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POLYNOMIAL PRECONDITIONING FOR THE GENERANK PROBLEM  *

DAVOD KHOJASTEH SALKUYEHT, VAHID EDALATPOURT, AND DAVOD HEZARIt

Abstract. Identifying key genes involved in a particular disease isseyvimportant problem in biomedical
research. The GeneRank model is based on the PageRankratgarit shares many of its mathematical properties.
The model brings together gene expression information witttaark structure and ranks genes based on the results
of microarray experiments combined with gene expressionnmpn, for example, from gene annotations (GO). In
this study, we present a polynomial preconditioned congigeddient algorithm to solve the GeneRank problem and
study its properties. Some numerical experiments are giveroiw the effectiveness of the suggested preconditioner.
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1. Introduction. Identifying genes involved in a particular disease is rdgdras a great
challenge in post-genome medical research. Such idetitiicean provide us with a better
understanding of the disease. Furthermore, it is oftenidered as the first step in finding
treatments. However, the genetic bases of many multifattdiseases are still uncertain,
and modern technologies usually report hundreds or thalssaingenes related to a disease
of interest. In this context, gene-disease prioritizatimethods are of use.

The act of finding the most potentially successful genes gnaovariety of listed genes
has been defined as the gene prioritization problem. Carisgdehe rapid growth in bio-
logical data sources containing gene-related informagioech as, for instance, sequence in-
formation, microarray expression data, functional antnartedata, protein-protein interaction
data, and the biological and medical literature, we canmismuch interest in recent years
in developing bioinformatics approaches that can analyesd data and help with the iden-
tification of important genes. The common aim in the prestrtysis to prioritize the genes
in a way that those related to the disease under study ppsgipkar at the top of a ranking.

In the last decade, several methods have been proposechkimgaor prioritizing genes
by relevance to a disease. Some of these methods have bémtezbht the Gene Prioriti-
zation Portal. These methods fall into two broad classes. The first clagsetfiods mostly
uses microarray expression data; these methods focus ofifyileg genes that are differ-
entially expressed in a disease and use simple statistieatunes such as thestatistic or
related classification methods in machine learning to raseg based on this property. The
second class of methods is often more general making useasfetywof data sources; these
methods start with some existing knowledge of ‘traininghge already known to be related
to the disease under study and directly or indirectly ramkrdmaining genes based on their
similarity to these training genes. There are also someadstthat rank or prioritize genes
based on their overall likelihood of being involved in sonigedse in general.

Those kinds of methods that aim to improve an initial rankifgained from expres-
sion data by augmenting it with a network structure derivednfother data sources can be
related to the methods of the second class. For example,éheR&ank algorithm of Mor-
rison et al. B] is an intuitive modification of the PageRank algorithm ussgdthe Google
search engine that preserves many of its mathematical piegelt combines gene expres-
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sion information with a network structure derived from gemmotations (gene ontologies
(GO)) or expression profile correlations. In the resultiege ranking algorithm, the ranking
of genes can be obtained by solving a large linear systemuadteos. Wu et al. 10, 11]
have shown that it is equivalent to a symmetric positive dtefilinear system of equations
and have analyzed its properties. They use the conjugadeegtg CG) algorithm (se€’[ 9])

in conjunction with a diagonal scaling to solve the corresping system. Recently, Benzi
and Kuhlemann in4] have shown that the GeneRank problem system is equivaldinigiar
equations where the coefficient matrices are M-matricesy hlave implemented the Cheby-
shev iteration method and methods based on polynomialssbip@roximation to solve the
system. Their numerical experiments indicate that Chebyslceleration is the most effec-
tive one among the tested methods in terms of solution tinreshis paper, we propose a
polynomial preconditioner for the GeneRank problem andystts properties.

Throughout this paper, we use the following notations, d@#ims, and results. A ma-
trix A is called nonnegative (positive) and is denotedAy> 0 (A > 0) if each entry
of A is nonnegative (positive). Similarly, foi-dimensional vectors, by identifying them
with n x 1 matrices, we can also define > 0 andx > 0. For a square matrixi, an
eigenvalue ofd is denoted by\(A) and the smallest and largest eigenvaluesg @fre given
by Amin(A) and \,.x(A), respectively. For any symmetric positive definite matfixwe
have CondA) = [|Al2[| A" |2 = Amax(A)/Aumin (4); see ]

DEFINITION 1.1 (see §]). A matrix A = (a;;) € R™*™ is called a nonsingular M-
matrix if it can be expressed in the fotl= I — B wherer > 0 and B is nonnegative with
spectral radiup(B) < 7.

The rest of the paper is organized as follows. In Sec#iove introduce the GeneRank
problem in detail. Sectiof is devoted to the description of the proposed preconditidne
Section4 we present some numerical experiments to show the effeetsseof the precondi-
tioner. Finally, concluding remarks are given in Section

2. The GeneRank problem formulation. Let the setG = {gi,...,g,} represent
genes in a microarray. Similar to the idea of PageRank, ifreedge connected with many
highly ranked genes, it should be highly ranked as well e¥@miay have a low rank ac-
cording to the experimental data. In GO, if two genes shalesat one annotation with other
genes, they are defined to be connected. From this idea, wauddra gene network, whose
adjacency matrix i$V with entries

W — 1 if g; andg; (i # j) have the same annotation in GO
Y10 otherwise

In contrast to PageRank, the connections are not directieds, instead of a nonsymmetric

hyperlink matrix, GeneRank employs a symmetric adjacenatyiriil” of the gene network,
e, WT =W. Let

deg = i Wi -
j=1

Note that since a gene might not be connected to any of the gémes 1’ may have zero
rows. Now, let the diagonal matrik be defined byD = diag(ds, ..., d, ), where

4 — deg ifdeg, > 0,
R b otherwise
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Then the GeneRank problem can be written as the followirgglacale nonsymmetric linear
system (cf. Morrison et alg])

(2.1) (I —aWD Ha = (1 - a)ex,

where! denotes the: x n identity matrix. Also,« is a damping factor with) < o < 1,
andex = [exy, exs, ..., ex,]T with ex; > 0 is the absolute value of the expression change
for g;, 1 = 1,2,...,n. The solution vector: is called the GeneRank vector, and its entries
provide information about the significance of a gene. Momist al. suggest using = 0.5.
However, the optimal choice af is still an interesting topic and deserves further studies.

Note thatl¥ is an extremely sparse matrix in general. For the computaidhe Gene-
Rank vector, Morrison et al8] use the Jacobi iteration to solv2.{), which is inefficient
when the problem size is very large @ris very close to 1. Yue et allp] reformulate the
GeneRank model as a linear combination of three parts arsgipran explicit formulation
for the GeneRank vector. In Wu et al], the GeneRank problem is rewritten as a large scale
eigenvalue problem and solved by Arnoldi-type algorithind.10], Wu and coworkers have
observed that the matri® — oIV is a symmetric positive definite matrix and they show that
the nonsymmetric linear systerd.{) can be rewritten as the following symmetric positive
definite (SPD) linear system

(2.2) (D—aW)z =(1— a)ex,

with 2 = D~'2. Note that equation2(2) is equivalent to .1). With this modification,
methods that are suitable for symmetric systems can be wsetid GeneRank problem.
In [10], a Jacobi preconditioner (symmetric diagonal scalingYbr oWV is implemented.
In this case, the preconditioned system is given by

(2.3) (I—aD WD %)z =(1—a)D Zex,

with # = D34 = D2 (D~'z) = D™ 2.
In[10Q], it is also shown that the eigenvalues of the preconditiomatrix are bounded as
follows:

(2.4) Amax(I —aD 2WD™2) < 1+a,
(2.5) Amin(l — @D 2WD™2) > 1—a.

These bounds are independent of the size of the matrix, aydothly depend on the value
of the parametetv used in the GeneRank model. It is noted that Benzi and Kuhieny§
showed that if deg> 0 for all 7, then the inequality in4.5) becomes an equality; see also
Lemma3.2 below.

As mentioned above, Benzi and Kuhlemar proved that the coefficient matrices
of (2.1) and @.2) have a nice property that we introduce here.

THEOREM 2.1. Both of the matrice® — oW andl — oD~ =W D~z are M-matrices
for0 < a < 1.

In [4], the classical Chebyshev iteration for the GeneRank prohi$ implemented. It is
a polynomial scheme to expedite the convergence of thestaij iterative method

gD = 2(k) + M- Amk), k=0,1,...,

to solve a linear system of equatiohz = b in which M is a nonsingular matrix. If
the matrix] — M~ A is similar to a symmetric matrix with eigenvalues lying in iater-
val [lmin, lmax] ON the positive real axis, then the Chebyshev iterationtfersystendz = b
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is given by (for more details, seé,[6])

(k+1) _ Wk+1 IM—L(h— Ay® 9 (L 1 k) (b-1)
Y 2 — (Imin + lmax) { ( Y™ + [2 = (lmin + lmax)](y y )}
+y(k71)’ ]C:]_’Q’_._’

wherey(© = 2 1) = (1) and

w — ; o = 2w2 Wy = 1 W = 2 - (lmin + lmax)
k+1 B Liv 2 2w2 — 17 1 5 lmax — lmin .
4w?

For the GeneRank problem, the setting, =1 — o, lpax = 1 + o, A= D — aW, b = ex,
andM = D = diag(A) is used.

Numerical results presented if] [show that the number of iterations of this method is
usually higher than those of the CG method with diagonalisgalHowever, the cost per
iteration is much lower, and this leads to faster convergeém¢erms of CPU time.

3. Main results. Wu et al. [LO, 11] proved that the coefficient matrix o2 (2) is sym-
metric positive definite, and therefore the CG method carske to solve the system. As it is
well-known, the convergence rate of the CG method dependiseocondition number of the
matrix in question or more generally on the distributionla# eigenvalues. If the eigenvalue
distribution of the preconditioned system is more clustahan that of the original one, the
convergence will be accelerated drastically. Having thimind, Wu et al. apply the Jacobi
preconditioner to the syster.@) to accelerate the convergence rate of the method. In this
case, the linear systerf.@) is obtained. Considerin@(4) and @.5), we can conclude that
increasingy from 0 to 1 can cause an increase in the ratiQ./Amin, and therefore the co-
efficient matrix would be increasingly ill-conditioned, cathe rate of convergence of CG is
expected to decrease @asncreases.

From now on, for the sake of the simplicity, & = aD :WD % andS, = I — J,.

It is noted that the matri¥,, is the coefficient matrix of the systerd.g). We now propose
the preconditionei,, = I + J,, for the systemZ.3). In this case, the preconditioned system
takes the form

MaSowf = Mabom

whereb, = (1 — a)D—%e:c. In the following, we investigate the properties of the megd
preconditioner.

THEOREM3.1. For every0 < a < 1, the matrixM,S,, is a symmetric positive definite
M-matrix.

Proof. Since the matrix>~z W D™= is sub-stochastic (nonnegative with row sums less
than or equal to 1), we have(J,) < « < 1. Hencep(J2) < o? < 1, and sinceJ, is
nonnegative, it follows from Definitioa. 1 that the matrix,, = I — J,, is an M-matrix.

a

LEMMA 3.2.I1f W #£ 0, thenA\pin(Sa) = 1 — a.
Proof. Letz = (x1,...,2,)7 such that

o 1 ifdeg, >0,
‘10 otherwise



ETNA
Kent State University
http://etna.math.kent.edu

POLYNOMIAL PRECONDITIONING FOR THE GENERANK PROBLEM 183

fori =1,2,...,n. Obviously, we havéVz = Dz. Now, observing thay = Dz # 0, we
get

(I—aD *WD %)y = (1—a)y,

which is equivalent t&,y = (1 —«)y. By equation 2.5), we obtain that — « is the smallest
eigenvalue ofS,,. 0
REMARK 3.3. In [10] it has been shown that

(3.1) Anax(WD™) <1, Apin(WD™1) > —1.

Since the eigenvalues @ 2WD~% are the same as those Bf D!, we deduce from
equation 8.1) and Lemma3.2that

(3.2) Amax(I = J2) < 1+a?, and Apin(I — J2) =1—a?.

THEOREM 3.4. The spectral condition number @f, is not greater than that of the
matrix S, i.e.,

Conds(T,,) < Condy(S,)-

Proof. Since both of the matrices, andT,, are symmetric positive definite, it is enough
to prove that

/\max(Ta) < )\max(Sa)
)\min(Ta) o )\min S )

For every eigenvalug(S,,) of S,, we haveh i, (Sa) < A(Sa) < Amax(Sa). Then,
1- Amax(sa) S 1- A(Sa) S 1- >\min(So¢)~

From Lemma3.2 we have\,in(S.) < 1. We now consider two cases,, . (S,) > 1 and
Amax(Sa) < 1. If Anax(Se) > 1, then by equation(4) and Lemma.2, we have the upper
bound\ ax (So) —1 < 1—Amin(Sa). Thereforel — (1—MXpax(Sa))? > 1—(1—Amin(Sa))?,
and since the maximum value bf- (1 — \(S,,))? is equal to 1, we obtain

1 AIna,x(‘S’(x>

T,) < = .
o) < T T A Ba) P = in(Ba) 050
Now, suppose thaX,,.x(S.) < 1. In this case, it is easy to see that

_ 1- (1 — /\max(Sa))2 < /\max(Sa)
T 1= (1= Amin(Sa))? T Awmin(Sa)

CondT,) = CondS,).
Thus, the proof is completed. O

This theorem shows that the eigenvalues of the mditiare clustered at least as much
as those of the matri¥,. As we shall see, for the presented numerical experimems, t
eigenvalues of ,, are more clustered than those%).

REMARK 3.5. From Lemm&.2, if W # 0, then\,;in(S,) = 1 — a.. Therefore, ac-
cording to the relatiol\(T,) = 1 — (1 — A(54))?, we havel,i(T,) = 1 — o?. Hav-
ing in mind that0 < A(T,) < 1, we deduce that — o® < A\(T,) < 1. Note that
1—a<ASy) <1+4a.
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We remark that the matri¥/,, is the first degree polynomial preconditioner obtained by
truncating the Neumann series expansiospt to first order:

(3.3) St=(I-J) ' =T+J,+ T2+ - =1+J,=M,.

Some other properties of such a preconditioner can be foufigd®]. One may obtain similar
preconditioners by using higher degree polynomial appnations in 8.3). Hereafter, we set
My =1I+Jy,+J2andM, =1+ J, + J2 + J2.

4. Numerical experiments. As mentioned above, irLp] the Jacobi preconditioner in
conjunction with the CG algorithm is successfully applieditte solution of the linear system
and it is deduced that it is the fastest among the tested mettoo each of the presented
examples. Also, Benzi and Kuhlemann # ompare the Chebyshev method and the method
based on polynomials of best approximation with a CG methmablaaJacobi-preconditioned
CG method, and they show that in conjunction with diagonalisg, Chebyshev acceleration
can significantly outperform CG in terms of solution times.

In this section we compare the numerical results of CG andCihebyshev iteration
methods with the first and third degree polynomial precaowirs to those of the Jacobi
preconditioner and Chebyshev acceleration. With attartio(3.2), we consider the first
degree polynomial preconditioner of the Chebyshev itenatiith the setting,,.i, = 1 — o?,
lmax =14+ a* A=D —aW,b=ex,andM = D = diag(A).

All the numerical experiments presented in this sectiorcareputed in double precision
and the algorithms are implemented in MATLAB 7.12.0 ande@stn a 64-bit 1.73 GHz
intel Q740 core i7 processor with 4GB RAM running Windows 7e We a stopping criteria
based on the 1-norm of the residual. That is, we stop itey@insoon agr||; < tol, where
tol is a given tolerance. The initial guess is the null vector. W&k two different choices for
ex, ex = (%)e, wheree is the vector of all ones, ang: = p, wherep is a randomly chosen
probability vector, that is, a random vector with entrieg(nl). For each adjacency matrix,
we use four different values af to form the corresponding GeneRank matriées- aW,

a = 0.5,0.75,0.80,0.99. The obtained numerical results are presented in the thblew. In

all the tables, “CG”, “PCG”, “Chebyshev”, “Chebyshév,”, “CG- M,,”, and “CG-M,," de-
note, respectively, the CG method implemented for the sy$#e?), the CG method applied
to the system4.3), the Chebyshev iteration fo2 (2), the preconditioned Chebyshev iteration
for the systemZ.2) with the preconditioned/,, and the CG algorithm for the syste?.%)

in conjunction with the preconditionerd,,, M, and)M,,.

ExXAMPLE 4.1. In this example three adjacency matrices are weed|, which is of size
4047 x 4047 with 339596 nonzero entriesy_Up, which is of size2392 x 2392 with 128468
nonzero entries, angt_Down, which is of sizel 625 x 1625 with 67252 nonzero entries, and
three expression change vectespr.data exprdataUp andexpr.dataDown These matri-
ces were constructed using all the three sections of the Géxena link is presented between
two genes if they share a GO annotation. Only genes which mregulated are included
in w_Up and only down-regulated oneswDown[8]. The data files are available frorf][
The results for these matrices are given in Taldlds4.2, and4.3. In these tables (as for the
other tables below), the number of iterations for convergengether with the CPU time in
seconds (in parenthesis) are given. Here we mention thtttisrexample, the tolerancel
is taken to bel0—'*. For this example, as the numerical results show, the CGadetlith
the preconditionerd/,,, M, and}M,, outperforms the other tested methods in terms of both
the number of iterations and the CPU time. Moreover, theltesue especially attractive
for a close to 1. We also observe that the number of iterationseo2® method with\7,,
is always less than those of the CG method with the precomditil/,,, while the CPU time
for the CG method with\/,, is less than that with the preconditiorié?a. As Axelsson noted



ETNA
Kent State University
http://etna.math.kent.edu

POLYNOMIAL PRECONDITIONING FOR THE GENERANK PROBLEM 185
Eigenvalues of So.s Eigenvalues of T0.5
1.6 1 1.6 1
*
9 1 18 141 1
S S
< <
n 1 ~i2f f
< <
- —
g 18 1 :
2 =
= =
jo2] (o]
< I}
= 1 = 08 1
. 06 L .

0.4

‘ ‘ ‘ 0.4 ‘ ‘ ‘
0 500 1000 1500 2000 0 500 1000 1500 2000
Order: 1, 2, ..., 1625 Order: 1, 2, ..., 1625

FIG. 4.1.Eigenvalue distribution 0.5 and 7.5 for the matrixw_Down.

in [1], using first degree polynomials roughly halves the numib&@ iterations (at the price
of two matrix-vector multiplications per iteration), whilising third degree polynomials re-
duces the number of iterations roughly by a factor of threééh@price of three matrix-vector
multiplications per iteration) and so on. Hence, polyndrpi@conditioners do not reduce
the total number of matrix-vector multiplications but otthe number of vector operations
(linked triads, inner products, etc). This means that tinesthods can be effective only if the
coefficient matrices are extremely sparse (as in the GerleRablem) or, more generally,
when the matrix-vector operations are very cheap. Thifacte observed when the results
of CG are compared to those of C@3; and CGAZ,. The last comment here is that the
number of iterations of the CG@4,, method is slightly smaller than that of C&,, but the
difference is not significant. Additional performed nunesafiexperiments show that among
the preconditioners of the forth+ J, + J2 + --- + J~, the ones with odd values ofare
preferred over such preconditioners with evesee [, p. 181].

For a further investigation, in Figurésl, 4.2, and4.3, we depict the eigenvalues distri-
bution of S, andT, for the test matrices_Down whena = 0.5, w_Up whena = 0.75, and
w_All whena = 0.9, respectively. As it can be observed, the eigenvalues afidtteicesT,
are more clustered than those%f for all three test matrices.

ExamMPLE 4.2. In this example we use two different types of test datato experi-
ments. The first matrix is the SNPa adjacency matrix (simgieleotide polymorphism ma-
trix). This matrix has, = 152520 rows and columns and is very sparse with only 639,248
nonzero entries. The second type is a RENGA adjacency maatige-dependent random
graph model). In our experiments we et 0.9 and = 1, the default values in RENGA.
Both of these types of matrices are tested4ni[0]. The results for the SNPa matrix are
given in Tables4.4 and4.5, and the results for the RENGA matrix with = 100000 and
n = 500000 are given in Tabled.6and4.7. In this example the tolerancel is set tol0~1°.

All the comments made for the previous example remain valid.



ETNA
Kent State University
http://etna.math.kent.edu

186 D. K. SALKUYEH, V. EDALATPOUR, AND D. HEZARI
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FIG. 4.2.Eigenvalue distribution ofy.75 andT}.75 for the matrixw_Up.
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FIG. 4.3.Eigenvalue distribution 0fy.9 andTp. g for the matrixw_All.
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Results for thev_All matrix in Examplet.1 Hereex = extr_data.

« 0.50 0.75 0.80 0.99

CG 381 (0 700) 441 (0.772) 456 (0 785) 603 (1 012)
PCG (0 051) 9 (0.082) (0 081) (O 133)
Chebyshev (0 030) 6 (0.048) (0 057) 177 (O 195)
Chebyshew/,, (0 086) 5 (0.094) (0 108) 126 (O 253)
ChebyshewdZ, 11 (0.033) 9 (0.106) 23 (0.099) 104 (0.324)
CG-M, 11 (0.023) 6 (0.037)  18(0.044) 30 (0.064)
CG-M, 10 (0.080) 5 (0.076) 17 (0.056) 29 (0.099)
CG-M, 7 (0.030) 1(0.046) 13 (0.054)  22(0.102)

TABLE 4.2
Results for the matrixo_Up in Example4.1 Hereex = extr_dataUp.

« 0.50 0.75 0.80 0.99

CG 309 (0.142) 360 (0.162) 377 (0.173) 488 (0.221)
PCG 26 (0.017) 9 (0.026)  42(0.022) 70 (0.033)
Chebyshev 22 (0.008) 6 (0.013) 41 (0.014) 177 (0.058)
ChebyshewdZ, 15 (0.019)  25(0.023) 28 (0.025) 127 (0.071)
ChebyshewdZ, 11 (0.021) 20 (0.024) 23 (0.028) 105 (0.082)
CG-M,, 11 (O 006) 6 (0.011) (0 012) (0 017)
CG-MQ 10 (0 009) 5 (0.013) (0 014) (O 025)
CG-M, 7 (0.008) 1(0.016)  13(0.014) 22 (0.022)

TABLE 4.3

Results for the matrixo_Down in Example4.1l Hereex = extr_dataDown.

Q@ 0.50 0.75 0.80 0.99

CG 267 (0.087) 310 (0.091) 322 (0.094) 427 (0.131)
PCG 27 (0.010) 40 (0.013) 44 (0.014) 76 (0.024)
Chebyshev 22 (0.007)  35(0.008) 40 (0.009) 173 (0.035)
ChebyshewA7, 14 (0.016) 4(0.012)  28(0.013) 125 (0.041)
ChebyshevAZ, 11 (0.010) 19 (0.013) 22 (0.014) 103 (0.046)
CG-M, 11 (0.006) 17 (0.006) 18 (0.006) 32 (0.013)
CG-M, 10 (0.004) 16 (0.006) 17 (0.008) 32 (0.020)
CG-M, 7(0.007)  12(0.012)  13(0.011) 23 (0.014)

TABLE 4.4

Results for the SNPa matrix in Examgle. Hereex = (%)e, wheree is the vector of all ones.

Q@ 0.50 0.75 0.80 0.99

CG 86 (2.420) 116 (3.321) 128 (3.663) 469 (13.32)
PCG 17 (0.514) 27 (0.818)  30(0.922) 91 (2.738)
Chebyshev 17 (0.208) 28 (0.359) 1(0.384) 130 (1.402)
ChebyshewdZ, 11 (0.244) 19 (0.352)  22(0.382) 95 (1.246)
ChebyshevdZ,  9(0.298) 15 (0.346) 18 (0.401) 79 (1.464)
CG-M, 9(0.164)  13(0.213) 15 (0.236) 44 (0.704)
CG-M, 8(0.163) 14 (0.287) 16 (0.342) 52 (1.086)
CG-M,, 6(0.195)  9(0.269) 10 (0.262) 33 (0.963)
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Results for the SNPa matrix in Examgle. Hereexz = p, wherep is a random probability vector.

a 0.50 0.75 0.80 0.99

CG 127 (3.649) 174 (5.011) 193 (5.607) 721 (20.41)
PCG 26 (0.789) 41 (1.242) 6 (1.375) 139 (4.203)
Chebyshev 17 (0.211) 27 (0.354) 0 (0.352) 125 (1.368)
Chebyshevd/,, 11 (0.259) 19 (0.382) 1(0.367) 92 (1.222)
Chebyshe\A1,, 9(0.267) 15 (0.396) 7(0.414) 77 (1.349)
CG-M,, 8(0.170) 13 (0.209) 4(0.232) 43 (0.713)
CG-M, 8(0.175) 14 (0.279) 6 (0.355) 51 (1.069)
CG-M, 6 (0.171) 9 (0.245) 0(0.261) 32 (0.908)

TABLE 4.6

Results for the RENGA matrices in Exampl2 Hereex = (%)e, wheree is the vector of all ones.

n = 100000
o 0.50 0.75 0.80 0.99
CG 43(0.789)  47(0.840) 48 (0.863) 129 (2.305)
PCG 14 (0.262) 22 (0.431) 24 (0.459) 95 (1.824)
Chebyshev 17(0.183)  27(0.245) 31 (0.259) 127 (0.905)
ChebyshewdZ, 11 (0.244)  19(0.352) 22(0.382) 95 (1.246)
ChebyshevAZ, 9 (0.238)  15(0.331) 17(0.358) 78 (1.083)
CG-M,, 8(0.092) 12 (0.141) 14 (0.168) 53 (0.673)
CG-M,, 7(0.120)  11(0.192) 12(0.234) 51 (0.885)
CG-M,, 5(0.118)  9(0.201) 10 (0.226) 41 (0.935)
= 500000
CG 23 (2.612) 27 (3.006) 30 (3.398) 106 (12.02)
PCG 13 (1.578) 20 (2.453) 22 (2.661) 86 (10.50)
Chebyshev 17 (0.901)  27(1.371) 30 (1.512) 125 (6.359)
ChebyshevdZ, 11 (1.655) 19 (2.231) 21 (2.364) 91 (7.240)
ChebyshevAZ,  8(1.802)  15(2.482) 17(2.542) 76 (8.082)
CG-M, 5(0.645)  12(1.100) 14 (1.234) 50 (4.671)
CG-M, 6(0.743)  10(1.223) 11(1.384) 44 (5.555)
CG-M,, 5(0.768)  8(1.214)  9(1.436) 38 (6.098)

5. Conclusion. In this paper, a simple polynomial preconditioner has begiiémented

and tested for the GeneRank problem, and some of its prepdréive been illustrated. Fi-
nally, numerical experiments have been presented to shewftactiveness of the proposed
preconditioner. As it can be observed, it does not need any {CRe to set up the precon-
ditioner and the preconditioner is explicitly at hand. Oumrerical results show that the

proposed preconditioner is more effective than the onesepted in the literature.
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TABLE 4.7
Results for the RENGA matrices in Exampla Hereex = p, wherep is arandom probability vector.

n = 100000
a 0.50 0.75 0.80 0.99

CG 68 (1.254) 73 (1.299) 75 (1.337) 222 (4.021)
PCG 22 (0.418) 34 (0.667) 39 (0.732) 165 (3.286)
Chebyshev 17 (0.167) 26 (0.255) 30 (0.269) 122 (0.883)
ChebyshevAZ, 11 (0.257) 19 (0.289) 22 (0.335) 93 (0.949)
ChebyshewZ,  8(0.237)  15(0.306) 17 (0.335) 75 (0.998)
CG-M, 8(0.093) 12 (0.145) 14 (0.170) 53 (0.668)
CG-M,, 7(0.123)  11(0.185) 12(0.216) 51 (0.903)
CG-M, 5(0.105)  9(0.185) 10(0.212) 40 (0.877)

= 500000
CG 36 (4.101) 45 (5.109) 50 (5.637) 200 (22.68)
PCG 21 (2.509) 34 (4.168) 38 (4.585) 163 (19.84)
Chebyshev 16 (0.838) 26 (1.360) 29 (1.455) 120 (6.062)
ChebyshewdZ, 11 (1.702)  18(2.153) 21 (2.409) 88 (6.712)
ChebyshewZ,  8(1.750) 14 (2.464) 17 (2.556) 73 (7.950)
CG-M, 8(0.733) 12 (1.094) 13 (1.174) 51 (4.761)
CG-M, 6(0.807) 10 (1.244) 11 (1.391) 46 (5.854)
CG-,, 5(0.796)  8(0.236) 10 (1.586) 39 (6.050)
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