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A SPATIALLY ADAPTIVE ITERATIVE METHOD FOR A CLASS OF
NONLINEAR OPERATOR EIGENPROBLEMS ∗

ELIAS JARLEBRING† AND STEFAN GÜTTEL‡

Abstract. We present a new algorithm for the iterative solution of nonlinear operator eigenvalue problems
arising from partial differential equations (PDEs). This algorithm combines automatic spatial resolution of linear
operators with the infinite Arnoldi method for nonlinear matrix eigenproblems proposed by Jarlebring et al. [Numer.
Math., 122 (2012), pp. 169–195]. The iterates in this infinite Arnoldi method are functions, and each iteration
requires the solution of an inhomogeneous differential equation. This formulation is independent of the spatial
representation of the functions, which allows us to employ a dynamic representation with an accuracy of about
the level of machine precision at each iteration similar to what is done in the Chebfun system with its chebop
functionality although our function representation is entirely based on coefficients instead of function values. Our
approach also allows nonlinearity in the boundary conditions of the PDE. The algorithm is illustrated with several
examples, e.g., the study of eigenvalues of a vibrating string with delayed boundary feedback control.

Key words. Arnoldi’s method, nonlinear eigenvalue problems, partial differential equations, Krylov subspaces,
delay-differential equations, Chebyshev polynomials
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1. Introduction. PDE eigenvalue problems arise naturally in many modeling situations.
In some cases, e.g., when the PDE eigenvalue problem stems from a time-dependent PDE
involving higher order derivatives in time or when it involves a delay, the corresponding PDE
eigenvalue problem will be nonlinear in the eigenvalue parameter. In this paper we present a
method for a class of PDE eigenvalue problems with that kind of nonlinearity. Examples of
such problems are given, e.g., in [6, 8, 33] and in Section4.

The nonlinear operator eigenvalue problem we are concernedwith consists of finding a
valueλ ∈ D(µ, r) := {λ ∈ C : |λ − µ| < r} close toµ ∈ C and a nonzero functionf such
that

M(λ)f = 0,

c1(λ, f) = 0,

...

ck(λ, f) = 0.

(1.1)

In these equations,M(λ) denotes a family of operators defined on a common domain
D = D(M(λ)) ⊂ Lw

2 ([a, b]) and with a range spaceLw
2 ([a, b]). The domainD here is as-

sumed to be independent of the eigenvalueλ and will typically involve regularity conditions
(e.g., differentiability). Note that for every fixed parameterλ, the operatorM(λ) is linear but
the dependence ofM(λ) on λ is generally nonlinear. The setLw

2 ([a, b]) denotes functions
which are square integrable on the interval[a, b] with a suitable weight functionw. We shall
specify a convenient weight function in Section3 allowing us to efficiently compute scalar
products inLw

2 ([a, b]) numerically. The weight function is selected in order to achieve effi-
ciency in the algorithm, and it does not necessarily correspond to the “natural inner product”
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associated with physical properties of the involved operators. The functionsci : C×D → C

specifyk constraints that need to be satisfied for an eigenpair(λ, f).
We will assume thatM(λ) can be represented as

(1.2) M(λ) = g1(λ)L1 + g2(λ)L2 + · · ·+ gm(λ)Lm,

whereLi : D → Lw
2 ([a, b]) are closed linear operators andgi : Ω → C are given an-

alytic functions defined in an open neighborhoodΩ ⊃ D(µ, r). We also assume that the
constraintsci can be represented in a similar fashion. More precisely, we assume that for
all i = 1, . . . , k we have

ci(λ, f) = hi,1(λ)Ci,1f + · · ·+ hi,n(λ)Ci,nf,

wherehi,j : Ω → C are analytic functions andCi,j : D → C are closed linear operators.
We further assume that the constraints are such that the problem (1.1) is well posed in the
sense that its solutionsλ ∈ D(µ, r) have finite multiplicities and are elements of a discrete
set without accumulation points. The assumption that the spectrum is discrete restricts the
problem class such that we do not face the complicated spectral phenomena that may occur
for more general nonlinear operators; see, e.g., [1].

We have formulated the operator problem (1.1) in a quite general form, mostly for no-
tational convenience. The problems we have in mind come fromPDEs (with one spatial
variable), e.g., PDEs with delays; see Section4 for examples. For instance, the operators
in (1.2) may correspond to differentiation

L1 =
∂

∂x
,L2 =

∂2

∂x2
, . . . ,Lm =

∂m

∂xm
.

In this case, the functionsci specifyk = m boundary conditions and we assume that they are
such that (1.1) is a well-posed nonlinear operator eigenvalue problem.

The algorithm we propose is closely related to theinfinite Arnoldi methodpresented
in [19]. The infinite Arnoldi method can, in principle, solve nonlinear matrix eigenvalue prob-
lems (for eigenvalues in a disk) to arbitrary precision provided that certain derivatives associ-
ated with the problem are explicitly available. One can approach problems of the type (1.1)
with the infinite Arnoldi method by first discretizing the PDEon the interval[a, b], thereby
obtaining a matrix eigenvalue problem whose solutions hopefully approximate those of (1.1).
There are a number of approaches available for the nonlinearmatrix eigenvalue problem
[2, 4, 13, 25, 32]. Such a discretize-first approach requires an a priori choice of the discretiza-
tion of the interval[a, b]. The algorithm presented here does not require such a choicebecause
the spatial discretization will be adapted automatically throughout the iteration.

We derive the algorithm as follows. By approximatinggi and ci by truncated Taylor
expansions of orderN , we first show that the resulting truncated operator eigenvalue prob-
lem can be written as an eigenvalue problem for an operator acting on arrays of functions
in Lw

2 ([a, b])
N . This approach is similar to what for matrices is commonly called a compan-

ion linearization. See [24] for an analysis of companion linearizations. We select a partic-
ular companion-like operator formulation having a structure that is suitable for the Arnoldi
method [28] applied to the operator formulation, and our derivation does not require a spatial
discretization at this stage. We show that when the Arnoldi method for the companion-like
operator formulation is initialized in a particular way, each iteration is equivalent to a re-
sult that would be obtained with an infinite truncation parameterN . We further exploit the
structure of the Arnoldi method applied to the companion-like formulation so that the iterates
of the algorithm are represented as arrays ofLw

2 ([a, b]) functions. The abstract algorithm
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presented in Section2 can, in principle, find solutions to (1.1) with arbitrary accuracy with
the main computational cost being the solution of an inhomogeneous differential equation
derived fromM(µ) in every iteration.

As our algorithm derived in Section2 is, in theory, based on iterating with functions
in Lw

2 ([a, b]) and due to the fact that the algorithm does not involve a spatial discretization,
we are free to choose the representation of the functions. InSection3 we present an adaptive
multi-level representation suitable to be combined with the algorithm in Section2. Each iter-
ate is represented via coefficients of a Chebyshev expansionof length automatically adapted
to achieve machine precision. Details for some of the commonLi-operations (like differenti-
ation and pointwise multiplication) are also given in Section 3. In Section4 we demonstrate
the performance of our algorithm by three numerical examples.

Our approach of adaptive representation of functions together with an adaptive resolu-
tion of differential operators is clearly inspired by the Chebfun system [3] with its chebop
functionality [12]. The idea to carry out iterations with functions has been presented in other
settings. A variant of GMRES for functions is given in [26], where the functions are repre-
sented using Chebfun [3]. See also the discussion of infinite-dimensional numerical linear
algebra in [17].

Apart from the notation introduced above, we use the following conventions. Calli-
graphic style will be used to denote operators, in particular, I will denote the identity operator
andO will denote the zero operator. The set of one-dimensional (or k-dimensional) arrays of
functions will be denoted byLw

2 ([a, b])
N (or Lw

2 ([a, b])
N×k). The weighted 2-norm associ-

ated with a functionf ∈ Lw
2 ([a, b])

N will be denoted by‖f‖w. The partial derivative with
respect toλ will be denoted by(·)′, the second partial derivative with respect toλ by (·)′′, etc.

2. The infinite Arnoldi method in an abstract PDE setting.

2.1. Truncated Taylor expansion. The derivation of our algorithm is based on a trun-
cated Taylor-like expansion of the operatorM around a given pointµ ∈ C. Given an inte-
gerN , let the truncated operatorMN be defined by

MN (λ) := M(µ) +
λ− µ

1!
M(1)(µ) + · · ·+ (λ− µ)N

N !
M(N)(µ),

with the operatorsM(j) being analogues of thej-th derivative ofM evaluated atµ,

M(j)(µ) := g
(j)
1 (µ)L1 + g

(j)
2 (µ)L2 + · · ·+ g(j)m (µ)Lm.

Accordingly, we define a Taylor-like expansion for the boundary conditions,

ci,N (λ, f) := ci(µ, f) +
λ− µ

1!

(

∂

∂λ
ci(λ, f)

)

λ=µ

+

(λ− µ)2

2!

(

∂2

∂λ2
ci(λ, f)

)

λ=µ

+ · · ·+ (λ− µ)N

N !

(

∂N

∂λN
ci(λ, f)

)

λ=µ

.

We now consider the truncated operator eigenproblem

MN (λN )fN = 0,(2.1a)

ci,N (λN , fN ) = 0, i = 1, . . . , k(2.1b)

with solution(λN , fN ). This eigenproblem approximates (1.1) in the sense that the residual
of (λN , fN ) vanishes asN → ∞. This is summarized in the following theorem.

THEOREM 2.1 (Convergence of operator Taylor-like expansion).Let {(λN , fN )}∞N=1

denote a sequence of solutions to(2.1) with fN ∈ Lw
2 ([a, b]) and λN ∈ D(µ, r) for
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all N = 1, 2 . . . . Moreover, suppose that these solutions are convergent in the Lw
2 norm,

i.e.,(λN , fN ) → (λ∗, f∗). Also supposeLifN andCi,jfN are convergent in theLw
2 norm for

anyi, j asN → ∞. Then there exist positive constantsγ andβ < 1 independent ofN such
that

‖M(λN )fN‖w ≤ γβN

|c1(λN , fN )| ≤ γβN

...

|ck(λN , fN )| ≤ γβN .

Proof. Since the functionsgi (i = 1, . . . ,m) are assumed to be analytic in a neighbor-
hood ofD(µ, r), the complex Taylor theorem asserts that

gi(λ) =

N
∑

j=0

g
(j)
i (µ)

j!
(λ− µ)j +Ri,N (λ),

where the remainder term can be expressed via the Cauchy integral formula

Rℓ,N (λ) =

∞
∑

j=N+1

(λ− µ)j

2πi

∫

Γ

gℓ(ζ)

(ζ − µ)j+1
dζ

andΓ can be taken as a circular contour with centerµ and radiusr > |λ − µ|. With the
settingMi,r := maxζ∈Γ |gi(ζ)|, we obtain the standard Cauchy estimate

|Ri,N (λ)| ≤
∞
∑

j=N+1

Mi,r|λ− µ|j
rj

≤ Mi,rβ̂
N+1

1− β̂

with |λ− µ|/r ≤ β̂ < 1. Consequently,

‖M(λN )fN‖w = ‖M(λN )fN −MN (λN )fN‖w
= ‖R1,N (λN )L1fN + · · ·+Rm,N (λN )LmfN‖w

≤ max
i=1,...,m

mMi,rβ̂
N+1

1− β̂
‖LifN‖w.(2.2)

The conclusion about the bound on‖M(λN )fN‖w now follows from the fact thatLifN
is assumed to be convergent. The conclusion about the bound on the boundary condition
residuals follows from a completely analogous argument. The constantsβ andγ are formed
by maximizing the computed bounds which are all of the form (2.2).

REMARK 2.2. Theorem2.1 illustrates that the residuals will decrease whenN is suffi-
ciently large and eventually approach zero asN → ∞. The conclusion holds under the as-
sumption that(λN , fN ) converges to a pair(λ∗, f∗). Despite this, note that the operators un-
der consideration are not necessarily bounded, and therefore Theorem2.1does not necessar-
ily imply that‖M(λ∗)f∗‖w=0. For example, suppose thatM(λ∗) =

∂
∂x and consider a situ-

ation where(λN , fN ) is a solution to the truncated problem andfN (x) = f∗(x)+
1
N sin(Nx).

ThenfN → f∗ butM(λ∗)fN will not converge to zero asN → ∞. In such a situation, also
a discretize-first approach could not be expected to give meaningful results. Whenf∗ and
all fN are sufficiently smooth, this is unlikely to occur, and our numerical experiments in
Section4 suggest that such a situation would be rather artificial.
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2.2. Operator companion linearization. From the above discussion it follows that one
can approximate the original operator problem (1.1) by an operator problem where the coef-
ficients in the operator and the boundary conditions are polynomials inλ. This is essentially
an operator version of what is commonly called apolynomial eigenvalue problem[23, 29],
and such problems are often analyzed and solved by thecompanion linearization technique.
There are many types of companion linearizations [24], but for the purpose of this paper, a
particular companion linearization is most suitable.

We first define an operatorAN acting onLw
2 ([a, b])

N such that

(2.3) AN











ϕ1

ϕ2

...
ϕN











:=











M(µ)
I

. . .

I





















ϕ1

ϕ2

...
ϕN











=











M(µ)ϕ1

ϕ2

...
ϕN











and an operatorBN with action defined by

(2.4) BN











ϕ1

ϕ2

...
ϕN











:=

















−M(1)(µ) − 1
2M(2)(µ) · · · · · · − 1

NM(N)(µ)
I O

1
2I

. . .

. . .
. . .
1

N−1I O



























ϕ1

ϕ2

...
ϕN











.

Using these two operators, we can formulate the following generalized operator eigenproblem
with boundary conditions

ANϕ = (λ− µ)BNϕ(2.5a)

ci(µ, ϕ1) + c′i(µ, ϕ2) + · · ·

+c
(N−1)
i (µ, ϕN ) = −λ− µ

N
c
(N)
i (µ, ϕN ), i = 1, . . . , k.(2.5b)

This particular companion linearization is useful because, for anyM ≥ N , the leadingN×N
blocks in the operatorsAM andBM consist precisely ofAN andBN . This will be implicitly
exploited in Section2.3. The companion operator problem (2.5) is equivalent to theMN -
problem (2.1) in the following sense.

THEOREM 2.3. Considerϕ = (ϕ1, . . . , ϕN )T ∈ Lw
2 ([a, b])

N with ϕ1 = f . The com-
panion linearization(2.5) and the truncated Taylor expansion(2.1) are equivalent in the sense
that the following two statements are equivalent.

a) The pair(λ, ϕ) is a solution to(2.5).
b) The pair(λ, f) is a solution to(2.1).

Proof. Consider a solutionϕ = (ϕ1, . . . , ϕN )T to (2.5). Then the lastN − 1 rows
of (2.5a) imply that

ϕ2 = (λ− µ)ϕ1

ϕ3 =
1

2
(λ− µ)ϕ2 =

1

2!
(λ− µ)2ϕ1

ϕ4 =
1

3
(λ− µ)ϕ3 =

1

3!
(λ− µ)3ϕ1

...

ϕN =
(λ− µ)(N−1)

(N − 1)!
ϕ1.

(2.6)
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By inserting (2.6) into the first row in (2.5a), we have

0 = M(µ)ϕ1 + (λ− µ)M(1)(µ)ϕ1

+
(λ− µ)2

2!
M(2)(µ)ϕ1 + · · ·+ (λ− µ)N

N !
M(N)(µ)ϕ1.

(2.7)

Similarly, (2.5b) implies with (2.6) and the linearity ofci(λ, f) with respect tof that

0 = ci(µ, ϕ1) + (λ− µ)c′i(µ, ϕ1)+

(λ− µ)2

2!
c′′i (µ, ϕ1) + · · ·+ (λ− µ)N

N !
c
(N)
i (µ, ϕ1).

(2.8)

The forward implication now follows from the fact that (2.7) is identical to (2.1a) and that (2.8)
is identical to (2.1b).

In order to show the converse, supposef is a solution to (2.1) and defineϕ1 = f andϕi

(for i = 2, . . . , N ) as in (2.6). The relation (2.7) holds because of (2.1), and a similar argu-
ment is used for the constraints (2.8).

2.3. The infinite Arnoldi algorithm. Now note that (2.5) is a linear operator eigenprob-
lem for the variablêλ = (λ − µ)−1. Linear eigenvalue problems can be solved in a number
of ways, where the Arnoldi method [28] is one of the most popular procedures. We will now
show how to formulate the Arnoldi method1 for (2.5) and exploit the structure and thereby
avoid the traditional approach to first discretize the problem. This is similar to the “Taylor
version” of the infinite Arnoldi method for nonlinear matrixeigenvalue problems described
in [19].

Conceptually, it is straightforward to use the Arnoldi method in an operator setting, and
this has been done to study its convergence, e.g., in [9, 21]. In order to apply the Arnoldi
algorithm to the formulation (2.5), we will need

• a procedure for solving

ANϕ = BNψ(2.9a)

ci(µ, ϕ1) + · · ·+ c
(N−1)
i (µ, ϕN ) = − 1

N
c
(N)
i (µ, ψN ), i = 1, . . . , k(2.9b)

for the unknownϕ ∈ Lw
2 ([a, b])

N , whereψ ∈ Lw
2 ([a, b])

N is given and

• a scalar product forLw
2 ([a, b])

N .
It turns out that the structure ofAN andBN is particularly well suited for the Arnoldi

method. Suppose we start the Arnoldi method with a functionψ ∈ Lw
2 ([a, b])

N of the form

(2.10) ψ =











ψ1

0
...
0











,

whereψ1 ∈ Lw
2 ([a, b]). In the first step of the Arnoldi method, we need to solve (2.9). By

1Note that our construction corresponds to a variant also known as shift-and-invert Arnoldi method since we
actually approximate eigenvaluesλ̂ = 1

λ−µ
. For simplicity we will still refer to this variant as the Arnoldi method.
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inspection of the structure ofAN andBN , the solution will be of the form

ϕ =















ϕ1

ψ1

0
...
0















.

Hence, the action corresponding to the nonzero part of the solution of (2.9) is independent
of N if we start with a vector consisting of just one leading nonzero block. More generally,
the solution of (2.9) can be characterized as follows.

THEOREM 2.4. Consider a given functionψ ∈ Lw
2 ([a, b])

N with the structure

(2.11) ψ =





















ψ1

...
ψp

0
...
0





















,

whereψ1, . . . , ψp ∈ Lw
2 ([a, b]). Consider the operatorsAN andBN defined by(2.3) and(2.4)

for anyN > p. Suppose thatϕ ∈ Lw
2 ([a, b])

N is a solution to the operator problem (in the
spaceLw

2 ([a, b])
N )

ANϕ = BNψ(2.12a)

ci(µ, ϕ1) + · · ·+ c
(N−1)
i (µ, ϕN−1) = − 1

N
c
(N)
i (µ, ψN ), i = 1, . . . , k.(2.12b)

Then this solution satisfies

(2.13) ϕ =

























ϕ1
1
1ψ1

...
1
pψp

0
...
0

























,

whereϕ1 ∈ Lw
2 ([a, b]) is the solution to the operator problem (inLw

2 ([a, b]))

M(µ)ϕ1 = −M(1)(µ)ψ1 −
1

2
M(2)(µ)ψ2 − · · · − 1

p
M(p)(µ)ψp(2.14a)

ci(µ, ϕ1) = −c′i(µ, ψ1)−
1

2
c′′i (µ, ψ2)− · · · − 1

p
c
(p)
i (µ, ψp), i = 1, . . . , k.(2.14b)

Proof. The lastN − 1 rows of (2.12a) imply that ϕ has the structure (2.13). Equa-
tion (2.14a) follows directly from the insertion of (2.13) and (2.11) into the first row of (2.12a).
Note that the termsM(j)(µ)ψj vanish forj > p sinceψj = 0. Similarly, by inserting the
structure ofϕ given in (2.13) andψ given in (2.11) into Equation (2.12b), several terms
vanish and (2.14b) is verified.
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From the previous theorem we make the following key observation.

The nonzero part of the solution to(2.12) for a functionψ with structure(2.11) is
independent ofN as long asN > p.

By only considering functions of the structure (2.11) we can, in a sense, takeN → ∞
without changing the nonzero part of the solution. WithN → ∞, the truncation error in
the Taylor expansion vanishes and (2.1) corresponds to the original problem (1.1) (under
the conditions stated in Theorem2.1 and Remark2.2). In other words, our method has the
remarkable property that at any iteration it gives the same results as if the Arnoldi method
was run on the untruncated operator linearization. Hence, the truncation parameter can be
formally considered as beingN = ∞.

The key idea for an implementation is to start the Arnoldi algorithm with an array of
functions of the structure (2.10). Due to the fact that the Arnoldi method essentially involves
solutions of (2.12) at every iteration combined with a Gram–Schmidt orthogonalization, all
arrays of functions will be of the structure (2.11). This naturally leads to a growth in the basis
matrix in the Arnoldi algorithm not only by a column but also by a row at each iteration. The
basis matrix afterk iterations will be represented by

(2.15) V =















v1,1 v1,2 · · · v1,k

0 v2,2
...

0
. . .

. . .
...

0 · · · 0 vk,k















∈ Lw
2 ([a, b])

k×k,

wherevi,j ∈ Lw
2 ([a, b]).

In the Arnoldi algorithm we also need a scalar product. For the spaceLw
2 ([a, b])

N it ap-
pears to be natural to use the aggregated scalar product associated with a scalar product〈·, ·〉w
for Lw

2 ([a, b]), i.e., givenf, g ∈ Lw
2 ([a, b])

N , we define

〈f, g〉w := 〈f1, g1〉w + · · ·+ 〈fN , gN 〉w,

wheref = (f1, . . . , fN )T , g = (g1, . . . , gN )T . The scalar product〈·, ·〉w can be tailored
to the problem at hand, but we will propose a particularly convenient one in Section3. A
version of the Arnoldi algorithm that exploits the structure of the involved variables is given
in Algorithm 1 below and referred to as theinfinite Arnoldi method (for nonlinear operator
eigenproblems).

REMARK 2.5 (Existence). Algorithm1 defines a sequence of function iterates uniquely
only if there exists a unique solution to (2.14). Existence issues will not be studied in detail
here and should be established in a problem specific manner. For the numerical examples we
present in Section4, existence and uniqueness of the solutions of (2.14) will be guaranteed by
the well-posedness of the considered differential equations. The assumption that (2.14) has a
solution inD, the domain ofM, is natural, though it is a restriction on the class of operator
problems and allowed starting functions (which will be polynomials in our implementation,
so this is not a practical restriction). Roughly speaking, this assumption means that only
problems with sufficiently smooth solutions can be solved with our algorithm.

3. Multi-level spatial resolution. The main computational cost in a practical imple-
mentation of our nonlinear eigensolver (Algorithm1) lies in the solution of a differential
equation (2.14) at every Arnoldi iteration. In this section we will proposea polynomial spec-
tral method for solving differential equations with analytic (or sufficiently smooth) solutions
defined on an interval[a, b] suitable to be used in this setting. Because the Arnoldi method can
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Algorithm 1 Infinite Arnoldi method for nonlinear operator eigenproblems (1.1).

Require: Starting functionv1,1 ∈ Lw
2 ([a, b])

1: v1,1 = v1,1/
√

〈v1,1, v1,1〉w
2: for k = 1, 2, . . . , kmax do
3: Computeϕ2, . . . , ϕk+1 from (2.13) whereψ1 = v1,k, . . . , ψk = vk,k andp = k.
4: Solve the inhomogeneous differential equation (2.14) for ϕ1 with the setting

ψ1 = v1,k, . . . , ψk = vk,k andp = k.
5: for i = 1, . . . , k do
6: hi,k = 〈ϕi, v1,i〉w + · · ·+ 〈ϕi, vi,i〉w
7: for j = 1, . . . , i do
8: ϕj = ϕj − hi,kvj,i
9: end for

10: end for
11: hk+1,k =

√

〈ϕ1, ϕ1〉w + · · ·+ 〈ϕk+1, ϕk+1〉w
12: for j = 1, . . . , k + 1 do
13: vj,k+1 = ϕj/hk+1,k

14: end for
15: end for
16: Compute the eigenvalues{θi}kmax

i=1 of the Hessenberg matrix with elementsHi,j = hi,j ,
for i, j = 1, . . . , kmax.

17: Return the eigenvalue approximations{1/θi + µ}kmax

i=1 of (1.1).

be sensitive to inexact computations, we aim to solve these equations “exactly”, that is, with
an error close to machine precision. Our approach is inspired by the automatic grid refine-
ment idea implemented in the Chebfun system [3] with its chebop functionality [12], but it
differs from Chebfun in the representation of the polynomials. The Chebfun system is based
on interpolation polynomials represented on a Chebyshev grid with an adaptively chosen
number of grid points, whereas we prefer to represent the polynomials by their coefficients
in the Chebyshev basis. In other words, our approach is basedon thetau methodexplained
in Subsection3.2below instead of a collocation (or pseudospectral) method.The reason for
our choice is that with a coefficient representation of polynomials, all operations required in
our Arnoldi method can be implemented very efficiently without resampling function values
between non-matching Chebyshev grids.

3.1. Coefficient spatial representation.Let [a, b] be a given interval. In this section
we will use the convention that with every occurrence of the variablex in [a, b], we identify
the variabley = (2x − b − a)/(b − a) in [−1, 1]. Any polynomialPm of degree at mostm
can be represented as

Pm(x) =

m
∑

j=0

cjTj(y), x ∈ [a, b],

with the well-known Chebyshev polynomialsTj(y) = cos(j arccos(y)). Recall that these
polynomials satisfy the recurrence

T0(y) = 1, T1(y) = y, Tj+1(y) = 2yTj(y)− Tj−1(y),

and are orthogonal with respect to the weightedLw
2 scalar product

〈f, g〉w =
2

π

∫ 1

−1

f(y)g(y)
√

1− y2
dy,
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more precisely

〈Tj , Tk〉w =











0, if j 6= k,

2, if j = k = 0,

1, if j = k ≥ 1.

In contrast to the more popular spectral collocation approach [5, 11, 30], where a polyno-
mialPm is represented by its function values on a Chebyshev grid with nodesyj = cos(πj/m)
(for j = 0, 1, . . . ,m), we here prefer to representPm by its Chebyshev coefficientscj . Given
two polynomialsPm(x) =

∑m
j=0 cjTj(y) andQn(x) =

∑n
j=0 djTj(y) of possibly different

degrees, the coefficient representation allows us to compute linear combinations

αPm(x) + βQn(x) =

max{m,n}
∑

j=0

(αcj + βdj)Tj(y),

without resampling function values ofPm or Qn on a refined Chebyshev grid. (We assume
that coefficientscj or dj with j exceeding the degree of the associated polynomial are equal
to 0.) Moreover, it is easily verified that the Euclidean scalar product between coefficient vec-
tors (with the0-th coefficients divided by

√
2) corresponds to a weightedLw

2 scalar product
between the corresponding polynomials:

c0d0
2

+

min{m,n}
∑

j=1

cjdj =
〈

m
∑

j=0

cjTj(y),

n
∑

j=0

djTj(y)
〉

w
= 〈Pm, Qn〉w.

Note that our infinite Arnoldi method is rich in scalar product computations, and this relation
allows for an efficient implementation.

3.2. The Chebyshev tau method with automated degree adaptation. Given a polyno-
mialPm, in spectral methods one represents linear operations likedifferentiationPm 7→ P ′

m,
pointwise multiplicationPm(x) 7→ f(x)Pm(x), or the nonlocal reversal operation
Pm(x) 7→ Pm(a+ b− x) by matrix-vector products with spectral matrices. Thetau method
(invented by Lanczos [22], see also [5, Chapter 21], [18, Section 7.2]) is a spectral method for
solving differential equations using the coefficient representation of polynomials where the
coefficients are determined such that the residual of the approximate solution is orthogonal to
as many basis polynomials as possible. TheChebyshev tau methodis a tau method where the
Chebyshev polynomials are used as a basis.

In the following we give an exemplary list of three coefficient maps representing the
action of linear operators on a polynomialPm(x) =

∑m
j=0 cjTj(x). These maps will be

needed in order to apply the algorithm to the examples in Section 4. For the identities involv-
ing Chebyshev polynomials used in the derivation, we refer to [14, Section 3].

• Differentiation. By the relation for the derivative of a Chebyshev polynomialTj(y),

d

dy
Tj =

{

jT0 + 2j(T2 + T4 + · · ·+ Tj−1), if j is odd,

2j(T1 + T3 + · · ·+ Tj−1), if j is even,

we deduce that the matrix mapping the Chebyshev coefficientsof Pm to the Cheby-
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shev coefficients ofP ′
m is

Dm =



















0 1 0 3 0 · · ·
0 0 4 0 8 · · ·
0 0 0 6 0 · · ·
0 0 0 0 8 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

. . .



















∈ R
(m+1)×(m+1).

Higher order derivatives are obtained by taking corresponding powers of the differ-
entiation matrixDm. Note that—in contrast to spectral collocation matrices acting
on function values rather than coefficients—the matrixDm is not dense.

• Multiplication. LetQn(x) =
∑n

j=0 djTj(y) be a polynomial. From the relation

Tj(y)Tk(y) =
1

2

(

Tj+k(y) + T|j−k|(y)
)

,

it is easily verified that the matrix mapping the Chebyshev coefficients ofPm to the
Chebyshev coefficients ofPmQn is

Mm(Qn) =
1

2















d0 0 0 0 · · ·
d1 2d0 d1 d2 · · ·
d2 d1 2d0 d1 · · ·
d3 d2 d1 2d0 · · ·
...

...
...

...
. . .















+

1

2























d0 d1 d2 d3 . .
.

d1 d2 d3 . .
.

d2 d3 . .
.

d3 . .
.

. .
.























∈ C
(m+n+1)×(m+n+1),

which is the sum of a rank-1-modified Toeplitz matrix and a Hankel matrix.
• Reversal. Using the fact thatTj(y) = (−1)jTj(−y), it is easily verified that the

matrix

Rm = diag(1,−1, 1,−1, . . .) ∈ R
(m+1)×(m+1)

maps the coefficients ofPm(x) to the coefficients of the “reversed” (right-to-left)
polynomialPm(a+ b− x).

• Combinations of the above. Note that the above operators can be combined in
an additive and multiplicative fashion by adding and multiplying the corresponding
matrices. For example, the variable coefficient second-order operatorddy (Q(y) d

dy · )
can be approximated asDm+nMm(Qn)Dm+n provided thatQ(y) can be (uni-
formly) approximated by a Chebyshev expansionQn of moderate degreen. For
nonsmooth functionsQ(y), however, a global Chebyshev expansion may fail to con-
verge (e.g., in the case of jumps causing the Gibbs phenomenon) or converge slowly
(e.g., in the case of discontinuous derivatives); see [5, 30, 31]. Both of these cases
would require a more sophisticated approach, such as, e.g.,piecewise polynomial
representations.
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Let A be a linear operator acting on functions defined on the interval [a, b], and denote
byAm ∈ C

(m+1)×(m+1) the spectral matrix mapping the Chebyshev coefficients of polyno-
mialsPm to the Chebyshev coefficients ofQm = APm,











d0
d1
...
dm











= Am











c0
c1
...
cm











.

(Again we have assumed that coefficients with an index exceeding the degree of a polynomial
are set to0.) Typically the matrixAm is not invertible. In order to specifyPm uniquely as
the solution of the linear systemAmPm = Qm for a given right-hand sideQm, a number of
constraints, sayk, need to be imposed onPm. In the tau method this is typically achieved by
replacing the lastk rows ofAm by row vectors corresponding to the boundary conditions of
the differential equation (boundary bordering), e.g.,

(

1,−1, 1,−1, . . . , (−1)m+1
)

Dirichlet b.c. on the left
(

1, 1, . . . , 1
)

Dirichlet b.c. on the right
2

b−a

(

0, 1,−2, 4, . . . , (−1)m(m− 1)2
)

Neumann b.c. on the left
2

b−a

(

0, 1, 2, 4, . . . , (m− 1)2
)

Neumann b.c. on the right,

and to alter the lastk coefficients ofQm, namely(dm−k+1, . . . , dm)T , to the prescribed
boundary values (zeros for homogeneous conditions). The results of this modification are
denoted asAm andQm, respectively. This ensures that the polynomialPm = Am

−1Qm

satisfies the boundary conditions exactly and the residual for the original differential operator
is of the form

Qm(x)−APm(x) =

∞
∑

j=m+1−k

ejTj(y)

provided that the exact solutionA−1Qm exists and has a Chebyshev expansion. Lanczos
realized that withPm, we have obtained the exact polynomial solution ofAPm = Qm + ǫm
to a (slightly) perturbed problem,ǫm = −∑∞

j=m+1−k ejTj(y). Under the condition thatPm

converges uniformly to a solution functionf (the solution of the spectrally discretized differ-
ential equation) asm → ∞ and the condition that this functionf is analytic in a neighbor-
hood of the interval[a, b] (theBernstein ellipse), it is known that the convergence is geometric
(see, e.g., [31, Chapter 8]): for someρ > 1 andC > 0, one has

|f(x)− Pm(x)| ≤ Cρ−m for all x ∈ [a, b].

If f has no singularities too close to[a, b], thenρ is large enough to achieve fast uniform con-
vergence ofPm towards f , indicated by a rapid decay ofPm’s Chebyshev coeffi-
cientsc0, c1, . . . , cm. This fact is exploited in the Chebfun system with its chebopfunc-
tionality for solving operator equations [12], and we will employ a similar rule of thumb:
assume that the weightedLw

2 error of a Chebyshev approximantPm is of about the same
order as its trailing Chebyshev coefficientcm (see also [5, p. 51]). This error estimate allows
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us to adaptively adjust the degree ofPm such that the solutionPm of AmPm = Qm is likely
to be close toA−1f in a relative error sense:

1. Choose a numberm, saym = 16.
2. ConstructAm (the spectral matrix with boundary conditions included), and solve

the linear systemAmPm = Qm for Pm(x) =
∑m

j=0 cjTj(x).
3. If the last coefficientcm/‖Pm‖w is not small enough relative to the norm‖Pm‖w

induced by〈·, ·〉w, increasem (e.g., multiply by a factor of 1.5 and round to integer),
and go to Step 2.

Note that more sophisticated error estimates could be developed (for example, by taking into
account more than just the last Chebyshev coefficientcm). However, every such estimate will
eventually be based on a heuristic. In the numerical experiments described in Section4, we
found the above procedure (Steps 1–3) to perform satisfactorily.

3.3. Implementation. The implementation of our infinite Arnoldi method is straight-
forward in object-oriented Matlab. All spatial functionsvi,j defined on the interval[a, b]
are approximated by polynomialsPi,j of degree adaptively chosen such that the estima-
te ‖vi,j − Pi,j‖w / tol‖Pi,j‖w holds, wheretol = 2.2 × 10−16. These polynomial rep-
resentations are stored in a two-dimensional “cell array” (cf. (2.15))

V =











P1,1 P1,2 P1,3 · · ·
P2,1 P2,2 P2,3 · · ·
P3,1 P3,2 P3,3 · · ·
...

...
...

. . .











,

where each column corresponds to a Krylov basis vector andV will have an upper triangular
structure. The action of the linear companion operator ontoa column ofV results in a new
column of spatial functions, where the number of nonzero components in the input and output
columns may be different. Note that a modified Gram–Schmidt orthogonalization of these
columns is fast when working with the coefficient representation described above.

4. Examples.

4.1. A differential equation with time delay. We consider a PDE with delay for a
functionu : [0, π]× [−τ,+∞) → R,

ut(x, t) = uxx(x, t)− u(x, t− τ),(4.1a)

u(0, t) = 0,(4.1b)

u(π, t) = 0,(4.1c)

an example which has also been considered in [7, Formula (112)]. Employing the ansatz
u(x, t) = f(x)eλt, the PDE (4.1) leads to a nonlinear operator eigenvalue problem of the
form (1.1), where

(4.2) M(λ) = −λI +
∂2

∂x2
− e−τλI,

with boundary conditions

c1(λ, f) = f(0),

c2(λ, f) = f(π).
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In the implementation of our method we need to provide the derivatives of (4.2), which in
this case are explicitly given by

M(1)(µ) = −I + τe−τµI
M(k)(µ) = (−τ)ke−τµI, k ≥ 2.

Consequently, in every iteration of our algorithm we need tosolve (2.14), which reduces to
solving

(

−µI +
∂2

∂x2
− e−τµI

)

ϕ1

= (1 + τe−τµ)ψ1 −
1

2
(−τ)2e−τµψ2 − · · · − 1

p
(−τ)pe−τµψp

for ϕ1 with boundary conditionsϕ1(0) = ϕ1(π) = 0.
In this first example we have selectedM(λ) such that the problem can be solved explic-

itly as follows. By definingγ := λ + e−τλ, it is clear from (4.2) that all suchγ correspond
to the eigenvalues of the Laplacian with homogeneous boundary conditions, i.e.,∂

2

∂x2 f = γf
with c1(λ, f) = f(0) = 0, c2(λ, f) = f(π) = 0. This eigenvalue problem can be solved ana-
lytically and the explicit eigenfunction solution isf(x) = sin(jx) with eigenvaluesγ = −j2
for any positive integerj. Hence,

−j2 = λ+ e−τλ.

It is straightforward to solve this equation forλ by using the Lambert W-function [10]. We
find that the eigenvalues of the nonlinear operator eigenvalue problem are given by

λ = −j2 + 1

τ
Wℓ(−τeτj

2

)

for any j ∈ N+ and anyℓ ∈ Z whereWℓ is the ℓ-th branch of the Lambert W-function.
Note that different eigenvalues can have the same eigenfunction as the eigenfunctions do not
depend onℓ. The exact eigenvalues are shown in Figure4.1(a). For our infinite Arnoldi
procedure we have chosen the targetµ = −1, and the starting vectorϕ1 was a polynomial
of degree5 with random (normally distributed) coefficients in the Chebyshev basis. Fig-
ure4.1(a) also displays the approximate eigenvalues after 60 iterations of the infinite Arnoldi
method, and Figure4.1(b) displays the10 approximate eigenfunctionsf to which this method
converged first. (Each two if these eigenfunctions coincide.)

The error norm for each of the 10 approximate eigenfunctionscompared to the exact
solution as a function of the number of Arnoldi iterations isshown in Figure4.1(c) (there
are always two error curves overlaying each other). Our spatial discretization was adapted
such that the expected truncation error in the Chebyshev expansion is of the order of machine
precision. We observe an error decay for each eigenfunctionto about the same accuracy level
as the number of Arnoldi iterations increases. The residualnorm ‖M(λ)f‖w for each of
the 10 approximate eigenpairs(λ, f) is shown in Figure4.1(d) as a function of the number
of Arnoldi iterations. Note how the degrees of Arnoldi vectors grow moderately with each
Arnoldi iteration as depicted in Figure4.1(e). More precisely, we display here the maximal
degree among all polynomials collected in each block Arnoldi vector. This growth is expected
because we potentially discover approximations to increasingly “nonsmooth” eigenvectors
(i.e., those which are difficult to approximate by polynomials of low degree).
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(a) Exact and approximate eigenvalues after 60 iter-
ations of the infinite Arnoldi method.
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(d) Residual norm‖M(λ)f‖w of the 10 eigenpairs
(λ, f) found first, with curves coinciding pairwise.
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(e) Polynomial degree of the Arnoldi vectors.

FIG. 4.1.A differential equation with time delay (Section4.1).

4.2. Vibrating string with boundary control. We now consider a vibrating string on
an interval[0, L] with a clamped boundary condition atx = 0 and a feedback law atx = L.
The feedback law is constructed with the goal to damp the vibrations of the string. In practice,
a feedback control may only be available at a later point in time due to, e.g., a delay in
measurement or the time required for calculating the feedback parameters. In such a situation
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the vibrating string is governed by a PDE with delay foru : [0, L]× [−τ,∞) → R,

utt(x, t) = c2uxx(x, t),(4.3a)

u(0, t) = 0,(4.3b)

ux(L, t) = αut(L, t− τ),(4.3c)

wherec is the wave speed,τ is the delay, andα corresponds to a feedback law. See [15, 33]
and the references therein for PDEs with delays and in particular the wave equation. In our
setting, the eigenvalues associated with (4.3) are described by theλ-dependent operator

M(λ) = λ2I − c2
∂2

∂x2
,

with λ-dependent boundary conditions,

c1(λ, f) = f(0)

c2(λ, f) = f ′(L)− αλe−τλf(L).

We now provide the implementation details for this example by specifying how to set up the
differential equation (2.14). First note that

M(1)(µ) = 2µI,
M(2)(µ) = 2I.

In our algorithm we require the derivatives of the boundary condition with respect toλ, which
are explicitly given fork > 0 by

c
(k)
1 (µ, f) = 0,

c
(k)
2 (µ, f) = −αf(L)e−τµ(−τ)k−1(k − τµ).

Hence, the specialization of (2.14) to this example is, forp = k > 1,

µ2ϕ1(x)− c2ϕ′′
1(x) = −2µψ1(x)−

1

2
2ψ2(x)(4.4a)

ϕ1(0) = 0(4.4b)

ϕ′
1(L)− αµe−τµϕ1(L) = αe−τµ





k
∑

j=1

1

j
ψj(L)(−τ)j−1(j − τµ)



 ,(4.4c)

where the functionsψ1, . . . , ψk are given andϕ1 ∈ L1([a, b]) has to be computed. When
p = k = 1, i.e., in the first iteration, the termψ2 should be set to zero in the inhomogeneous
term in (4.4a), whereas (4.4b) and (4.4c) remain the same forp = k = 1. Note that (4.4)
is just a second order inhomogeneous differential equationwith one Dirichlet and one Robin
boundary condition.

In Figure4.2we visualize the computed approximate eigenvalues and (complex) eigen-
vectors ofM, as well as the decay of the residual norms‖M(λ)f‖w for the first 10 approxi-
mate eigenpairs withλ closest to the targetµ = −1. The involved constants have been chosen
asα = 1, c = 1, andτ = 0.1. The infinite Arnoldi method performs well on this example
(for which an analytical solution does not seem to be available): after about 45 iterations the
first 10 eigenpairs(λ, f) are resolved nicely while the degree of the Arnoldi vectors grows
moderately.
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(a) Approximate eigenvalues after 45 and 60 itera-
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(d) Polynomial degree of the Arnoldi vectors.

FIG. 4.2.Vibrating string with boundary control (Section4.2.)

4.3. An artificial example. In order to illustrate the broad applicability of our method
we will now consider the following artificial nonlinear operator eigenvalue problem, which
is complex, involves coefficient functions with branch cutsand a non-local operator in space.
We use an interval[a, b] = [0, π] and an operator defined by

M(λ) =
∂2

∂x2
+ λI + i(λ− σ1)

1/2R+ i(λ− σ2)
1/2 sin(x)

∂

∂x

with boundary conditions

c1(λ, f) = f(0)

c2(λ, f) = λf(π)− f ′(π).

HereR represents the reversal operatorR : u(x) 7→ u(π − x). We letσ1 = −5, σ2 = −10
and letµ = 15 be the target, so that the algorithm is expected to eventually find all eigenvalues
in the diskD(15, 20).
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The derivatives of the operator with respect toλ are given by

M(1)(λ) = I + i
1

2
(λ− σ1)

−1/2R+ i
1

2
(λ− σ2)

−1/2 sin(x)
∂

∂x
,

M(k)(λ) = −i(−2)−k (1 · 3 · 5 · · · (2k − 3)) (λ− σ1)
−(2k−1)/2R

− i(−2)−k (1 · 3 · 5 · · · (2k − 3)) (λ− σ2)
−(2k−1)/2 sin(x)

∂

∂x
, k > 1,

and the derivatives of the boundary conditions are simplyc
(k)
1 (λ, f) = 0, k ≥ 1 and

c
(1)
2 (λ, f) = f(π), c(k)2 (λ, f) = 0 for k ≥ 2.

The numerical results are illustrated in Figure4.3. Although the Arnoldi method still
performs robustly, convergence is somewhat slower than forthe previous two examples (see
Figure4.3(c)). A possible explanation may be given by the fact that theeigenvectorsf of
this problem have singularities nearby the interval[a, b] (see how the polynomial degree of
the Arnoldi vectors shown in Figure4.3(d) increases to about 48 immediately after the first
iteration), and therefore the Arnoldi method requires moreiterations to resolve these.

A beautiful observation from Figure4.3(a) is that the Arnoldi method starts to find spuri-
ous eigenvalues near the boundary of the disk of convergenceD(15, 20). (For iteration num-
bers higher than50 this effect becomes even more pronounced.) This phenomenonis possibly
related to a classical result from approximation theory dueto Jentzsch [20], which states that
the zeros of a truncated Taylor series have limit points everywhere on the boundary of the disk
of convergenceD(µ, r). Note that all our theoretical results are valid only insideD(µ, r), so
that the appearance of spurious eigenvalues outside this set is not a contradiction of the the-
ory. Of course these spurious eigenvalues will have large residuals associated with them,
so that they are easily detectable even if the radius of convergencer = 20 is unknown. A
more detailed investigation of the convergence behavior ofthe infinite Arnoldi method and
the interesting phenomenon of spurious eigenvalues will besubject of future work.

5. Concluding remarks and outlook. A key contribution of this paper is the formula-
tion of an Arnoldi-type iteration for solving nonlinear operator eigenproblems. Our approach
relies on a dynamic representation of the Krylov vectors in the infinite Arnoldi algorithm,
which are resolved automatically such that their trailing Chebyshev coefficients are of the
order of machine precision and with the aim to compute eigenpairs to very high precision.
It would be interesting to see if the spectral method recently proposed in [27] could further
improve the accuracy of solutions computed with our algorithm. We have focused on the situ-
ation where the functions are of the typef : [a, b] → C,mostly, but not entirely, for notational
convenience. The abstract formulation of the algorithm in Section2 carries over to higher di-
mensions, e.g., to functionsf : R2 → C. However, in higher dimensions, the automatic
adaption of the spatial resolution advocated in Section3 becomes more delicate. A suitable
function representation for two-dimensional problems highly depends on the geometry of the
domain and is outside the scope of this paper. For PDEs with complicated geometries, the
finite-element method (FEM) is a popular approach to representing functions. One could, of
course, represent functions on such geometries using a (high-order) finite-element basis and
carry out Algorithm1, but it is not clear whether such a FEM-based infinite Arnoldivariant
of Algorithm 1 would be computationally feasible (because it requires thesolution of a PDE
at each iteration).

The treatment of boundary conditions in the presented algorithm is, to our knowledge,
somewhat novel and attractive. Note that boundary conditions nonlinear inλ can be handled
in a general fashion, and their effect is simply propagated into the differential equation (2.14),
i.e., the equation to be solved at every iteration. Some boundary conditions being nonlinear
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(d) Polynomial degree of the Arnoldi vectors.

FIG. 4.3.The artificial example (Section4.3).

in λ can also be treated in a discretize-first approach, e.g., thederivative could be estimated by
one-sided finite differences. We are, however, not aware of ageneric procedure to incorporate
nonlinear boundary conditions in a discretize-first approach.

We wish to point out that in [19], two variants of the infinite Arnoldi method are pre-
sented, and here we worked out the “Taylor version” of this method. An adaption of the
presented algorithm along the lines of the “Chebyshev version” appears feasible although a
completely different reasoning might be needed. We believethat our approach of dynamic
representations of the Krylov vectors can be combined with the NLEIGS method presented
in [16], which is based on rational interpolation instead of polynomial expansions. Besides
these extensions, there are also several theoretical challenges that we wish to investigate in
future work. For example, it would be interesting to understand how our special choice of the
starting vector influences the convergence of the Arnoldi method and to characterize in which
cases breakdown may appear and how it could be detected and handled.
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