p ∈ Pk(R),

where the coefficients̃ωi are defined as follows.
If µj ∈ R, thenζp(µj) appears in both sums in (2.6) with the same coefficientωj/2.

Sinceθi = µj ∈ R, the termζp(θi) appears in (2.7) with the coefficient̃ωi = ωj .
If µj /∈ R andµj /∈ G∗, thenζp(µj) appears only in the left sum in (2.6) with the

coefficientωj/2. Therefore, the termζp(µj) corresponds to a single termζp(θi) in (2.7)
with the coefficientω̃i = ωj/2. Similarly, ζp(µj) appears only in the right sum in (2.6)
with the coefficientωj/2, and it corresponds to a single term, sayζp(θs), in (2.7) with the
coefficientω̃s = ωj/2.

If µj /∈ R andµj ∈ G∗, thenµj = µs for some indexs 6= j, 1 ≤ s ≤ ℓ. Therefore,
the termζp(µj) appears in both sums in (2.6), in the left sum with the coefficientωj/2 and in
the right sum with the coefficientωs/2. Hence,ζp(µj) corresponds to a single termζp(θi) in
(2.7) with the coefficient̃ωi = ωj/2+ωs/2. Similarly,ζp(µj) corresponds to the termζp(θi)
in (2.7) with the coefficient equal toωj/2 + ωs/2.

One can easily check thatω̃i > 0, for i = 1, . . . ,m, and that

m∑

i=1

ω̃i = 1.
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Moreover, ifθj = θi for j 6= i, thenω̃j = ω̃i.
Based on the relation (2.7) we set

v∗ ≡ Qξ, ξ ≡ [ξ1, . . . , ξn]
T ∈ R

n,

where theξj , j = 1, . . . , n, are defined as follows: ifλj ∈ Gsym
∗ , then there exits an indexi

such thatλj = θi, and we defineξj ≡
√
ω̃i. If λj /∈ Gsym

∗ , we setξj = 0.
It remains to justify that the resulting vectorv∗ is real. Ifλj ∈ R, then the corresponding

eigenvectorqj (i.e., thejth column of the matrixQ) is real, andξjqj is real. If λj /∈ R

andλj ∈ Gsym
∗ , then alsoλj ∈ Gsym

∗ , andλj = λi for somei 6= j. The corresponding
eigenvector isqi = qj , and sinceξi = ξj , the linear combinationξjqj + ξiqi = ξj(qj + qj)
is a real vector. Therefore, the resulting vectorv∗ = Qξ is real.

Using (2.7), analogously to the previous section, we get

0 = vT∗ p(A)
T [f(A)− p∗(A)] v∗ , for all p ∈ Pk(R),

or, equivalently,

‖f(A)v∗ − p∗(A)v∗‖ = min
p∈Pk(R)

‖f(A)v∗ − p(A)v∗‖

so that

min
p∈Pk(R)

‖f(A)− p(A)‖ = δ = ‖f(A)v∗ − p∗(A)v∗‖

= min
p∈Pk(R)

‖f(A)v∗ − p(A)v∗‖

≤ max
v∈Rn

‖v‖=1

min
p∈Pk(R)

‖f(A)v − p(A)v‖.

This is just the reverse of the inequality (1.3) for F = R, and hence the proof of Theorem1.1
for F = R is complete.

3. A different formulation. Theorem1.1 can be easily rewritten as a statement about
pairwise commuting normal matrices. In the following we only discuss the complex case.
The real case requires an analogous treatment as in Section2.2.

LetA0, A1, . . . , Ak ∈ C
n×n be pairwise commuting normal matrices. Then these matri-

ces can be simultaneously unitarily diagonalized, i.e., there exists a unitary matrixU ∈ C
n×n

so that

UHAiU = Λi = diag(λ
(i)
1 , . . . , λ(i)

n ), i = 0, 1, . . . , k;

see, e.g., [10, Theorem 2.5.5]. LetΓ ≡ {λ1, . . . , λn} be an arbitrary set containingn pairwise
distinct complex numbers, and letA ≡ Udiag(λ1, . . . , λn)U

H ∈ C
n×n. We nowdefinethe

functionsf ∈ C(Γ) andϕ1, . . . , ϕk ∈ C(Γ) to be any functions satisfying

f(λj) ≡ λ
(0)
j , ϕi(λj) ≡ λ

(i)
j , j = 1, . . . , n, i = 1, . . . , k.

Thenf(A) = A0 andϕi(A) = Ai for i = 1, . . . , k, so that Theorem1.1 implies

max
v∈Cn

‖v‖=1

min
α1,...,αk∈C

‖A0v −
k∑

i=1

αiAiv‖ = max
v∈Cn

‖v‖=1

min
α1,...,αk∈C

‖f(A)v −
k∑

i=1

αiϕi(A)v‖

= min
α1,...,αk∈C

‖f(A)−
k∑

i=1

αiϕi(A)‖

= min
α1,...,αk∈C

‖A0 −
k∑

i=1

αiAi‖.
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This equality is in fact the version of Theorem1.1 proven by Greenbaum and Gurvits in [7,
Theorem 2.3] for the caseF = R.

Acknowledgments. We thank the anonymous referees for comments that helped to im-
prove the presentation.
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