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CONVERGENCE ANALYSIS OF THE OPERATIONAL TAU METHOD FOR
ABEL-TYPE VOLTERRA INTEGRAL EQUATIONS *

P. MOKHTARY' AND F. GHOREISHF

Abstract. In this paper, a spectral Tau method based on Jacobi basisofusics proposed and its stability and
convergence properties are considered for obtaining arogippate solution of Abel-type integral equations. This
work is organized in two parts. First, we present a stableaijpmal Tau method based on Jacobi basis functions
that provides an efficient approximate solution for the Ayple integral equations by using a reduced set of matrix
operations. We also provide a rigorous error analysis fergtoposed method in the weightéd- and uniform
norms under more general regularity assumptions on the exhatioso It is shown that the proposed method
converges, but since the solutions of these equations hairegalarity near the origin, a loss in the convergence
order of the Tau method is expected. To overcome this drawbacdken propose a regularization process, in which
the original equation is changed into a new equation whicksesses a smooth solution, by applying a suitable
variable transformation such that the spectral Tau methodbeaapplied conveniently. We also prove that after
this regularization technique, the numerical solution @f lew equation based on the operational Tau method has
exponential rate of convergence. Some standard examplesaidgul to confirm the reliability of the proposed
method.
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1. Introduction. This paper deals with the numerical treatment of the folfmtlass
of Abel-type Volterra integral equations

(1.1) u(z) = +/\/ VF w(t)dt, =el=0,1],

where f(x) and K (x,t) are a given continuous function and a sufficiently smoothéer
function, respectivelyy(z) is the unknown function, and € N with ¢ > 2 (N is the col-
lections of all natural numbers). This equation is a paldicaase of linear Volterra weakly
singular integral equations of the second kind. Severalarigal methods have been pro-
posed for (.1); see , 3,5, 6, 8, 9, 11].

From the well-known existence and uniqueness theoremsnitbe concluded that in
Abel-type integral equations we must expect some deriggatdf the solution to have a dis-
continuity at the origin; see3[ 8]. As discussed ind, 8], the first derivative of the solution
u(z) behaves lika/ (z) ~ 2~ andu’(z) ¢ C(I).

In order to approximate the solution df.() we propose a strategy mainly consisting
in two steps. In the first step, we introduce the operatioaal Method based upon Jacobi
basis functions tol(.1). This strategy is an application of the matrix-vector praicapproach
in spectral approximation. The main characteristic belimsl approach is that it reduces
such problems to those of solving a system of linear algetequations. In this step, we
also investigate convergence and stability behavior oftimerical solution of1.1). We can
deduce convergence of the Tau method at this point, but dtfetfact that the solutions of
these equations usually have a weak singularity at themrilgis method leads to very poor
numerical results. Thus, it is necessary to introduce alaegation procedure that allows us
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to improve the smoothness of the given functions and theppgooximate the solution with a
satisfactory order of convergence. 8},[Tao Tang introduced and discussed a simple variable
transformation for the regularization of solutions of Alygbe Volterra integral equations of
the second kind, such that the resulting equation possass@®oth solution. Then, in the
second step we transforr. () by using this coordinate transformation and we prove tfiat a
this regularization technique the numerical solution & tlew equation by the operational
Tau method has exponential rate of convergence.

The organization of this paper is as follows: in Sectipnve introduce the operational
Tau method and its application to the Abel-type integralagiqgu (1.1). In addition, we
analyze convergence and stability behavior of the numlesatation of (1.1). In Section3, by
applying a suitable regularization process, an operadtsnteme for obtaining the numerical
solution of the transformed equation is considered and aorential rate of convergence
for the proposed regularized scheme is proved. In Sedti@ome numerical examples are
considered which confirm our theoretical predictions.

2. Operational Tau method for Abel integral equations. In this section, we present
a numerical solution of1(.1) by using the operational Tau method based on Jacobi basis
functions.

2.1. Numerical treatment. Let V? = [v5"" (), 0% (2), ..., 0% (z), ..]T with pa-
rametersw, 5 € (—1, 1) be an arbitrary Jacobi polynomial bases with respect torheri
product

07705 s = [ 007 @0 ) @)

wherew®? (z) = (2 — 22)*(2z)? is the Jacobi weight function; se4, [L0]. Clearly, we can

write VP .= Vf X whereV*# is an infinitely non-singular lower triangular coefficient

matrix with degredv®” (x)) <i,fori =0,1,2,...,andX = [1,z,22,...,2V,...]T.
Suppose thaf (z) is a given polynomial and consider

Ny
21) fl) =) fiwiP(x) = VP = fVOPX, f=(fo. fuo fare oo g 0,0,
1=0

If f(z) is not polynomial, then it can be approximated by polynomialany degree of accu-
racy by interpolation or any other suitable method. Let) = >"°7 aivf"ﬂ(a:) =aVePX
be the Jacobi series expansion of the exact solutiorl dj,(wherea = (ag,aq,...) and

u‘j{;ﬁ(x) is a Tau approximation of degréé for u(x) as

(2.2) u?‘vﬁ(z) = Zaw?'ﬂ(:c) =ayV*PX, an = (ag,a1,...,an,0,...).
=0

We define

(2.3) L(u(z)) = u(z) — )\/090 -

and assume that
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which can be rearranged as
i=0 57=0

Now, the following theorem shows how to repladelf by a matrix formulation of the oper-
ational Tau method.
THEOREM 2.1. Let v“‘ﬁ( ) be the orthogonal Jacobi polynomials with respect to the

weight functionw®#(z) in I and let the approximate solutlmﬁ,ﬁ be given by the rela-
tion (2.2). Then we have

L%’ (x)) = an (id = \VPIIP) yob,
whereid is the infinite identity matrix,
Ha,ﬂ _ Z Z ];iijCi’j7
i=0 j=0

B’ is the infinite diagonal matrix with diagonal entrié®, = B(j + s + 1, ) for all
J,s=0,1,2,... (hereB(a,b) denotes the Beta function), and

( ’L+j+l+177 Ua ,6’)

o) s

Proof. From relationsZ.2) and @.3) we can write

a,p

€ = () ey =

o * K(z,t)
(2.4) L(u%(2) = ay (V“‘ﬂ — Vs X dt)
N ) N 0 W t
whereX; = [1,¢,¢%, ..., tV,..]T. Thus, the integral term oR(4) can be written as
(2 5) /w K(.’t,t) dt_ii];xz[ T t]Jrl :|oo
' 0 {'/St'—tit i=0 j=0 Y 0 {/x—

By using the relation

T gt ) —
/ dt = R BG 4111, Mu
0

we can rewrite Z.5) as

T K(x,t) °°°°~[4,l_1 _ p—11
= X,dt = fyj | W B+ L+ 1L, —
A w—t ;;@ N ¢ 15 )1:0
(2.6) =S iy [xmﬂﬂ_;] ’
i=0 j=0 1=0
Substitutinge™/ 1% i, 5.1 =0,1,2,. .., by its orthogonal Jacobi projection polynomial

of degreelNV we get (see4, 10])

o0 o o0
(2.7) {x”j”*li} = [chv,(j’ﬁ(x)} =CHyeP,
I= k=0

=0
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where
ititl+1-1  ap

.. s (LC my vk ) o
Y= (Clk)l,krzo = a,B ) a,B alﬂ’ L) = Oa la 2, e
(vkl ) Uk )a,,@
By substituting 2.7) into (2.6) we obtain
* K(z,t) R
(2.8) X,dt = ki BICH | VP — Ha,ﬁza,ﬁ’

wherelI*# = > >0 k;;BiC"7, and inserting 2.8) into (2.4) we can conclude the
result. 0

We are now ready to obtain the following algebraic form of tperational Tau dis-
cretization of (L.1) based on Jacobi polynomials. According to the proposetiodefollow-
ing Theoren.1and relation 2.1), we obtain

(2.9) ay (id = \VPIIOP) Yol = fyeesh,

If we let A*# = id — AV*PTI*#, then, because of the orthogonality ff” (z)}72,
(see §, 10Q]), projecting @.9) onto {v,‘j’ﬁ(x)}}g’zo yields

MA?7ﬁ = fi;
WhereAj"ﬂ is thei-th column of A*#. By setting
AO]GB: [A(?’BaA?’BvaA?\[’BL f~N: [f(Jaflv"'»fN]a

we obtainay A%” = fy, which gives us the unknown vector, ay, ..., ax ).

2.2. Stability and convergence analysislIn this section, we provide a suitable stabil-
ity and error analysis which theoretically justifies stiapiind convergence of the proposed
method for the numerical solution in the special caseldfywhenK (x,t) =1, i.e.,

(2.10) u(z) = f(x) +A/O$ ;ﬁ%dt, zel

In our subsequent analysis, some preliminary results ardate Throughout the paper,

C will denote a generic positive constant that is independén. Let Lin(I) be the space

of functions whose square is Lebesque integrableraative to the weight function-# ().
The latter is a Banach space with the norm (g8k [

oI5 = (0,0)as = / PP (@)dz, Yo € L2 ().

B(’;ﬁ(I) denotes the non-uniform Jacobi-Sobolev space of all fansti(x) on I such that

v(z) and its weak derivatives of orderare inL2, , 5, (1) for 0 < s < k. We define the
norm (see 10])

k
2
”'U”l%,a,ﬁ = § :||U(S)Ha+s,ﬂ+s'
s=1
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It is trivial that [[v]lo.a.s = [|v]la.s @nd [0 ||asksix < [[0]lka.s. The Holder space
Ck7(I) wherek > 0 is an integer, consists of those functions/dmaving continuous deriva-
tives up to ordert and such that théth derivative is Hblder continuous with exponent
where0 < v < 1. If the Holder constant

|'U|O,'y = sup ‘U(l‘) — U(t>|

ettel T —t]7

)

is finite, then the function is said to be Klder continuous with exponentin I. If the
functionv and its derivatives up to ordérare bounded o, then the Hblder space”*: (1)
can be assigned the norm

[vllk,y = llv]lx + max [D7v[g,,
[n|=k

wheren ranges over multi-indices angb||;, = Im|a>25up|D77v|. Wheny = 0, C*0(1)
n<k zerl

denotes the space of functions witltontinuous derivatives o also denoted bg'* (1) and
with norm ||.||x; see [L]. It can be easily seen that the functiofw) = z* with 0 < s < 1
defined onl belongs to the spadg® (1) for 0 < v < s. We further define a linear weakly
singular integral operator

K(v) = /0 K(@.t) e wtel,

whereK (z, t) is sufficiently smooth kernel function andis a natural number witp > 2. It
can be proven that for any continuous functigrihere exist a positive constaftsuch that

1
(2.11) K(w) € NI, IK@os < Clelle, 7€ (0.1 7).

where||.|| is the usual uniform norm. The proof df.(L]) can be found ing].

Let Py be the space of all algebraic polynomials of degree ujy tdNow, we introduce
the orthogonal projectioﬂPf\‘,’B : Liﬁ(l) — Pn which is a mapping such that for any
vE Liﬁ(I),

(U - PX(],B’U7 ¢)a,,3 = Oa v¢ S PN
Concerning the truncation error of a Jacobi series, thedatig estimates hold (seé,[10])

212) v =Py v[lkas < CNF2 [0 veBS (), s>k, k>0,

a+s,B+s’

lo = PR70], < C(L+ (NN o]y,

(2.13)
ve ChII), k>0, vel0,1],

where

(N) O(lOg(N)) _1<aa6§_%7
g = 1 .
b O(N**t3)  otherwise,

with s = max {«, 5}, is the well known Lebesgue constant.
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In our analysis we shall apply the Hardy and Gronwall ineitjeal (see $, 7]):
LEMMA 2.2 (Generalized Hardy’s inequality]). For measurable functiong > 0, the
following generalized Hardy’s inequality

b 1/a b 1/p
( / |<Ag><t>|qw1<t>dt> §C</ |g<t>|pw2(t>dt> ,

holds if and only if

b 1/q : ) 1/p p
sup / wi (t)dt (/ wy P (t)) < 00, =
a<t<b \ Jt a p—1

for1 < p < ¢ < 0. Here, X is an operator of the form

(Ma)(t) = / k(. $)g(s)ds,

with given kernek(¢, s) and weight functions; (¢), w(t) for —co < a < b < 0.
LEMMA 2.3 (Gronwall inequality §]). Assume thab(x) is a non-negative, locally
integrable function defined ahwhich satisfies

o(z) < b(z) + B / (@ — )" mo(t)dt, tel,
0
whereb(z) > 0 and B > 0. Then there exist a constafitsuch that
v(z) < blz)+C / (z —t)"t"b(t)dt, tel.
JO

Now, we state and prove the main results of this section daggithe stability and error
analysis of the proposed method for the numerical solutfq@.a 0.

THEOREM 2.4 (Stability). Letu?\;ﬁ(x) be the Tau approximatio(2.2) to the exact so-
lution u () of the Abel integral equatio(®.10. Assume that the functiof(x) is continuous
and|A| < 1. Also supposé € Py andf e C(I) are the errors ofu%ﬂ and f, respectively.
Then, we have

Hﬂ”aﬁ < OHJEHQ,B'

Proof. We know thatu‘lt,’ﬁ andu’f\;ﬁ + u satisfy the following equations

mua.ﬂ
(2.14) @) = PR )+ g [
5 z (B ~
215 ui(@) +a(e) = PR (F@) + F@) + 4Py | wdt-

Subtracting 2.15 form (2.14) we get

i) =P Ty g [y
0

x—t
and then
_ T oat)
2.16 illos < |[PR” A 7Daﬁ/ =
(2.16) a5 < |PR" o+ H Moo Wa—t e
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SincePf\‘,’ﬁ is an orthogonal projectiom]?ﬁ’ﬁnaﬁ = 1 and from @.16) we obtain

_ . Tt
ua,éfa_Jr)\H/dt
H”ﬁ”“ﬂ||0ﬁ

Using Hardy'’s inequality (i.e., Lemm2.2) in the integral term of the2(13), we obtain the
desired result. a

In the following theorem we provide an error analysis whisbdretically justifies con-
vergence of the proposed scheme for the numerical solufi¢? ©0) in the L2 and uniform
norms.

THEOREM 2.5 (Convergence)Letu]a\;ﬁ(m) be the Tau approximatiof®.2) to the exact
solutionu(z) of the Abel integral equatio(®.10). If u(z) € C*7(I) N B (1) with & > 0,

€ (0,1], andm > 0, then we have

e’ ()] Clog (N)N=C+0) [lufly , for —1 < a, 8 < -1,
en (W), < .
CNE+s=7=F |y, fory + k> 3, s = max{a, 8} <0,

as well as,

He;lvﬁ( ), s<C ( T\l 0,5 + log (N)N ™ ||6°z‘v’ﬁ(“)”oo> ,

fory € (0,1~ ), —1<a,f<—3 and

e @]y < € (Nl + NE= e )]

foryi € (3 +5,1-4), s = max{a, 8} < 0, whereey” (u) = u(z) — uy”(x) is defined
as error funct|0n
Proof. Considering equatior2(10), according to the proposed method we have

z B
2. P (@) = Pty apst [ D
217) (0) =PI+ xP7 [

Subtracting 2.10 from (2.17), we have

x u luaﬂ
(2.18) e (u )—epN(f)—F)\(/o ®) dt—Pﬁ‘,’B/o i ()dt>,

{/x—1 {/x—1

Wheree%;f (v)=v— 7?]‘\’“,’5@. By some simple manipulations we can rewrizel@ as follows

e%/’ﬂ( )_epN -‘r)\( {‘/.ﬁ
a8 a,8
—PN’ﬁ/ T— dt—i—/ BNT(_uidt—e;;ﬁ/o eNx(_idt)

From .10 we have\ fm “(t -dt = u(z) — f(x) and can rewrite the above relation as

5wy = )+ [ D gy o [T )
N Py o Vo1 PN y T—1
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which yields
B z | B
a,p a,B a,pB ey (u) len” (u)]
(219) €N (U)‘ S BPN (u) - /\ePN o {L/ﬁdt + |)\|/O ﬁdt

Using Gronwall’s inequality (Lemma.3) in (2.19), we can write

Lo / ¥ )
PN 0 (4/3,/. _ t oo :
By applying the relations2(11) and .13 in (2.20, we obtain

(2.20) e’ (@) < C(He%;f(u)Hw +

" ey’ ()
Yr—t
< C(1+ (V) (N=O B jullr, + N e @) )

dt

He%’ﬁ(u)um < C(1+0,(N)) <N_('Y+k)||ukﬂ + N

Oa’h)

wherek > 0,~ € [0,1] and~; € (0,1 — L). The first result of the theorem regarding the
error estimate in the uniform norm can be obtained underateing conditions

1 1
0<m<1l—— —1<a76§—§,
(2.21) . H .
§+s<’yl<1—— s =max {a, f} < 0.
I

Now, we derive a suitable error bound for the proposed scherte L2-norm. To this
end, by applying again Gronwall’s inequality (Lem&) in (2.19, we write

fo / N 4, )
PN 0 </ r—t a,B

z a,B
a,f3 N (u)
ePN/ dtH )
0 r—1 0o

Using relations%.11) and @.13 in the integral term of the above equation yields

e @, < C(ller2 0+

<o (llexfwll, o +

(2.22) He%ﬁ(u)”aﬁ < C(He;;f(u)uaﬁ + (L4 op(N))N™™ He?v’ﬁ(“)Hoo)v

where~; satisfies2.21).

Finally, the second result of the theorem can be deduced dyptiag the relationZ.12)
in (2.22. d

In general, the exact solutiom(x) of the Abel integral equation2(10) behaves like
o', Thus,u(z) € COY(I)with0 < v < 1 — .- In this case, in Theorerd.5we have

m=1,k=0andy € (0,1 — %]. As a result we can deduce convergence of the operational
Tau method from Theorerﬁ.é by choosing suitable values of, 5. But due to the low
smoothness of the exact solution, this scheme leads to arder aumerical method. To
overcome this drawback, in the next section we propose dazgtion process in which the
original equation.1) will be changed into a new equation which possesses a smolition

by applying a variable transformation introduced by Taoglemn[8]. Also for equations with
high order of smoothness in the exact solution we can dethecsoinvergence of the proposed
method with larger values of, k, andy and obtain a higher rate of convergence. It is trivial
that in this case, we do not require the regularization mace
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3. Operational Tau method for regularized Abel integral equations. Itis well known
that the spectral Tau method is an efficient tool for solving differential equations with
smooth solutions. In order to make it efficient for the Abeégral equation(.1), the origi-
nal equation will be changed into a new integral equatiorctvipossesses a smooth solution,
by applying a suitable variable transformation. Our appihda choosing the proper transfor-
mation is based upon the impressive pa@r Consider equationi(l). We know that near
x = 0 the first derivative of the solution(z) behaves like/ () ~ 2~ #. To overcome this
difficulty, we apply the variable transformation

z=z" z=1{z, t=w', w= {1,

and change the Abel integral equatidnlj as follows

(3.2) a(z) = f(2) + A OZ I;% w(w)dw, ze€l,
where

pwh K (24 wh)

)
ﬁ/ B b on—1—jyyi
Zj:oz w

andu(z) = u(z*) is the smooth solution of equatioB.(). Since the exact solution of (1)
can be written as/(z) = u(z), we can defingiy’ (x) = a%”(2), z, » € 1, as the approxi-
mate solution of problemi(1).

f_(Z):f(Zp’), K(sz):

3.1. Numerical treatment. Assume thaﬁ?\;ﬁ(z) is the spectral Tau approximation of
degreeN for (3.1) as

N
(3-2) ay’(z) = Db P (z) = by VP Z = by VP,
j=0
whereby = [by,b1,...,bn,0,...], Z=[1,2,22%,...,2,...]T. Let us define
(3.3) L(a(2)) = a(2) — A / &) G w)duw,
0 Z—w

and assume that

which we can rearrange as

K(Z'U’, w“) = Z Z l?:ijziwj.
i=0 j=0
Now, we find the unknown vectdry in (3.2) using the operational Tau method based on
the Jacobi polynomials according to the following theorem.
THEOREM3.1. Letv;."ﬁ (z) be the orthogonal Jacobi polynomials with respect to weight

functionw®#(z) in I. Assume that the approximate soluti@ﬁﬁ(z) is given by(3.2). Then
we have



ETNA
Kent State University
http://etna.math.kent.edu

298 P. MOKHTARY AND F. GHOREISHI

whereid is the infinite identity matrix,
o0 o0 ~
7 =33 kT,
i=0 j=0
and7% fori,j =0,1,2,...,is the infinite diagonal matrix with diagonal entries
0, s<i+j+p—2,
T =

T esc (ﬁ)F(1+W>
p(%)p(g_,_%) ’

s>1+j7+pu—1.

Proof. From the relations3(3) and @3.2) we can write

_ ? K(z,w)
L(a%P(2) = by (VP — AV Wdw
(uy"(2)) = by (7 S )
z —1
B af 0B pwh = K (27 wh)
(3.4) — by (V wes | e — de),

wherel = [1,w,w?, ..., w",...]T. Thus, the integral term oB(4) can be written as

(3.5)

? pwh K (24 wh) pawd Htr= 1 ro

W dw kijz
0 {/zF — wH ;; { 0 {‘/z“fw“
Using the relation

? pwdtte—l

o A/zH—wht

we can rewrite §.5) as

mese (F)T(1+ )
DT+ =)

9

dw = Z/Hirr—1 (

? pwt K (24, wh)

0o oo o (T g+l
) Wdw szﬁ {l+;+l+n 17TCbC(M)F(1_+ m )ro
v rre+ 0 g

0
(3.6) = (Z Z k.ijTl,j>Z - ﬁa,ﬁg — 1B (Vozﬁ>_ Kaﬂa
i=0 j=0
where7T %/ is the infinite diagonal matrix with the aforementioned diagl entries, and
ﬁ“vﬁzzzaﬁivj, Z=11,2z2%...,2",...]T.

i=0 j=0

Substituting the relatior3(6) into (3.4) we deduce the result. O
Now, consider the transformed equati@ilj. Assume that
Ny

f(z) = fowi’(z) = fV*P,

i=0
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wheref = [fo, f1,..., fn;,0,...]. From Theoren8.1and the above relation, we have
_ -1 _
(3.7) by (id = AV PTes (Ves) Y yed = fyed,

_ —1
We let M*# = id — \V AT (Vaﬁ) . Due to the orthogonality ofvy"”(2)}52,,
projecting B.7) onto the functions{v,‘:’ﬁ(z)}i\’:0 yields

by M = f,
where/\/lj‘*ﬁ is thei-th column of M8, By setting
Mol\t/"ﬁ: [MglﬂaM?ﬁw“aM%ﬁ]a fTN: [.f_Oaf17~"7.fTN]7

we obtainbAMoﬁﬁ = fN which gives the unknown vectdby, b1, ..., by ).

3.2. Convergence analysisln this section we provide an efficient error analysis, which
theoretically confirms the exponential rate of convergesfdbe proposed method when ap-
plied to the regularized Abel integral equatichl) with K (z*, w*) =1, i.e.,

K(z,w)
Yz —w

wheref((z,w) = L It is trivial to see that this form of the equation is

§/hs 1w
obtained when we apply the proposed regularization proiwetise Abel integral equation
(2.10.

Stability of the proposed scheme for the numerical solutbithe regularized equa-
tion (3.8) can be directly concluded by adopting the same idea as jortwf of Theoren?.4.
Now, in the following theorem we will prove exponential cengence of the operational Tau
method when applied to the regularized equatiB)(

THEOREM 3.2 (Convergence)Let a%’ﬁ(z) be the Tau approximatio(8.2) to the exact
solution(z) of the regularized Abel integral equatiqB.9). If w(z) € C*7(I) N By (1)
with k > 0,~ € (0,1] andm > 0, then we have

e @]l < {

as well as

(3.8) u(z) = f(2) +A/OZ

t(w)dw, =ze€l,

Clog (N)N=0+0)|g|[,, for —1<a,B < -3,

CNzH=77% |4 -, fory+k > 1, s = max{a, 8} <0,

le%’ @], , < C (menanw,ﬂ +log (N)N—™ ||e?\;ﬁ(ﬂ)||m>
fory, € (0,1 — i), -1<a,8< -1 and

«, —m|| = 1is— 1 «, —
e @)l s < € (N llmas + NEF=2 e @)] )
fory, € (5 +s,1— %),s = max {«a, 5} <O0.

Proof. Consider 8.8). According to the proposed method, we have

_ = * K(z,w)
39 a,p — a,p )\ a,B )
( ) Upn (Z) PN f+ PN o m

% (w)dw.
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Subtracting 8.8) from (3.9) we have

(3.10) e’ () = 27 (F) + )\( /0 ) ];% a(w)dw — Py OZ K iz_“;)j a#(w)dw).

By some simple manipulations we can rewrisel(Q as follows

a,B /- a 7 = [:{ Z,w) _ o * K Z,w) _
eNﬂ(u)_ePf(fHA( i i_u)j (w)dw — PP 0 «/% (w)dw
Z[:((va) B/~ o, Zf{(z’w) a,B /-
Baydw — P [ =222l 0P (a)dw |
+/0 meN (a)dw — e ; meN (u)dw
From (3.8) we haveX If/(j%’;) a(w)dw = u(z) — f(z). We can rewrite the above relation
as
(03 — «x — N [:( Z’w [e3 — « N I:( Z7w [0 —
eNvﬁ(u) :epﬁ(u)—kx\(/o {/% eNvﬂ(u)dw—eP’]f/o V%e]\;ﬂ(u)dw)
Thus,

. 7 K(z,w) . 1e%8 (w)]
a,B a,l ’ a,B N
ePN(u)—)\ePN/O —— y (u)dw‘—l—A/O mdw,

(3.11) ey’ ()] <

whereA = [\| max |K(z, w)|.
0<w<2z<1

By using Gronwall’s inequality (Lemm2.3) in (3.11), we can write

* K(z,w) _
a,f ’ a,f
P / =™ (“)d“’Hoo)'
Applying the relationsZ.11) and .13 in (3.12), we obtain

312) e’ @) < C(He%f(wHoo +

TE(zw) ap
0o Vz-w Y
< Ot + () (NPl + N e @)

e’ @), < C(1+0,(N)) <N(7+’“)a||m L N-T

(a)dw

0’”71>

wherek > 0,7 € [0,1] andv; € (0,1 — 71)- The first result of the theorem regarding the
error estimate in the uniform norm can be concluded undecdhdition @.21).
Now, we derive a suitable error bound for the proposed schierte L2-norm. To this
end, applying again Gronwall's inequality (Lemraa) in (3.11), we can write
Py fo z—w N

a,ﬁ)

# K(Z ’lU)
a,f3 ) a,B (=
€7DN ) T m GN (’u)dU)H >

Using relationsZ.11) and .13 in the integral term of the above equation yields

K
a,f3 (va) ea,ﬁ(ﬁ)dw

o7 @ = € @+

<ol @, +

(3.13) He;{;ﬁ(u)uaﬁ <C (He%’f(ﬂ)”w + (1 +0p(N))N—™ He;{;ﬁ(a)Hm) ;
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wherey, satisfies2.21). Finally, the second result of the theorem can be deducedbpyting
the relation 2.12) in (3.13). ]

Since solutions of the regularized Abel integral equati®®)(are smooth, then in The-
orem3.2, m andk are sufficiently large numbers and we have an exponentebfatonver-
gence for the obtained numerical results.

4. Numerical results. In this section we apply a program written in Mathematica to
three numerical examples to demonstrate the accuracy ah#ibod and effectiveness of
applying the Chebyshev and Legendre polynomial bases.idrs#ittion "Numerical error”
always refers to the weightetP-norm of the obtained error function.

ExXAmMPLE 4.1. Consider Abel integral equation

sint

NCES

u(z) = f(x) — x/ox u(t)dt, xel,

with

4 s 5 7
f(x) = cosx + g'xz 1F2 [17{171}771’2]7

where, F, [{a1, ...ap }, {b1, ...bg }, 2] is the generalized Hypergeometric function.

This example has a smooth solutiaf) = cosxz. Firstly, we apply the Tau method
proposed in SectioB. The numerical results obtained are given in Tablkand Figuret.1
The results show that the errors decay exponentially aridhibapproximate solutions are in
good agreement with the exact ones. Due to the infinite smesthof the exact solution, we
do not need the regularization process.

TABLE 4.1
Tau approximation errors of Exampiel

Numerical error before regularization

N Chebyshev bases Legendre bases
2 3.25 x 1072 2.14 x 1072

6 2.36 x 107° 1.27 x 107°

10 1.02 x 107° 1.04 x 107°

14 2.67 x 10714 1.35 x 10714
18 3.34 x 10719 1.22 x 1071

EXAMPLE 4.2. Consider the following Abel integral equation

4 2 F 1737 2 r _xt
u(z) = (Jcé + I 1,3, ]) - iﬁu(t) dt,
9\/5 0 T —1

xzel,

with the exact solutiom(z) = 5.

Numerical results before regularization are given in Tabkand as solid line curves in
Figure4.2. As we can see, the numerical results obtained show convezg# our numerical
method, but the rate of convergence is slow. To this end, ywhydjpe variable transformation

z2=Vr, w=Vt =23 t=w?

according to the previous section, and we get a new Abel eguatith the smooth exact
solution(z) = 2z*. The numerical results obtained by applying the proposediethod in
Section3 to the regularized Abel integral equation are also providetable4.2 and as the
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Log,,( Erron
Log,( Erron

FiG. 4.1. An illustration of the rate of convergence for the Tau metkoth various values ofV before
regularization. We display the errors of Examglé using Chebyshev bases (left) and Legendre bases (right).

TABLE 4.2
Tau approximation numerical errors of Example.

Before regularization After regularization

N Chebyshev bases Legendre bases Chebyshev bases Legesule b
2 3.13 x 1072 2.05 x 1072 3.74 x 1072 2.49 x 1072
6 1.18 x 10~* 7.98 x 107° 1.15 x 10~10 3.63 x 10711
10 1.64 x 10° 9.47 x 1076 4.79 x 1012 2.58 x 1012
14 4.28 x 1076 2.19 x 1076 3.16 x 10714 9.36 x 1015
18 1.54 x 106 7.18 x 1077 1.65 x 10715 4.24 x 10716
22 6.78 x 10~7 2.91 x 1077 1.02 x 1016 1.09 x 10~17

dashed line curves in Figu#e2. In general, the numerical results show that the regulaoiza
process increases the rate of convergence.

ExAMPLE 4.3. Consider the following Abel integral equation

u(x)zf(x)—l/ox u(®) dt, xze€l,

wheref(z) = Sir\l}m) + & sin $.Jo(5), Jo(x) is the Bessel function, and the exact solution of

the problem isu(z) = Si‘\]/(;).

This problem has the property stated at the beginning ofpdyir, i.e.z’(x) is singular
atz = 0". Our first attempt consists in a direct application of the freathod that is proposed
in Section?2 to this example. Numerical results before regularizatiengiven in Table4.3
and depicted by solid curves in Figude3. Our obtained results before regularization show
convergence of the method but with a very low rate of converge To overcome this diffi-
culty, our main concern is the regularity of the transforraetilition. To the present problem,
we apply the variable transformation

2=V, w=t, x =22 t=uw?
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FiG. 4.2. We display the errors of Example2 for various values ofV. The left and right hand figures show
numerical errors concerning the shifted Chebyshev and heéigeTau method oiii respectively. In both cases the
solid and dashed line curves indicate the numerical err@fke and after regularization, respectively.

TABLE 4.3
Tau approximation numerical errors of Examples.

Before regularization

After regularization
Chebyshev bases

N Legendre bases Chebyshev bases Legesete b
2 5.36 x 1073 1.44 x 1073 3.42 x 1073 1.15 x 103
6 7.23 x 1074 1.06 x 10~* 1.37 x 1076 5.54 x 10~7
10 2.41 x 1074 2.39 x 107° 1.91 x 10710 8.09 x 10— 11
14 1.14 x 10~* 8.58 x 1076 1.32 x 10~ 5.65 x 10715
18 6.36 x 10~° 3.93 x 1076 5.23 x 10719 2.25 x 10719

and implement the Tau scheme proposed in Seéttorthe regularized Abel integral equation

with the smooth exact solutiar(z) =

sin (2?)
z

==~ The results obtained are given in Tall&and

are shown by dashed curves in Figura'Comparing the results shows that we can reach an

exponential rate of convergence after applying the regation process to the original Abel
integral equation.

Finally, in order to show the stability behavior of the prepd scheme that is proved
in Theorem2.4, we solve this problem by the Tau method before reguladratiith large
values of N and give the results in Table4. It can be seen that the results in Tablé are

in agreement with the theoretical result of Theor2r In principle, we can conclude the
stability of the Tau method for the numerical solution of tegularized Abel integral equation

in this example in the same manner as shown in Tdblebut since after regularization we
reach an exponential rate of convergence, the numericaidseare almost zero already for
moderate values aV. For example forV = 30, we obtain errord.23 x 10733 with the
Chebyshev bases add)2 x 10~34 with the Legendre bases. Then, in this case we do not

need to examine larger values &f, and we do not present the stability results obtained for
this example after regularization.
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FiG. 4.3. We observe the errors of Example3 for various values ofV. The left and right hand side figures

show numerical errors concerning the shifted Chebyshev.agéndre Tau method dh respectively. In both cases
the solid and dashed line curves indicate the numericalrerb@fore and after regularization, respectively.

TABLE 4.4
Stability behavior of Examplé.3.

Numerical results before regularization

N Chebyshev bases Legendre bases
20 4.98 x 1075 2.83 x 1076

30 1.91 x 107° 7.98 x 1077

40 9.58 x 1076 3.27 x 1077

50 5.58 x 1076 1.65 x 10~7

60 3.58 x 1076 9.1 x 108

70 2.46 x 1077 5.91 x 10~8

80 1.77 x 1077 3.95 x 1078

90 1.32 x 1077 2.76 x 1078
100 6.02 x 1078 2.014 x 1078

5. Conclusion. This work has been concerned with the operational Tau methddts
convergence analysis for Abel-type Volterra integral eiqus in two stages. In the first step,
the operational Tau method based upon Jacobi basis fusatias introduced for the numer-
ical solution of the original equatiori.(1). In addition, in this step we also investigated the
stability and convergence behavior of this method wh&n:, t) = 1. We deduced conver-
gence of the proposed method, but the fact that the derévat{w) of the solution behaves

like 2~ near the origin is expected to cause a loss in the global cgexee order of the Tau
method. To overcome this drawback, the original equatiosiat@nged into a new Abel inte-
gral equation which possesses better regularity by applyisimple variable transformation
that was introduced by Tao Tang ][ Next, we directly presented a new operational Tau
scheme for the new Abel integral equation. We also proveattimeergence of the method
and obtained the error estimates in weighfed and uniform norms of the approximated
solution. These results were confirmed by some numericahpbes.
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