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MAX-MIN AND MIN-MAX APPROXIMATION PROBLEMS
FOR NORMAL MATRICES REVISITED *

JORG LIESEN AND PETR TICHY#
In memory of Bernd Fischer

Abstract. We give a new proof of an equality of certain max-min and min-mgsragxmation problems in-
volving normal matrices. The previously published proofshig equality apply tools from matrix theory, (analytic)
optimization theory, and constrained convex optimizationr @roof uses a classical characterization theorem from
approximation theory and thus exploits the link between W dpproximation problems with normal matrices on
the one hand and approximation problems on compact sets inithygl@oplane on the other.
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1. Introduction. Let A be a real or complex square matrix, i.el, € F"**" with
F = RorF = C. Suppose thaff and ¢1,...,p, are given (scalar) functions so
that f(A) e F**™ and p1(A),...,ox(A) € F**™ are well defined matrix functions in
the sense ofg, Definition 1.2]. (In the cas& = R, this requires a subtle assumption
which is explicitly stated inZ.4) below.) LetP,(F) denote the linear span of the func-
tions ¢4, . .., @i with coefficients inF so that in particulap(A) € F»*" for each linear
combinationp = a1 + -+ - + agpr € Pr(F).

With this notation, the optimality property of many usefuétimods of numerical linear
algebra can be formulated as an approximation problem dbtine

(1.1) Lo 1 (A)v = p(A)v],

wherev € F” is a given vector angl - | denotes the Euclidean norm &f. In (1.1) we seek
a best approximation (with respect to the given norm) of thetar f(A)v € F™ from the
subspace of” spanned by the vectogs, (A)v, ..., or(A)v. An example of such a method
is the GMRES methodl] for solving the linear algebraic probled: = b with A € F™**",
b € F", and the initial guess, € F™. Its optimality property is of the form1(1) with
f(z)=1,pi(2) =24, fori=1,...,k andv = b — Axy.

If the given vectow has unit norm, which usually can be assumed without lossméige
ality, then an upper bound od.(l) is given by

1.2 min A) —p(A)],
(12) min_7(4) —p(4)]
where|| - || denotes the matrix norm associated with the Euclidean vexion, i.e., the

matrix 2-norm or spectral norm d**". In (1.2) we seek a best approximation (with respect
to the given norm) of the matrix(A) € F**™ from the subspace &"*"™ spanned by the
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matricesp; (A4), ..., vr(A). An example of this type is the Chebyshev matrix approxiamati
problem withA € F**", f(z) = 2*, andy;(2) = 2'~1,i = 1,..., k. This problem was
introduced in §] and later studied, for example, i8][and [L7].

In order to analyse how close the upper bouh@)(can possibly be to the quantit¥.(),
one can maximizel(1) over all unit norm vectors € F" and investigate the sharpness of
the inequality

1.3 i Ay — p(A)| < mi A) —p(A
(1.3) max min |F(Ajv —p(All < min [1£(4) —p(A)]

lloll=1
= min max A —p A .
e i() ppas ”f( )U ( )UH

[[v][=1
From analyses of the GMRES method it is known that the ingtyudl.3) can be strict. For
example, certain nonnormal matricdsc R*** were constructed in2] 16] for which (1.3
is strict withk = 3, f(2) = 1, andg;(z) = 2%, i = 1,2,3. More recently, nonnormal
matricesA € R2"*2" n > 2, were derived in4] for which the inequality {.3) is strict for
alk=3,...,2n—1, f(z) = 1,andy;(z) = 2%, i =1,..., k.

On the other hand, the following result is well known.

THEOREM 1.1. Under the assumptions made in the first paragraph of the dutction,
if A € F"*™is normal, then equality holds ir1(3).

At least three different proofs of this theorem or variarftg oan be found in the litera-
ture. Greenbaum and Gurvits proved it ioe= R using mostly methods from matrix theory;
see [/, Section 2] as well as Sectidghbelow for their formulation of the result. Using (ana-
lytic) methods of optimization theory, Joubert proved thaality for the case of the GMRES
method withf(z) = 1, p;(2) = 2%, i = 1,..., k, and he distinguished the cagés- R and
F = C; see [L1, Theorem 4]. Finally, Bellalij, Saad, and Sadok also comigid the GMRES
case withF = C, and they applied methods from constrained convex optimizasee [,
Theorem 2.1].

In this paper we present yet another proof of Theoteimwhich is rather simple because
it fully exploits the link between matrix approximation fems for normal matrices and
scalar approximation problems in the complex plane. Werebghat when formulating the
matrix approximation problems il (3) in terms of scalar approximation problems, the proof
of Theoreml.1 reduces to a straightforward application of a well-knowmrelcterization
theorem of polynomials of best approximation in the comgliane. While the proof of the
theorem forF = C can be accomplished in just a few lines, the dése R contains some
technical details that require additional attention.

The characterization theorem from approximation theoryugein this paper and some
of its variants have been stated and applied also in othdicatibns in this context, in par-
ticular in [1, Theorem 5.1]. To our knowledge the theorem has, howevéhesn used to
give a simple and direct proof of Theoreiml.

Personal note.We have written this paper in memory of our colleague Berrstiiér,
who passed away on July 15, 2013. Bernd’s achievements antgsis of iterative methods
for linear algebraic systems using results of approxinmatigeory, including his nowadays
classical monograplb], continue to inspire us in our own work. One of Bernd’s lasbp
lications in this area (before following other scientifitarests), written jointly with Franz
Peherstorfer (1950-2009) and published in 2001 in ETBJAI§ also based on a variant of
the characterization theorem that we apply in this paper.

2. Characterization theorem and proof of Theorem1.1 In order to formulate the
characterization theorem of best approximation in the deryplane, we follow the treatment
of Rivlin and Shapiro 14] that has been summarized in Lorentz’ bodk,[Chapter 2].
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LetT" be a compact subset Bf where eithel® = R or F = C, and letC(T") denote the
set of continuous functions dn. If T" consists of finitely many single points (which is the
case of interest in this paper), thenc C(I") means that the functiom has a well defined
(finite) value at each point df. Forg € C(I") we denote the maximum norm @hby

lgllr = glgglg(Z)l-

Now let f € C(T') andey,...,pr € C(I') be given functions with values . As
above, letP,(F) denote the linear span of the functiops, . . . , px with coefficients inF.
Forp € Py (F), define

Fp)={z€eT: |f(z) —p()| = |If —pllr}-

Afunctionp, = a1 + - - - + arpr € Pr(F) is called gpolynomial of best approxima-
tionfor f onT when

2.1 —p.llp = mi — .
(2.1) If = pellr pg)ggme pllr

Under the given assumptions, such a polynomial of best appation exists; see, e.g13,
Theorem 1, p. 17]. The following well known result (see, .93, Theorem 3, p. 22] orlf4,
pp. 672-674]) characterizes the polynomials of best appration.
THEOREM 2.1. In the notation established above, the following two stateis are
equivalent:
1. The functiorp.. € Px(F) is a polynomial of best approximation fgronT.
2. For the functionp,. € Pi(F) there exist/ pairwise distinct pointgu; € T'(p.),
1=1,....0,wherel </ < k+1forF =Randl </¢<2k+1forF=C,and/

real numbersv, ...,wy > 0withwy + - - - + wy = 1, such that
Z —
2.2) > wi (£ (1) = pa(py)Ip(py) = 0, forall p € Py (F).
j=1

A well known geometric interpretation of the conditio?.?) is that the origin is con-
tained in the convex hull of the points

({1 = pelor (), [F () = po(w]ipn()) € F* : peT(p.) };

see, e.g.,13, Equation (5), p. 21]. Here we will not use this interpreiatbut rewrite 2.2)

in terms of an algebraic orthogonality condition involvimectors and matrices. Using that
condition we will be able to prove Theoreinl in a straightforward way. We will distinguish
the cases of complex and real normal matrices because tteaseacontains some subtleties.

2.1. Proof of Theoreml.1for F = C. Let A € C"*" be normal. Ther is unitarily
diagonalizable A = QAQY with A = diag(\y,...,\,) andQQY = Q7Q = I,,. In
the notation established above, Iet= {\;,...,\,} and suppose that. € P;(C) is a
polynomial of best approximation fof on I" so that statement 2 from Theoreiril applies
to p... With this setting, the matrix approximation probleind) can be seen as the scalar best
approximation problem2(1), i.e.,

i A) —p(A)| = mi A) —p(A)|| = mi —plp.
pe%i?@”f() p(A)]l ,,g%;?c)”f() p(A)l per%i?@"f plr
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Without loss of generality, we may assume that the eigergabf A are ordered so that
Aj =p;forj=1,... ¢ We denote

S=f —=pelle = 1f ) =N, G=1,....L
Next, we define the vector
(23) wv.=Q¢ where&=[¢,...,6,0,...,0]" €C", &= /w5, j=1,...,L

SinceQ is unitary andv; + - - - + wy = 1, we havel|v, || = 1.
The condition 2.2) can be written as

14
0= Z 1651°p(A5) [F(A) = 2 ()] = €7 p(A) T [(A) = pu(A)] €
=o' p(A)" [f(A) = p.(A)]v., forallpe Py(C),
or, equivalently,
F(A). = p.(A)v. Lp(A)v., forallp e Py(C).

Itis well known that this algebraic orthogonality conditiith respect to the Euclidean inner
product is equivalent to the optimality condition

1 (A)ve = pe(Ava| = i 1 (A)ve — p(A)val;

see, e.g., ]2, Theorem 2.3.2].
Using the previous relations we now obtain

, 1/2
. o _ 1252
Qo [1f(4) = p(A)] =8 = (; 16170 )

1/2
4
- (Z &2 1700 —p*w)?)

= [[[f(A) = p«(M)] ]|
= [Q[f(A) — p(A)] Q7 Q¢

= [[f(A)vs = p.(A)v
=, ain 1 (A)vs = p(A)v|

IN

max min Ay — p(A)v].

B [f(A)v = p(A)v]|

This is just the reverse of the inequality.§ for F = C, and hence the proof of Theoreiril
for F = Cis complete.

2.2. Proof of Theoreml1.1for F = R. If A € R™ " is symmetric, then we can
write A = QAQT with a real diagonal matrixA and a real orthogonal matrig. The proof
presented in the previous section also works in this cagearticular, for a real matrig), the
vectorv, = Q& constructed inZ.3) is real, and for a real matrid, the maximization in1.3)
is performed over € R".
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From now on we consider a general normal mattix R"*™. In the spectral decompo-
sition A = QAQ™, the diagonal matrixA = diag(\y,. .., \,) and the unitary matrix) are
in general complex. Since this would lead to a complex vegtes Q€ in (2.3), the previous
proof requires some modifications.

As above, lef” = {\1,..., A\, }. SinceA is real, the sel’ may contain non-real points
(appearing in complex conjugate pairs), and thus we mustvatbmplex-valued functions
f e CT) andgy,...,¢r € C(T'). This means that we must work with Theoreri
for F = C, althoughA is real. However, we will assume that for each eigenvalpef A the
given functionsf andey, . . ., pj satisfy

(2.4) FOG) =) and ¢i(\) = wi(;), i=1,....k
This is a natural assumption for real matricesince it guarantees that the matrigést) and
p1(A), ..., ¢or(A) are real as well; se®] Remark 1.9] (for analytic functions it is actually a

necessary and sufficient condition; ségTheorem 1.18]).

Now letq, = Zle a;p; € Pi(C) be a polynomial of best approximation féronT".
Then, for any eigenvalug; of A,

k k
Zw = [700) = 2_miei3))| )= _deihy)
i=1 i=1

Since both\; and); are elements df, we see that alsp, = Zle @;p; is a polynomial of
best approximation fof onI". Denote

O=[f = alle = If = @udlr,

then for any0 < o < 1 we obtain

6 <|f —ag — (A —a)g.|p = lle(f —g.) + (1 =) (f = q.)lp

which shows that any polynomial of the fomg..+(1—«)7,,0 < a < 1, is also a polynomial
of best approximation fof onT'. In particular, forae = % we obtain theeal polynomial of
best approximation

(¢« +7.) € Pr(R).

DN | =

Dy =
Usingp. € Pr(R) and @.4) we get
1F(2) = p«(2)| = |f(2) = p«(2)| = |f(z) —p«(2)], forallzeT.

Therefore, the sdt(p..) of all pointsz which satisfyl f(z) —p«(2)| = ||f —p«||r IS Symmetric
with respect to the real axis, i.e..c I'(p.) if and only if z € T'(p..).
For simplicity of notation we denote

G (2) = [ (2) = p«(2)lp(2).

In the definition of(, () we indicate only its dependence pandz sincef is a given function
andp, is fixed. If p € P (R), then the corresponding functigp(z) satisfies(,(z) = (,(%)
forallz € T.
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Now, Theoren®.1 (with F = C) implies the existence of a set
Ge={p1,...,ue} CT(ps) CT,

and the existence of positive real numbers. . . , w, with Zﬁzl w; = 1 such that

14
(2.5) > w;Glpy) =0, forallp € P(R),
j=1

where we have used th@, (R) C P;(C). To define a convenient real vecter similar to
the construction leading t@ (3), we will “symmetrize” the condition4.5) with respect to the
real axis.

Taking complex conjugates ir2 ) and using that,(z) = (,(z) for anyz € T', we
obtain another relation of the form

4
> wiGp(H;) =0, forallp e Py(R),
j=1
and therefore
1 4 1 4
(2.6) 52 wiGl) +5 > w;G(H;) =0, forallp € Pi(R).
j=1 j=1

Here @.6) is the desired “symmetrized” condition. We now define the se
GY™ = {0y,...,0p,} = G.UG,,

where eactf; € G2 corresponds to some; or 7i;, and clearly! < m < 2¢. (The exact
value ofm is unimportant for our construction.) Writing the conditi(h6) as a single sum
over all points fromG3"™, we get

(2.7) > @i Gp(0;) =0, forallpe Py(R),
=1

where the coefficients; are defined as follows.

If u; € R, then(,(r;) appears in both sums i2.6) with the same coefficient, /2.
Sinced; = p; € R, the term(,(6;) appears in.7) with the coefficienty; = w;.

If n; ¢ Randf; ¢ G, then(,(u;) appears only in the left sum ir2 @) with the
coefficientw; /2. Therefore, the ternd,(u;) corresponds to a single tergy(6;) in (2.7)
with the coefficienty; = w;/2. Similarly, ¢,(7z;) appears only in the right sum ir2.€)
with the coefficientv, /2, and it corresponds to a single term, gy, ), in (2.7) with the
coefficientw, = w;/2.

If u; ¢ Randz; € G, thenfi; = p, for some indexs # j, 1 < s < {. Therefore,
the termq, (1;) appears in both sums i@.@), in the left sum with the coefficient; /2 and in
the right sum with the coefficient, /2. Hence (,(1;) corresponds to a single tergp(¢;) in
(2.7) with the coefficients; = w; /2+w, /2. Similarly, ,(z;) corresponds to the tergy (6;)
in (2.7) with the coefficient equal t; /2 + w, /2.

One can easily check that > 0, for7 = 1,...,m, and that

m

> @i=1.
=1
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Moreover, ifd; = 6, for j # i, thenw; = ;.
Based on the relatior2(7) we set

Vx EQ€7 gE [gla"'agn}T ERna

where thet;, j = 1,...,n, are defined as follows: ik; € G2, then there exits an index
such that\; = 6;, and we defing; = ;. If \; ¢ G™, we set¢; = 0.

It remains to justify that the resulting vectoy is real. If \; € R, then the corresponding
eigenvectoty; (i.e., thejth column of the matrixQ) is real, andg;g; is real. IfX; ¢ R
and); € G, then also\; € G¥™, and\; = \; for somei # j. The corresponding
eigenvector ig; = g;, and since; = §;, the linear combinatiod;q; + §qi = §;(q; + ;)
is a real vector. Therefore, the resulting veatpre= Q¢ is real.

Using 2.7), analogously to the previous section, we get

0= p(A)" [f(A) = p«(A)]v., forallpe Py(R),
or, equivalently,

7). = p. (Aol = min [|F(A)v. = p(A)e|

so that
poain 1£(4) = p(A)ll = 8 = /(A = pu(A)v.]
= Qin (A, —p(A)o.]
< max min : IIf(A)v — p(A)v]|.

vERT peEPL (R
lvl=1

This is just the reverse of the inequality.® for F = R, and hence the proof of Theoreliml
for F = R is complete.

3. A different formulation. Theoreml.1can be easily rewritten as a statement about
pairwise commuting normal matrices. In the following weyodiscuss the complex case.
The real case requires an analogous treatment as in Séction

Let Ag, A1, ..., Ap € C™*™ be pairwise commuting normal matrices. Then these matri-
ces can be simultaneously unitarily diagonalized, i.erglexists a unitary matriY € C™*"
so that

UH AU = A; = diag AP, .. AD), i=0,1,...,k

n

see, e.g.,00, Theorem 2.5.5]. Lef = {)\,..., A\, } be an arbitrary set containingpairwise
distinct complex numbers, and ldt= Udiag(\1, ..., \,)U € C"*™. We nowdefinethe
functionsf € C(T") andepy, ..., ¢, € C(T') to be any functions satisfying

FON =20 i) =A0, j=1n, i=1,.. k.

Thenf(A) = Ap andy;(A) = A; fori =1,... k, so that Theoreri.1limplies

k k
i Anv — Al = i Ao — 0 (A
max , min o lMov = 3 asdivll = max | min () - ) aipi(A)]

k
= min_ [[f(4) - ;ai%(A)H

at,...,

k
- i A —Z Al
al,.l.l.l,loznke«:” 0 Haz ill
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This equality is in fact the version of Theorelrl proven by Greenbaum and Gurvits ify [
Theorem 2.3] for the cageé = R.

Acknowledgments. We thank the anonymous referees for comments that helped-to i
prove the presentation.

REFERENCES

[1] M.BELLALIJ, Y. SAAD, AND H. SADOK, Analysis of some Krylov subspace methods for normal matviee
approximation theory and convex optimizati@tectron. Trans. Numer. Anal., 33 (2008/09), pp. 17-30.
http://etna.nts. kent. edu/ vol . 33. 2008- 2009/ pp17- 30. di r
[2] V. FABER, W. JOUBERT, E. KNILL, AND T. MANTEUFFEL, Minimal residual method stronger than polyno-
mial preconditioning SIAM J. Matrix Anal. Appl., 17 (1996), pp. 707—729.
[3] V. FABER, J. LIESEN, AND P. TiICHY, On Chebyshev polynomials of matric€AM J. Matrix Anal. Appl.,
31 (2009/10), pp. 2205-2221.
[4] , Properties of worst-case GMRESIAM J. Matrix Anal. Appl., 34 (2013), pp. 1500-1519.
[5] B. FIscHER Polynomial Based Iteration Methods for Symmetric Lineast&wns Wiley, Chichester, 1996.
[6] B. FISCHER AND F. PEHERSTORFER Chebyshev approximation via polynomial mappings and timvem®
gence behaviour of Krylov subspace methdglectron. Trans. Numer. Anal., 12 (2001), pp. 205-215.
http://etna.nts. kent. edu/ vol . 12. 2001/ pp205- 215. di r
[7] A. GREENBAUM AND L. GURVITS, Max-min properties of matrix factor normSIAM J. Sci. Comput., 15
(1994), pp. 348-358.
[8] A. GREENBAUM AND L. N. TREFETHEN GMRES/CR and Arnoldi/Lanczos as matrix approximation prob
lems SIAM J. Sci. Comput., 15 (1994), pp. 359-368.
[9] N.J. HIGHAM, Functions of Matrices. Theory and Computati@AM, Philadelphia, 2008.
[10] R. A. HORN AND C. R. DHNSON, Matrix Analysis Cambridge University Press, Cambridge, 1990.
[11] W. JouBERT, A robust GMRES-based adaptive polynomial preconditioaiggrithm for nonsymmetric lin-
ear systemsSIAM J. Sci. Comput., 15 (1994), pp. 427-439.

[12] J. LIESEN AND Z. STRAKOS, Krylov Subspace Methods. Principles and AnalySisford University Press,
Oxford, 2013.

[13] G. G. LORENTZ Approximation of Function®2nd ed., Chelsea, New York, 1986.

[14] T.J. RVLIN AND H. S. SHAPIRO, A unified approach to certain problems of approximation aridimiza-
tion, J. Soc. Indust. Appl. Math., 9 (1961), pp. 670-699.

[15] Y. SAAD AND M. H. ScHULTZ, GMRES: a generalized minimal residual algorithm for sofpimonsymmetric
linear systemsSIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

[16] K.-C. ToH, GMRES vs. ideal GMRESIAM J. Matrix Anal. Appl., 18 (1997), pp. 30—36.

[17] K.-C. ToH AND L. N. TREFETHEN The Chebyshev polynomials of a matitAM J. Matrix Anal. Appl.,
20 (1998), pp. 400-419.



http://etna.mcs.kent.edu/vol.33.2008-2009/pp17-30.dir
http://etna.mcs.kent.edu/vol.12.2001/pp205-215.dir

