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CONVERGENCE ANALYSIS OF THE OPERATIONAL TAU METHOD FOR
ABEL-TYPE VOLTERRA INTEGRAL EQUATIONS ∗

P. MOKHTARY† AND F. GHOREISHI‡

Abstract. In this paper, a spectral Tau method based on Jacobi basis functions is proposed and its stability and
convergence properties are considered for obtaining an approximate solution of Abel-type integral equations. This
work is organized in two parts. First, we present a stable operational Tau method based on Jacobi basis functions
that provides an efficient approximate solution for the Abel-type integral equations by using a reduced set of matrix
operations. We also provide a rigorous error analysis for the proposed method in the weightedL2- and uniform
norms under more general regularity assumptions on the exact solution. It is shown that the proposed method
converges, but since the solutions of these equations have asingularity near the origin, a loss in the convergence
order of the Tau method is expected. To overcome this drawback we then propose a regularization process, in which
the original equation is changed into a new equation which possesses a smooth solution, by applying a suitable
variable transformation such that the spectral Tau method canbe applied conveniently. We also prove that after
this regularization technique, the numerical solution of the new equation based on the operational Tau method has
exponential rate of convergence. Some standard examples are provided to confirm the reliability of the proposed
method.
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1. Introduction. This paper deals with the numerical treatment of the following class
of Abel-type Volterra integral equations

(1.1) u(x) = f(x) + λ

∫ x

0

K(x, t)
µ
√
x− t

u(t)dt, x ∈ I = [0, 1],

wheref(x) andK(x, t) are a given continuous function and a sufficiently smooth kernel
function, respectively,u(x) is the unknown function, andµ ∈ N with µ ≥ 2 (N is the col-
lections of all natural numbers). This equation is a particular case of linear Volterra weakly
singular integral equations of the second kind. Several numerical methods have been pro-
posed for (1.1); see [2, 3, 5, 6, 8, 9, 11].

From the well-known existence and uniqueness theorems, it can be concluded that in
Abel-type integral equations we must expect some derivatives of the solution to have a dis-
continuity at the origin; see [3, 8]. As discussed in [3, 8], the first derivative of the solution
u(x) behaves likeu′(x) ∼ x− 1

µ andu′(x) /∈ C(I).
In order to approximate the solution of (1.1) we propose a strategy mainly consisting

in two steps. In the first step, we introduce the operational Tau method based upon Jacobi
basis functions to (1.1). This strategy is an application of the matrix-vector product approach
in spectral approximation. The main characteristic behindthis approach is that it reduces
such problems to those of solving a system of linear algebraic equations. In this step, we
also investigate convergence and stability behavior of thenumerical solution of (1.1). We can
deduce convergence of the Tau method at this point, but due tothe fact that the solutions of
these equations usually have a weak singularity at the origin, this method leads to very poor
numerical results. Thus, it is necessary to introduce a regularization procedure that allows us
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to improve the smoothness of the given functions and then to approximate the solution with a
satisfactory order of convergence. In [8], Tao Tang introduced and discussed a simple variable
transformation for the regularization of solutions of Abel-type Volterra integral equations of
the second kind, such that the resulting equation possessesa smooth solution. Then, in the
second step we transform (1.1) by using this coordinate transformation and we prove that after
this regularization technique the numerical solution of the new equation by the operational
Tau method has exponential rate of convergence.

The organization of this paper is as follows: in Section2, we introduce the operational
Tau method and its application to the Abel-type integral equation (1.1). In addition, we
analyze convergence and stability behavior of the numerical solution of (1.1). In Section3, by
applying a suitable regularization process, an operational scheme for obtaining the numerical
solution of the transformed equation is considered and an exponential rate of convergence
for the proposed regularized scheme is proved. In Section4, some numerical examples are
considered which confirm our theoretical predictions.

2. Operational Tau method for Abel integral equations. In this section, we present
a numerical solution of (1.1) by using the operational Tau method based on Jacobi basis
functions.

2.1. Numerical treatment. Let V α,β := [vα,β0 (x), vα,β1 (x), ..., vα,βN (x), ...]T with pa-
rametersα, β ∈ (−1, 1) be an arbitrary Jacobi polynomial bases with respect to the inner
product

(vα,βi , vα,βj )α,β =

∫

I

vα,βi (x)vα,βj (x)wα,β(x)dx,

wherewα,β(x) = (2− 2x)α(2x)β is the Jacobi weight function; see [4, 10]. Clearly, we can
write V α,β := V α,βX, whereV α,β is an infinitely non-singular lower triangular coefficient
matrix with degree(vα,βi (x)) ≤ i, for i = 0, 1, 2, . . . , andX = [1, x, x2, . . . , xN , . . . ]T .

Suppose thatf(x) is a given polynomial and consider

(2.1) f(x) =

Nf
∑

i=0

fiv
α,β
i (x) = fV α,β = fV α,βX, f = (f0, f1, f2, . . . , fNf

, 0, . . .).

If f(x) is not polynomial, then it can be approximated by polynomials to any degree of accu-
racy by interpolation or any other suitable method. Letu(x) =

∑∞
i=0 aiv

α,β
i (x) = aV α,βX

be the Jacobi series expansion of the exact solution of (1.1), wherea = (a0, a1, ...) and
uα,β
N (x) is a Tau approximation of degreeN for u(x) as

(2.2) uα,β
N (x) =

∞
∑

i=0

aiv
α,β
i (x) = aNV α,βX, aN = (a0, a1, ..., aN , 0, ...).

We define

(2.3) L(u(x)) = u(x)− λ

∫ x

0

K(x, t)
µ
√
x− t

u(t)dt

and assume that

K(x, t) =

∞
∑

i=0

∞
∑

j=0

kijv
α,β
i (x)vα,βj (t),
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which can be rearranged as

K(x, t) =

∞
∑

i=0

∞
∑

j=0

k̃ijx
itj .

Now, the following theorem shows how to replace (1.1) by a matrix formulation of the oper-
ational Tau method.

THEOREM 2.1. Let vα,βj (x) be the orthogonal Jacobi polynomials with respect to the

weight functionwα,β(x) in I and let the approximate solutionuα,β
N (x) be given by the rela-

tion (2.2). Then we have

L(uα,β
N (x)) = aN

(

id− λV α,βΠα,β
)

V α,β ,

whereid is the infinite identity matrix,

Πα,β =

∞
∑

i=0

∞
∑

j=0

k̃ijBjCi,j ,

Bj is the infinite diagonal matrix with diagonal entriesBj
ss = B(j + s + 1, µ−1

µ ), for all
j, s = 0, 1, 2, . . . (hereB(a, b) denotes the Beta function), and

Ci,j =
(

clk
)∞
l,k=0

=

(

xi+j+l+1− 1
µ , vα,βk

)

α,β
(

vα,βk , vα,βk

)

α,β

.

Proof. From relations (2.2) and (2.3) we can write

(2.4) L(uα,β
N (x)) = aN

(

V α,β − λV α,β

∫ x

0

K(x, t)
µ
√
x− t

Xtdt

)

,

whereXt = [1, t, t2, ..., tN , ...]T . Thus, the integral term of (2.4) can be written as

(2.5)
∫ x

0

K(x, t)
µ
√
x− t

Xtdt =

∞
∑

i=0

∞
∑

j=0

k̃ijx
i

[
∫ x

0

tj+l

µ
√
x− t

dt

]∞

l=0

.

By using the relation
∫ x

0

tj+l

µ
√
x− t

dt = xj+l+1− 1
µB(j + l + 1,

µ− 1

µ
),

we can rewrite (2.5) as
∫ x

0

K(x, t)
µ
√
x− t

Xtdt =
∞
∑

i=0

∞
∑

j=0

k̃ij

[

xi+j+l+1− 1
µB(j + l + 1,

µ− 1

µ
)

]∞

l=0

=

∞
∑

i=0

∞
∑

j=0

k̃ijBj

[

xi+j+l+1− 1
µ

]∞

l=0

,(2.6)

Substitutingxi+j+l+1− 1
µ , i, j, l = 0, 1, 2, . . . , by its orthogonal Jacobi projection polynomial

of degreeN we get (see [4, 10])

(2.7)

[

xi+j+l+1− 1
µ

]∞

l=0

=

[ ∞
∑

k=0

clkv
α,β
k (x)

]∞

l=0

= Ci,jV α,β ,
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where

Cij =
(

clk
)∞
l,k=0

=

(

xi+j+l+1− 1
µ , vα,βk

)

α,β
(

vα,βk , vα,βk

)

α,β

, i, j = 0, 1, 2, . . . .

By substituting (2.7) into (2.6) we obtain

(2.8)
∫ x

0

K(x, t)
µ
√
x− t

Xtdt =

( ∞
∑

i=0

∞
∑

j=0

k̃ijBjCi,j

)

V α,β = Πα,βV α,β ,

whereΠα,β =
∑∞

i=0

∑∞
j=0 k̃ijBjCi,j , and inserting (2.8) into (2.4) we can conclude the

result.
We are now ready to obtain the following algebraic form of theoperational Tau dis-

cretization of (1.1) based on Jacobi polynomials. According to the proposed method, follow-
ing Theorem2.1and relation (2.1), we obtain

(2.9) aN
(

id− λV α,βΠα,β
)

V α,β = fV α,β .

If we let Aα,β = id − λV α,βΠα,β , then, because of the orthogonality of{vα,βk (x)}∞k=0

(see [4, 10]), projecting (2.9) onto{vα,βk (x)}Nk=0 yields

aNAα,β
i = fi,

whereAα,β
i is thei-th column ofAα,β . By setting

Ãα,β
N = [Aα,β

0 ,Aα,β
1 , ...,Aα,β

N ], f̃N = [f0, f1, ..., fN ],

we obtainaN Ãα,β
N = f̃N , which gives us the unknown vector(a0, a1, ..., aN ).

2.2. Stability and convergence analysis.In this section, we provide a suitable stabil-
ity and error analysis which theoretically justifies stability and convergence of the proposed
method for the numerical solution in the special case of (1.1) whenK(x, t) = 1, i.e.,

(2.10) u(x) = f(x) + λ

∫ x

0

u(t)
µ
√
x− t

dt, x ∈ I.

In our subsequent analysis, some preliminary results are needed. Throughout the paper,
C will denote a generic positive constant that is independentof N . LetL2

α,β(I) be the space
of functions whose square is Lebesque integrable inI relative to the weight functionwα,β(x).
The latter is a Banach space with the norm (see [4])

‖v‖2α,β = (v, v)α,β =

∫

I

v2(x)wα,β(x)dx, ∀v ∈ L2
α,β(I).

Bk
α,β(I) denotes the non-uniform Jacobi-Sobolev space of all functionsv(x) on I such that

v(x) and its weak derivatives of orders are inL2
α+s,β+s(I) for 0 ≤ s ≤ k. We define the

norm (see [10])

‖v‖2k,α,β =

k
∑

s=1

∥

∥v(s)
∥

∥

2

α+s,β+s
.
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It is trivial that ‖v‖0,α,β = ‖v‖α,β and ‖v(k)‖α+k,β+k ≤ ‖v‖k,α,β . The Ḧolder space
Ck,γ(I) wherek ≥ 0 is an integer, consists of those functions onI having continuous deriva-
tives up to orderk and such that thekth derivative is Ḧolder continuous with exponentγ
where0 < γ ≤ 1. If the Hölder constant

|v|0,γ = sup
x 6=t∈I

|v(x)− v(t)|
|x− t|γ ,

is finite, then the functionv is said to be Ḧolder continuous with exponentγ in I. If the
functionv and its derivatives up to orderk are bounded onI, then the Ḧolder spaceCk,γ(I)
can be assigned the norm

‖v‖k,γ = ‖v‖k + max
|η|=k

|Dηv|0,γ ,

whereη ranges over multi-indices and‖v‖k = max
|η|≤k

sup
x∈I

|Dηv|. Whenγ = 0, Ck,0(I)

denotes the space of functions withk continuous derivatives onI, also denoted byCk(I) and
with norm‖.‖k; see [1]. It can be easily seen that the functionv(x) = xs with 0 < s ≤ 1
defined onI belongs to the spaceC0,γ(I) for 0 < γ ≤ s. We further define a linear weakly
singular integral operator

K(v) =

∫ x

0

K̃(x, t)
µ
√
x− t

v(t)dt, x, t ∈ I,

whereK̃(x, t) is sufficiently smooth kernel function andµ is a natural number withµ ≥ 2. It
can be proven that for any continuous functionv, there exist a positive constantC such that

(2.11) K(v) ∈ C0,γ(I), ‖K(v)‖0,γ ≤ C‖v‖∞, γ ∈
(

0, 1− 1

µ

)

,

where‖.‖∞ is the usual uniform norm. The proof of (2.11) can be found in [5].
Let PN be the space of all algebraic polynomials of degree up toN . Now, we introduce

the orthogonal projectionPα,β
N : L2

α,β(I) → PN which is a mapping such that for any
v ∈ L2

α,β(I),

(v − Pα,β
N v, φ)α,β = 0, ∀φ ∈ PN .

Concerning the truncation error of a Jacobi series, the following estimates hold (see [1, 10])

(2.12) ‖v − Pα,β
N v‖k,α,β ≤ CNk−s

∥

∥v(s)
∥

∥

α+s,β+s
, v ∈ Bs

α,β(I), s ≥ k, k ≥ 0,

∥

∥v − Pα,β
N v

∥

∥

∞ ≤ C
(

1 + σp(N)
)

N−(k+γ)‖v‖k,γ ,
v ∈ Ck,γ(I), k ≥ 0, γ ∈ [0, 1],

(2.13)

where

σp(N) =

{

O(log (N)) −1 < α, β ≤ − 1
2 ,

O(Ns+ 1
2 ) otherwise,

with s = max {α, β}, is the well known Lebesgue constant.
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In our analysis we shall apply the Hardy and Gronwall inequalities (see [5, 7]):
LEMMA 2.2 (Generalized Hardy’s inequality [7]). For measurable functionsg ≥ 0, the

following generalized Hardy’s inequality

(

∫ b

a

|(λg)(t)|qw1(t)dt

)1/q

≤ C

(

∫ b

a

|g(t)|pw2(t)dt

)1/p

,

holds if and only if

sup
a<t<b

(

∫ b

t

w1(t)dt

)1/q
(
∫ t

a

w1−p′

2 (t)

)1/p′

< ∞, p′ =
p

p− 1
,

for 1 < p ≤ q < ∞. Here,λ is an operator of the form

(λg)(t) =

∫ t

a

k(t, s)g(s)ds,

with given kernelk(t, s) and weight functionsw1(t), w2(t) for −∞ ≤ a < b ≤ ∞.
LEMMA 2.3 (Gronwall inequality [5]). Assume thatv(x) is a non-negative, locally

integrable function defined onI which satisfies

v(x) ≤ b(x) +B

∫ x

0

(x− t)mtnv(t)dt, t ∈ I,

whereb(x) ≥ 0 andB ≥ 0. Then there exist a constantC such that

v(x) ≤ b(x) + C

∫ x

0

(x− t)mtnb(t)dt, t ∈ I.

Now, we state and prove the main results of this section regarding the stability and error
analysis of the proposed method for the numerical solution of (2.10).

THEOREM 2.4 (Stability). Let uα,β
N (x) be the Tau approximation(2.2) to the exact so-

lution u(x) of the Abel integral equation(2.10). Assume that the functionf(x) is continuous
and |λ| < 1. Also supposẽu ∈ PN and f̃ ∈ C(I) are the errors ofuα,β

N andf , respectively.
Then, we have

‖ũ‖α,β ≤ C
∥

∥f̃
∥

∥

α,β
.

Proof. We know thatuα,β
N anduα,β

N + ũ satisfy the following equations

uα,β
N (x) = Pα,β

N f(x) + λPα,β
N

∫ x

0

uα,β
N (t)

µ
√
x− t

dt,(2.14)

uα,β
N (x) + ũ(x) = Pα,β

N

(

f(x) + f̃(x)
)

+ λPα,β
N

∫ x

0

(

uα,β
N (t) + ũ(t)

)

µ
√
x− t

dt.(2.15)

Subtracting (2.15) form (2.14) we get

ũ(x) = Pα,β
N f̃(x) + λPα,β

N

∫ x

0

ũ(t)
µ
√
x− t

dt

and then

(2.16) ‖ũ‖α,β ≤
∥

∥Pα,β
N f̃

∥

∥

α,β
+ |λ|

∥

∥

∥

∥

Pα,β
N

∫ x

0

ũ(t)
µ
√
x− t

dt

∥

∥

∥

∥

α,β

.
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SincePα,β
N is an orthogonal projection,‖Pα,β

N ‖α,β = 1 and from (2.16) we obtain

‖ũ‖α,β ≤ ‖f̃‖α,β + |λ|
∥

∥

∥

∥

∫ x

0

ũ(t)
µ
√
x− t

dt

∥

∥

∥

∥

α,β

.

Using Hardy’s inequality (i.e., Lemma2.2) in the integral term of the (2.13), we obtain the
desired result.

In the following theorem we provide an error analysis which theoretically justifies con-
vergence of the proposed scheme for the numerical solution of (2.10) in theL2 and uniform
norms.

THEOREM 2.5 (Convergence).Letuα,β
N (x) be the Tau approximation(2.2) to the exact

solutionu(x) of the Abel integral equation(2.10). If u(x) ∈ Ck,γ(I) ∩Bm
α,β(I) with k ≥ 0,

γ ∈ (0, 1], andm ≥ 0, then we have

∥

∥eα,βN (u)
∥

∥

∞ ≤







C log (N)N−(γ+k)‖u‖k,γ for − 1 < α, β ≤ − 1
2 ,

CN
1
2+s−γ−k‖u‖k,γ for γ + k > 1

2 , s = max {α, β} < 0,

as well as,

∥

∥eα,βN (u)
∥

∥

α,β
≤ C

(

N−m‖u‖m,α,β + log (N)N−γ1
∥

∥eα,βN (u)
∥

∥

∞

)

,

for γ1 ∈ (0, 1− 1
µ ), − 1 < α, β ≤ − 1

2 , and

∥

∥eα,βN (u)
∥

∥

α,β
≤ C

(

N−m‖u‖m,α,β +N
1
2+s−γ1

∥

∥eα,βN (u)
∥

∥

∞

)

,

for γ1 ∈ ( 12 + s, 1 − 1
µ ), s = max {α, β} < 0, whereeα,βN (u) = u(x) − uα,β

N (x) is defined
as error function.

Proof. Considering equation (2.10), according to the proposed method we have

(2.17) uα,β
N (x) = Pα,β

N f + λPα,β
N

∫ x

0

uα,β
N (t)

µ
√
x− t

dt.

Subtracting (2.10) from (2.17), we have

(2.18) eα,βN (u) = eα,βPN
(f) + λ

(

∫ x

0

u(t)
µ
√
x− t

dt− Pα,β
N

∫ x

0

uα,β
N (t)

µ
√
x− t

dt

)

,

whereeα,βPN
(v) = v−Pα,β

N v. By some simple manipulations we can rewrite (2.18) as follows

eα,βN (u) = eα,βPN
(f) + λ

(

∫ x

0

u(t)
µ
√
x− t

dt

− Pα,β
N

∫ x

0

u(t)
µ
√
x− t

dt+

∫ x

0

eα,βN (u)
µ
√
x− t

dt− eα,βPN

∫ x

0

eα,βN (u)
µ
√
x− t

dt

)

.

From (2.10) we haveλ
∫ x

0
u(t)
µ
√
x−t

dt = u(x)− f(x) and can rewrite the above relation as

eα,βN (u) = eα,βPN
(u) + λ

(

∫ x

0

eα,βN (u)
µ
√
x− t

dt− eα,βPN

∫ x

0

eα,βN (u)
µ
√
x− t

dt

)

,
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which yields

(2.19)
∣

∣

∣
eα,βN (u)

∣

∣

∣
≤
∣

∣

∣

∣

∣

eα,βPN
(u)− λeα,βPN

∫ x

0

eα,βN (u)
µ
√
x− t

dt

∣

∣

∣

∣

∣

+ |λ|
∫ x

0

|eα,βN (u)|
µ
√
x− t

dt.

Using Gronwall’s inequality (Lemma2.3) in (2.19), we can write

(2.20)
∥

∥eα,βN (u)
∥

∥

∞ ≤ C

(

∥

∥eα,βPN
(u)
∥

∥

∞ +

∥

∥

∥

∥

eα,βPN

∫ x

0

eα,βN (u)
µ
√
x− t

dt

∥

∥

∥

∥

∞

)

.

By applying the relations (2.11) and (2.13) in (2.20), we obtain

∥

∥eα,βN (u)
∥

∥

∞ ≤ C
(

1 + σp(N)
)

(

N−(γ+k)‖u‖k,γ +N−γ1

∥

∥

∥

∥

∫ x

0

eα,βN (u)
µ
√
x− t

dt

∥

∥

∥

∥

0,γ1

)

≤ C
(

1 + σp(N)
)

(

N−(γ+k)‖u‖k,γ +N−γ1
∥

∥eα,βN (u)
∥

∥

∞

)

,

wherek ≥ 0, γ ∈ [0, 1] andγ1 ∈ (0, 1 − 1
µ ). The first result of the theorem regarding the

error estimate in the uniform norm can be obtained under the following conditions

0 < γ1 < 1− 1

µ
− 1 < α, β ≤ −1

2
,

1

2
+ s < γ1 < 1− 1

µ
s = max {α, β} < 0.

(2.21)

Now, we derive a suitable error bound for the proposed schemein theL2-norm. To this
end, by applying again Gronwall’s inequality (Lemma2.3) in (2.19), we write

∥

∥eα,βN (u)
∥

∥

α,β
≤ C

(

∥

∥eα,βPN
(u)
∥

∥

α,β
+

∥

∥

∥

∥

eα,βPN

∫ x

0

eα,βN (u)
µ
√
x− t

dt

∥

∥

∥

∥

α,β

)

≤ C

(

∥

∥eα,βPN
(u)
∥

∥

α,β
+

∥

∥

∥

∥

eα,βPN

∫ x

0

eα,βN (u)
µ
√
x− t

dt

∥

∥

∥

∥

∞

)

.

Using relations (2.11) and (2.13) in the integral term of the above equation yields

(2.22)
∥

∥eα,βN (u)
∥

∥

α,β
≤ C

(

∥

∥eα,βPN
(u)
∥

∥

α,β
+
(

1 + σp(N)
)

N−γ1
∥

∥eα,βN (u)
∥

∥

∞

)

,

whereγ1 satisfies (2.21).
Finally, the second result of the theorem can be deduced by adopting the relation (2.12)

in (2.22).
In general, the exact solutionu(x) of the Abel integral equation (2.10) behaves like

x1− 1
µ . Thus,u(x) ∈ C0,γ(I) with 0 < γ ≤ 1 − 1

µ . In this case, in Theorem2.5 we have

m = 1, k = 0 andγ ∈ (0, 1− 1
µ ]. As a result we can deduce convergence of the operational

Tau method from Theorem2.5 by choosing suitable values ofα, β. But due to the low
smoothness of the exact solution, this scheme leads to a low order numerical method. To
overcome this drawback, in the next section we propose a regularization process in which the
original equation (1.1) will be changed into a new equation which possesses a smoothsolution
by applying a variable transformation introduced by Tao Tang in [8]. Also for equations with
high order of smoothness in the exact solution we can deduce the convergence of the proposed
method with larger values ofm, k, andγ and obtain a higher rate of convergence. It is trivial
that in this case, we do not require the regularization process.
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3. Operational Tau method for regularized Abel integral equations. It is well known
that the spectral Tau method is an efficient tool for solving the differential equations with
smooth solutions. In order to make it efficient for the Abel integral equation (1.1), the origi-
nal equation will be changed into a new integral equation which possesses a smooth solution,
by applying a suitable variable transformation. Our approach to choosing the proper transfor-
mation is based upon the impressive paper [8]. Consider equation (1.1). We know that near
x = 0 the first derivative of the solutionu(x) behaves likeu′(x) ≃ x− 1

µ . To overcome this
difficulty, we apply the variable transformation

x = zµ, z = µ
√
x, t = wµ, w =

µ
√
t,

and change the Abel integral equation (1.1) as follows

(3.1) ū(z) = f̄(z) + λ

∫ z

0

K̄(z, w)
µ
√
z − w

ū(w)dw, z ∈ I,

where

f̄(z) = f(zµ), K̄(z, w) =
µwµ−1K(zµ, wµ)

µ

√

∑µ−1
j=0 zµ−1−jwj

,

andū(z) = u(zµ) is the smooth solution of equation (3.1). Since the exact solution of (1.1)
can be written asu(x) = ū(z), we can definẽuα,β

N (x) = ūα,β
N (z), x, z ∈ I, as the approxi-

mate solution of problem (1.1).

3.1. Numerical treatment. Assume that̄uα,β
N (z) is the spectral Tau approximation of

degreeN for (3.1) as

(3.2) ūα,β
N (z) =

N
∑

j=0

bjv
α,β
j (z) = bNV α,βZ = bNV α,β ,

wherebN = [b0, b1, . . . , bN , 0, . . . ], Z = [1, z, z2, . . . , zN , . . . ]T . Let us define

(3.3) L̄(ū(z)) = ū(z)− λ

∫ z

0

K̄(z, w)
µ
√
z − w

ū(w)dw,

and assume that

K(zµ, wµ) =

∞
∑

i=0

∞
∑

j=0

k̄ijv
α,β
i (z)vα,βj (w),

which we can rearrange as

K(zµ, wµ) =

∞
∑

i=0

∞
∑

j=0

˜̄kijz
iwj .

Now, we find the unknown vectorbN in (3.2) using the operational Tau method based on
the Jacobi polynomials according to the following theorem.

THEOREM 3.1. Letvα,βj (z) be the orthogonal Jacobi polynomials with respect to weight

functionwα,β(z) in I. Assume that the approximate solutionūα,β
N (z) is given by(3.2). Then

we have

L̄(ūα,β
N (z)) = bN

(

id− λV α,βΠ̄α,β
(

V α,β
)−1)

V α,β ,
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whereid is the infinite identity matrix,

Π̄α,β =

∞
∑

i=0

∞
∑

j=0

˜̄kijT i,j ,

andT i,j for i, j = 0, 1, 2, . . . , is the infinite diagonal matrix with diagonal entries

T i,j
ss =











0, s ≤ i+ j + µ− 2,

π csc (π
µ
)Γ(1+

s−(i+µ−1)
µ

)

Γ( 1
µ
)Γ(2+

s−(i+µ)
µ

)
, s ≥ i+ j + µ− 1.

Proof. From the relations (3.3) and (3.2) we can write

L̄(ūα,β
N (z)) = bN

(

V α,β − λV α,β

∫ z

0

K̄(z, w)
µ
√
z − w

Wdw
)

= bN

(

V α,β − λV α,β

∫ z

0

µwµ−1K(zµ, wµ)
µ
√
zµ − wµ

Wdw
)

,(3.4)

whereW = [1, w, w2, ..., wN , ...]T . Thus, the integral term of (3.4) can be written as

(3.5)
∫ z

0

µwµ−1K(zµ, wµ)
µ
√
zµ − wµ

Wdw =
∞
∑

i=0

∞
∑

j=0

˜̄kijz
i

[
∫ z

0

µwj+l+µ−1

µ
√
zµ − wµ

dw

]∞

l=0

.

Using the relation

∫ z

0

µwj+l+µ−1

µ
√
zµ − wµ

dw = zj+l+µ−1
(π csc (πµ )Γ(1 +

j+l
µ )

Γ( 1µ )Γ(2 +
j+l−1

µ )

)

,

we can rewrite (3.5) as

∫ z

0

µwµ−1K(zµ, wµ)
µ
√
zµ − wµ

Wdw =

∞
∑

i=0

∞
∑

j=0

˜̄kij

[

zi+j+l+µ−1
π csc (πµ )Γ(1 +

j+l
µ )

Γ( 1µ )Γ(2 +
j+l−1

µ )

]∞

l=0

=

( ∞
∑

i=0

∞
∑

j=0

˜̄kijT i,j

)

Z = Π̄α,βZ = Π̄α,β
(

V α,β
)−1

V α,β ,(3.6)

whereT i,j is the infinite diagonal matrix with the aforementioned diagonal entries, and

Π̄α,β =
∞
∑

i=0

∞
∑

j=0

˜̄kijT i,j , Z = [1, z, z2, . . . , zN , . . . ]T .

Substituting the relation (3.6) into (3.4) we deduce the result.
Now, consider the transformed equation (3.1). Assume that

f̄(z) =

Nf̄
∑

i=0

f̄iv
α,β
i (z) = f̄V α,β ,
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wheref̄ = [f̄0, f̄1, . . . , f̄Nf̄
, 0, . . . ]. From Theorem3.1and the above relation, we have

(3.7) bN

(

id− λV α,βΠ̄α,β
(

V α,β
)−1)

V α,β = f̄V α,β .

We letMα,β = id − λV α,βΠ̄α,β
(

V α,β
)−1

. Due to the orthogonality of{vα,βk (z)}∞k=0,

projecting (3.7) onto the functions{vα,βk (z)}Nk=0 yields

bNMα,β
i = f̄i,

whereMα,β
i is thei-th column ofMα,β . By setting

M̃α,β
N = [Mα,β

0 ,Mα,β
1 , ...,Mα,β

N ], ˜̄fN = [f̄0, f̄1, ..., f̄N ],

we obtainbNM̃α,β
N = ˜̄fN which gives the unknown vector(b0, b1, ..., bN ).

3.2. Convergence analysis.In this section we provide an efficient error analysis, which
theoretically confirms the exponential rate of convergenceof the proposed method when ap-
plied to the regularized Abel integral equation (3.1) with K(zµ, wµ) = 1, i.e.,

(3.8) ū(z) = f̄(z) + λ

∫ z

0

˜̄K(z, w)
µ
√
z − w

ū(w)dw, z ∈ I,

where ˜̄K(z, w) = µwµ−1

µ
√

∑µ−1
j=0 zµ−1−jwj

. It is trivial to see that this form of the equation is

obtained when we apply the proposed regularization processto the Abel integral equation
(2.10).

Stability of the proposed scheme for the numerical solutionof the regularized equa-
tion (3.8) can be directly concluded by adopting the same idea as in theproof of Theorem2.4.
Now, in the following theorem we will prove exponential convergence of the operational Tau
method when applied to the regularized equation (3.8).

THEOREM 3.2 (Convergence).Let ūα,β
N (z) be the Tau approximation(3.2) to the exact

solutionū(z) of the regularized Abel integral equation(3.8). If ū(z) ∈ Ck,γ(I)
⋂

Bm
α,β(I)

with k ≥ 0, γ ∈ (0, 1] andm ≥ 0, then we have

∥

∥eα,βN (ū)
∥

∥

∞ ≤
{

C log (N)N−(γ+k)‖ū‖k,γ , for − 1 < α, β ≤ − 1
2 ,

CN
1
2+s−γ−k‖ū‖k,γ , for γ + k > 1

2 , s = max {α, β} < 0,

as well as
∥

∥eα,βN (ū)
∥

∥

α,β
≤ C

(

N−m‖ū‖m,α,β + log (N)N−γ1
∥

∥eα,βN (ū)
∥

∥

∞

)

for γ1 ∈ (0, 1− 1
µ ), −1 < α, β ≤ − 1

2 , and

∥

∥eα,βN (u)
∥

∥

α,β
≤ C

(

N−m‖ū‖m,α,β +N
1
2+s−γ1

∥

∥eα,βN (ū)
∥

∥

∞

)

for γ1 ∈ ( 12 + s, 1− 1
µ ), s = max {α, β} < 0.

Proof. Consider (3.8). According to the proposed method, we have

(3.9) ūα,β
N (z) = Pα,β

N f̄ + λPα,β
N

∫ z

0

˜̄K(z, w)
µ
√
z − w

ūα,β
N (w)dw.
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Subtracting (3.8) from (3.9) we have

(3.10) eα,βN (ū) = eα,βPN
(f̄) + λ

(

∫ z

0

˜̄K(z, w)
µ
√
z − w

ū(w)dw −Pα,β
N

∫ z

0

˜̄K(z, w)
µ
√
z − w

ūα,β
N (w)dw

)

.

By some simple manipulations we can rewrite (3.10) as follows

eα,βN (ū) = eα,βPN
(f̄) + λ

(

∫ z

0

˜̄K(z, w)
µ
√
z − w

ū(w)dw − Pα,β
N

∫ z

0

˜̄K(z, w)
µ
√
z − w

ū(w)dw

+

∫ z

0

˜̄K(z, w)
µ
√
z − w

eα,βN (ū)dw − eα,βPN

∫ z

0

˜̄K(z, w)
µ
√
z − w

eα,βN (ū)dw

)

.

From (3.8) we haveλ
∫ z

0

˜̄K(z,w)
µ
√
z−w

ū(w)dw = ū(z)− f̄(z). We can rewrite the above relation
as

eα,βN (ū) = eα,βPN
(ū) + λ

(

∫ z

0

˜̄K(z, w)
µ
√
z − w

eα,βN (ū)dw − eα,βPN

∫ z

0

˜̄K(z, w)
µ
√
z − w

eα,βN (ū)dw

)

.

Thus,

(3.11) |eα,βN (ū)| ≤
∣

∣

∣

∣

eα,βPN
(ū)− λeα,βPN

∫ z

0

˜̄K(z, w)
µ
√
z − w

eα,βN (ū)dw

∣

∣

∣

∣

+ Λ

∫ z

0

|eα,βN (ū)|
µ
√
z − w

dw,

whereΛ = |λ| max
0≤w<z≤1

| ˜̄K(z, w)|.
By using Gronwall’s inequality (Lemma2.3) in (3.11), we can write

(3.12)
∥

∥eα,βN (ū)
∥

∥

∞ ≤ C

(

∥

∥eα,βPN
(ū)
∥

∥

∞ +

∥

∥

∥

∥

eα,βPN

∫ z

0

˜̄K(z, w)
µ
√
z − w

eα,βN (ū)dw

∥

∥

∥

∥

∞

)

.

Applying the relations (2.11) and (2.13) in (3.12), we obtain

∥

∥eα,βN (ū)
∥

∥

∞ ≤ C
(

1 + σp(N)
)

(

N−(γ+k)‖ū‖k,γ +N−γ1

∥

∥

∥

∥

∫ z

0

˜̄K(z, w)
µ
√
z − w

eα,βN (ū)dw

∥

∥

∥

∥

0,γ1

)

≤ C
(

1 + σp(N)
)

(

N−(γ+k)‖ū‖k,γ +N−γ1
∥

∥eα,βN (ū)
∥

∥

∞

)

,

wherek ≥ 0, γ ∈ [0, 1] andγ1 ∈ (0, 1 − 1
µ ). The first result of the theorem regarding the

error estimate in the uniform norm can be concluded under thecondition (2.21).
Now, we derive a suitable error bound for the proposed schemein theL2-norm. To this

end, applying again Gronwall’s inequality (Lemma2.3) in (3.11), we can write

∥

∥eα,βN (ū)
∥

∥

α,β
≤ C

(

∥

∥eα,βPN
(ū)
∥

∥

α,β
+

∥

∥

∥

∥

eα,βPN

∫ z

0

˜̄K(z, w)
µ
√
z − w

eα,βN (ū)dw

∥

∥

∥

∥

α,β

)

≤ C

(

∥

∥eα,βPN
(ū)
∥

∥

α,β
+

∥

∥

∥

∥

eα,βPN

∫ z

0

˜̄K(z, w)
µ
√
z − w

eα,βN (ū)dw

∥

∥

∥

∥

∞

)

.

Using relations (2.11) and (2.13) in the integral term of the above equation yields

(3.13)
∥

∥eα,βN (ū)
∥

∥

α,β
≤ C

(

∥

∥eα,βPN
(ū)
∥

∥

α,β
+
(

1 + σp(N)
)

N−γ1
∥

∥eα,βN (ū)
∥

∥

∞

)

,
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whereγ1 satisfies (2.21). Finally, the second result of the theorem can be deduced byadopting
the relation (2.12) in (3.13).

Since solutions of the regularized Abel integral equation (3.8) are smooth, then in The-
orem3.2, m andk are sufficiently large numbers and we have an exponential rate of conver-
gence for the obtained numerical results.

4. Numerical results. In this section we apply a program written in Mathematica to
three numerical examples to demonstrate the accuracy of themethod and effectiveness of
applying the Chebyshev and Legendre polynomial bases. In this section ”Numerical error”
always refers to the weightedL2-norm of the obtained error function.

EXAMPLE 4.1. Consider Abel integral equation

u(x) = f(x)− x

∫ x

0

sin t√
x− t

u(t)dt, x ∈ I,

with

f(x) = cosx+
4

3
x

5
2 1F2

[

1, {5
4
,
7

4
},−x2

]

,

wherepFq

[

{a1, ...ap}, {b1, ...bq}, z
]

is the generalized Hypergeometric function.
This example has a smooth solutionu(x) = cosx. Firstly, we apply the Tau method

proposed in Section2. The numerical results obtained are given in Table4.1and Figure4.1.
The results show that the errors decay exponentially and that the approximate solutions are in
good agreement with the exact ones. Due to the infinite smoothness of the exact solution, we
do not need the regularization process.

TABLE 4.1
Tau approximation errors of Example4.1.

Numerical error before regularization
N Chebyshev bases Legendre bases
2 3.25× 10−2 2.14× 10−2

6 2.36× 10−5 1.27× 10−5

10 1.02× 10−9 1.04× 10−9

14 2.67× 10−14 1.35× 10−14

18 3.34× 10−19 1.22× 10−19

EXAMPLE 4.2. Consider the following Abel integral equation

u(x) =

(

x
4
3 +

4πx2
1F1[

7
3 , 3, x

2]

9
√
x

)

−
∫ x

0

extu(t)
3
√
x− t

dt, x ∈ I,

with the exact solutionu(x) = x
4
3 .

Numerical results before regularization are given in Table4.2and as solid line curves in
Figure4.2. As we can see, the numerical results obtained show convergence of our numerical
method, but the rate of convergence is slow. To this end, we apply the variable transformation

z = 3
√
x, w =

3
√
t, x = z3, t = w3,

according to the previous section, and we get a new Abel equation with the smooth exact
solutionū(z) = z4. The numerical results obtained by applying the proposed Tau method in
Section3 to the regularized Abel integral equation are also providedin Table4.2 and as the
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FIG. 4.1. An illustration of the rate of convergence for the Tau methodwith various values ofN before
regularization. We display the errors of Example4.1using Chebyshev bases (left) and Legendre bases (right).

TABLE 4.2
Tau approximation numerical errors of Example4.2.

Before regularization After regularization
N Chebyshev bases Legendre bases Chebyshev bases Legendre bases
2 3.13× 10−2 2.05× 10−2 3.74× 10−2 2.49× 10−2

6 1.18× 10−4 7.98× 10−5 1.15× 10−10 3.63× 10−11

10 1.64× 10−5 9.47× 10−6 4.79× 10−12 2.58× 10−12

14 4.28× 10−6 2.19× 10−6 3.16× 10−14 9.36× 10−15

18 1.54× 10−6 7.18× 10−7 1.65× 10−15 4.24× 10−16

22 6.78× 10−7 2.91× 10−7 1.02× 10−16 1.09× 10−17

dashed line curves in Figure4.2. In general, the numerical results show that the regularization
process increases the rate of convergence.

EXAMPLE 4.3. Consider the following Abel integral equation

u(x) = f(x)− 1

2

∫ x

0

u(t)√
x− t

dt, x ∈ I,

wheref(x) = sin (x)√
x

+ π
2 sin x

2J0(
x
2 ), J0(x) is the Bessel function, and the exact solution of

the problem isu(x) = sin (x)√
x

.

This problem has the property stated at the beginning of thispaper, i.e.,u′(x) is singular
atx = 0+. Our first attempt consists in a direct application of the Taumethod that is proposed
in Section2 to this example. Numerical results before regularization are given in Table4.3
and depicted by solid curves in Figure4.3. Our obtained results before regularization show
convergence of the method but with a very low rate of convergence. To overcome this diffi-
culty, our main concern is the regularity of the transformedsolution. To the present problem,
we apply the variable transformation

z =
√
x, w =

√
t, x = z2, t = w2,
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FIG. 4.2. We display the errors of Example4.2 for various values ofN . The left and right hand figures show
numerical errors concerning the shifted Chebyshev and Legendre Tau method onI respectively. In both cases the
solid and dashed line curves indicate the numerical errors before and after regularization, respectively.

TABLE 4.3
Tau approximation numerical errors of Example4.3.

Before regularization After regularization
N Chebyshev bases Legendre bases Chebyshev bases Legendre bases
2 5.36× 10−3 1.44× 10−3 3.42× 10−3 1.15× 10−3

6 7.23× 10−4 1.06× 10−4 1.37× 10−6 5.54× 10−7

10 2.41× 10−4 2.39× 10−5 1.91× 10−10 8.09× 10−11

14 1.14× 10−4 8.58× 10−6 1.32× 10−14 5.65× 10−15

18 6.36× 10−5 3.93× 10−6 5.23× 10−19 2.25× 10−19

and implement the Tau scheme proposed in Section3 to the regularized Abel integral equation

with the smooth exact solution̄u(z) = sin (z2)
z . The results obtained are given in Table4.3and

are shown by dashed curves in Figure4.3. Comparing the results shows that we can reach an
exponential rate of convergence after applying the regularization process to the original Abel
integral equation.

Finally, in order to show the stability behavior of the proposed scheme that is proved
in Theorem2.4, we solve this problem by the Tau method before regularization with large
values ofN and give the results in Table4.4. It can be seen that the results in Table4.4 are
in agreement with the theoretical result of Theorem2.4. In principle, we can conclude the
stability of the Tau method for the numerical solution of theregularized Abel integral equation
in this example in the same manner as shown in Table4.4, but since after regularization we
reach an exponential rate of convergence, the numerical errors are almost zero already for
moderate values ofN . For example forN = 30, we obtain errors1.23 × 10−33 with the
Chebyshev bases and4.92 × 10−34 with the Legendre bases. Then, in this case we do not
need to examine larger values ofN , and we do not present the stability results obtained for
this example after regularization.
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FIG. 4.3. We observe the errors of Example4.3 for various values ofN . The left and right hand side figures
show numerical errors concerning the shifted Chebyshev andLegendre Tau method onI, respectively. In both cases
the solid and dashed line curves indicate the numerical errors before and after regularization, respectively.

TABLE 4.4
Stability behavior of Example4.3.

Numerical results before regularization
N Chebyshev bases Legendre bases

20 4.98× 10−5 2.83× 10−6

30 1.91× 10−5 7.98× 10−7

40 9.58× 10−6 3.27× 10−7

50 5.58× 10−6 1.65× 10−7

60 3.58× 10−6 9.1× 10−8

70 2.46× 10−7 5.91× 10−8

80 1.77× 10−7 3.95× 10−8

90 1.32× 10−7 2.76× 10−8

100 6.02× 10−8 2.014× 10−8

5. Conclusion. This work has been concerned with the operational Tau methodand its
convergence analysis for Abel-type Volterra integral equations in two stages. In the first step,
the operational Tau method based upon Jacobi basis functions was introduced for the numer-
ical solution of the original equation (1.1). In addition, in this step we also investigated the
stability and convergence behavior of this method whenK(x, t) = 1. We deduced conver-
gence of the proposed method, but the fact that the derivative u′(x) of the solution behaves
like x− 1

µ near the origin is expected to cause a loss in the global convergence order of the Tau
method. To overcome this drawback, the original equation was changed into a new Abel inte-
gral equation which possesses better regularity by applying a simple variable transformation
that was introduced by Tao Tang in [8]. Next, we directly presented a new operational Tau
scheme for the new Abel integral equation. We also proved theconvergence of the method
and obtained the error estimates in weightedL2- and uniform norms of the approximated
solution. These results were confirmed by some numerical examples.
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