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A SPATIALLY ADAPTIVE ITERATIVE METHOD FOR A CLASS OF
NONLINEAR OPERATOR EIGENPROBLEMS *

ELIAS JARLEBRING' AND STEFAN QUTTEL?

Abstract. We present a new algorithm for the iterative solution of imedr operator eigenvalue problems
arising from partial differential equations (PDEs). Thigaithm combines automatic spatial resolution of linear
operators with the infinite Arnoldi method for nonlinear magigenproblems proposed by Jarlebring et al. [Numer.
Math., 122 (2012), pp. 169-195]. The iterates in this inéirrnoldi method are functions, and each iteration
requires the solution of an inhomogeneous differential 8gma This formulation is independent of the spatial
representation of the functions, which allows us to employmadic representation with an accuracy of about
the level of machine precision at each iteration similar to twhalone in the Chebfun system with its chebop
functionality although our function representation isiety based on coefficients instead of function values. Our
approach also allows nonlinearity in the boundary condgtiof the PDE. The algorithm is illustrated with several
examples, e.g., the study of eigenvalues of a vibratinggstrith delayed boundary feedback control.

Key words. Arnoldi’s method, nonlinear eigenvalue problems, partiiedéntial equations, Krylov subspaces,
delay-differential equations, Chebyshev polynomials
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1. Introduction. PDE eigenvalue problems arise naturally in many modelingtons.
In some cases, e.g., when the PDE eigenvalue problem stemsaftime-dependent PDE
involving higher order derivatives in time or when it invelva delay, the corresponding PDE
eigenvalue problem will be nonlinear in the eigenvalue peatr. In this paper we present a
method for a class of PDE eigenvalue problems with that kintbalinearity. Examples of
such problems are given, e.g., #) B, 33 and in Section.

The nonlinear operator eigenvalue problem we are concewitcconsists of finding a
valueX € D(u,r) := {\ € C: |\ — pu| < r} close top € C and a nonzero functiojfi such
that

M) f =0,

Cl()\, f) = O7
(1.1)

Ck(>\, f) =0.

In these equationsM () denotes a family of operators defined on a common domain
D = D(M(X)) C LY ([a,b]) and with a range spadey ([a,b]). The domainD here is as-
sumed to be independent of the eigenvaliend will typically involve regularity conditions
(e.g., differentiability). Note that for every fixed paratee), the operatoM () is linear but

the dependence o¥1(\) on A is generally nonlinear. The sé ([a, b]) denotes functions
which are square integrable on the interjgl] with a suitable weight function). We shall
specify a convenient weight function in SectiBrallowing us to efficiently compute scalar
products inLY ([a, b]) numerically. The weight function is selected in order toiaed effi-
ciency in the algorithm, and it does not necessarily cowedpo the “natural inner product”
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associated with physical properties of the involved omesatThe functiong; : C x D — C
specifyk constraints that need to be satisfied for an eiger{paif).
We will assume that\1(\) can be represented as

(12) M(A) = 91()\)£1 + 92(>\)£2 + -+ gm(>\)£m7

whereL; : D — L¥([a,b]) are closed linear operators apd : 2 — C are given an-
alytic functions defined in an open neighborhd@ed> D(u,r). We also assume that the
constraintse; can be represented in a similar fashion. More precisely, sgeirae that for
alli=1,...,kwe have

(N ) =hiatNCiaf + -+ hin(NCinf,

whereh; ; : @ — C are analytic functions ang; ; : D — C are closed linear operators.
We further assume that the constraints are such that théepno.1) is well posed in the
sense that its solutions € D(yu, r) have finite multiplicities and are elements of a discrete
set without accumulation points. The assumption that tkeetspm is discrete restricts the
problem class such that we do not face the complicated spettenomena that may occur
for more general nonlinear operators; see, €lg., [

We have formulated the operator probleinlf in a quite general form, mostly for no-
tational convenience. The problems we have in mind come f@&s (with one spatial
variable), e.g., PDEs with delays; see Sectiofor examples. For instance, the operators
in (1.2) may correspond to differentiation

o 82 om

a0t = gz =

In this case, the functions specifyk = m boundary conditions and we assume that they are
such that {.1) is a well-posed nonlinear operator eigenvalue problem.

The algorithm we propose is closely related to th&nite Arnoldi methodpresented
in[19]. The infinite Arnoldi method can, in principle, solve nardar matrix eigenvalue prob-
lems (for eigenvalues in a disk) to arbitrary precision juled that certain derivatives associ-
ated with the problem are explicitly available. One can apph problems of the typd (1)
with the infinite Arnoldi method by first discretizing the PDB the intervala, b], thereby
obtaining a matrix eigenvalue problem whose solutions hdlyeapproximate those ofl( 1).
There are a number of approaches available for the nonlimedix eigenvalue problem
[2,4, 13,25, 32]. Such a discretize-first approach requires an a prioriaghof the discretiza-
tion of the intervala, b]. The algorithm presented here does not require such a cheazeise
the spatial discretization will be adapted automaticdilptighout the iteration.

We derive the algorithm as follows. By approximatingandc; by truncated Taylor
expansions of ordeN, we first show that the resulting truncated operator eigesvarob-
lem can be written as an eigenvalue problem for an operatorgaon arrays of functions
in LY ([a, b))™V. This approach is similar to what for matrices is commonljecka compan-
ion linearization. SeeZf] for an analysis of companion linearizations. We select iga
ular companion-like operator formulation having a stroetthat is suitable for the Arnoldi
method P8 applied to the operator formulation, and our derivatioesloot require a spatial
discretization at this stage. We show that when the Arnolelihmd for the companion-like
operator formulation is initialized in a particular way,céaiteration is equivalent to a re-
sult that would be obtained with an infinite truncation pagtenN. We further exploit the
structure of the Arnoldi method applied to the companide-formulation so that the iterates
of the algorithm are represented as arrayd.§f[a,b]) functions. The abstract algorithm

Ly =
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presented in Sectiol can, in principle, find solutions tal(1) with arbitrary accuracy with
the main computational cost being the solution of an inhcenegus differential equation
derived fromM p) in every iteration.

As our algorithm derived in Sectio? is, in theory, based on iterating with functions
in LY ([a,b]) and due to the fact that the algorithm does not involve a abdicretization,
we are free to choose the representation of the functiorSettion3 we present an adaptive
multi-level representation suitable to be combined withdlgorithm in Sectio2. Each iter-
ate is represented via coefficients of a Chebyshev expansiength automatically adapted
to achieve machine precision. Details for some of the comfijeoperations (like differenti-
ation and pointwise multiplication) are also given in Seef. In Sectionrd we demonstrate
the performance of our algorithm by three numerical example

Our approach of adaptive representation of functions tegewith an adaptive resolu-
tion of differential operators is clearly inspired by theedfun system3] with its chebop
functionality [L2]. The idea to carry out iterations with functions has beasented in other
settings. A variant of GMRES for functions is given i2g], where the functions are repre-
sented using ChebfurB]. See also the discussion of infinite-dimensional numétinaar
algebrain 17].

Apart from the notation introduced above, we use the follgveonventions. Calli-
graphic style will be used to denote operators, in particlavill denote the identity operator
andO will denote the zero operator. The set of one-dimensionat{@mensional) arrays of
functions will be denoted by.¥ ([a, b)) (or LY ([a,b])V *F). The weighted 2-norm associ-
ated with a functionf € LY ([a,b])"V will be denoted by|| f||,. The partial derivative with
respect to\ will be denoted by-)’, the second partial derivative with respechtby (-)”, etc.

2. The infinite Arnoldi method in an abstract PDE setting.

2.1. Truncated Taylor expansion. The derivation of our algorithm is based on a trun-
cated Taylor-like expansion of the operatbt around a given point € C. Given an inte-
gerN, let the truncated operatdvl 5 be defined by

Mn(A) == M(p) + A%”M“’(ﬂ) ot %MW(M),

with the operators\1/) being analogues of thith derivative ofM evaluated af:,

MD () = gD ()L + 65 () Lo + -+ 69 (1) Lon-

Accordingly, we define a Taylor-like expansion for the boarrydconditions,

N f) = cilp, f) + T (8/\Cl(>\,f)>)\—u+

A—p)? (20 A= (N
T (Wci(/\v f))A_“ +oo N1 (a/\NCi()\a f)))\_ﬂ .

We now consider the truncated operator eigenproblem

(2.1a) My (AN)fn =0,
(Zlb) Ci,N(ANny):Oy Z':L...,k?

with solution(Ay, fn). This eigenproblem approximatek 1) in the sense that the residual
of (An, fn) vanishes asv — oo. This is summarized in the following theorem.

THEOREM 2.1 (Convergence of operator Taylor-like expansiobgt {( A, fnv )},
denote a sequence of solutions (1) with fxy € LY ([a,b]) and Ay € D(p,r) for
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all N =1,2... . Moreover, suppose that these solutions are convergenter.thnorm,
i.e., (Aw, fn) = (As, fx). Also suppos€,; fx andC; ; fx are convergent in thé}’ norm for
anyi,j asN — oo. Then there exist positive constantand 3 < 1 independent oV such
that

IMOAN) Nl < v8Y
ler(Aws fv)] < 48N

lex(Aw, fv)| < BN,

Proof. Since the functiong; (: = 1,...,m) are assumed to be analytic in a neighbor-
hood ofD(w, r), the complex Taylor theorem asserts that

(A=)’ + Rin (M),

= 7

where the remainder term can be expressed via the Cauclgyahtermula

oo

Ry = 3 B [ 0Oy

R Ny

andT can be taken as a circular contour with centeaind radiusr > |\ — p|. With the
setting),; , := maxcer |¢;(¢)|, we obtain the standard Cauchy estimate

o0

[Ri n(A)| < Z

j=N+1

Mi,r

—yli . AN+1
A—p SM”TBA

) 1-3

with |\ — p|/r < 3 < 1. Consequently,

[MAN)fN]lw = [MAN) N = MNAN) N |lw
= [[Ri,nAN)L1fN + -+ Ry N(AN) Lo N ||

MirAN—i_l
(2.2) < max TMB

i=1,...,m 1-5

The conclusion about the bound dM (Ay)fn |l Now follows from the fact thatl’; fn
is assumed to be convergent. The conclusion about the baurnldeoboundary condition
residuals follows from a completely analogous argumengé ddnstant$ and~ are formed
by maximizing the computed bounds which are all of the foEn)( a

REMARK 2.2. Theoren®.lillustrates that the residuals will decrease whérs suffi-
ciently large and eventually approach zeraNas— oo. The conclusion holds under the as-
sumption that A\, fy) converges to a pair\., f.). Despite this, note that the operators un-
der consideration are not necessarily bounded, and thieréfeoren®.1 does not necessar-
ily imply that || M (X.) fx ||, =0. For example, suppose th&t(\,) = 2 and consider a situ-
ation wherg Ay, f) is asolution to the truncated problem afl(z) = f.(z)+ 4 sin(Nz).
Thenfy — f. but M(\,)fn will not converge to zero a& — oo. In such a situation, also
a discretize-first approach could not be expected to givenmghul results. Whery, and
all fy are sufficiently smooth, this is unlikely to occur, and oummuical experiments in

Section4 suggest that such a situation would be rather artificial.
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2.2. Operator companion linearization. From the above discussion it follows that one
can approximate the original operator probleiri) by an operator problem where the coef-
ficients in the operator and the boundary conditions arenmoiyals in\. This is essentially
an operator version of what is commonly callegaynomial eigenvalue problefi23, 29,
and such problems are often analyzed and solved bgdhganion linearization technique
There are many types of companion linearizatid®§,[but for the purpose of this paper, a
particular companion linearization is most suitable.

We first define an operatot ;- acting onL¥ ([a, b])™¥ such that

®1 M(p) ©1 M(p)er
P2 1z P2 ®2
(2.3) AN . = . . = .
YN Z] [N oN
and an operataBy with action defined by
MWD (p) *%M(Q)(u) *%M(N)(u)
P1 7 @) P1
P2 ©2
(24) BN . = %I .
PN B PN
e A

Using these two operators, we can formulate the followintegalized operator eigenproblem
with boundary conditions

(2.5a) Anp = (A= p)Bny
ci(p, 1) + ¢, p2) + -+
_ A= .
(25b) +C§N 1)(Ma§DN) = _TNCEN)(;UHSON% 1= 13"'7k'

This particular companion linearization is useful becat@eany M > N, the leadingV x N
blocks in the operatord ;; and5,; consist precisely ofl y andBy. This will be implicitly
exploited in Sectior2.3. The companion operator problerd.%) is equivalent to thev -
problem @.1) in the following sense.

THEOREM 2.3. Considery = (¢1,...,¢on)" € LY ([a,b])N with o; = f. The com-
panion linearizatior(2.5) and the truncated Taylor expansi@h1) are equivalent in the sense
that the following two statements are equivalent.

a) The pair(\, ¢) is a solution to(2.5).
b) The pair(), f) is a solution to(2.1).

Proof. Consider a solutionp = (¢1,...,ox)7 to (2.5. Then the lastV — 1 rows

of (2.59 imply that

2 = (A — p)p1
803—5( —N)w—g( —M) ©1
1 1
(2.6) pa =3\ —mps = (A= 1)’
A=)

YN = W@l-
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By inserting @.6) into the first row in £.59, we have

0=M(u)pr + A — MY (u)p
(2.7) (A —

2 A\ — N
+ TMM@)(H)% +oeee %M(N)(u)gal.

Similarly, (2.5b) implies with 2.6) and the linearity of;(, /) with respect tof that

0= ci(p, p1) + (A — p)ci(p, 1)+
(28) \— m 2 \— L N
%C;/(Mﬂol) 4t (TRCI('N)(NWOI)'

The forward implication now follows from the fact th&t.¢) is identical to £.19 and that 2.8)
is identical to 2.1b).

In order to show the converse, suppgsis a solution to2.1) and definep; = f andy;
(fori =2,...,N)asin @.6). The relation 2.7) holds because oR(1), and a similar argu-
ment is used for the constraintz.). a

2.3. The infinite Arnoldi algorithm. Now note that?.5) is a linear operator eigenprob-
lem for the variable\ = (A — 1)~!. Linear eigenvalue problems can be solved in a number
of ways, where the Arnoldi metho@8§] is one of the most popular procedures. We will now
show how to formulate the Arnoldi methbdor (2.5) and exploit the structure and thereby
avoid the traditional approach to first discretize the peotl This is similar to the “Taylor
version” of the infinite Arnoldi method for nonlinear matrxgenvalue problems described
in[19).

Conceptually, it is straightforward to use the Arnoldi nathin an operator setting, and
this has been done to study its convergence, e.g9,i@1]. In order to apply the Arnoldi
algorithm to the formulation2.5), we will need

e a procedure for solving

(2.9a) Ane = Bny
_ 1 ;
(290) il o) + oo pn) = e ), =1,k

for the unknowny € LY ([a,b])Y, wherey € LY ([a, b])" is given and
e ascalar product fof.¥([a, b))V .

It turns out that the structure of; and By is particularly well suited for the Arnoldi
method. Suppose we start the Arnoldi method with a function LY ([a, b])" of the form

(1
0
(2.10) v=1.1,
0
wherey € LY ([a,b]). In the first step of the Arnoldi method, we need to sol¥&) By

INote that our construction corresponds to a variant alsevknas shift-and-invert Arnoldi method since we
actually approximate eigenvalugs= ﬁ For simplicity we will still refer to this variant as the Arith method.
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inspection of the structure of y andBy, the solution will be of the form

®1
1

Hence, the action corresponding to the nonzero part of theico of (2.9) is independent
of IV if we start with a vector consisting of just one leading nanZglock. More generally,
the solution of 2.9) can be characterized as follows.

THEOREM 2.4. Consider a given functiogr € LY ([a, b])™ with the structure

U
(2.11) v=171

0
wherey, ..., ¢, € LY ([a,b]). Consider the operatotd y and By defined by2.3) and(2.4)
forany N > p. Suppose thap € L¥([a,b])" is a solution to the operator problem (in the

spaceLy ([a, b])™)

(2.12a) Ane = Byt
- 1
(2.12b) ci(p,p1) + -+t 1)(u7¢N—1)=—NCEN)(M,¢N), i=1,...,k

Then this solution satisfies

(2.19) o= |Lu|,

wherey, € LY ([a,b]) is the solution to the operator problem (ir ([a, b]))

@142)  Miuor = ~MD (i = MO (s = - = - MO ()0,
1 1
(2.14b)  cilpr) = —¢i(u 1) = 56 (s pe) =+ = ECEP)(AL,%), i=1,...,k

Proof. The lastN — 1 rows of 2.1239 imply that ¢ has the structure2(13. Equa-
tion (2.143 follows directly from the insertion off. 13 and @.11) into the first row of £.129.
Note that the termgV1) (1)y); vanish forj > p sincey; = 0. Similarly, by inserting the
structure ofy given in .13 and given in (2.11) into Equation 2.121, several terms
vanish andZ.14H is verified. 0
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From the previous theorem we make the following key obsamat

The nonzero part of the solution {@.12) for a functiony with structure(2.11) is
independent oN as long asV > p.

By only considering functions of the structur2.11) we can, in a sense, tak¥ — oo
without changing the nonzero part of the solution. WiKh— oo, the truncation error in
the Taylor expansion vanishes a1 corresponds to the original problerth.{) (under
the conditions stated in TheorePnl and Remark.2). In other words, our method has the
remarkable property that at any iteration it gives the saeselts as if the Arnoldi method
was run on the untruncated operator linearization. Hermetruncation parameter can be
formally considered as beiny = cc.

The key idea for an implementation is to start the Arnoldioaiiiym with an array of
functions of the structure2(10). Due to the fact that the Arnoldi method essentially ineslv
solutions of .12 at every iteration combined with a Gram—-Schmidt orthodjaation, all
arrays of functions will be of the structurg.(1). This naturally leads to a growth in the basis
matrix in the Arnoldi algorithm not only by a column but alspdrow at each iteration. The
basis matrix aftek iterations will be represented by

Vi1 V12 o Uik
0 V2,2 .
(2.15) V= | e Ly(fa)tt
0 . . :
0 0 vk

wherev; ; € LY ([a, b]).

In the Arnoldi algorithm we also need a scalar product. Fersppace ¥ ([a, b)) it ap-
pears to be natural to use the aggregated scalar productatssiowith a scalar produ¢t -).,
for LY ([a, b)), i.e., givenf, g € L¥([a,b])V, we define

(fr9)w = (f1,91)w + -+ (N, IN)w,

wheref = (fi,...,fn)", g = (g1,...,9n)". The scalar product, -),, can be tailored
to the problem at hand, but we will propose a particularlyvesrient one in Sectio. A
version of the Arnoldi algorithm that exploits the struewf the involved variables is given
in Algorithm 1 below and referred to as thefinite Arnoldi method (for nonlinear operator
eigenproblems)

REMARK 2.5 (Existence). Algorithni defines a sequence of function iterates uniquely
only if there exists a unique solution ta.(4). Existence issues will not be studied in detalil
here and should be established in a problem specific manmethé&numerical examples we
present in Sectiod, existence and uniqueness of the solution2df4) will be guaranteed by
the well-posedness of the considered differential eqnati®he assumption tha.(L4) has a
solution in D, the domain ofM, is natural, though it is a restriction on the class of opmrat
problems and allowed starting functions (which will be paynials in our implementation,
so this is not a practical restriction). Roughly speakiis assumption means that only
problems with sufficiently smooth solutions can be solvethwur algorithm.

3. Multi-level spatial resolution. The main computational cost in a practical imple-
mentation of our nonlinear eigensolver (Algorithth lies in the solution of a differential
equation 2.14) at every Arnoldi iteration. In this section we will propoag@olynomial spec-
tral method for solving differential equations with anayfor sufficiently smooth) solutions
defined on an intervak, b] suitable to be used in this setting. Because the Arnoldi atktian
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Algorithm 1 Infinite Arnoldi method for nonlinear operator eigenprahie(l.1).
Require: Starting functiorv, 1 € LY ([a, b])
v =11/ (V1,1 01,0)w
2. fork=1,2,..., knax doO
31 Computeps, ..., pr+1 from (2.13 whereyy = vy i, ..., ¢, = v andp = k.
4: Solve the inhomogeneous differential equatich1f) for »; with the setting
1/11 =Vl ky--- 7’(/Jk = Vk.k andp = k.

5. fori=1,...,kdo

6: hik = {pi,v1,i)w + -+ {©is Vii)w
7. forj=1,...,ido

8: QDj = QDj — hi,kvj,i

9: end for

10: end for

10 ggre = V(01,0100 + + (Ort1, Prr1)w
122 forj=1,...,k+1do

13: Vjk+1 = @5/ Pry1k
14:  end for
15: end for

16: Compute the eigenvaludg; } "=« of the Hessenberg matrix with elemerifs ; = h; ;,
fori,j=1,..., knax-
17: Return the eigenvalue approximatiofis/6; + u}f;“f* of (1.2).

be sensitive to inexact computations, we aim to solve thggat®ns “exactly”, that is, with
an error close to machine precision. Our approach is indfiyethe automatic grid refine-
ment idea implemented in the Chebfun syst&inwith its chebop functionality 12], but it
differs from Chebfun in the representation of the polyndmidahe Chebfun system is based
on interpolation polynomials represented on a Chebyshelvwgith an adaptively chosen
number of grid points, whereas we prefer to represent thgnpatials by their coefficients
in the Chebyshev basis. In other words, our approach is basédetau methodexplained
in SubsectiorB.2 below instead of a collocation (or pseudospectral) metfde reason for
our choice is that with a coefficient representation of polyials, all operations required in
our Arnoldi method can be implemented very efficiently withcesampling function values
between non-matching Chebyshev grids.

3.1. Coefficient spatial representation.Let [a, b] be a given interval. In this section
we will use the convention that with every occurrence of tagablez in [a, b], we identify
the variabley = (22 — b — a)/(b — a) in [—1,1]. Any polynomial P,,, of degree at most
can be represented as

m

Pm(x) - ZCjTj(y)v VS [a7b]a

j=0

with the well-known Chebyshev polynomiél§(y) = cos(j arccos(y)). Recall that these
polynomials satisfy the recurrence

Toy) =1, Ti(y)=y, Tix(y) =2yT;(y) — Tj-1(y),
and are orthogonal with respect to the weighigtscalar product

(fs 9w = %/_1 %dya
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more precisely

0, ifj#k,
(T;, Tiyw =42, ifj=k=0,
1, ifj=k>1

In contrast to the more popular spectral collocation apgida 11, 30], where a polyno-
mial P,,, is represented by its function values on a Chebyshev griunatles); = cos(mj/m)
(forj =0,1,...,m), we here prefer to represehf, by its Chebyshev coefficients. Given
two polynomialsP,, (x) = 327, ¢;T;(y) andQy(x) = >=7_, d;T;(y) of possibly different
degrees, the coefficient representation allows us to cagrlimgar combinations

max{m,n}

aPp(x) + BQu(z) = Y (ac; + Bd;)T;(y),

=0

without resampling function values @t,, or @,, on a refined Chebyshev grid. (We assume
that coefficients:; or d; with j exceeding the degree of the associated polynomial are equal
to 0.) Moreover, itis easily verified that the Euclidean scaladuct between coefficient vec-
tors (with theo-th coefficients divided by/2) corresponds to a weightddy scalar product
between the corresponding polynomials:

—  min{m,n} m n
d _
LY T = (LT A T0),, = (P Qul
Jj=1 j=0 =0

Note that our infinite Arnoldi method is rich in scalar prodoomputations, and this relation
allows for an efficient implementation.

3.2. The Chebyshev tau method with automated degree adaptah. Given a polyno-
mial P,,,, in spectral methods one represents linear operationdliflezentiationP,,, — P/,
pointwise multiplication P,,(z) ~ f(x)P,(x), or the nonlocal reversal operation
P, (z) = Pp(a+ b— z) by matrix-vector products with spectral matrices. Tae method
(invented by Lanczo<p)], see also%, Chapter 21],18, Section 7.2]) is a spectral method for
solving differential equations using the coefficient regargtation of polynomials where the
coefficients are determined such that the residual of theoappate solution is orthogonal to
as many basis polynomials as possible. Thebyshev tau methasla tau method where the
Chebyshev polynomials are used as a basis.

In the following we give an exemplary list of three coeffidienaps representing the
action of linear operators on a polynomi), (z) = Z;”:O ¢;T;(x). These maps will be
needed in order to apply the algorithm to the examples in@edt For the identities involv-
ing Chebyshev polynomials used in the derivation, we ref¢t4, Section 3].

e Differentiation. By the relation for the derivative of a Chebyshev polynoriiigly),
dT— ]T0+2](T2+T4++T]_1)7 IfJISOdd,
dy "’ 2j(Th +Ts+ -+ Tj—1), if jis even,

we deduce that the matrix mapping the Chebyshev coeffictdnts, to the Cheby-
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shev coefficients of?/, is

c R(m+1)><(m+1) )

SO oo o
[=lelolall
O O O = O
OO OO W
S 00 O O

Higher order derivatives are obtained by taking correspapdowers of the differ-
entiation matrixD,,. Note that—in contrast to spectral collocation matricegngct
on function values rather than coefficients—the makpjx is not dense.
Multiplication. Let @, (z) = Z?:o d;T;(y) be a polynomial. From the relation

Ti(y)Tk(y) = % (Tj4x(y) + Tj—iy ()

it is easily verified that the matrix mapping the Chebyshesffoacients of P, to the
Chebyshev coefficients dt,,,Q,, is

o 0 0 0
di 2dy di do

Mm(Qn) = 1 do dv 2dy dy - "
2 dg d2 dl 2d0 .

do dy dy ds

) di dy ds

- . (m+n+1) X (m+n+1)

5 |do ds eC ,
ds ’

which is the sum of a rank-1-modified Toeplitz matrix and a k&dmatrix.
Reversal. Using the fact thaf’; (y) = (—1)7T;(—y), it is easily verified that the
matrix

Ry, = diag(1,—1,1,—1,...) € Rm+Dx(m+1)

maps the coefficients aP,,(z) to the coefficients of the “reversed” (right-to-left)
polynomial P,,,(a + b — z).

Combinations of the above. Note that the above operators can be combined in
an additive and multiplicative fashion by adding and muyiipg the corresponding
matrices. For example, the variable coefficient seconéifarderatord%(Q(y) % )

can be approximated a8, M, (Qn)Dm+n provided thatQ(y) can be (uni-
formly) approximated by a Chebyshev expansi@p of moderate degree. For
nonsmooth function€(y), however, a global Chebyshev expansion may fail to con-
verge (e.g., in the case of jumps causing the Gibbs phenamenconverge slowly
(e.g., in the case of discontinuous derivatives); $28(, 31]. Both of these cases
would require a more sophisticated approach, such as,pegewise polynomial
representations.
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Let A be a linear operator acting on functions defined on the iatésyb], and denote
by A,, € Ctm+x(m+1) the spectral matrix mapping the Chebyshev coefficients kyinae
mials P,,, to the Chebyshev coefficients €f,, = AP,,,

do co

dy C1
. - A’UL

dm Cm

(Again we have assumed that coefficients with an index excgelde degree of a polynomial
are set td).) Typically the matrixA,, is not invertible. In order to specify,, uniquely as
the solution of the linear syster,, P,,, = @,, for a given right-hand sidé,,,, a number of
constraints, sa¥, need to be imposed af,,. In the tau method this is typically achieved by
replacing the lask rows of A,,, by row vectors corresponding to the boundary conditions of
the differential equation (boundary bordering), e.g.,

Dirichlet b.c. on the left
Dirichlet b.c. on the right

(1,-1,1,—1,...,(-1)™*!

2 (0,1,-2,4,...,(=1)"(m — 1)
72 (0,1,2,4,...,(m —1)?

Neumann b.c. on the left

Neumann b.c. on the right

and to alter the last coefficients ofQ,,, namely(d,,_x+1,...,d»,)", to the prescribed
boundary values (zeros for homogeneous conditions). Thdtseof this modification are
denoted asi,,, and Q.,,, respectively. This ensures that the polynonita) = Ai‘lQm
satisfies the boundary conditions exactly and the residwahé original differential operator
is of the form

oo

Qule) = APu(2) = Y e Ty(y)

j=m+1—k

provided that the exact solutiod—'(Q,,, exists and has a Chebyshev expansion. Lanczos
realized that withP,,,, we have obtained the exact polynomial solutiomd?,, = Q,,, + €,

to a (slightly) perturbed problera,, = — Z?’;mﬂfk e;T;(y). Under the condition thak,,
converges uniformly to a solution functigh(the solution of the spectrally discretized differ-
ential equation) ags» — oo and the condition that this functiofiis analytic in a neighbor-
hood of the intervala, b] (theBernstein ellipsg it is known that the convergence is geometric
(see, e.g.,31, Chapter 8]): for some > 1 andC > 0, one has

|f(x) = Pp(x)| < Cp~™ forallz € [a,b].

If f has no singularities too close i@ b], thenp is large enough to achieve fast uniform con-
vergence ofP,, towards f, indicated by a rapid decay of,,’s Chebyshev coeffi-
cientscy, ¢y, ..., cpm. This fact is exploited in the Chebfun system with its chelfupc-
tionality for solving operator equationd?], and we will employ a similar rule of thumb:
assume that the weightdd, error of a Chebyshev approximafy, is of about the same
order as its trailing Chebyshev coefficien (see alsoj, p. 51]). This error estimate allows
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us to adaptively adjust the degreefdf, such that the solutio®,, of A,, P,, = Q,, is likely
to be close tod ! f in a relative error sense:
1. Choose a numben, saym = 16.
2. ConstructA4,,, (the spectral matrix with boundary conditions includedd &olve
the linear systemal,,, P, = Qy, for P, (z) = Z;”:O e;Tj(z).
3. If the last coefficient,,, /|| P || is not small enough relative to the nodf®,,, ||,
induced by, -),,, increasen (e.g., multiply by a factor of 1.5 and round to integer),
and go to Step 2.
Note that more sophisticated error estimates could be oleed|(for example, by taking into
account more than just the last Chebyshev coefficight However, every such estimate will
eventually be based on a heuristic. In the numerical exparisndescribed in Sectigh we
found the above procedure (Steps 1-3) to perform satisfcto

3.3. Implementation. The implementation of our infinite Arnoldi method is stratigh
forward in object-oriented Matlab. All spatial functions; defined on the intervak, b]
are approximated by polynomialB; ; of degree adaptively chosen such that the estima-
te |vi; — Pijllw Stol||P ], holds, wherd ol = 2.2 x 10716, These polynomial rep-
resentations are stored in a two-dimensional “cell arraf"(@.15)

Py Pa P
Py Pop Pojy
V=P P2 Pig >

where each column corresponds to a Krylov basis vectofandl have an upper triangular
structure. The action of the linear companion operator antolumn ofl” results in a new
column of spatial functions, where the number of nonzerommments in the input and output
columns may be different. Note that a modified Gram—-Schmitfiogonalization of these
columns is fast when working with the coefficient represgotedescribed above.

4. Examples.

4.1. A differential equation with time delay. We consider a PDE with delay for a
functionw : [0, ] x [—T, +00) — R,

(4.1a) up(2,t) = ugy(x,t) — u(z, t — 1),
(4.1b) u(0,t) =0,
(4.1c) u(m,t) =0,

an example which has also been considered/jrFprmula (112)]. Employing the ansatz
u(z,t) = f(z)e*t, the PDE ¢.1) leads to a nonlinear operator eigenvalue problem of the
form (1.1), where

0? N
4.2 = N+ == —e T
(4.2) M(N) AT + 52 © ,

with boundary conditions
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In the implementation of our method we need to provide thévdtves of @.2), which in
this case are explicitly given by

MWD (p) = T+ e ™I
MPB () = (=1)ke ™ML, k> 2.

Consequently, in every iteration of our algorithm we needdlve @.14), which reduces to
solving

82
(_NI“F 922 e_TMI> $1

= (14 e Yy — g(—re Ty — (e,

for ¢ with boundary conditiong; (0) = ¢4 (7) = 0.

In this first example we have selectéd(\) such that the problem can be solved explic-
itly as follows. By definingy := X\ 4+ e~7%, it is clear from §.2) that all suchy correspond
to the eigenvalues of the Laplacian with homogeneous bayrodaditions, i.e.,a‘?%f =~f
with ¢1 (A, f) = f(0) =0, ea(\, f) = f(7) = 0. This eigenvalue problem can be solved ana-
lytically and the explicit eigenfunction solution f§z) = sin(jx) with eigenvalues = — ;2
for any positive integef. Hence,

—j2=Ate N

It is straightforward to solve this equation farby using the Lambert W-functiorip]. We
find that the eigenvalues of the nonlinear operator eigelevatoblem are given by

1 .
A= —j2+ ;Wz(—Tesz)

foranyj € Ny and any/ € Z whereW, is the ¢-th branch of the Lambert W-function.
Note that different eigenvalues can have the same eigetidaress the eigenfunctions do not
depend or¢Y. The exact eigenvalues are shown in Figdr{a). For our infinite Arnoldi
procedure we have chosen the target —1, and the starting vectags; was a polynomial
of degree5 with random (normally distributed) coefficients in the Chshev basis. Fig-
ure4.1(a) also displays the approximate eigenvalues after 6&titers of the infinite Arnoldi
method, and Figuré.1(b) displays thd 0 approximate eigenfunctiorysto which this method
converged first. (Each two if these eigenfunctions coingide

The error norm for each of the 10 approximate eigenfunctcorapared to the exact
solution as a function of the number of Arnoldi iterationsi®wn in Figured.1(c) (there
are always two error curves overlaying each other). Ourapdiscretization was adapted
such that the expected truncation error in the Chebyshexesipn is of the order of machine
precision. We observe an error decay for each eigenfuntiiabout the same accuracy level
as the number of Arnoldi iterations increases. The residoah | M())f]., for each of
the 10 approximate eigenpaifs, f) is shown in Figuret.1(d) as a function of the number
of Arnoldi iterations. Note how the degrees of Arnoldi vestgrow moderately with each
Arnoldi iteration as depicted in Figurke1(e). More precisely, we display here the maximal
degree among all polynomials collected in each block Arnaddtor. This growth is expected
because we potentially discover approximations to in@ngés “nonsmooth” eigenvectors
(i.e., those which are difficult to approximate by polynolwiaf low degree).
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FiIG. 4.1. A differential equation with time delay (Sectiéri).

4.2. Vibrating string with boundary control. We now consider a vibrating string on
an interval[0, L] with a clamped boundary condition at= 0 and a feedback law at = L.
The feedback law is constructed with the goal to damp theatitims of the string. In practice,
a feedback control may only be available at a later pointnmetidue to, e.g., a delay in
measurement or the time required for calculating the fegldparameters. In such a situation
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the vibrating string is governed by a PDE with delay or [0, L] x [—7,00) — R,

(43&) Uyt (337 t) = CQUmx (Iv t),
(4.3b) u(0,t) =0,
(4.3c) Uy (Lyt) = aug(Lyt — 1),

wherec is the wave speed, is the delay, andr corresponds to a feedback law. S&8, [33]
and the references therein for PDEs with delays and in pgatithe wave equation. In our
setting, the eigenvalues associated witl8( are described by th&-dependent operator

2 0

M()\) = )\2.2- — C W,

with A\-dependent boundary conditions,

Cl()‘>f) = f(O)
s\, f) = f(L) = ade™ A f(L).

We now provide the implementation details for this exampleiecifying how to set up the
differential equationZ.14). First note that

M () = 24T,
M®P () = 2T.

In our algorithm we require the derivatives of the boundanydition with respect ta, which
are explicitly given fork > 0 by

Cgk) (M’ f) =0,
(. f) = —af(L)e ™ (=) (k — Tp).

Hence, the specialization at (L4 to this example is, fop = k > 1,

@42)  e(e) - Pl(e) =~ (2) — S20(0)
(4.4b) ©1(0) =0

k
(440) (L)~ ape M pi(L) = ae T (Z DY - w)) ,

where the functiong), ..., ¢y are given ando; € Li([a,b]) has to be computed. When
p =k =1, i.e., in the first iteration, the term, should be set to zero in the inhomogeneous
term in @.49, whereas4.4h and @.49 remain the same fgs = £ = 1. Note that {.4)

is just a second order inhomogeneous differential equatitnone Dirichlet and one Robin
boundary condition.

In Figure4.2 we visualize the computed approximate eigenvalues andglex)neigen-
vectors ofM, as well as the decay of the residual nofmel (\) f||., for the first 10 approxi-
mate eigenpairs with closest to the target = —1. The involved constants have been chosen
asa = 1, ¢ = 1, and7 = 0.1. The infinite Arnoldi method performs well on this example
(for which an analytical solution does not seem to be avis)alafter about 45 iterations the
first 10 eigenpairg ), f) are resolved nicely while the degree of the Arnoldi vectasng
moderately.
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FIG. 4.2.Vibrating string with boundary control (Sectigh2.)

4.3. An artificial example. In order to illustrate the broad applicability of our method
we will now consider the following artificial nonlinear odor eigenvalue problem, which
is complex, involves coefficient functions with branch carsl a non-local operator in space.
We use an intervdh, b] = [0, 7] and an operator defined by

2

0]
- 1/2 - 1/2 .
= @4’)\14’2(}\70'1) / R‘F’L()\*O’Q) / SIH(I)%

M)

with boundary conditions

HereR represents the reversal operafor u(x) — u(r — x). We leto; = —5, 02 = —10
and lety = 15 be the target, so that the algorithm is expected to eventfiad all eigenvalues
in the diskD(15, 20).



ETNA
Kent State University
http://etna.math.kent.edu

38 E. JARLEBRING AND S. GJTTEL

The derivatives of the operator with respecitare given by

1 1 13}
(1) - (N — o) "L/2 (N — o) 1/2g; il
MBI N) =T+ i A—o01) "R+ i3 (A —o02) sin(x) e

MPB(N) = —i(=2)7F(1-3-5---(2k — 3)) (A — 0y) " FF-D/2R

—i(=2)7F(1-3-5--- (2k — 3)) (A — gp) " (2k—1)/2 sin(m)a%, k> 1,

and the derivatives of the boundary conditions are sinufp’ifl()\7f) =0,k >1and
SV ) = f(m), PN F) = 0fork > 2.

The numerical results are illustrated in Figur&. Although the Arnoldi method still
performs robustly, convergence is somewhat slower thathioprevious two examples (see
Figure4.3(c)). A possible explanation may be given by the fact thatdigenvectorsf of
this problem have singularities nearby the interjuab] (see how the polynomial degree of
the Arnoldi vectors shown in Figur 3(d) increases to about 48 immediately after the first
iteration), and therefore the Arnoldi method requires nit@tions to resolve these.

A beautiful observation from Figure 3(a) is that the Arnoldi method starts to find spuri-
ous eigenvalues near the boundary of the disk of convergefice 20). (For iteration num-
bers higher thaf0 this effect becomes even more pronounced.) This phenongpossibly
related to a classical result from approximation theory twu#entzschg0], which states that
the zeros of a truncated Taylor series have limit pointsyavieere on the boundary of the disk
of convergenc®(y, r). Note that all our theoretical results are valid only insitlg, r), so
that the appearance of spurious eigenvalues outside this set a contradiction of the the-
ory. Of course these spurious eigenvalues will have largiluals associated with them,
so that they are easily detectable even if the radius of egeweer = 20 is unknown. A
more detailed investigation of the convergence behavigh@finfinite Arnoldi method and
the interesting phenomenon of spurious eigenvalues wiligect of future work.

5. Concluding remarks and outlook. A key contribution of this paper is the formula-
tion of an Arnoldi-type iteration for solving nonlinear apéor eigenproblems. Our approach
relies on a dynamic representation of the Krylov vectorshim infinite Arnoldi algorithm,
which are resolved automatically such that their trailinge@yshev coefficients are of the
order of machine precision and with the aim to compute eigegao very high precision.
It would be interesting to see if the spectral method reggmbposed in27] could further
improve the accuracy of solutions computed with our alganit We have focused on the situ-
ation where the functions are of the type [a, b] — C, mostly, but not entirely, for notational
convenience. The abstract formulation of the algorithment®n2 carries over to higher di-
mensions, e.g., to functiont : R?> — C. However, in higher dimensions, the automatic
adaption of the spatial resolution advocated in Seciitlecomes more delicate. A suitable
function representation for two-dimensional problemshiglepends on the geometry of the
domain and is outside the scope of this paper. For PDEs witipticated geometries, the
finite-element method (FEM) is a popular approach to remtésg functions. One could, of
course, represent functions on such geometries using la-¢ndgr) finite-element basis and
carry out Algorithm1, but it is not clear whether such a FEM-based infinite Arnghtiant
of Algorithm 1 would be computationally feasible (because it requiresstiietion of a PDE
at each iteration).

The treatment of boundary conditions in the presented @ftgoris, to our knowledge,
somewhat novel and attractive. Note that boundary conwitimnlinear im\ can be handled
in a general fashion, and their effect is simply propagatéalthe differential equatior2(14),
i.e., the equation to be solved at every iteration. Some @@mynconditions being nonlinear
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FIG. 4.3.The artificial example (Sectioh3).

in \ can also be treated in a discretize-first approach, e.gddtieative could be estimated by
one-sided finite differences. We are, however, not awaregyeharic procedure to incorporate
nonlinear boundary conditions in a discretize-first apphoa

We wish to point out that in19], two variants of the infinite Arnoldi method are pre-
sented, and here we worked out the “Taylor version” of thishoé. An adaption of the
presented algorithm along the lines of the “Chebyshev ertsappears feasible although a
completely different reasoning might be needed. We belikae our approach of dynamic
representations of the Krylov vectors can be combined vi¢hNLEIGS method presented
in [16], which is based on rational interpolation instead of polyial expansions. Besides
these extensions, there are also several theoreticabogals that we wish to investigate in
future work. For example, it would be interesting to undemsthow our special choice of the
starting vector influences the convergence of the Arnoldhigand to characterize in which
cases breakdown may appear and how it could be detected ad:ta
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