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POLYNOMIAL PRECONDITIONING FOR THE GENERANK PROBLEM ∗
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Abstract. Identifying key genes involved in a particular disease is a very important problem in biomedical
research. The GeneRank model is based on the PageRank algorithm and shares many of its mathematical properties.
The model brings together gene expression information with a network structure and ranks genes based on the results
of microarray experiments combined with gene expression information, for example, from gene annotations (GO). In
this study, we present a polynomial preconditioned conjugate gradient algorithm to solve the GeneRank problem and
study its properties. Some numerical experiments are given to show the effectiveness of the suggested preconditioner.
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1. Introduction. Identifying genes involved in a particular disease is regarded as a great
challenge in post-genome medical research. Such identification can provide us with a better
understanding of the disease. Furthermore, it is often considered as the first step in finding
treatments. However, the genetic bases of many multifactorial diseases are still uncertain,
and modern technologies usually report hundreds or thousands of genes related to a disease
of interest. In this context, gene-disease prioritizationmethods are of use.

The act of finding the most potentially successful genes among a variety of listed genes
has been defined as the gene prioritization problem. Considering the rapid growth in bio-
logical data sources containing gene-related informationsuch as, for instance, sequence in-
formation, microarray expression data, functional annotation data, protein-protein interaction
data, and the biological and medical literature, we can observe much interest in recent years
in developing bioinformatics approaches that can analyze these data and help with the iden-
tification of important genes. The common aim in the present study is to prioritize the genes
in a way that those related to the disease under study possibly appear at the top of a ranking.

In the last decade, several methods have been proposed for ranking or prioritizing genes
by relevance to a disease. Some of these methods have been collected at the Gene Prioriti-
zation Portal1. These methods fall into two broad classes. The first class ofmethods mostly
uses microarray expression data; these methods focus on identifying genes that are differ-
entially expressed in a disease and use simple statistical measures such as thet-statistic or
related classification methods in machine learning to rank genes based on this property. The
second class of methods is often more general making use of a variety of data sources; these
methods start with some existing knowledge of ‘training’ genes already known to be related
to the disease under study and directly or indirectly rank the remaining genes based on their
similarity to these training genes. There are also some methods that rank or prioritize genes
based on their overall likelihood of being involved in some disease in general.

Those kinds of methods that aim to improve an initial rankingobtained from expres-
sion data by augmenting it with a network structure derived from other data sources can be
related to the methods of the second class. For example, the GeneRank algorithm of Mor-
rison et al. [8] is an intuitive modification of the PageRank algorithm usedby the Google
search engine that preserves many of its mathematical properties. It combines gene expres-
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sion information with a network structure derived from geneannotations (gene ontologies
(GO)) or expression profile correlations. In the resulting gene ranking algorithm, the ranking
of genes can be obtained by solving a large linear system of equations. Wu et al. [10, 11]
have shown that it is equivalent to a symmetric positive definite linear system of equations
and have analyzed its properties. They use the conjugate gradient (CG) algorithm (see [7, 9])
in conjunction with a diagonal scaling to solve the corresponding system. Recently, Benzi
and Kuhlemann in [4] have shown that the GeneRank problem system is equivalent to linear
equations where the coefficient matrices are M-matrices. They have implemented the Cheby-
shev iteration method and methods based on polynomials of best approximation to solve the
system. Their numerical experiments indicate that Chebyshev acceleration is the most effec-
tive one among the tested methods in terms of solution times.In this paper, we propose a
polynomial preconditioner for the GeneRank problem and study its properties.

Throughout this paper, we use the following notations, definitions, and results. A ma-
trix A is called nonnegative (positive) and is denoted byA ≥ 0 (A > 0) if each entry
of A is nonnegative (positive). Similarly, forn-dimensional vectors, by identifying them
with n × 1 matrices, we can also definex ≥ 0 andx > 0. For a square matrixA, an
eigenvalue ofA is denoted byλ(A) and the smallest and largest eigenvalues ofA are given
by λmin(A) andλmax(A), respectively. For any symmetric positive definite matrixA, we
have Cond(A) = ‖A‖2‖A

−1‖2 = λmax(A)/λmin(A); see [2].
DEFINITION 1.1 (see [5]). A matrixA = (aij) ∈ R

n×n is called a nonsingular M-
matrix if it can be expressed in the formA = rI −B wherer > 0 andB is nonnegative with
spectral radiusρ(B) < r.

The rest of the paper is organized as follows. In Section2 we introduce the GeneRank
problem in detail. Section3 is devoted to the description of the proposed preconditioner. In
Section4 we present some numerical experiments to show the effectiveness of the precondi-
tioner. Finally, concluding remarks are given in Section5.

2. The GeneRank problem formulation. Let the setG = {g1, . . . , gn} representn
genes in a microarray. Similar to the idea of PageRank, if a gene is connected with many
highly ranked genes, it should be highly ranked as well even if it may have a low rank ac-
cording to the experimental data. In GO, if two genes share atleast one annotation with other
genes, they are defined to be connected. From this idea, we canbuild a gene network, whose
adjacency matrix isW with entries

Wij =

{

1 if gi andgj (i 6= j) have the same annotation in GO,

0 otherwise.

In contrast to PageRank, the connections are not directed. Thus, instead of a nonsymmetric
hyperlink matrix, GeneRank employs a symmetric adjacency matrixW of the gene network,
i.e.,WT = W . Let

degi =
n
∑

j=1

wij .

Note that since a gene might not be connected to any of the other genes,W may have zero
rows. Now, let the diagonal matrixD be defined byD = diag(d1, . . . , dn), where

di =

{

degi if degi > 0,

1 otherwise.
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Then the GeneRank problem can be written as the following large scale nonsymmetric linear
system (cf. Morrison et al. [8])

(I − αWD−1)x = (1− α)ex,(2.1)

whereI denotes then × n identity matrix. Also,α is a damping factor with0 < α < 1,
andex = [ex1, ex2, . . . , exn]

T with exi ≥ 0 is the absolute value of the expression change
for gi, i = 1, 2, . . . , n. The solution vectorx is called the GeneRank vector, and its entries
provide information about the significance of a gene. Morrison et al. suggest usingα = 0.5.
However, the optimal choice ofα is still an interesting topic and deserves further studies.

Note thatW is an extremely sparse matrix in general. For the computation of the Gene-
Rank vector, Morrison et al. [8] use the Jacobi iteration to solve (2.1), which is inefficient
when the problem size is very large orα is very close to 1. Yue et al. [12] reformulate the
GeneRank model as a linear combination of three parts and present an explicit formulation
for the GeneRank vector. In Wu et al. [11], the GeneRank problem is rewritten as a large scale
eigenvalue problem and solved by Arnoldi-type algorithms.In [10], Wu and coworkers have
observed that the matrixD − αW is a symmetric positive definite matrix and they show that
the nonsymmetric linear system (2.1) can be rewritten as the following symmetric positive
definite (SPD) linear system

(D − αW )x̂ = (1− α)ex,(2.2)

with x̂ = D−1x. Note that equation (2.2) is equivalent to (2.1). With this modification,
methods that are suitable for symmetric systems can be used for the GeneRank problem.
In [10], a Jacobi preconditioner (symmetric diagonal scaling) onD − αW is implemented.
In this case, the preconditioned system is given by

(I − αD−
1

2WD−
1

2 )x̄ = (1− α)D−
1

2 ex,(2.3)

with x̄ = D
1

2 x̂ = D
1

2 (D−1x) = D−
1

2x.
In [10], it is also shown that the eigenvalues of the preconditioned matrix are bounded as

follows:

λmax(I − αD−
1

2WD−
1

2 ) ≤ 1 + α,(2.4)

λmin(I − αD−
1

2WD−
1

2 ) ≥ 1− α.(2.5)

These bounds are independent of the size of the matrix, and they only depend on the value
of the parameterα used in the GeneRank model. It is noted that Benzi and Kuhlemann [4]
showed that if degi > 0 for all i, then the inequality in (2.5) becomes an equality; see also
Lemma3.2below.

As mentioned above, Benzi and Kuhlemann [4] proved that the coefficient matrices
of (2.1) and (2.2) have a nice property that we introduce here.

THEOREM 2.1. Both of the matricesD − αW andI − αD−
1

2WD−
1

2 are M-matrices
for 0 < α < 1.

In [4], the classical Chebyshev iteration for the GeneRank problem is implemented. It is
a polynomial scheme to expedite the convergence of the stationary iterative method

x(k+1) = x(k) +M−1(b−Axk), k = 0, 1, . . . ,

to solve a linear system of equationAx = b in which M is a nonsingular matrix. If
the matrixI − M−1A is similar to a symmetric matrix with eigenvalues lying in aninter-
val [lmin, lmax] on the positive real axis, then the Chebyshev iteration for the systemAx = b
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is given by (for more details, see [4, 6])

y(k+1) =
ωk+1

2− (lmin + lmax)

{

2M−1(b−Ay(k)) + [2− (lmin + lmax)](y
(k) − y(k−1))

}

+ y(k−1), k = 1, 2, . . . ,

wherey(0) = x(0), y(1) = x(1), and

ωk+1 =
1

1−
w2

k

4ω2

, ω2 =
2ω2

2ω2 − 1
, ω1 = 1, ω =

2− (lmin + lmax)

lmax − lmin
.

For the GeneRank problem, the settinglmin = 1− α, lmax = 1+ α, A = D − αW , b = ex,
andM = D = diag(A) is used.

Numerical results presented in [4] show that the number of iterations of this method is
usually higher than those of the CG method with diagonal scaling. However, the cost per
iteration is much lower, and this leads to faster convergence in terms of CPU time.

3. Main results. Wu et al. [10, 11] proved that the coefficient matrix of (2.2) is sym-
metric positive definite, and therefore the CG method can be used to solve the system. As it is
well-known, the convergence rate of the CG method depends onthe condition number of the
matrix in question or more generally on the distribution of the eigenvalues. If the eigenvalue
distribution of the preconditioned system is more clustered than that of the original one, the
convergence will be accelerated drastically. Having this in mind, Wu et al. apply the Jacobi
preconditioner to the system (2.2) to accelerate the convergence rate of the method. In this
case, the linear system (2.3) is obtained. Considering (2.4) and (2.5), we can conclude that
increasingα from 0 to 1 can cause an increase in the ratioλmax/λmin, and therefore the co-
efficient matrix would be increasingly ill-conditioned, and the rate of convergence of CG is
expected to decrease asα increases.

From now on, for the sake of the simplicity, letJα = αD−
1

2WD−
1

2 andSα = I − Jα.
It is noted that the matrixSα is the coefficient matrix of the system (2.3). We now propose
the preconditionerMα = I+Jα for the system (2.3). In this case, the preconditioned system
takes the form

MαSαx̄ = Mαbα,

wherebα = (1 − α)D−
1

2 ex. In the following, we investigate the properties of the proposed
preconditioner.

THEOREM 3.1. For every0 < α < 1, the matrixMαSα is a symmetric positive definite
M-matrix.

Proof. Since the matrixD−
1

2WD−
1

2 is sub-stochastic (nonnegative with row sums less
than or equal to 1), we haveρ(Jα) ≤ α < 1. Henceρ(J2

α) ≤ α2 < 1, and sinceJα is
nonnegative, it follows from Definition1.1that the matrixTα = I − Jα is an M-matrix.

LEMMA 3.2. If W 6= 0, thenλmin(Sα) = 1− α.
Proof. Letx = (x1, . . . , xn)

T such that

xi =

{

1 if degi > 0,

0 otherwise,
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for i = 1, 2, . . . , n. Obviously, we haveWx = Dx. Now, observing thaty = D
1

2x 6= 0, we
get

(I − αD−
1

2WD−
1

2 )y = (1− α)y,

which is equivalent toSαy = (1−α)y. By equation (2.5), we obtain that1−α is the smallest
eigenvalue ofSα.

REMARK 3.3. In [10] it has been shown that

(3.1) λmax(WD−1) ≤ 1, λmin(WD−1) ≥ −1.

Since the eigenvalues ofD−
1

2WD−
1

2 are the same as those ofWD−1, we deduce from
equation (3.1) and Lemma3.2that

(3.2) λmax(I − J2
α) ≤ 1 + α2, and λmin(I − J2

α) = 1− α2.

THEOREM 3.4. The spectral condition number ofTα is not greater than that of the
matrixSα, i.e.,

Cond2(Tα) ≤ Cond2(Sα).

Proof. Since both of the matricesSα andTα are symmetric positive definite, it is enough
to prove that

λmax(Tα)

λmin(Tα)
≤

λmax(Sα)

λmin(Sα)
.

For every eigenvalueλ(Sα) of Sα, we haveλmin(Sα) ≤ λ(Sα) ≤ λmax(Sα). Then,

1− λmax(Sα) ≤ 1− λ(Sα) ≤ 1− λmin(Sα).

From Lemma3.2, we haveλmin(Sα) ≤ 1. We now consider two cases,λmax(Sα) ≥ 1 and
λmax(Sα) < 1. If λmax(Sα) ≥ 1, then by equation (2.4) and Lemma3.2, we have the upper
boundλmax(Sα)−1 ≤ 1−λmin(Sα). Therefore1−(1−λmax(Sα))

2 ≥ 1−(1−λmin(Sα))
2,

and since the maximum value of1− (1− λ(Sα))
2 is equal to 1, we obtain

Cond(Tα) ≤
1

1− (1− λmin(Sα))2
≤

λmax(Sα)

λmin(Sα)
= Cond(Sα).

Now, suppose thatλmax(Sα) ≤ 1. In this case, it is easy to see that

Cond(Tα) =
1− (1− λmax(Sα))

2

1− (1− λmin(Sα))2
≤

λmax(Sα)

λmin(Sα)
= Cond(Sα).

Thus, the proof is completed.
This theorem shows that the eigenvalues of the matrixTα are clustered at least as much

as those of the matrixSα. As we shall see, for the presented numerical experiments, the
eigenvalues ofTα are more clustered than those ofSα.

REMARK 3.5. From Lemma3.2, if W 6= 0, thenλmin(Sα) = 1 − α. Therefore, ac-
cording to the relationλ(Tα) = 1 − (1 − λ(Sα))

2, we haveλmin(Tα) = 1 − α2. Hav-
ing in mind that0 < λ(Tα) < 1, we deduce that1 − α2 ≤ λ(Tα) < 1. Note that
1− α ≤ λ(Sα) ≤ 1 + α.
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We remark that the matrixMα is the first degree polynomial preconditioner obtained by
truncating the Neumann series expansion ofS−1

α to first order:

(3.3) S−1
α = (I − Jα)

−1 = I + Jα + J2
α + · · · ≈ I + Jα ≡ Mα.

Some other properties of such a preconditioner can be found in [1, 9]. One may obtain similar
preconditioners by using higher degree polynomial approximations in (3.3). Hereafter, we set
M̄α = I + Jα + J2

α andM̃α = I + Jα + J2
α + J3

α.

4. Numerical experiments. As mentioned above, in [10] the Jacobi preconditioner in
conjunction with the CG algorithm is successfully applied to the solution of the linear system
and it is deduced that it is the fastest among the tested methods for each of the presented
examples. Also, Benzi and Kuhlemann in [4] compare the Chebyshev method and the method
based on polynomials of best approximation with a CG method and a Jacobi-preconditioned
CG method, and they show that in conjunction with diagonal scaling, Chebyshev acceleration
can significantly outperform CG in terms of solution times.

In this section we compare the numerical results of CG and theChebyshev iteration
methods with the first and third degree polynomial preconditioners to those of the Jacobi
preconditioner and Chebyshev acceleration. With attention to (3.2), we consider the first
degree polynomial preconditioner of the Chebyshev iteration with the settinglmin = 1− α2,
lmax = 1 + α2, A = D − αW , b = ex, andM = D = diag(A).

All the numerical experiments presented in this section arecomputed in double precision
and the algorithms are implemented in MATLAB 7.12.0 and tested on a 64-bit 1.73 GHz
intel Q740 core i7 processor with 4GB RAM running Windows 7. We use a stopping criteria
based on the 1-norm of the residual. That is, we stop iterating as soon as‖r‖1 < tol, where
tol is a given tolerance. The initial guess is the null vector. Weuse two different choices for
ex, ex = ( 1

n
)e, wheree is the vector of all ones, andex = p, wherep is a randomly chosen

probability vector, that is, a random vector with entries in(0, 1). For each adjacency matrix,
we use four different values ofα to form the corresponding GeneRank matricesD − αW ,
α = 0.5, 0.75, 0.80, 0.99. The obtained numerical results are presented in the tablesbelow. In
all the tables, “CG”, “PCG”, “Chebyshev”, “Chebyshev-Mα”, “CG-Mα”, and “CG-M̃α” de-
note, respectively, the CG method implemented for the system (2.2), the CG method applied
to the system (2.3), the Chebyshev iteration for (2.2), the preconditioned Chebyshev iteration
for the system (2.2) with the preconditionerMα, and the CG algorithm for the system (2.2)
in conjunction with the preconditionersMα, M̄α, andM̃α.

EXAMPLE 4.1. In this example three adjacency matrices are used,w All, which is of size
4047× 4047 with 339596 nonzero entries,w Up, which is of size2392× 2392 with 128468
nonzero entries, andw Down, which is of size1625× 1625 with 67252 nonzero entries, and
three expression change vectorsexpr data, expr dataUp, andexpr dataDown. These matri-
ces were constructed using all the three sections of the GO, where a link is presented between
two genes if they share a GO annotation. Only genes which are up-regulated are included
in w Up and only down-regulated ones inw Down [8]. The data files are available from [3].
The results for these matrices are given in Tables4.1, 4.2, and4.3. In these tables (as for the
other tables below), the number of iterations for convergence together with the CPU time in
seconds (in parenthesis) are given. Here we mention that, inthis example, the tolerancetol
is taken to be10−14. For this example, as the numerical results show, the CG method with
the preconditionersMα, M̄α, andM̃α outperforms the other tested methods in terms of both
the number of iterations and the CPU time. Moreover, the results are especially attractive
for α close to 1. We also observe that the number of iterations of the CG method withM̃α

is always less than those of the CG method with the preconditionerMα, while the CPU time
for the CG method withMα is less than that with the preconditionerM̃α. As Axelsson noted
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FIG. 4.1.Eigenvalue distribution ofS0.5 andT0.5 for the matrixw Down.

in [1], using first degree polynomials roughly halves the number of CG iterations (at the price
of two matrix-vector multiplications per iteration), while using third degree polynomials re-
duces the number of iterations roughly by a factor of three (at the price of three matrix-vector
multiplications per iteration) and so on. Hence, polynomial preconditioners do not reduce
the total number of matrix-vector multiplications but onlythe number of vector operations
(linked triads, inner products, etc). This means that thesemethods can be effective only if the
coefficient matrices are extremely sparse (as in the GeneRank problem) or, more generally,
when the matrix-vector operations are very cheap. This factcan be observed when the results
of CG are compared to those of CG-Mα and CG-M̃α. The last comment here is that the
number of iterations of the CG-̄Mα method is slightly smaller than that of CG-Mα, but the
difference is not significant. Additional performed numerical experiments show that among
the preconditioners of the formI + Jα + J2

α + · · · + Jr
α, the ones with odd values ofr are

preferred over such preconditioners with evenr; see [1, p. 181].
For a further investigation, in Figures4.1, 4.2, and4.3, we depict the eigenvalues distri-

bution ofSα andTα for the test matricesw Down whenα = 0.5, w Up whenα = 0.75, and
w All whenα = 0.9, respectively. As it can be observed, the eigenvalues of thematricesTα

are more clustered than those ofSα for all three test matrices.
EXAMPLE 4.2. In this example we use two different types of test data for our experi-

ments. The first matrix is the SNPa adjacency matrix (single-nucleotide polymorphism ma-
trix). This matrix hasn = 152520 rows and columns and is very sparse with only 639,248
nonzero entries. The second type is a RENGA adjacency matrix(range-dependent random
graph model). In our experiments we setλ = 0.9 andβ = 1, the default values in RENGA.
Both of these types of matrices are tested in [4, 10]. The results for the SNPa matrix are
given in Tables4.4 and4.5, and the results for the RENGA matrix withn = 100000 and
n = 500000 are given in Tables4.6and4.7. In this example the tolerancetol is set to10−10.
All the comments made for the previous example remain valid.
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FIG. 4.2.Eigenvalue distribution ofS0.75 andT0.75 for the matrixw Up.
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FIG. 4.3.Eigenvalue distribution ofS0.9 andT0.9 for the matrixw All.
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TABLE 4.1
Results for thew All matrix in Example4.1. Hereex = extr data.

α 0.50 0.75 0.80 0.99
CG 381 (0.700) 441 (0.772) 456 (0.785) 603 (1.012)

PCG 26 (0.051) 39 (0.082) 42 (0.081) 69 (0.133)

Chebyshev 23 (0.030) 36 (0.048) 41 (0.057) 177 (0.195)

Chebyshev-Mα 15 (0.086) 25 (0.094) 28 (0.108) 126 (0.253)
Chebyshev-̄Mα 11 (0.033) 19 (0.106) 23 (0.099) 104 (0.324)

CG-Mα 11 (0.023) 16 (0.037) 18 (0.044) 30 (0.064)

CG-M̄α 10 (0.080) 15 (0.076) 17 (0.056) 29 (0.099)
CG-M̃α 7 (0.030) 11 (0.046) 13 (0.054) 22 (0.102)

TABLE 4.2
Results for the matrixw Up in Example4.1. Hereex = extr dataUp.

α 0.50 0.75 0.80 0.99
CG 309 (0.142) 360 (0.162) 377 (0.173) 488 (0.221)
PCG 26 (0.017) 39 (0.026) 42 (0.022) 70 (0.033)

Chebyshev 22 (0.008) 36 (0.013) 41 (0.014) 177 (0.058)

Chebyshev-Mα 15 (0.019) 25 (0.023) 28 (0.025) 127 (0.071)

Chebyshev-̄Mα 11 (0.021) 20 (0.024) 23 (0.028) 105 (0.082)
CG-Mα 11 (0.006) 16 (0.011) 18 (0.012) 31 (0.017)

CG-M̄α 10 (0.009) 15 (0.013) 16 (0.014) 29 (0.025)
CG-M̃α 7 (0.008) 11 (0.016) 13 (0.014) 22 (0.022)

TABLE 4.3
Results for the matrixw Down in Example4.1. Hereex = extr dataDown.

α 0.50 0.75 0.80 0.99
CG 267 (0.087) 310 (0.091) 322 (0.094) 427 (0.131)

PCG 27 (0.010) 40 (0.013) 44 (0.014) 76 (0.024)
Chebyshev 22 (0.007) 35 (0.008) 40 (0.009) 173 (0.035)

Chebyshev-Mα 14 (0.016) 24 (0.012) 28 (0.013) 125 (0.041)

Chebyshev-̄Mα 11 (0.010) 19 (0.013) 22 (0.014) 103 (0.046)

CG-Mα 11 (0.006) 17 (0.006) 18 (0.006) 32 (0.013)
CG-M̄α 10 (0.004) 16 (0.006) 17 (0.008) 32 (0.020)
CG-M̃α 7 (0.007) 12 (0.012) 13 (0.011) 23 (0.014)

TABLE 4.4
Results for the SNPa matrix in Example4.2. Hereex = ( 1

n
)e, wheree is the vector of all ones.

α 0.50 0.75 0.80 0.99
CG 86 (2.420) 116 (3.321) 128 (3.663) 469 (13.32)
PCG 17 (0.514) 27 (0.818) 30 (0.922) 91 (2.738)

Chebyshev 17 (0.208) 28 (0.359) 31 (0.384) 130 (1.402)

Chebyshev-Mα 11 (0.244) 19 (0.352) 22 (0.382) 95 (1.246)

Chebyshev-̄Mα 9 (0.298) 15 (0.346) 18 (0.401) 79 (1.464)
CG-Mα 9 (0.164) 13 (0.213) 15 (0.236) 44 (0.704)

CG-M̄α 8 (0.163) 14 (0.287) 16 (0.342) 52 (1.086)
CG-M̃α 6 (0.195) 9 (0.269) 10 (0.262) 33 (0.963)
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TABLE 4.5
Results for the SNPa matrix in Example4.2. Hereex = p, wherep is a random probability vector.

α 0.50 0.75 0.80 0.99
CG 127 (3.649) 174 (5.011) 193 (5.607) 721 (20.41)

PCG 26 (0.789) 41 (1.242) 46 (1.375) 139 (4.203)
Chebyshev 17 (0.211) 27 (0.354) 30 (0.352) 125 (1.368)

Chebyshev-Mα 11 (0.259) 19 (0.382) 21 (0.367) 92 (1.222)

Chebyshev-̄Mα 9 (0.267) 15 (0.396) 17 (0.414) 77 (1.349)
CG-Mα 8 (0.170) 13 (0.209) 14 (0.232) 43 (0.713)

CG-M̄α 8 (0.175) 14 (0.279) 16 (0.355) 51 (1.069)
CG-M̃α 6 (0.171) 9 (0.245) 10 (0.261) 32 (0.908)

TABLE 4.6
Results for the RENGA matrices in Example4.2. Hereex = ( 1

n
)e, wheree is the vector of all ones.

n = 100000

α 0.50 0.75 0.80 0.99
CG 43 (0.789) 47 (0.840) 48 (0.863) 129 (2.305)

PCG 14 (0.262) 22 (0.431) 24 (0.459) 95 (1.824)

Chebyshev 17 (0.183) 27 (0.245) 31 (0.259) 127 (0.905)
Chebyshev-Mα 11 (0.244) 19 (0.352) 22 (0.382) 95 (1.246)

Chebyshev-̄Mα 9 (0.238) 15 (0.331) 17 (0.358) 78 (1.083)

CG-Mα 8 (0.092) 12 (0.141) 14 (0.168) 53 (0.673)
CG-M̄α 7 (0.120) 11 (0.192) 12 (0.234) 51 (0.885)
CG-M̃α 5 (0.118) 9 (0.201) 10 (0.226) 41 (0.935)

n = 500000

CG 23 (2.612) 27 (3.006) 30 (3.398) 106 (12.02)

PCG 13 (1.578) 20 (2.453) 22 (2.661) 86 (10.50)
Chebyshev 17 (0.901) 27 (1.371) 30 (1.512) 125 (6.359)

Chebyshev-Mα 11 (1.655) 19 (2.231) 21 (2.364) 91 (7.240)

Chebyshev-̄Mα 8 (1.802) 15 (2.482) 17 (2.542) 76 (8.082)

CG-Mα 5 (0.645) 12 (1.100) 14 (1.234) 50 (4.671)
CG-M̄α 6 (0.743) 10 (1.223) 11 (1.384) 44 (5.555)
CG-M̃α 5 (0.768) 8 (1.214) 9 (1.436) 38 (6.098)

5. Conclusion. In this paper, a simple polynomial preconditioner has been implemented
and tested for the GeneRank problem, and some of its properties have been illustrated. Fi-
nally, numerical experiments have been presented to show the effectiveness of the proposed
preconditioner. As it can be observed, it does not need any CPU time to set up the precon-
ditioner and the preconditioner is explicitly at hand. Our numerical results show that the
proposed preconditioner is more effective than the ones presented in the literature.
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TABLE 4.7
Results for the RENGA matrices in Example4.2. Hereex = p, wherep is arandom probability vector.

n = 100000

α 0.50 0.75 0.80 0.99
CG 68 (1.254) 73 (1.299) 75 (1.337) 222 (4.021)
PCG 22 (0.418) 34 (0.667) 39 (0.732) 165 (3.286)

Chebyshev 17 (0.167) 26 (0.255) 30 (0.269) 122 (0.883)

Chebyshev-Mα 11 (0.257) 19 (0.289) 22 (0.335) 93 (0.949)
Chebyshev-̄Mα 8 (0.237) 15 (0.306) 17 (0.335) 75 (0.998)

CG-Mα 8 (0.093) 12 (0.145) 14 (0.170) 53 (0.668)

CG-M̄α 7 (0.123) 11 (0.185) 12 (0.216) 51 (0.903)
CG-M̃α 5 (0.105) 9 (0.185) 10 (0.212) 40 (0.877)

n = 500000

CG 36 (4.101) 45 (5.109) 50 (5.637) 200 (22.68)

PCG 21 (2.509) 34 (4.168) 38 (4.585) 163 (19.84)

Chebyshev 16 (0.838) 26 (1.360) 29 (1.455) 120 (6.062)
Chebyshev-Mα 11 (1.702) 18 (2.153) 21 (2.409) 88 (6.712)

Chebyshev-̄Mα 8 (1.750) 14 (2.464) 17 (2.556) 73 (7.950)

CG-Mα 8 (0.733) 12 (1.094) 13 (1.174) 51 (4.761)

CG-M̄α 6 (0.807) 10 (1.244) 11 (1.391) 46 (5.854)
CG-M̃α 5 (0.796) 8 (0.236) 10 (1.586) 39 (6.050)
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