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NONUNIFORM SPARSE RECOVERY WITH SUBGAUSSIAN MATRICES ∗

ULAŞ AYAZ †‡ AND HOLGER RAUHUT‡

Abstract. Compressive sensing predicts that sufficiently sparse vectors can be recovered from highly incom-
plete information using efficient recovery methods such asℓ1-minimization. Random matrices have become a pop-
ular choice for the measurement matrix. Indeed, near-optimal uniform recovery results have been shown for such
matrices. In this note we focus on nonuniform recovery using subgaussian random matrices andℓ1-minimization.
We provide conditions on the number of samples in terms of the sparsity and the signal length which guarantee that
a fixed sparse signal can be recovered with a random draw of thematrix usingℓ1-minimization. Our proofs are short
and provide explicit and convenient constants.

Key words. compressed sensing, sparse recovery, random matrices,ℓ1-minimization

AMS subject classifications.94A20, 60B20

1. Introduction. Compressive sensing allows to reconstruct signals from by far fewer
measurements than what is considered necessary at first sight. The seminal papers by E. Can-
dès, J. Romberg, and T. Tao [7,9] and by D. Donoho [12] have triggered substantial research
activities in mathematics, engineering, and computer science with a lot of possible applica-
tions.

In mathematical terms, we aim at solving the linear system ofequationsy = Ax
for x ∈ C

N wheny ∈ C
m andA ∈ C

m×N are given and whenm ≪ N . Clearly, in general
this task is impossible since even ifA has full rank, there are infinitely many solutions to this
equation. The situation changes dramatically ifx is sparse, that is,‖x‖0 := #{ℓ, xℓ 6= 0} is
small. We note that‖ · ‖0 is called theℓ0-norm although it is not a norm.

As a first approach, one is led to solve the optimization problem

min
z∈CN

‖z‖0 subject toAz = y,

wherey = Ax. Unfortunately, this problem is NP-hard in general. It has become common to
replace theℓ0-minimization problem by theℓ1-minimization problem

(1.1) min
z∈CN

‖z‖1 subject toAz = y,

wherey = Ax. This problem can be solved by efficient convex optimizationtechniques [3].
As a key result of compressive sensing and under appropriateconditions onA and on the
sparsity ofx, ℓ1-minimization indeed reconstructs the originalx. Certain random matricesA
are known to provide optimal recovery with high probability. There are basically two types
of recovery results:

• Uniform recovery. Such results state that with high probability on the draw of
the random matrixA, everysparse vector can be reconstructed under appropriate
conditions.

• Nonuniform recovery. Such results state that a given sparse vectorx can be recon-
structed with high probability on the draw of the matrixA under appropriate con-
ditions. The difference to uniform recovery is that nonuniform recovery does not

∗Received December 15, 2011. Accepted April 30, 2014. Published online on July 16, 2014. Recommended by
G. Teschke.

†Hausdorff Center for Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
(ulas.ayaz@hcm.uni-bonn.de).

‡RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
(rauhut@mathc.rwth-aachen.de).

167



ETNA
Kent State University 

http://etna.math.kent.edu

168 U. AYAZ AND H. RAUHUT

imply that there is a matrix that recovers allx simultaneously. Or, in other words,
the small exceptional set of matrices for which recovery fails may depend onx.

Uniform recovery viaℓ1-minimization is, for instance, satisfied if the by now classical re-
stricted isometry property (RIP) holds forA with high probability [4,8]. A common choice
for A ∈ R

m×N are Gaussian random matrices, that is, the entries ofA are independent
standard normally distributed random variables. If, forε ∈ (0, 1),

(1.2) m ≥ C(s ln(N/s) + ln(2/ε)),

then with a probability of at least1 − ε, we have uniform recovery of alls-sparse vec-
tors x ∈ R

N using ℓ1-minimization andA as measurement matrix; see, e.g., [9, 15, 24].
The constantC > 0 is universal and estimates via the restricted isometry property give an
approximate value ofC ≈ 200, which is significantly worse than what can be observed in
practice. (Note that a direct analysis in [26] for the Gaussian case, which avoids the re-
stricted isometry property, givesC ≈ 12. This is still somewhat larger than the constants
we report below in the nonuniform setting.) For this reason,this note considers nonuniform
sparse recovery using Gaussian and more general subgaussian random matrices in connection
with ℓ1-minimization. Our main results below guarantee nonuniform recovery with explicit
and convenient constants. In contrast to other works such as[13,15], we can treat the recov-
ery of complex vectors as well. We also get useful constants in the subgaussian case and, in
particular, for Bernoulli matrices. Moreover, our resultsalso establish stability of the recon-
struction when the vectors are only approximately sparse and measurements are perturbed.

Gaussian and subgaussian random matrices are very important for the theory of compres-
sive sensing because they provide a model of measurement matrices which can be analyzed
very accurately (as shown in this note). They are used in real-world sensing scenarios, for
instance, in the one-pixel camera [17]. Moreover, even if certain applications require more
structure of the measurement matrix (leading to structuredrandom matrices [25]), the em-
pirically observed recovery performance of many types of matrices is very close to the one
of (sub-)Gaussian random matrices [14], which underlines the importance of understanding
subgaussian random matrices in compressive sensing.

2. Main results.

2.1. The Gaussian case.We say that anm × N random matrixA is Gaussian if its
entries are independent and standard normally distributedrandom variables, that is, having
mean zero and variance1. Our nonuniform sparse recovery result for Gaussian matrices
andℓ1-minimization reads as follows.

THEOREM 2.1. Let x ∈ C
N with ‖x‖0 = s. LetA ∈ R

m×N be a randomly drawn
Gaussian matrix, and letε ∈ (0, 1). If

(2.1) m ≥ s
[

√

2 ln(4N/ε) +
√

2 ln(2/ε)/s+ 1
]2

,

then with probability at least1− ε, the vectorx is the unique solution to theℓ1-minimization
problem(1.1).

REMARK 2.2. For largeN ands, condition (2.1) approximately becomes

(2.2) m > 2s ln(4N/ε).

Compared to (1.2), we realize that the logarithmic term slightly falls shortof the optimal
one ln(N/s). However, we emphasize that our proof is short, and the constant is explicit
and of moderate size. Indeed, when in additions/N becomes very small (this is in fact
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the interesting regime), then we nevertheless reproduce the conditions found by Donoho and
Tanner [13, 15] and, in particular, the optimal constant2. Note that Donoho and Tanner
used methods from the theory of random polytopes, which are quite different to our proof
technique.

2.2. The subgaussian case.We generalize our recovery result for matrices with entries
that are independent subgaussian random variables. A random variableX is calledsubgaus-
sian if there are constantsβ, θ > 0 such that

P(|X| ≥ t) ≤ βe−θt2 for all t > 0.

It can be shown [28] thatX is subgaussian withEX = 0 if and only if there exists a constantc
(depending only onβ andθ) such that

(2.3) E[exp(λX)] ≤ ecλ
2

for all λ ∈ R.

Important special cases of subgaussian mean-zero random variables are standard Gaussians,
and Rademacher (Bernoulli) variables, that is, random variables that take the values±1 with
equal probability. For both of these random variables, the constantc in (2.3) satisfiesc = 1/2;
see also Section2.3.

A random matrix with entries that are independent mean-zerosubgaussian random vari-
ables with the same constantc in (2.3) is called a subgaussian random matrix. Note that the
entries are not required to be identically distributed.

THEOREM 2.3. Let x ∈ C
N with ‖x‖0 = s. LetA ∈ R

m×N be a random draw of a
subgaussian matrix with a constantc in (2.3), and letε ∈ (0, 1). If

(2.4) m ≥ s
[

√

4c ln(4N/ε) +
√

C(3 + ln(4/ε)/s)
]2

,

then with probability at least1− ε, the vectorx is the unique solution to theℓ1-minimization
problem(1.1). The constantC in (2.4) only depends onc.

More precisely, the constantC = 1.646c̃−1, wherec̃ = c̃(c) is the constant in (B.1).

2.3. The Bernoulli case.We specialize the previous result for subgaussian matricesto
Bernoulli (Rademacher) matrices, that is, random matriceswith independent entries taking
the value±1 with equal probability. We are then able to provide explicitvalues for the
constants appearing in the result of Theorem2.3. If Y is a Bernoulli random variable, then
by a Taylor series expansion

E(exp(λY )) =
1

2

(

eλ + e−λ
)

≤ e
1

2
λ2

.

This shows that the subgaussian constantc equals1
2 in the Bernoulli case. Furthermore, we

have the following concentration inequality for a matrixB ∈ R
m×N with entries that are

independent realizations of±1/
√
m,

P
(
∣

∣‖Bx‖22 − ‖x‖22
∣

∣ > t‖x‖22
)

≤ 2e−
m
2
(t2/2−t3/3),(2.5)

for all x ∈ R
N , t ∈ (0, 1); see, e.g., [1, 2]. We can simply estimatet3 < t2 in (2.5) and

get c̃ = 1
12 in (B.1) and consequentlyC = 1.646c̃−1 = 19.76.
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COROLLARY 2.4. Letx ∈ C
N with ‖x‖0 = s. LetA ∈ R

m×N be a matrix with entries
that are independent Bernoulli random variables, and letε ∈ (0, 1). If

(2.6) m ≥ 2s
[

√

ln(4N/ε) +
√

29.64 + 9.88 ln(4/ε)/s
]2

,

then with probability at least1− ε, the vectorx is the unique solution to theℓ1-minimization
problem(1.1).

Roughly speaking, for largeN and moderately larges, the second term in (2.6) can be
ignored and we arrive atm ≥ 2s ln(4N/ε).

2.4. Stable and robust recovery.In this section we state some extensions of our results
for nonuniform recovery with Gaussian matrices that show stability of the reconstruction
when passing from sparse signals to only approximately sparse ones and robustness under
perturbations of the measurements. In this context we assume the noisy model

y = Ax+ e ∈ C
m with ‖e‖2 ≤ η

√
m.(2.7)

It it natural to work then with the noise constrainedℓ1-minimization problem

min
z∈CN

‖z‖1 subject to‖Az − y‖2 ≤ η
√
m.(2.8)

For the formulation of the next result, we define the error of the bests-term approximation
of x in theℓ1-norm by

σs(x)1 := inf
‖z‖0≤s

‖x− z‖1.

THEOREM 2.5. Letx ∈ C
N be an arbitrary but fixed vector, and letS ⊂ {1, 2, . . . , N}

denote the index set corresponding to itss largest absolute entries. LetA ∈ R
m×N be a

draw of a Gaussian random matrix. Suppose we take noisy measurements as in(2.7). If,
for θ ∈ (0, 1),

m ≥ s

[

√

2 ln(12N/ε)

1− θ
+
√

2 ln(6/ε)/s+
√
2

]2

,(2.9)

then with probability at least1− ε, the solution̂x to the minimization problem(2.8) satisfies

‖x− x̂‖2 ≤ C1

θ
η +

C2

θ

σs(x)1√
s

.(2.10)

Here, the constantsC1, C2 > 0 are universal.
Condition (2.9) on the number of required measurements is very similar to (2.1) in the

exact sparse and noiseless case. Whenθ tends to0, we almost obtain the same condition, but
then the right hand side of the stability estimate (2.10) blows up. In other words, we need to
take slightly more measurements than required for exact recovery in order to ensure stability
and robustness of the reconstruction.

A sketch of the proof of this theorem based on the so-called weak restricted isometry
property is given in Section3.7. We note that a version of this result for subgaussian random
matrices can be shown as well.
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2.5. Relation to previous work. Recently, several papers appeared dealing with nonuni-
form recovery. Most of these papers only consider the Gaussian case while our results extend
to subgaussian and, in particular, to Bernoulli matrices.

As already mentioned, Donoho and Tanner [15] obtain nonuniform recovery results (the
terminology is “weak phase transitions”) for Gaussian matrices via methods from the theory
of random polytopes. The authors there operate essentiallyin an asymptotic regime (although
some of their results apply also to finite values ofN,m, s). They consider the case when

m/N → δ, s/m → ρ, ln(N)/m → 0, N → ∞,

whereρ, δ are some fixed values. The recovery conditions are then expressed in terms ofρ
andδ in this asymptotic regime. In particular, the authors find a (weak) transition curveρW (δ)
such thatρ < ρW (δ) implies recovery with high probability andρ > ρW (δ) means failure
with high probability (asN → ∞). Moreover, they show thatρW (δ) ∼ 2 ln(δ−1) asδ → 0.
Translated back into the quantitiesN,m, s, this givesm ≥ 2s ln(N) in an asymptotic regime,
which is essentially the condition in (2.2).

Cand̀es and Plan give a rather general framework for nonuniform recovery in [5], which
applies to measurement matrices with independent rows having bounded entries. In fact,
they prove a recovery condition for such random matrices of the formm ≥ Cs ln(N) for
some constantC. However, they do not obtain explicit and good constants. Dossal et al.
[16] derive a recovery condition for Gaussian matrices of the form m ≥ cs ln(N), where
c approaches2 in an asymptotic regime. These two papers also contain stability results for
noisy measurements.

Chandrasekaran et al. [10] use convex geometry in order to obtain nonuniform recov-
ery results. They develop a rather general framework that applies also to low-rank recovery
and further setups. However, they can only treat Gaussian measurements. They approach
the recovery problem via Gaussian widths of certain convex sets. In particular, they esti-
mate the number of Gaussian measurements needed in order to recover ans-sparse vector
by m ≥ 2s(ln(N/s− 1) + 1), which is essentially the optimal result. Their method heavily
relies on properties of Gaussian random vectors, and therefore, it does not seem possible to
extend it to more general subgaussian random matrices such as Bernoulli matrices.

Shortly before finishing this work, we became aware of the article of Cand̀es and
Recht [6], who derived closely related results. For Gaussian measurement matrices, they
show that, for anyβ > 1, an s-sparse vector can be recovered with probability at
least1− 2N−f(β,s) if

m ≥ 2βs lnN + s,

where

f(β, s) =

[

√

β

2s
+ β − 1−

√

β

2s

]2

.

Their method of proof uses the duality based recovery Theorem 3.1 due to Fuchs [19] like
in our approach, but then proceeds differently. They derivea similar recovery condition for
subgaussian matrices but only state it for the special case of Bernoulli matrices. Furthermore,
they also work out recovery results in the context of block-sparsity and low-rank recovery.
However, differently to our paper, they do not cover the stability of the reconstruction.
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3. Proofs.

3.1. Notation. We start by defining some notation needed in the proofs. Let[N ] denote
the set{1, 2, . . . , N}. The column submatrix of a matrixA consisting of the columns indexed
by S is written asAS = (aj)j∈S , whereS ⊂ [N ] andaj ∈ R

m, j = 1, . . . ,m, denote the
columns ofA. Similarly,xS ∈ C

S denotes the vectorx ∈ C
N restricted to the entries inS,

andx ∈ C
N is calleds-sparse ifsupp(x) = {ℓ : xℓ 6= 0} = S with S ⊂ [N ] and|S| = s,

i.e.,‖x‖0 = s. We further need to introduce the sign vectorsgn(x) ∈ C
N having entries

sgn(x)j :=

{ x
|xj | if xj 6= 0,

0 if xj = 0,
j ∈ [N ].

The Moore-Penrose pseudo-inverse of a matrixB where(B∗B) is invertible is given by
B† = (B∗B)−1B∗ so thatB†B = Id, whereId is the identity matrix.

3.2. Recovery conditions.In this section we state some results that are used in the
proof of the main theorems directly or indirectly. The proofs of Theorems2.1and2.3require
a condition for sparse recovery which not only depends on thematrixA but also on the sparse
vectorx ∈ C

N to be recovered. The following theorem is due to J. J. Fuchs [19] in the real-
valued case and was extended to the complex case by J. Tropp [27]; see also [25, Theorem 2.8]
for a slightly simplified proof.

THEOREM 3.1. LetA ∈ C
m×N andx ∈ C

N with S := supp(x). Assume thatAS is
injective and that there exists a vectorh ∈ C

m such that

A∗
Sh = sgn(xS),

|(A∗h)ℓ| < 1, ℓ ∈ [N ] \ S.

Thenx is the unique solution to theℓ1-minimization problem(1.1) with y = Ax.

Choosing the vectorh =
(

A†
S

)∗
sgn(xS) leads to the following corollary.

COROLLARY 3.2. LetA ∈ C
m×N andx ∈ C

N with S := supp(x). If the matrixAS is
injective and if

|〈(AS)
†aℓ, sgn(xS)〉| < 1 for all ℓ ∈ [N ] \ S,

then the vectorx is the unique solution to theℓ1-minimization problem(1.1) with y = Ax.

3.3. Proof of recovery in the Gaussian case.We setS := supp(x), which has cardi-
nality s. By Corollary3.2, for recovery viaℓ1-minimization, it is sufficient to show that

|〈(AS)
†aℓ, sgn(xS)〉| = |〈aℓ, (A†

S)
∗sgn(xS)〉| < 1 for all ℓ ∈ [N ] \ S.

Therefore, the failure probability for recovery is boundedby

P := P
(

∃ℓ 6∈ S |〈(AS)
†aℓ, sgn(xS)〉| ≥ 1

)

.

If we conditionX := 〈aℓ, (A†
S)

∗sgn(xS)〉 on AS , it is a Gaussian random variable. Fur-
thermore,X =

∑m
j=1(aℓ)j [(A

†
S)

∗sgn(xS)]j is centered, so its varianceν2 can be estimated
by

ν2 = E(X2) =

m
∑

j=1

E[(aℓ)
2
j ][(A

†
S)

∗sgn(xS)]
2
j

= ‖(A†
S)

∗sgn(xS)‖22 ≤ σ−2
min(AS)‖sgn(xS)‖22 = σ−2

min(AS) s,
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where σmin denotes the smallest singular value. The last inequality uses the fact that
‖(A†

S)
∗‖2→2 = ‖A†

S‖2→2 = σ−1
min(AS). A tail estimate for a mean-zero Gaussian random

variableX with varianceσ2 obeys the inequality

P(|X| > t) ≤ e−t2/2σ2

;(3.1)

see [25, Lemma 10.2]. Then it follows that

P ≤ P

(

∃ℓ 6∈ S |〈(AS)
†aℓ, sgn(xS)〉| ≥ 1

∣

∣

∣
‖(A†

S)
∗sgn(xS)‖2 < α

)

+ P(‖(A†
S)

∗sgn(xS)‖2 ≥ α)

≤ 2Nexp(−1/2α2) + P(σ−1
min(AS)

√
s ≥ α).(3.2)

The inequality in (3.2) uses the tail estimate (3.1), the union bound, and the independence
of aℓ andAS . The first term in (3.2) is bounded byε/2 if

α ≤ 1
√

2 ln(4N/ε)
.(3.3)

In order to estimate the second term in (3.2), we use an elegant estimate for the smallest singu-
lar value of a normalized Gaussian matrixB ∈ R

m×s where the entries ofB are independent
and follow the normal distributionN (0, 1/m), which was provided in [11],

P(σmin(B) < 1−
√

s/m− r) ≤ e−mr2/2.(3.4)

Its proof relies on the Slepian-Gordon Lemma [20,21] and the concentration of measure for
Lipschitz functions [23]. We proceed with

P(σ−1
min(AS)

√
s ≥ α) = P(σmin(AS) ≤

√
s/α) = P

(

σmin(AS/
√
m) ≤ 1√

m

√
s

α

)

≤ exp

(

−m(1− (α−1 + 1)
√

s/m)2

2

)

.(3.5)

If we chooseα that makes (3.3) an equality, plug it into condition (3.5), and require that (3.5)
is bounded byε/2, we arrive at the condition

m ≥ s
[

√

2 ln(4N/ε) +
√

2 ln(2/ε)/s+ 1
]2

,

which ensures recovery with a probability of at least1 − ε. This concludes the proof of
Theorem2.1.

3.4. Tail estimate for sums of subgaussian variables.We use the following estimate
for sums of subgaussian random variables in the proof of Theorem2.3. It appears for instance
in [28].

LEMMA 3.3. Let X1, . . . , XM be a sequence of independent mean-zero subgaussian
random variables with the same parameterc in (2.3). Let a ∈ R

M be some vector. Then
Z :=

∑M
j=1 ajXj is subgaussian, that is, fort > 0,

P(|
M
∑

j=1

ajXj | ≥ t) ≤ 2exp(−t2/(4c‖a‖22)).

The proof of this Lemma is given in AppendixA.
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3.5. Conditioning of subgaussian matrices.While the following lemma is well-known
in principle, the correct scaling inδ seemingly has not appeared elsewhere in the literature;
compare with [2,24].

LEMMA 3.4. Let S ⊂ [N ] with card(S) = s. Let A be anm × N random matrix
with independent, isotropic, and subgaussian rows with thesame parameterc in (2.3). Then,
for δ ∈ (0, 1), the normalized matrix̃A = 1√

m
A satisfies

‖Ã∗
SÃS − Id‖2→2 ≤ δ

with probability at least1− ε provided that

(3.6) m ≥ Cδ−2(3s+ ln(2ε−1)),

whereC depends only onc.
The proof of this Lemma is given in AppendixB.

3.6. Proof of recovery in the subgaussian case.We follow a similar path as in the
Gaussian case. We denoteS := supp(x). We can bound the failure probabilityP by

P ≤ P

(

∃ℓ 6∈ S |〈(AS)
†aℓ, sgn(xS)〉| ≥ 1

∣

∣

∣
‖(A†

S)
∗sgn(xS)‖2 < α

)

+ P(‖(A†
S)

∗sgn(xS)‖2 ≥ α).(3.7)

The first term in (3.7) can be bounded by Lemma3.3. Conditioning onAS and
‖(A†

S)
∗sgn(xS)‖2 < α, we get

P(|〈(AS)
†aℓ, sgn(xS)〉| ≥ 1) = P(|

m
∑

j=1

(aℓ)j [(A
†
S)

∗sgn(xS)]j | ≥ 1) ≤ 2exp(−1/(4cα2)).

So by the union bound, the first term in (3.7) can be estimated by2Nexp(−1/(4cα2)), which
in turn is no larger thanε/2 provided that

α ≤
√

1/(4c ln(4N/ε)).(3.8)

For the second term in (3.7), we have

P(‖(A†
S)

∗sgn(xS)‖2 ≥ α) ≤ P(σ−1
min(AS)

√
s ≥ α)

= P(σmin(AS) ≤
√
s/α) = P

(

σmin(AS/
√
m) ≤ 1√

m

√
s

α

)

.

By Lemma3.4, the normalized subgaussian matrixÃS := AS/
√
m satisfies

P(σmin(ÃS) < 1− δ) < P(σmin(ÃS) <
√
1− δ) < P(‖Ã∗

SÃS − Id‖2→2 ≥ δ) < ε/2

provided thatm ≥ Cδ−2(3s+ln(4ε−1)) andδ ∈ (0, 1), whereC depends on the subgaussian
constantc. The choice 1√

m

√
s

α = 1 − δ yieldsδ = 1 −
√
s

α
√
m

. Combining these arguments
and choosingα that makes (3.8) an equality, we can bound the failure probability byε if

m ≥ C

(

1−
√

4cs ln(4N/ε)√
m

)−2

(3s+ ln(4/ε)).(3.9)

Solving (3.9) for m yields the condition

m ≥ s
[

√

4c ln(4N/ε) +
√

C(3 + ln(4/ε)/s)
]2

.

This condition also impliesδ ∈ (0, 1). This concludes the proof of Theorem2.3.
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3.7. Stability of reconstruction. Here, we give a very brief sketch of the proof of The-
orem2.5. It uses the concept of the weak restricted isometry property (weak RIP) introduced
in [5].

DEFINITION 3.5. (Weak RIP) LetS ⊂ [N ] be fixed with cardinalitys and fixδ1, δ2 > 0.
Then a matrixA ∈ R

m×N is said to satisfy the weak RIP with parameters(S, r, δ1, δ2) if

(1− δ1)‖v‖22 ≤ ‖Av‖22 ≤ (1 + δ2)‖v‖22

for all v supported onS ∪R and all subsetsR in [N ] \ S with cardinality|R| ≤ r.
The key to the proof of Theorem2.5 is the following stable and robust version of the

dual certificate based recovery Theorem3.1. Its proof follows a similar strategy as in [5]
and [22, Theorem 3.1].

LEMMA 3.6. Let x ∈ C
N andA ∈ R

m×N . LetS be the set of indices of thes largest
absolute entries ofx. Assume thatA satisfies the weak RIP with parameters(S, r, δ1, δ2)
for r ≤ N andδ1, δ2 ∈ (0, 1) and that there exists a vectorv ∈ C

m such that, forθ ∈ (0, 1),

A∗
Sv = sgn(xS),

|(A∗v)ℓ| < 1− θ, ℓ ∈ [N ] \ S,(3.10)

‖v‖2 ≤ β
√
s.(3.11)

Suppose we take noisy measurementsy = Ax+ e ∈ C
m with ‖e‖2 ≤ η. Then the solution̂x

to

min
z∈CN

‖z‖1 subject to‖Az − y‖ ≤ η

satisfies

‖x− x̂‖2 ≤
√
1 + δ2
1− δ1

2η +

(

2
√
2max{δ1, δ2}
1− δ1

+
√
2

)

(

2β

θ

√

s

r
η +

2

θ

σs(x)1√
r

)

.(3.12)

The weak RIP is established for Gaussian random matrices by using the estimate (3.4)
for the smallest singular value of a single submatrixAS∪R and a corresponding estimate for
the largest singular value [11]. Then one takes the union bound over all subsetsR of [N ]\S of
cardinalityr. We conclude in this way that the weak RIP holds with probability at least1− ε
provided that

m ≥ max
{

1−
√

1− δ1,
√

1 + δ2 − 1
}2 [√

s+ r +
√

2r ln(eN/r) + 2 ln(2/ε)
]2

.

The numberr is chosen ass/8 in the end so that the quotient
√

s/r appearing in (3.12)
becomes a constant.

We use the same ansatz for the dual vectorv as before, namelyv = (A†
S)

∗sgn(xS).
Condition (3.10) is analyzed in the same way as the corresponding condition in Theorem3.1.
This leads to the appearance ofθ in (2.9). Moreover, condition (3.11) is straightforward
to verify via ‖v‖2 ≤ ‖A†

S‖2→2‖sgn(xS)‖2 = ‖A†
S‖2→2

√
s. An appropriate choice of the

numbersδ1, δ2, andβ leads to the desired result.
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Appendix A. Proof of Lemma 3.3. By independence, we have

Eexp(θ

M
∑

j=1

ajXj) = E

M
∏

i=1

exp(θajXj) =

M
∏

i=1

Eexp(θajXj) ≤
M
∏

i=1

exp(θajXj)

= exp(c‖a‖22θ2).

This shows thatZ is subgaussian with parameterc‖a‖22 in (2.3). We apply Markov’s inequal-
ity to get

P(Z ≥ t) = P(exp(θZ) ≥ exp(θt)) ≤ E[exp(θZ)]e−θt ≤ ec‖a‖
2

2
θ2−θt .

The optimal choiceθ = t/(2c‖a‖22) yields

P(Z ≥ t) ≤ e−t2/(4c‖a‖2

2
) .

Repeating the above computation with−Z instead ofZ shows that

P(−Z ≥ t) ≤ e−t2/(4c‖a‖2

2
) ,

and the union bound yields the desired estimateP(|Z| ≥ t) ≤ 2e−t2/(4c‖a‖2

2
).

Appendix B. Proof of Lemma 3.4. Since most available statements have an addi-
tional ln(δ−1)-term in (3.6), we include the proof of this lemma for the sake of completeness.

The following concentration inequality for subgaussian random variables appears, for
instance, in [1,24].

P(|‖Ãx‖22 − ‖x‖22| > t‖x‖22) ≤ 2exp(−c̃mt2),(B.1)

wherec̃ depends only on c. We will combine the above concentration inequality with the net
technique. Letρ ∈ (0,

√
2− 1) be a number to be determined later. According to a classical

covering number argument, see, e.g., [25, Proposition 10.1], there exists a finite subsetU of
the unit sphereS = {x ∈ R

N, supp(x) ⊂ S, ‖x‖2 = 1}, which satisfies

|U | ≤
(

1 +
2

ρ

)s

and minu∈U‖z − u‖2 ≤ ρ for all z ∈ S.

The concentration inequality (B.1) yields

P

(∣

∣

∣
‖Ãu‖22 − ‖u‖22

∣

∣

∣
> t ‖u‖22 for someu ∈ U

)

≤
∑

u∈U

P

(
∣

∣

∣
‖Ãu‖22 − ‖u‖22

∣

∣

∣
> t ‖u‖22

)

≤ 2|U | exp
(

−c̃t2 m
)

≤ 2

(

1 +
2

ρ

)s

exp
(

−c̃t2 m
)

.

The positive numbert will be set later depending onδ and onρ. Let us assume for now that
the realization of the random matrix̃A yields

(B.2)
∣

∣

∣
‖Ãu‖22 − ‖u‖22

∣

∣

∣
≤ t for all u ∈ U.
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By the above results, this occurs with probability exceeding

1 − 2

(

1 +
2

ρ

)s

exp
(

−c̃t2 m
)

.

Next we show that (B.2) implies
∣

∣

∣
‖Ãx‖22 − ‖x‖22

∣

∣

∣
≤ δ for all x ∈ S, that is,

‖Ã∗
SÃS − Id‖2→2 ≤ δ (if t is determined appropriately). LetB = Ã∗

SÃS − Id so that we
have to show‖B‖2→2 ≤ δ. Note that (B.2) means that|〈Bu, u〉| ≤ t for all u ∈ U . Now con-
sider a vectorx ∈ S for which we choose a vectoru ∈ U satisfying‖x−u‖2 ≤ ρ <

√
2−1.

We obtain

|〈Bx, x〉| = |〈B(u+ x− u), u+ x− u〉|
= |〈Bu, u〉+ 〈B(x− u), x− u〉+ 2 〈Bu, x− u〉|
≤ |〈Bu, u〉|+ |〈B(x− u), x− u〉|+ 2 ‖Bu‖2 ‖x− u‖2
≤ t+ ‖B‖2→2 ρ2 + 2 ‖B‖2→2 ρ.

Taking the supremum over allx ∈ S, we deduce that

‖B‖2→2 ≤ t+ ‖B‖2→2

(

ρ2 + 2ρ
)

, i.e., ‖B‖2→2 ≤ t

2− (ρ+ 1)2
.

Note that the division by2− (ρ+ 1)2 is justified by the assumption thatρ <
√
2− 1. Then

we choose

t = tδ,ρ :=
(

2− (ρ+ 1)2
)

δ

so that‖B‖2→2 ≤ δ, and with our definition oft,

P

(

‖Ã∗
SÃS − Id‖2→2 > δ

)

≤ 2

(

1 +
2

ρ

)s

exp
(

−c̃δ2(2− (ρ+ 1)2)2m
)

.

Hence,‖Ã∗
SÃS − Id‖2→2 ≤ δ with probability at least1− ε provided that

(B.3) m ≥ 1

c̃(2− (ρ+ 1)2)2
δ−2

(

ln(1 + 2/ρ)s+ ln(2ε−1)
)

.

Now we takeρ such thatln(1 + 2/ρ) = 3, that is,ρ = 2/(e3 − 1). Then (B.3) yields the
condition

m ≥ Cδ−2
(

3s+ ln(2ε−1)
)

with C = 1.646 c̃−1. This concludes the proof.
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[7] E. J. CANDÈS, J. ROMBERG, AND T. TAO, Robust uncertainty principles: exact signal reconstruction from
highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489–509.

[8] , Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math., 59
(2006), pp. 1207–1223.
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