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NONUNIFORM SPARSE RECOVERY WITH SUBGAUSSIAN MATRICES *

ULAS AYAZ ' AND HOLGER RAUHUT!

Abstract. Compressive sensing predicts that sufficiently sparse reectm be recovered from highly incom-
plete information using efficient recovery methods such;aminimization. Random matrices have become a pop-
ular choice for the measurement matrix. Indeed, near-optinméam recovery results have been shown for such
matrices. In this note we focus on nonuniform recovery usirtggaussian random matrices ahdminimization.

We provide conditions on the number of samples in terms of thespand the signal length which guarantee that
a fixed sparse signal can be recovered with a random draw afdivéx using¢; -minimization. Our proofs are short
and provide explicit and convenient constants.
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1. Introduction. Compressive sensing allows to reconstruct signals fromabyefver
measurements than what is considered necessary at first Bighseminal papers by E. Can-
des, J. Romberg, and T. Tad, P] and by D. Donoho12] have triggered substantial research
activities in mathematics, engineering, and computemseiavith a lot of possible applica-
tions.

In mathematical terms, we aim at solving the linear systeneqfationsy = Ax
for z € CN wheny € C™ andA € C™*" are given and whem < N. Clearly, in general
this task is impossible since evendfhas full rank, there are infinitely many solutions to this
equation. The situation changes dramatically i§ sparse, that isjz|o := #{¢,z, # 0} is
small. We note thaf - ||, is called the/y-norm although it is not a norm.

As a first approach, one is led to solve the optimization bl

i subject todz = v,
min |zl j z=y

wherey = Ax. Unfortunately, this problem is NP-hard in general. It hasdime common to
replace they-minimization problem by thé,-minimization problem

(1.2) min ||z]|; subjecttodz =y,
zeCN

wherey = Az. This problem can be solved by efficient convex optimizatexhniquesJ].
As a key result of compressive sensing and under appropaatditions onA and on the
sparsity ofz, £;-minimization indeed reconstructs the originalCertain random matrice$
are known to provide optimal recovery with high probabilifyhere are basically two types
of recovery results:

e Uniform recovery. Such results state that with high probability on the draw of
the random matrix4, everysparse vector can be reconstructed under appropriate
conditions.

e Nonuniform recovery. Such results state that a given sparse vectan be recon-
structed with high probability on the draw of the matrxunder appropriate con-
ditions. The difference to uniform recovery is that nonanifi recovery does not
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imply that there is a matrix that recovers alsimultaneously. Or, in other words,

the small exceptional set of matrices for which recoverlgfaiay depend on.
Uniform recovery via/;-minimization is, for instance, satisfied if the by now ciaasre-
stricted isometry property (RIP) holds farwith high probability f, 8]. A common choice
for A € R™*Y are Gaussian random matrices, that is, the entried afe independent
standard normally distributed random variables. If e (0, 1),

(1.2) m > C(sln(N/s) +1n(2/¢)),

then with a probability of at least — ¢, we have uniform recovery of al-sparse vec-
tors x € RV using ¢;-minimization andA as measurement matrix; see, e.§. 15, 24).
The constant” > 0 is universal and estimates via the restricted isometry gntgpyive an
approximate value of’ ~ 200, which is significantly worse than what can be observed in
practice. (Note that a direct analysis iaf] for the Gaussian case, which avoids the re-
stricted isometry property, gives ~ 12. This is still somewhat larger than the constants
we report below in the nonuniform setting.) For this reaghis note considers nonuniform
sparse recovery using Gaussian and more general subgergssimm matrices in connection
with ¢;-minimization. Our main results below guarantee nonunifoecovery with explicit
and convenient constants. In contrast to other works sugh3as5], we can treat the recov-
ery of complex vectors as well. We also get useful constantise subgaussian case and, in
particular, for Bernoulli matrices. Moreover, our reswtso establish stability of the recon-
struction when the vectors are only approximately spardenaasurements are perturbed.

Gaussian and subgaussian random matrices are very impiortére theory of compres-
sive sensing because they provide a model of measurementesathich can be analyzed
very accurately (as shown in this note). They are used inwedd sensing scenarios, for
instance, in the one-pixel camerd/]. Moreover, even if certain applications require more
structure of the measurement matrix (leading to structuaedom matrices?p]), the em-
pirically observed recovery performance of many types offrites is very close to the one
of (sub-)Gaussian random matricé<l], which underlines the importance of understanding
subgaussian random matrices in compressive sensing.

2. Main results.

2.1. The Gaussian caseWe say that ann x N random matrixA is Gaussian if its
entries are independent and standard normally distribiaiedom variables, that is, having
mean zero and variance Our nonuniform sparse recovery result for Gaussian nesric
and/;-minimization reads as follows.

THEOREM 2.1. Letz € CN with ||z|lp = s. LetA € R™*¥ be a randomly drawn
Gaussian matrix, and let € (0, 1). If

2.1) m > s [VIW{AN/2) + /2 (/=) s + 1}2,

then with probability at least — ¢, the vector is the unique solution to thg -minimization
problem(1.1).
REMARK 2.2. For largeN ands, condition @.1) approximately becomes

(2.2) m > 2sIn(4N/e).

Compared to 1.2), we realize that the logarithmic term slightly falls shoftthe optimal
oneln(N/s). However, we emphasize that our proof is short, and the aoh$ explicit
and of moderate size. Indeed, when in additigtv becomes very small (this is in fact
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the interesting regime), then we nevertheless reprodwceahditions found by Donoho and
Tanner [L3, 15] and, in particular, the optimal constadt Note that Donoho and Tanner
used methods from the theory of random polytopes, which aite glifferent to our proof
technique.

2.2. The subgaussian caséle generalize our recovery result for matrices with entries
that are independent subgaussian random variables. AmavaoableX is calledsubgaus-
sianif there are constants, # > 0 such that

P(|X|>t) < Be~ " forallt > 0.

It can be shownZ§] that X is subgaussian witEX = 0 if and only if there exists a constant
(depending only o andf) such that

(2.3) Elexp(AX)] < e for all A € R.

Important special cases of subgaussian mean-zero randablea are standard Gaussians,
and Rademacher (Bernoulli) variables, that is, randomalbéas that take the valuesl with
equal probability. For both of these random variables, tmestant in (2.3) satisfies: = 1/2;
see also Section.3.

A random matrix with entries that are independent mean-gebgaussian random vari-
ables with the same constanin (2.3) is called a subgaussian random matrix. Note that the
entries are not required to be identically distributed.

THEOREM 2.3. Letz € CN with ||z]|p = s. LetA € R™*Y be a random draw of a
subgaussian matrix with a constanin (2.3), and lets € (0, 1). If

(2.4) m>s {\/4cln(4N/€) +/0(3 + 111(4/6)/5)}2,

then with probability at least — ¢, the vectorr is the unique solution to thg -minimization
problem(1.1). The constan€ in (2.4) only depends on.

More precisely, the constant = 1.646¢ 1, whereé = ¢(c) is the constant ing.1).

2.3. The Bernoulli case.We specialize the previous result for subgaussian mattices
Bernoulli (Rademacher) matrices, that is, random matnags independent entries taking
the value+1 with equal probability. We are then able to provide expli@iues for the
constants appearing in the result of Theor2@ If Y is a Bernoulli random variable, then
by a Taylor series expansion

D=

E(exp(AY)) = = (e +e7) < e,

| —

This shows that the subgaussian constaequalss in the Bernoulli case. Furthermore, we
have the following concentration inequality for a matfix ¢ R™*" with entries that are
independent realizations &fl /\/m,

m

_m (42 o 43 /4
(2.5) P (||Bx)3 — ||z|3] > tl|z]|3) < 2¢=F /273,

forallz € RY, ¢t € (0,1); see, e.g.,1,2]. We can simply estimate® < ¢2 in (2.5 and
geté = ﬁ in (B.1) and consequentlg' = 1.646¢~! = 19.76.
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COROLLARY 2.4.Letz € CV with ||z|o = s. LetA € R™*Y be a matrix with entries
that are independent Bernoulli random variables, anctlet (0, 1). If

(2.6) m > 2s [\/ln(élN/s) +/20.64+ 9.88 1n(4/5)/sr,

then with probability at least — ¢, the vectorz is the unique solution to thg -minimization
problem(1.1).

Roughly speaking, for larg&” and moderately large, the second term in2(6) can be
ignored and we arrive at > 2sIn(4N/e).

2.4. Stable and robust recovery.In this section we state some extensions of our results
for nonuniform recovery with Gaussian matrices that shaabifity of the reconstruction
when passing from sparse signals to only approximatelysspanes and robustness under
perturbations of the measurements. In this context we assuemoisy model

(2.7) y=Azr+ecC™ with |le]|s < ny/m.
It it natural to work then with the noise constraingdminimization problem

(2.8) mérb |21 subjectto]|Az — y|l2 < nyv/m.
ze

For the formulation of the next result, we define the erroref bests-term approximation
of z in the/;-norm by

z)1 = inf |z — .
os(r)1 H;ﬁgs” 2|1

THEOREM2.5. Letx € CV be an arbitrary but fixed vector, and I6tC {1,2,..., N}
denote the index set corresponding todtiargest absolute entries. Let € R™*Y be a
draw of a Gaussian random matrix. Suppose we take noisy mezasnts as in2.7). If,
for 6 € (0,1),

(2.9) m>s 7~21111(7129N/5)+ 2In(6/¢)/s + V2| ,

then with probability at least — ¢, the solutionz to the minimization probler(®.8) satisfies

N Cl CQO'S(.’L')l
: x— iy < =+ — .
(2.10) o=l < G+ =

Here, the constant§’;, Cy > 0 are universal.

Condition .9) on the number of required measurements is very simila? &) (n the
exact sparse and noiseless case. Whiamds ta), we almost obtain the same condition, but
then the right hand side of the stability estimalel() blows up. In other words, we need to
take slightly more measurements than required for exaotexg in order to ensure stability
and robustness of the reconstruction.

A sketch of the proof of this theorem based on the so-calleakwestricted isometry
property is given in SectioB.7. We note that a version of this result for subgaussian random
matrices can be shown as well.
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2.5. Relation to previous work. Recently, several papers appeared dealing with nonuni-
form recovery. Most of these papers only consider the Gangsise while our results extend
to subgaussian and, in particular, to Bernoulli matrices.

As already mentioned, Donoho and TanriEs] [obtain nonuniform recovery results (the
terminology is “weak phase transitions”) for Gaussian ma# via methods from the theory
of random polytopes. The authors there operate essertialyasymptotic regime (although
some of their results apply also to finite values\afm, s). They consider the case when

m/N — 9§, s/m — p, In(N)/m — 0, N — oo,

wherep, § are some fixed values. The recovery conditions are then ssgaen terms op
andd in this asymptotic regime. In particular, the authors findriedk) transition curvey, (§)
such thatp < pw (0) implies recovery with high probability and > py (6) means failure
with high probability (asV — oc). Moreover, they show thaty (6) ~ 2In(5~1) asé — 0.
Translated back into the quantitids m, s, this givesn > 2s1n(N) in an asymptotic regime,
which is essentially the condition i2 ().

Candes and Plan give a rather general framework for nonunifocovery in ], which
applies to measurement matrices with independent rowsigaxunded entries. In fact,
they prove a recovery condition for such random matricehefformm > Csln(N) for
some constant’. However, they do not obtain explicit and good constantssdabet al.
[16] derive a recovery condition for Gaussian matrices of thenfex > ¢sIn(N), where
c approacheg in an asymptotic regime. These two papers also containlisyatgisults for
noisy measurements.

Chandrasekaran et alL(] use convex geometry in order to obtain nonuniform recov-
ery results. They develop a rather general framework thaliegpalso to low-rank recovery
and further setups. However, they can only treat Gaussiasunements. They approach
the recovery problem via Gaussian widths of certain conwg. sIn particular, they esti-
mate the number of Gaussian measurements needed in ordsoier ans-sparse vector
by m > 2s(In(N/s — 1) 4+ 1), which is essentially the optimal result. Their method hiyavi
relies on properties of Gaussian random vectors, and threret does not seem possible to
extend it to more general subgaussian random matrices sugéraoulli matrices.

Shortly before finishing this work, we became aware of théclartof Cangs and
Recht B], who derived closely related results. For Gaussian measemt matrices, they
show that, for anys > 1, an s-sparse vector can be recovered with probability at
leastl — 2N /(59 if

m > 28sln N + s,

where

f(ﬂ,s>=[\/2i+/3—1—\/zr.

Their method of proof uses the duality based recovery The@&é due to Fuchs19] like
in our approach, but then proceeds differently. They dexigémilar recovery condition for
subgaussian matrices but only state it for the special d@Beraoulli matrices. Furthermore,
they also work out recovery results in the context of blop&rsity and low-rank recovery.
However, differently to our paper, they do not cover the iitglof the reconstruction.
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3. Proofs.

3.1. Notation. We start by defining some notation needed in the proofs[Ng&tlenote
the set{1,2,..., N}. The column submatrix of a matriz consisting of the columns indexed
by S is written asAs = (a;);es, WhereS C [N] anda; € R™, j = 1,...,m, denote the
columns ofA. Similarly, zg¢ € C° denotes the vectar € CV restricted to the entries if,
andz € CV is calleds-sparse ifupp(z) = {¢ : z, # 0} = S with S C [N] and|S| = s,
i.e., ||z|lo = s. We further need to introduce the sign vectgn(z) € CV having entries

if T 750,

it e, =0, 7 <0
3 =Y

sgn(z), = { F

The Moore-Penrose pseudo-inverse of a maBixvhere (B*B) is invertible is given by
Bt = (B*B)~!B* so thatB' B = 1d, whereld is the identity matrix.

3.2. Recovery conditions.In this section we state some results that are used in the
proof of the main theorems directly or indirectly. The p®of Theorem®.1and2.3require
a condition for sparse recovery which not only depends omiigix A but also on the sparse
vectorz € CV to be recovered. The following theorem is due to J. J. Futisifi the real-
valued case and was extended to the complex case by J. B'dppde also?5, Theorem 2.8]
for a slightly simplified proof.

THEOREM3.1. Let A € C™*N andz € CV with S := supp(x). Assume thatls is
injective and that there exists a vector C™ such that

ASh = sgn(zg),
[(A*h),| <1, £ € [N]\ S.
Thenz is the unique solution to th& -minimization problen{l.1) withy = Ax.

Choosing the vectas = (ATS) ’ sgnzs) leads to the following corollary.

COROLLARY 3.2.LetA € C™*N andx € CN with S := supp(z). If the matrixA is
injective and if

[((Ag)Tag, sgn(zs))| < 1 forall £ e [N]\S,

then the vector is the unique solution to thg -minimization problengl.1) withy = Ax.
3.3. Proof of recovery in the Gaussian caseWe setS := supp(z), which has cardi-
nality s. By Corollary3.2, for recovery vig/;-minimization, it is sufficient to show that
1((As)Tag, sgn(zs))| = |(ar, (AL)*sgn(xS)H <1 forall ¢e [N]\S.
Therefore, the failure probability for recovery is boundbgd

P:=P (30 ¢ S|((As) ar,sgn(zs))| > 1).

If we condition X := (ay, (Ag)*sgn(:vs)> on Ag, it is a Gaussian random variable. Fur-
thermore X = ZTzl(aZ)j[(AL)*sgn(:rs)]j is centered, so its varianeé can be estimated
by

v =E(X%) =) E[(ar);][(AL) "sgn(ws)];

j=1
= [(AL)"sgn(25) 13 < opmin(As)[Isgn(zs)[13 = orain(As) s,
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where o,,,;, denotes the smallest singular value. The last inequaligs uke fact that
||(A2)*||2_>2 = HAEHQ_)Q =0} (Ag). A tail estimate for a mean-zero Gaussian random

min

variableX with variances2 obeys the inequality
(3.1) P(IX|>t) <e t/2,

see P5, Lemma 10.2]. Then it follows that

P<P (Hﬁ ¢ S [((As) ar,sgn(ws))| > 1 [[|(Af)*sgn(zs)|s < a)
+P([[(AL)"sgn(xs) 2 > a)
(3.2) < 2Nexp(—1/20%) + P(o,} (As)Vs > @).

The inequality in 8.2) uses the tail estimate (1), the union bound, and the independence
of a; and Ag. The first term in 8.2) is bounded by /2 if
1

o= V2In(4N/e)

In order to estimate the second term3nd), we use an elegant estimate for the smallest singu-
lar value of a normalized Gaussian matixe R™** where the entries aB are independent
and follow the normal distributiofV'(0, 1/m), which was provided in11],

(34) P(Umin(B) <1- \/%_ T) < e—mr2/2.

Its proof relies on the Slepian-Gordon Lemn2&,[21] and the concentration of measure for
Lipschitz functions 23]. We proceed with

(3.3)

IED(O-I;nln("45)\/g > Ol) = P(Umin(AS) < \/E/O[) =P <Umin(AS/\/E) < L \/§>

vm o«
—m(1 — (o™t /s5/m)?
(3.5) < exp ( (1= 2+ Dvs/m) ) .

If we choosex that makesd.3) an equality, plug it into conditior3(5), and require that3.5)
is bounded by /2, we arrive at the condition

m>s [\/2111(4N/€)+ \/21n(2/€)/5+1:|27

which ensures recovery with a probability of at ledast . This concludes the proof of
Theorem2.1 0

3.4. Tail estimate for sums of subgaussian variablesWe use the following estimate
for sums of subgaussian random variables in the proof of fleme®.3. It appears for instance
in [28].
LEMMA 3.3. Let Xy,..., X be a sequence of independent mean-zero subgaussian
random variables with the same parametein (2.3). Leta € RM be some vector. Then
Z =311, a;X; is subgaussian, that is, far> 0,

M

(1) a;Xj| = 1) < 2exp(—t*/(4cl|al[3)).
j=1

The proof of this Lemma is given in Appendix



ETNA
Kent State University
http://etna.math.kent.edu

174 U. AYAZ AND H. RAUHUT

3.5. Conditioning of subgaussian matricesWhile the following lemma is well-known
in principle, the correct scaling if seemingly has not appeared elsewhere in the literature;
compare with 2, 24].

LEMMA 3.4. LetS C [N] with card(S) = s. Let A be anm x N random matrix
with independent, isotropic, and subgaussian rows wittstmee parameterin (2.3). Then,
for 6 € (0,1), the normalized matrixl = ﬁA satisfies

|A5As —Id||2—2 <0

with probability at leastl — ¢ provided that
(3.6) m > C6 (35 +1In(2e71)),

whereC depends only on.
The proof of this Lemma is given in Appendix

3.6. Proof of recovery in the subgaussian caséle follow a similar path as in the
Gaussian case. We dendte= supp(z). We can bound the failure probabili®y by
P <P (3¢ S [{(As) as, sen(as))| = 1[[1(A5) sen(as) 2 < o)
(3.7) +B([[(45) sen(xs) ||z > a).

The first term in 8.7) can be bounded by Lemma.3  Conditioning on As and
I(AL)*sgn(xs)[l2 < o, we get

m

B(|((As) as sen(es))| > 1) = (| S (ar);[(AL) sen(es)];| > 1) < 2exp(~1/(4ca)).

Jj=1

So by the union bound, the first term B.7) can be estimated BN exp(—1/(4ca?)), which
in turn is no larger thaa/2 provided that

(3.8) a <+/1/(4cIn(4N/e)).

For the second term ir8(7), we have
P(|(AL) sen(zs) 2 > @) < Plopi, (As)Vs > )
= P(Umin(AS) S \/g/Oé) =P (Umin(AS/\/E) S \/1>\/§) .

m «
By Lemma3.4, the normalized subgaussian matfx := Ag/\/m satisfies
P(0umin(As) <1 —6) < Plomin(As) < V1 —0) < P(||A5As — 1d[ae > §) < &/2

provided thatn > C§~2(3s+In(4e~1)) ands € (0, 1), whereC depends on the subgaussian
constantc. The choic%% =1-Jyields§ =1 — % Combining these arguments
and choosingy that makes¥.8) an equality, we can bound the failure probabilitydolf

(3.9) m>C <1 - ij;}i%) (3s +1n(4/¢)).

Solving 3.9) for m yields the condition

m> s [\/46 Im(AN/E) + /OB T m@e)/s)| .

This condition also implies € (0, 1). This concludes the proof of Theoreis, 0
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3.7. Stability of reconstruction. Here, we give a very brief sketch of the proof of The-
orem2.5. It uses the concept of the weak restricted isometry prggestak RIP) introduced
in [5].

DEFINITION 3.5. (Weak RIP) LetS C [N] be fixed with cardinality and fixdy, 62 > 0.
Then a matrixA € R™*¥ is said to satisfy the weak RIP with parametéssr, 4, &) if

(L= on)vll3 < Avl5 < (1+ d2) 1013

for all v supported or U R and all subsets? in [V] \ S with cardinality|R| < r.

The key to the proof of Theore®.5 is the following stable and robust version of the
dual certificate based recovery Theor8m. Its proof follows a similar strategy as id][
and P2, Theorem 3.1].

LEMMA 3.6. Letz € CV andA € R™*V, Let S be the set of indices of thelargest
absolute entries of. Assume tha#l satisfies the weak RIP with parametérs r, 41, d2)
for » < N anddy, d; € (0,1) and that there exists a vectore C™ such that, for € (0, 1),

Agv =sgn(zs),
(3.10) (A*0)| <16,  £e[N]\S,
(3.11) [vllz < BVs.

Suppose we take noisy measuremegnts Az + e € C™ with ||e||2 < 5. Then the solutior
to

min ||z,  subjectto]|Az —y|| <7
z€CN

satisfies

(3.12) [l — dfl» <

\/11 +5522n+ <2f1;1axg(51,52 +\[> (25 205 )
—01 —01

The weak RIP is established for Gaussian random matricesibng the estimate3(4)
for the smallest singular value of a single submattix,z and a corresponding estimate for
the largest singular valuéf]. Then one takes the union bound over all sub&et$ [NV]\ S of
cardinalityr. We conclude in this way that the weak RIP holds with proligtsit leastl — ¢
provided that

m > max{l — m, m- 1}2 [\/m—l— 2r1n(eN/r) —i—21n(2/5)}2

The numberr is chosen as/8 in the end so that the quotierq)z’sTr appearing in §.12
becomes a constant.

We use the same ansatz for the dual vectas before, namely = (Ag)*sgn(mg).
Condition 3.10 is analyzed in the same way as the corresponding conditidhéorens.1
This leads to the appearance &in (2.9). Moreover, condition .11) is straightforward
to verify via [[v]]s < [|AL|l2sallsen(zs)]la = || AL]la_2/5. An appropriate choice of the
numbers);, do, andj leads to the desired result.
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Appendix A. Proof of Lemma 3.3. By independence, we have

M

M
Eexp(# Z a; X;)=E H exp(fa; X; H Eexp(fa; X H p(fa; X;
j=1

i=1 i=1 i=1

E

= exp(clla]36?).

This shows thaZ is subgaussian with parametéjiz||3 in (2.3). We apply Markov’s inequal-
ity to get

P(Z > t) = P(exp(02) > exp(6t)) < Elexp(02)]e %" < ecllal26” 0t
The optimal choicé = t/(2c||al|3) yields
P(Z > t) < e~ /ellald)
Repeating the above computation witl instead ofZ shows that
P(—Z >t) < et /(ellall3)

and the union bound yields the desired estinftez| > ¢) < 2"/ (clal?), 0

Appendix B. Proof of Lemma 3.4 Since most available statements have an addi-
tionalln(d—!)-termin (3.6), we include the proof of this lemma for the sake of complessn

The following concentration inequality for subgaussiand@m variables appears, for
instance, in1,24].

(B.1) P(|| Az3 — 2|3 > t]z]3) < 2exp(~cmt?),

whereé depends only on c. We will combine the above concentratieguality with the net
technique. Lep € (0,v/2 — 1) be a number to be determined later. According to a classical
covering number argument, see, e.g5, [Proposition 10.1], there exists a finite subSeof

the unit spher& = {z € RY, supp(z) C 3, ||z||2 = 1}, which satisfies

2 S
U] < <1+p> and  mingepllz —ulls <p forallzeS.
The concentration inequality3(1) yields
P (’H[lu\\% - Hu||§‘ > t|lul|3 for someu € L{)

< > P (|1 Aul3 = lul3| > tliul3) < 210 exp (<&t m)

uelU
<2 (1 + i) exp (—&t*m) .

The positive numbet will be set later depending ahand onp. Let us assume for now that
the realization of the random matrik yields

(B.2) ‘Mung - ||u\|§] <t forallueUl.
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By the above results, this occurs with probability excegdin
2 S
1 -2 (1 + p) exp (—Et2 m) .

Next we show that §.2) implies ‘Hﬁx”%— ||a:\|%’ < § for all z € S, that is,

| A% Ag — 1d||o—2 < & (if t is determined appropriately). L& = A% Ag — Id so that we
have to show| B|>—2 < §. Note that B.2) means thal{ Bu, u)| < tforallu € U. Now con-
sider a vector € S for which we choose a vectar € U satisfying||z —ulls < p < v2— 1.

We obtain

|(Bz,z)| = [(B(u+x —u),u+x — u)]
= [(Bu,u) + (B(x —u),z — u) + 2 (Bu,x — u)]|
< [(Bu,w)| + (B(z —u), x —u)| + 2 || Bull, [l —ull,
<t+[Bllysg 97 +2 [|1Bllyss -

Taking the supremum over atl€ S, we deduce that

t
2 .
1Bllye < t+[Bllays (0° +2p) ie., 1Bllyye < T (1)

Note that the division by — (p + 1)? is justified by the assumption that< /2 — 1. Then
we choose

t=tsp,=(2—(p+1)?%)6

so that|| B||2—2 < ¢, and with our definition of,
S 2\ ¢
P (HA;AS —Id|la—2 > 6) <2 (1 + p) exp (—20°(2 = (p+1)*)°m) .

Hence,|A%As — Id||2_» < & with probability at least — ¢ provided that

1 2 -1
(B.3) m > méf (In(1+2/p)s +1n(2e™1)).

Now we takep such thafin(1 + 2/p) = 3, thatis,p = 2/(e? — 1). Then 8.3) yields the
condition

m>C6 2 (3s+1n(2e7 1))

with C' = 1.646 ¢~1. This concludes the proof. O
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