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FINITE ELEMENT APPROXIMATION OF VISCOELASTIC FLOW IN A
MOVING DOMAIN *

JASON HOWELL, HYESUK LEEf, AND SHUHAN XU*

Abstract. In this work the problem of a viscoelastic fluid flow in a movaditenain is considered. A numerical
approximation scheme is developed based on the Arbitraryalnaggn-Eulerian (ALE) formulation of the flow
equations. The spatial discretization is accomplished byittite element method, and the discontinuous Galerkin
method is used for stress approximation. Both first and secated tme-stepping schemes satisfying the geometric
conservation law (GCL) are derived and analyzed, and nualerkperiments that support the theoretical results are
presented.
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1. Introduction. In this paper we consider a viscoelastic fluid flow problemegos a
moving spatial domain. Such problems arise in modelingritezaction of fluid flows with an
elastic medium, which is of great interest in many indusaral biomechanical applications,
including the flow of blood in medium-to-large arteries. luch situations, the physical
problem of interest exhibits significant two-way interactibetween the fluid and the solid
structure. The accurate and efficient computer simulatf@uoch fluid-structure interaction
(FSI) problems is of paramount importance to researcherkimgin these applications, and
much effort is dedicated to producing good algorith@®<2B, 34, 37, 40].

Motivation for the work presented here stems from recenaades in computing New-
tonian and quasi-Newtonian fluid flows in moving domainsjudaig methods designed for
fluid motion within deformable elastic structures. The fleiguations and structure equa
tions are most commonly posed from different perspectigesontinuum mechanics: the
Eulerian frame of reference for the fluid equations and thggrésagian frame of reference for
elastic structures. With this discrepancy in mind, the &eby Lagrangian-Eulerian (ALE)
method was developed in the 1980s to allow for the coupled-8tructure problem to be
posed in a single framework 1, 24]. In [32], Nobile employed the ALE formulation to first
derive methods for a Newtonian fluid flow governed by the Na8i®kes equations in a mov-
ing domain, and then coupled this formulation with an etastiucture. Several subsequent
works discuss different aspects of the Newtonian fluidestme interaction problem, includ-
ing boundary conditionslf3, 14, 33], numerical stability ¥, 14], and fixed-point methods for
the coupled fluid-structure problerh(]. Other researchers have also shown convergence re-
sults for the ALE formulation of the Stokes probleB0], and other related problems,[19].

However, many industrial and biological fluids of consid#eainterest do not behave
as Newtonian fluids. One example of great interest is blodte Study ofhemodynamical
flowsyields constitutive models that are non-Newtonian in rgt@xhibiting both shear-
thinning and viscoelastic behaviat7, 20, 41]. Several recent investigations show that the
non-Newtonian characteristics of blood can have significapact on the characteristics of
blood flow [3, 4, 25, 29, 31], and algorithms that capture the behavior of such non-Neiah
fluids in moving domains and deformable elastic structuresdasirable. There are exist-
ing works which derive and implement numerical methods fimugation of such problems,
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including those employing the ALE approackb] 29, hybrid finite element/finite volume
approachesil], and the immersed boundary meth&l39]. However, a detailed numerical
analysis, including theoretical stability results for émtepping schemes, of such methods
applied to non-Newtonian problems is, in general, lackiognfthe current literature.

In[27], Lee investigated numerical approximation of an unstdhmy problem governed
by a quasi-Newtonian model in a moving domain, where a baynéslocity is given by a
known function. A variational formulation of the problem the Arbitrary Lagrange Eulerian
method was derived and a priori error estimates for the sksorete and fully discrete ALE
formulations were obtained. Lee also examined severalaemhpliscretization schemes for
stability and accuracy, where the theoretical results wapported by numerical tests.

In the same spirit as?[/], the objective of the work presented here is to develop and
analyze a finite element method for the time-dependent doh8sgalman viscoelastic fluid
flow model (of which the Oldroyd-B model is a special case)iset movable domain. This
work serves as an intermediate step between the aforemedtigorks and the development
and verification of algorithms for the simulation of a vistasgic fluid in a deformable elastic
structure, and the extension of that to the shear-thinnisgpelastic case. Specifically, the
problem is posed in a moving spatial domain, and the ALE fdatimn of the conservation
equations is utilized to pose the equations in a referenoeado The spatial discretization
is accomplished via the finite element method, and we empsmpdtinuous approximations
for the fluid stress. First and second-order time-steppaigimes satisfying the geometric
conservation law (GCL) are derived, and theoretical stgbisults are shown.

This paper is organized as follows. In Sectidnwe describe the model problem and
introduce an ALE formulation. We consider finite elementragpmations of the ALE for-
mulation in Sectior8 and in Sectiord time discretization schemes are discussed and ana-
lyzed. Finally, we present numerical results in Sectidhat support the theoretical results
and exhibit stability of the algorithms developed here. €ating remarks can be found in
Section6.

2. Model equations and ALE formulation. Let ©; be a bounded domain at tinte
in R? with the Lipschitz continuous boundafy, whereT'; is a moving boundary. Move-
ment ofT'; is described by the boundary position functlen T'y x [0, 7] — T'; such that
I'; = h(t,T). Consider the viscoelastic model equations,

(2.1) 0'+)\<(?9(:+11~V0'+ga(0',vu))—QOéD(u):O in €y,

(2.2) p(aal;+u~Vu)V~02(1a)V~D(u)+fo inQ,,

(2.3) divau=0 1inQy,

whereo denotes the extra stress tensothe velocity vectorp the pressure of the fluighthe
density of the fluid, and is the Weissenberg number defined as the product of the telaxa
time and a characteristic strain rate. Assume thaas zero mean value ove;. In (2.1)
and @.2), D(u) := (Vu + Vu?)/2 is the rate of the strain tensat,a number such that
0 < « < 1 which may be considered as the fraction of viscoelasticogitg, andf the body
force. In €.1), g.(o, Vu) is defined by

1+a

1—
ga(o,Vu) := Ta(a'Vu +vulo) (Vuo + oVu’)

for a € [-1,1]. Note that 2.1) reduces to the Oldroyd-B model for the case 1.
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Initial and boundary conditions far ando are given as follows:

0

u(x,0) =u" inQ,

o(x,0) =0 inQg,
u=upgc only,
o = opc on Ftv’,n7

Wherefrt upc - n dl'y = 0andl',, is the inflow boundary.

In the present paper, the constitutive equatidri)(is slightly modified for numerical
analysis of the governing equations. It is well known that gh term in the constitutive
equation presents a difficulty when analyzing viscoeldkiig equations. Therefore, we will
consider a nearby problem in which theterm is linearized with the given velocity(x):

(2.4) o-+)\<8aj+u~VU+ga(a,Vb))—2aD(u):0 in €,

for the constitutive equation, where the following assuompis made forb:

beH'(Q), V-b=0, [blu<M, [Vblle<M.

It should be noted that the flow here is not assumed to be crgdpe., slow) as in
[12). Therefore, the convective term- Vu is retained in the momentum equatichz). We
also assume the homogeneous boundary condition for thesdtraction, i.e.ogc = 0 to
simplify the analysis. The non-homogeneous casg; # 0, can be treated in the similar
way for the non-homogeneous velocity boundary conditiam.thie application of a fluid-
structure interaction system, the inflow part on the moviongrgary changes from time to
time. This is due to an interface condition, which makes micagstudies of the system
extremely challenging, not only due to the change of inflowrmtaries, but also because
of a lack of boundary information on the stress. There arersédifferent ways suggested
to implement a stress boundary condition in the literatu@ame possible way would be to
compute the boundary value of stress using velocity inféionas given in 18] and use this
as a stress condition for the next (time or sub-) iteration.

We use the Sobolev spacBs™? (D) with norms|| - ||, p.p if p < 00, || - |lm,00,p if
p = oo. Denote the Sobolev spaté™? by H™ with the norm|| - ||, p. The corresponding
space of vector-valued or tensor-valued functions is dehbyH™.

The Arbitrary Lagrangian Eulerian (ALE)LL] method is one of the most widely used
numerical schemes for simulating fluid flows in a moving damén the ALE formulation, a
one-to-one coordinate transformation is introduced ferfthid domain, and the fluid equa-
tions can be rewritten with respect to a fixed reference dom@pecifically, we define the
time-dependent bijective mapping, which maps the reference domdiy to the physical
domain(;:

\Ilt : QO - Qta \Ilt(y) = X(Y3t) )

wherey andx are the spatial coordinates(iyy and(2;, respectively. The coordinageis often
called theALE coordinate Using¥,, the weak formulation of the flow equationstip can be
recast into a weak formulation defined in the reference dofgi Thus the model equations
in the reference domain can be considered for numericallatiron and the transformation
function ¥, needs to be determined at each time step as a part of the catiopst



ETNA
Kent State University
http://etna.math.kent.edu

VISCOELASTIC FLOW IN MOVING DOMAIN 309

For a functiong : ©; x [0,T] — R, its corresponding function = ¢ o ¥, in the ALE
setting is defined as

¢:Q — R, P(y,t) = ¢(Vi(y),t).
The time derivative in the ALE frame is also given as

¢ 99 99

B ly: @ x [0,T] — R, By (x,t) = a(y,t).
Using the chain rule, we have
¢ 99
(2.5) E ot |x +w - Vo,

wherew := %’t‘ |y is the domain velocity. In4.5), %‘f |y is the so-calledALE derivativeof
¢. The flow equations2.2), (2.3 and @.4) can be then written in the ALE formulation as

(2.6) o+ A (88:- ly +(u—w) - Vyo + g4(o, be)> —2aDx(u) =0 iny,

2.7 p (881; ly +(u—w)- qu> —Vx-0—2(1—-a)Vyx-Dx(u) + Vyp
=f inQy,
(2.8) V,-u=0 inQ,

whereDy(u) = (Vxu + Vxu?)/2. Note that all spatial derivatives involved i#.6)—(2.9),
including the divergence operator, are with respect.td’hroughout the paper we will use
Dy () andVy only when they need to be clearly specified. Otherwigg,, V will be used
asDx«(+), Vx, respectively.

For the variational formulation of the flow equatior’s@—(2.8) in the ALE framework,
define function spaces for the reference domain:

Uy := Hj(Q),
Qo := L§(R0) = {7 € L*() : [, 7dQ2 =0},
S :={r € L*(Q) : 7y = 7ji, T=00NnT4,,, (b-V)r € L?(Q)}.
The function spaces fde, are then defined as
U, :={v:Q x[0,T] = R? v=voU; ! forv e Uy},
Qr:={q: % x[0,T] =R, g=g0¥; " forpe Qo},
o= {r: U x[0,T] =R¥>2 7 =FoU,  forF c Z;}.
If the ALE mapping¥, satisfies the regularity condition$d, 21, 30]
T, € W2(Q,), Ut e WHe(Q),
then

(29) (V7q,7') € Ut X Qt X Et
— ,q7)=(voVU,,qoV;,To¥;) €UyxQyXx 2.
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Based on the regularity condition of the ALE functio?.9), we assume that the domain
velocity is bounded, i.e.,

(2.10) w10, <C
for C' > 0.
For givenugc € HY/?(T), there exists1* € H'(Q;) such that
u®|r, = upc, V-u"=0
and
(2.11) [(v-Vu',v)| < elv[l] vvelU,

for anye > 0[38]. Writing the velocity function as = u+u*, we havea|r, = 0,V-u =0
and the variational formulation fdia, p, o) in the ALE framework is given by: findu, p, o)
such that

(212) (o, 7)o, + A (60’ ly H(@+u*—w)-V)o+g.(o,Vb), ‘r>

ot o,

—2a(D(0), T)q, =2a(D(u*), 7)o, VT €3,

t t

(2.13) »p (?;;l ly +(@—w)-Vu+u-Vu* +u*- Vu, v) + (o,D(Vv))a,

Q

+2(1 = a)(D(u), D(v))a, — (p, V- V)e,
ou*
= (f,v)q, — —_— *—w)-Vu',v

o (T oo vty

—2(1 — a)(D(u*),D(v))q, Vv € Uy,
(214) (q, V- ﬁ)gzt =0 Vq S Qt .

Using integration by part§/ - u = 0 andu |r,= 0, the convective terms ir2(12—(2.13 can
be written as

((ﬁ - W) ’ V)0'7 O-)Qt = [((V : W)Uv G)Qt - ((W ) n)a" G)Ft] )

((ﬁ - W) : V)ﬁ, ﬁ)Qt = ((v ' W)ﬁ? ﬁ)Qt .
Note that ifw = 0,

(# Vo,0), =0, (U Vi, i)g, =0.

In order to simplify expressions, throughout this paper vilewse the bilinear formA,
defined by

(2.15) A((u,o),(v,7)) := (0, T)a, + Aga(o, VD), T)q, —2a(D(0), T)a,
+2a (o, D(v))q, +4a(l — «a) (D), D(v))q, -

Since

(ga(0'7 Vb)’ T)Qt S 4||Vb||00,9t ||o-||0~,Qt HT

0.0, < 4M ||oflo,.0, [T

0,94 5
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we have, using the Poin@mequality||D(1)||o.o, > Cpllull1,0,.

A((W,0),(8,0)) = (1 = 4AM) [lo[§ o, +4a(l = @)|D@)[F o,
(2.16) > (1= 4M) |lo 5 g, + 4a(1 — )Cplul g,
and

Ai((e,0), (1,v)) < (1 +4AM) [[a o, [T llo.0, + 2l D(@)]o.0.I7llo.0.
+2allofloo l[DMV)llo0, +4a(l = a)[| D)oo, [ D(V)llo,0,
< C(llollo.e, + [[allre)ITlo0 + [1vie,) -

Therefore,A, is coercive and continuous ¥ M is small so thal — 4\M > 0. This would
be the case when the ratio of a time scale for the fluid memoaytime scale of the flow is
small and the fluid has a small effect of elasticity.

A variational formulation called eonservative formhi32] is derived based on the fact that
the test function space can be mapped into a time-indepeagace using?; *. In order to
derive a conservative variational formulation, considier Reynolds transport formula)

d
7/ ¢(x,t)dV:/ a—‘z’\ymvx.de:/ 00 | 4w Vot Vs w AV
dt Jv ) v O v O

for a functiong : V(t) — R, whereV(t) C ©, such thal/ () = ¥, (Vp) with V5 C Q. If v
is a function fromQ2; toR andv =7 o \11;1 forv: Qp — R, we have that

ov

(2.17) En ly=0,

and therefore

i de:/ vVy - wd),
dt Qs O
d 0¢
2.18 — Q= — x Q.
2.18) G| ovan= [ (Gl +ovew) v

Then, applying 2.18) to (2.12—(2.14), we have the following variational formulation: find
(u, p, o) for eacht € (0,77 such that

(2.19) (o, 7)q, + )\%(0’, T)a, + A(—o’(v W)+ (U+u —w) Ve

+94(0, Vb), T) —2a(D(u),7)q, = 2a(D(u"), T)q, VT € X,
Q¢

(2.20) p%(ﬁ Vg, +p(—G(V W) + (@ - w) - V)i + @ - Vu' +u* - Vi, v)g,
+2(1 — a)(D(u), D(v))a, + (o,D(v))a, — (p, V- V)a,
=t~ (T by = w) - vu )
t at Yy a,
(1 — a)(D(u*), D(¥))a, ¥v € Uy,

(2.21) (¢,V-1u)g, =0 VYge Q.
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The ALE weak formulationZ.19—(2.21) is conservative in the sense that if we take a sub-
setV(t) C € with Lipschitz continuous boundarf, = 0 andv = constant, then
% fv(t) u dV is given in terms of boundary integrals only. Therefore, ¥heation ofu
overV (t) is due only to boundary term& 5.

In order to define the ALE mapping;, we consider the boundary position function
h: Ty x [0,T] — T';y. The ALE mapping then may be determined by solving the Laplac
equation,

Ayx(y) =0 in Qo

x(y) =h(y)  onIy.
This method is called thearmonic extension technique&here the boundary position func-
tion h is extended onto the whole domaitf]. When the problem is posed as a fluid-structure

interaction problem, other equations such as a linearielpsiblem and a parabolic system
also can be used to obtain the domain velocity, R1].

3. Finite element approximation. The spatial discretization of the viscoelastic flow
problem follows that of .  SupposeT}, is a triangulation of 2y such that
O = {UK : K € T},0}. Assume that there exist positive constantsc; such that

ciprx < hig < cpi s

wherehg is the diameter of<, px is the diameter of the greatest ball includedin and
h = maxKeTh’O hK

Let P,(K) denote the space of polynomials of degree less than or equildn
K € T},9. We define finite element spaces for the approximatiofuop) in :

Uh,O = {V € Uo N (Co(ﬁ))2 : VIK c PQ(K)2, VK € Th,0}7
Qno:=1{¢€QunNC’Q): qlx € PI(K), VK € Tho} .

The stressr is approximated in the discontinuous finite element spagaeafewise linear
functions,

Sho = {T€X0: 7| € PI(K)?**?, VK € Tho} .

Let Vg := dim(Uy, ) and{p, : 3, € Uy, fori € N} be a set of basis functions f&f, .
Similarly, lIet\,, := dim(Z,0) and{1, : 1, € X fori € N, } be a set of basis functions
for 3, ¢. The finite element spaces defined above satisfy the stangardximation proper-
ties; seef] or [22]. It is also well known that the Taylor-Hood pditl;, o, Qr o) satisfies the
inf-sup(or LBB) condition,

inf Sup (q}u v ) Vh) > 07

0£4n€Qn,0 0£vy,cUno IVRlLlanllo —

whereC' is a positive constant independentof
We consider a discrete mappifg, ; : o0 — €2; approximated by, Lagrangian finite
elements such that,, +(y) = x5, (y, t). The finite element spaces 0 are then defined as

Uh,,t = {Vh 1) X [O,T] — RZ,V}L =V o \Ilgi for vy, € Uh,_’o},

Qh,t = {Qh : Qt X [07T] i Ra qh = ah o \Il}:é for Qh S Qh,O}v

Xht = {O'h : 0y X [O,T] — R2X2,0'h =op0 \I/;l fore), € Eh,O}-
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The approximate solutions;,, o, are expressed as a combination of basis functions multi-
plied by time-dependent coefficients, i.e.,

(3.1) Up(x,t) = Y Wt)ps(x,t),  on(xt) = > oi(t)i(xt),

iE€ENG iENS

wherep; := 3, o U, ' andi; := ¢, o U, L.
For the discrete ALE mapping, define the set

X, = {x € H'(Q) : x|k € P(K)? VK € T, 0}-

If we denote theth basis function oK}, by ¢;, then the discrete ALE mapping, ; provides
the discrete coordinate function faras

xn(y,t) = Uni(y) = Y z:(t)i(y),

1ENX

whereN X is the set of nodal points &;,. Then the discrete domain velocity, is defined
by

ox _
wi(x,t) = Iy (U5 4(x).1).

In order to analyze the convective tef - Vu, v)q, in the finite element space, we
define the trilinear form

b(u,w,v)q, := % [(@-Vw,v)g, — (0 -Vv,w)q,] .

Using Green’s theorem arid - u = 0, we obtain
(@- Vw,v)g, = b(Ti, w, v)o,
and
3.2 b(u,v,v)g, =0 Vv € Up .
SinceV - u* = 0, we also have
(3.3) b(u*,v,v)q, =0 Vv € Upy.
The following estimate will be used when analyzing thergkr term 26):
(3.4) b, w, V), < Cllilve, [wlho, Ve -

We introduce some notation in order to analyze an approxireatution ofo by the
discontinuous Galerkin method. Define

OK™ (v):={x€ 0K, v-n <0},
whered K is the boundary of andn is the outward unit normal to K,
=

v):= lim 7(x+ ev(x)),

e—0
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and

Introduce the operatet(-, -, -) defined by
1
c(v—w,o,7)q, = (v—w)-V)o,T)q, +§(V~va77)gt+ <ot—o " >hvw -

Note that the second term vanishes wRénv = 0. Using integration by parts andr, = 0,
we have
- ~ 1 ~
c(t-w,0,T)e, = —((W-w) V)7,0) - 5 (V-UT,0)q,

+ < 0'_77-_ - T+ >h,l~l—W +((V ' W)U7T)Qt - ((W ' n)U7T)Ft .

Therefore,

-~ 1
cap —wp,on,0p)0, = 3 [(V-wp)on,on)a, — (Wh-n)on, o),
+<opt—op o —op” >h,ﬁh—wh]

(3.5) > 1

5 UV -wh)on, on), — (W -n)on,on)r,] .

Also for u* such thatv - u* = 0 andu*|r, # 0, we have that
* 1 *
(3.6) c(u*,op, o) > 5((u “N)Oh, OR)T,-

Consider the semi-discrete variational formulation offthiel problem in the ALE frame-
work: find (uy, pr, o) such that

d ~ *
(3.7) A [dt(ﬂhﬁh)gt +c(Up, — Wh,0h, Th)o, +c(u”,on, Th)a,

—(O'h(v . Wh),Th)Qt + (ga(crh, Vb), Th)Qt:| + (O'h, Th)Qt — QOz(D(ﬁh), Th)Qt

=2a(D(u*),Th)o, VTh € Xy,
d - U - _
(3.8) PLit(uh;Vh)Qt + b(ap, an, vi)o, — (UR(V - Wr),Vi)a, — (Wi - Vg, Vi),

—l—(ﬁh . Vu*,vh)gt + (11>k . Vﬁ}uvh)gt]
+2(1 = a)(D(un), D(va))e, + (en, D(vr))a, + (Pr: V - Vi),
a *
= (f, Vh)Qf, —p (al; ‘y +(u* — W) . vu*,Vh)
Qq
—2(1 —a)(D(u"),D(vp))a, Yvi € Upy,

t

(39) (qh, V- INIh)Qt =0 th (S Qh,t .
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Using the bilinear form4, in (2.15, equations§.7)—(3.8) are written as

d ~ *
A [dt(o'h,Th)Q,, +c(up —wp,oh,Th)o, + (U, 0h,Th)o, — (n(V-Wi), Th)o,

d . - - ~ ~
+2040[dt(uh,vh)m + b(Un, Un, vi)o, — (Ar(V - W), vi)a, — (W - Vi, vi)o,

+(ay - Vu*,vp)g, + (u” - Vﬁhﬂ’h)gt] + Ai((on,un), (Th, Vh))

(3.10) —2a(pn,V-vir)a, = (£,(vh,7h))a, Y(vh,7h) € Uy x Iy,
where
~ ou* % *
(311 (F.(v.T)a =20 (F,v)a, —p (5 |y +(" = w)- Vu',v
(oM
- 21~ 2)(D(), D) | + 20 (D). 7)o
A conditional energy estimate for the solution of the semcrkte problem3.9—(3.10 is
derived in the next theorem.

THEOREM 3.1. If AM satisfiesl — 4\M > 0, a solution to the problen(3.9—3.10
satisfies the bound

(3.12) aplfi

A e
b + 1ol + 200 - )G} [ 1D, ds
1—4AM [! A .
+7/ lonl2a, ds+7/ / (0" = wa) - n)|oal? dT; ds
2 0 2 0 JI'y

~ A
< aplnollog, + 5lonollie,

i ou*
+C/ fll%, 0, + H
; (I R o vl

whereuy, o, oo are interpolants ofiy ando in Uy, o, 3y, o, respectively.

Proof. In (3.7)—(3.8) we letT;, = ;, v, = ¢;, where,, ¢; are basis functions for
¥+ andUy, ., respectively in8.1). Unlike a standard fixed domain problem, the choice of
vy, = uy (or 7, = o) is not generally acceptable becauggandv;, may have a different
time evolution in the time derivative tern3%]. If we multiply (3.8) by u;(¢) and summing
over/Nz, the time derivative term becomgie% ﬂi(t)%(ﬁh, vi)a, and, using8.1), vy in
all other terms can be replaced fiy. We obtain from 2.17), (3.1) that

2

+ ||U*Hz1l,szt + ||11*||%,sz,,> ds,
0,2

Z ﬂi(t)%(ﬁh,%)ﬂt = Z [i(ﬁhaai(t)ipi)ﬂt — (p, d&;t(t) sﬂi)szt]

ieENG ieENG

d . ~ - du;(t

= LG, 3w, — @ S W,
dt ) _ dt

’LGNﬂ ZGNﬂ

d, . - ~ O(u; (t)p;

= %(Uh;uh)Qt — (U, Z % ly)e,

IEN{;

d - Ouy

= aHﬁhHg,nt — (ap, e ly)ey -
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Since(ii, 25 Iy)sz = 1A% | 1), by (218,

- 1d, . 1 ~
(3.13) GZJW wi(t uha%) @HuhHg,Qt - §dtH h||o o T §(uh(V W), Up)Q,
1d 1

2dt||~hHoszt 2(ﬁh(v ’ Wh),ﬁh)sz,, .

By the same argument, we get

d 1d 1
14 3 a0 (na = gglolia + 5on(T Wi

Therefore, using4.11), (2.16), (3.2, (3.3), (3.5, (3.6), (3.9, (3.13, and (.14, equation
(3.10 implies that

1d
@15) A|5 g lonlRo, + (0" = w) manon,

2
oo (1 a1 N I o
+2ap| 5o lunloe, — 5@V W), Wn)a, — (Wi - Vi, Un)e, — ellunlliq,

+ (L= 4AM) o3 o, +4a(l — )C2[]2 g, < (£, (@ 0n))a,
By the Cauchy-Schwarz inequality, Young’s inequalig;10 and 3.4),

2

ou*

(3.16) (£, (Hn,0n))o, < C ot ||,

1210, + \

+ i g, + IIU*iQ,,]
2

+o1 87 o, + dallond o, -

for arbitraryd;, 02 > 0. Now the estimates3(15), (3.16) and the identity

-~ 1 -~
(wp - Vg, up)a, = —5((V “Wp))Up, Un)a,
imply that
d Ad 2 2 = N2
Oépa + 5@“"%”0,(% + (4a(1 - Q)Cp — 2a pe — 51)”D(uh)H0,Qt
+ (1= 4AM = 63)lonlf 0, + 5(((11* — W) n)op, 0h)r,
2 au* ? * (14 * (|2
<C|If[Z1 0, + o + a1 .q, + 01 q,
0,92

The bound 8.12) follows by lettinge = % 61 = ¢, 6, = =M and integrating

over (0, ). 0
REMARK 3.2. Note that the boundary integral B.12),

/ ((u” —wy) - m)[os[? dT,
I

is nonnegative ifu* — wy) - n > 0. Sinceu* — wy, represents the relative velocity of the
fluid, under the assumption of a homogeneous stress camditithe inflow boundary, where
(u* — wy) - n < 0, this term may be deleted. Therefore, an unconditionallgtabstimate
can be obtained. This is also the case for the stability estim@.6) below, of the fully
discretized problem by a first-order scheme.
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4. Time discretization. In the implemention of the ALE method there is a condition
on the time integration scheme, referred to asgbemetric conservation lagGCL), which
is considered to be related to the consistency of numeraatisns b, 15, 16, 32]. The
GCL requires a numerical time discretization scheme to kEitawa uniform flow exactly on
a moving domain. The GCL in the finite element ALE frameworggests that a quadrature
rule should be chosen so that the time integration

tn+1 tn+1
(4.1) / vy, d) — / vy, dQ) = / / vV - wy dQdt ~ / p(s) ds
Qi1 Qyn tn Q4 tn

is performed exactly, whene(t) is a polynomial for € [t", "] of degreek x d — 1, where

d is the dimension35]. For example, a quadrature formula with the degree of precil

or higher satisfies the GCL = 2 and piecewise linear elements are used for the ALE
mapping¥,. Thus, the mid-point rule or the trapezoidal rule satisfie$)(

It was reported in %3] that when a temporal discretization not satisfying the GEL
applied to a moving mesh problem, its accuracy may not begisds the scheme on a fixed
domain. The authors also pointed out that a higher-ordehadehot satisfying the GCL
tends to lose more accuracy than a lower-order method. Hawihe effect of the GCL on
stability was not clearly verified analytically and numaitig. Some other studies on the GCL
condition applied to the ALE finite element formulation atsm be found ing, 16].

We will investigate the stability of fully discretized sgshs by first-order and second-
order methods, respectively. Throughout this section waillfo denoteu}’, an approxima-
tion of uy, ("), to simplify our notation. The standard first-order meth@diven below.

ALGORITHM 4.1 (First-order non-GCL)Find (o™, u" ", pntl) satisfying

A [(0'"“,7')@n+1 — (o™, T)Qtn:| + AAt [c(ﬁ”"‘1 —whth 0'"+1,T)Qtn+1
o™ o™ g, (0" (T W), T
+(ga(o-n+17 Vbn+1)’ T)Qthrl]
+At [(CJ'"H,T)QM+1 — 2a(D(1~1"+1), T)a

= 20 At(D(uw*" ), T)q

tn+1

z"+1]
VT € Eh,ta

tnt+l
P [(ﬁn+1’v)ﬂt71+l _ (ﬁn7V)Qt7L:| + Atp [b(ﬁn—&-l, ﬁn+1’v)Q,n+1
—@tYV Wt v — (wrttovart v
( ) Qyny1 ’ &
+(ﬁn+1 . Vu*n+1, V)Qtn+1 + (u*n+1 . Vﬁn-‘rl’ V)Qtn,+1:|
+At[2(1 - o) (D@, D(v))a,. ., + (6™, D(v))q
_’_(pn-l-l7 V- V)Qthrl]

¢l
¢+l

1l

:A{@WHwQ

8u* n+l1 1 1
p (G5 e vy )

Qint1

_QO—QXDmMH%D@ﬁ%HJVVEUm,

(¢, V-u" Mg, =0 Vg€ Qny.
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The above scheme, however, does not sat&fi) (If we apply the mid-point rule

tn+1

(42) / Vp dQ) — Vp dQ = / th - Wp dQ dt
Qn+1 Qun tn Q

%At/ vV - wy, ds
Q

1
tn+ 3

for time integration, the first-order scheme is given below.
ALGORITHM 4.2 (First-order GCL)Find (o™ *!,u™*!, p"*1) satisfying

4.3) A [(c‘r"“,r)gt"+1 — (", 'T)Qtn:|

~ 1
FAAL {C(unJrl _ Wn+2 , 0,n+17 T)Q + C(u*n+1’ o,n+1’ T) .

Qt"+§

+ (ga (@™, VDY), T)g

1
oIt

n n 1
—(o +1(V-w +2)’T)Qt"+% thF%}
+AL[(e" e, = 20D, o |
3 oty
= 20 At(D(uw*" ), 7)

10
ot

(@4)  p[@ Vg, — @ V), ]+ Atp[pE LT V0

@V W) V), = (Wi vETT v)g

1
ot

T VE v)g

1
ot

+(ﬁn+1 . Vu*n+1,v)9 "
t

+AH2(1 = o) (D@, DW)a \ + (@, DV,
]

1 1
+3 e

+(p" T, Vv

1
P

= At |:(fn+é s V)Q

1
tn+§

811* ntl 1 1 1
ot 0 .

A

—2(1 — a)(D(u*n+1)7D(V))Qt"+J )
(4.5) (¢, V-u"")g =0,

1
tn+ 3

for all (T,V,q) S Eh7t X Uh,t X Qh7t'
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THEOREM4.3. A solution to the fully discretized systéi3)—(4.5) satisfies the inequal-
ity

A ~
@8 Slo" g, +apli

2
1,941

" - 1—4\M
+ALY [zau —a)C2a 3 T — T |lo't!

2 H(z),Q i+l
i=0 v

A S 141 i+1 i+1)2
+At2§%/ﬂ+l<<u — W) m)|e 2 dr
1= tz 5

< 5llo’l5.0, + anl@li

n 2

i+12
+CALY [Hf +3 |\_1,Qti+% + ‘

=0

ou* ittt
at |y

0,9 .1
it3

2
P ]

Proof. LettingT = o”*!, v = u"*! andg = p"*' in (4.9—(4.5), we obtain

Hu g, A
Titg

@) o™ R, +20plT 2
+A AL [c(ﬁ""‘1 - w"+%,0'"+1,0'"+1)9 il
t

+C(u*n+1’ Un+1, o_n+1) _ (o.n+1(v . wn+%)’ o.nJrl)

Qtn+% :|

— @YV W E) A g

1
e

+2Atap [b(ﬁ”“, @),

m+h s
—(w”+% VAt ﬁnH)Qtw% + (ﬁn+1 . Vu*nﬂ7 ﬁn+1)9tn+%
+(u*"+1 vantt, ﬁnH)Q,"%}
AL At((O'"Jrl, ﬁn+1)7 (0'”+1, ﬁn+1))9tn+%
=Mo", 0™ )g, + 2ap(@", @ a,. + At (F3, (oY) e

where ("2, (u", o 1))q ... Iis defined as3.11). By (2.11), (3.2, (3.9, (3.6), we
have '

(4.8) C(ﬁn+1 _ Wn—i—%’o_n—&-l’ o_n—&-l)QtTH—% + (u*n+17 n-l-l7 o_n-l-l)Q .
' ¢

_(a.n-i-l (v ’ WTH_%)? UH—H)Q 1

T2
1 1
> Lo (v Wt e g
1
+§((<u*n+1 - WTH—%) : n)a-n+17 a-n+1)F nt+dl
)
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and

(49) b(ﬁn+1, ﬁn—o—l’ ﬁn+l)Q _ (ﬁn+l(v . Wn+%), ﬁn+1)Q

1 1
T2 g

1 ~ ~ ~ 1 ~
_ (W"+2 . vun+17un-‘,-1)Q » + (un+1 . Vu*nJr 7un-‘,—l)ﬂ N
P nTy

+ (u*n+1 . vﬁnJrl’ ﬁn+1)Q

1, . ~ ~
> —5(11%1(V wE) g L et
t 2

1
It

I)Qt"+% '

Therefore, using4.16), (4.2), (4.8) and @.9), we obtain a lower bound for the left hand
side of @.7):

(4.10) LHS>

| >

+12 +12
lle™ 3., + o™ g,

+ap [l 3, ., — 82,

2

+ (4a(1 — a)C2 — 2ape)[F ]2

+ At [(1 —AAM)|le" T F o s o
t 2 2

A n
+ At 5(((11* +1 Wn+1) . n)o,'rL—i-l’o,n—i-l)F

ntd

On the other hand, we have an upper bound for the right sidé.df fy (2.10), (3.4), the
Poincage inequality and Young’s inequality:

A A ~ ~
(411) RHS< Jlo"[§q,. + Sllo" G0, + anlld"[Fq,. +apla™ g,

2

+C At

9 *n+1
Hf éH—lQ
R 1

ot |y

07Qtn+%

+ ot

4 s«n+1(2
1,Qtn+% +Jlu Hl’Qt"*J

+ala e, + el .
t 2

1
tn+§

for 6, 8, > 0. Choosinge = 2=%% 5 _ ¢ 5, — 1= e get from 4.10—(4.1)

20p+1
that

2
0,2, n11

n+1

+aplE 2,

A
(412) Zlo™*
1—4\M

+1
+ n
+3 2

+AL [20(1 — ) CH[a" 3 . lo
t

2
Bo s
A
T e O L
2 e
Hur "t
%

2

A - 1
< §||U"||szztn +apla™g, +CAE|E"FE2 L+

T

O7Qtn+%

+1
e,
t

*n+12
LR ]
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Summing over all times steps id.(2), we obtain £.6). a

Next, we consider the second order scheme based.@n (
ALGORITHM 4.4 (Second-order GCLFind (o™, a1, pnt!) satisfying

(4.13)\ [(0n+1 o, (0" T)Qtn}

n+1 n+1 n
+AAt|e +u Wn+%,a 2+U vT>
2 ntd
1 o.n—i—l o" o.n-&-l o™
+e (“*n+5»+ ’T> N ( 2 (V'WM;)’T)
2 Qthr% 2 Slthr%
0.n+1 + o 1
(o (= ).
Qt"Jr%
n+1 n ~n+1 ~n
+At (U d ,'r> —2a<D<u tu ),T)
2 a 2 a

P 13

=2« At(D(u*n—i_%),T)Q 1 VT e X,
ntl

(4.14) »p [(~n+1 V)Qt'rz+1 - (ﬁth)Qtn:I

Sn+1 o gn+tl on
+Atp | b u +u7u —|—u7v
2 2 Q 1
n+
~n+1 =n ~n—+1 =n
(e tw (V-W"+%),v — W"+%~V7u tu ,V
2 Q 1 2 Q 1
ot T3
~n+1 ~n 7nt+1
+ (u T ~Vu*n+;,v> + (u*n+2 vy +tu ,v)
2 Qf"Jrl 2 an+%
~n—+1 =n n+1 n
At 20— o) (D (20 Dy (7 b
2 Q i 2 Q 1
s s
+(pn+1’ V- V)Q . 1
P
1 au* n+% n+1 1 n+i
=At|(f"" 2 v)qg , —p | = ly +(*" "2 —w"t2) . Vut" e v
1,"+§ 6t
Qt"*%
—2(1 — Oz)(D(u*nJr%),D(V))Q +1‘| vve U,
T2
~n+1 ~n
(4.15) (q, v % =0 YgE Q.
Q

1
g
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A conditional stability result for Algorithmt.4 is obtained by the same approach as in
the proof of Theorerd.3. The discretized time derivative terms can be estimateti@srsin
[32] for the Navier-Stokes equation. We present the resultauitia proof.

THEOREM 4.5. A solution to the fully discretized systé€h13—(4.15 satisfies the in-
equality

Mo S 0,y + 2008 T g,

1
n
. . 1—4\M . :
—l—AtZ {20((1 — oz)CEHuH'1 + uZ||iQ . + THU“rl + o’ (2),9 el
i=0 v v
n )\
. o ) ,
+At Z - / ((u*z+1 —WH_E) . n)‘o,z—i—l _,'_0,1‘2 dr i1
i=0 4 LAY '
t 2
i+l A i+1 i2 | OP\~it1 ~ip2
- (VW 2) *lO’ —O'l +7|u _ul d§d ;.1
Q1 4 2 v
itz
02 ~0)12 - i+ 3|2 u* i
< Moo l15,0, + 2ap(0”|I7 o, +CAtZ 1£72 )21 0 w1 T 5 lby
i=0 e 0,Q
SLREES

i+ 14 it32
Ha a0 ]

5. Numerical results. In this section we present numerical results of two exparmisie
for the model equations

(5.1 a’+)\<6az+u'Vo'+ga(0',Vu)> —2aD(u)=1f; inQ,

p(aal;+u~Vu) -V.-o0-2(1-a)V-D(u)+Vp=1»fy inQ,

divu=0 inQy.

Although the model equations were analyzed with the lirzeald, term in 6.1) and the ho-
mogeneous stress boundary condition was assumed to gittig@i&nalysis, we approximated
the model equations in the standard setting without suchlgioations.

The first experiment is to investigate convergence of allgors with decreasing grid
sizes and time steps. The second experiment is designest gidbility of the algorithms.

Experiment 1. Numerical experiments were performed using a non-physicample prob-
lem with a known exact solution. The initial domain is choseif)y = {y : y € [0,1] x
[0,1]} att = 0 and the domain thereafter is defined by

(5.2) O = {x:21 =y1 (2 —cos(nt)), 2 = y2 (2 — cos(wt)) fory € Qo}.

Using the parameters = 0.5, « = 0.5, a = 0, the right hand side function, f; were
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appropriately given so that the exact solution is
10sin(27t + )22 (1 — 1)229(222 — 1) (29 — 1)
u = . 2 2
—10sin(27t + 2)z5(ze — 1)%21 (221 — 1) (21 — 1)
p = sin(wt + 2) cos(2mxq )xa (e — 1)

. [ 011 012 ]
o =
021 022
in the initial domain, wherer;; = 10sin(2nt + 1)23(z1 — 1)222(222 — 1)(z2 — 1),
012 = 091 = —1OSin(27Tt + 2)[];‘%(1’2 — 1)2331(21'1 — 1)(:61 — 1) and022 = 0. To ap-
proximate the flow equations, we used the Taylor-Hood pairfop) and discontinuous

piecewise linear elements fer. Since the domain is defined by.p), we used the exact ALE
mapping. The exact domain velocity given by

_ [wymsin(nt)  womsin(nt) r
|2 —cos(mt)” 2 — cos(t)

(5.3)

In the first test, we computed the?, H' errors of velocity, and th&? error of stress
using the fixed number of elements generated &§>a26 uniform grid and various time steps
At =2 1 L L L L With the number of elements chosen, we expected the eoors t
be dominated by the time step when lafyevalues are used. Results by Algoritlh? and
Algorithm 4.4 are summarized in Table.1 and Table5.2, respectively. Errors calculated
by Algorithm 4.2 converge superlinearly, and the convergence rates forriftgo 4.4 are
higher than for Algorithn¥.2 (as expected). Thé&? errors of the velocity show quadratic
convergence.

In the second test we computed velocity and stress errongafavus grid sizes with a
small fixedAt¢ so that the finite element discretization error dominategdtal error. The er-
rors computed on different meshes usihg= ﬁ are presented in Tabe3and Table.4.
Baranger and Sandr2] derived the finite element error estimate for the model &gonain a
fixed domain as

lo = anllo + 1 D(w) = D(up)llo < CH*2,
for the (P, P1, Pi p) (Taylor-Hood, discontinuous linear) elements.

TABLE 5.1
Errors of velocity and stress by Algorithin2for ¢ = 0.4.

velocity stress
At L? error L?rate  H'error Hlrate| L2 error L? rate
1/2.5 | .1090 - 10—2 48771072 1310-1072

1/5 | .5140-107% 111 .1974-107%  1.30 | .5539-1072  1.24
1/10 | .1820-10"% 150 .6523-10~%  1.30 | .1683 1072  1.72
1/15 | .1019-107% 143  .3801-107%  1.33 | .9393-10% 1.44
1/20 | .6905-10"* 1.35 .2673-107%  1.22 | .6404-10*  1.33
1/30 | .4114-10-* 1.28 .1670-107%  1.16 | .3822-10"* 1.27

Experiment 2. In this experiment we investigated the numerical stabdityAlgorithm 4.2
and Algorithm4.4. In this test, a nonzero initial velocity and stresgr are prescribed (at
t = 0), and the right-hand side functioffis f, of the equations are set @ and the moving
domain boundary is assumed to follow the same specificatigiven in Experiment 15(.3).
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TABLE 5.2
Errors of velocity and stress by Algorithind for ¢ = 0.4.

velocity stress
At L? error L?rate  H'error H'rate L? error L? rate
1/2.5 | 13121072 55751072 1706 - 1072

1/5 | .3172-107%  2.05 .1638-1072  1.77 | .6081-10"3  1.48
1/10 | .6250-10"*  2.34 .2798-10=* 255 | .1300-1073  2.23
1/15 | .2674-107*  2.09 .1437-107*  1.64 | .5559-10~*  2.10
1/20 | .1490-107*  2.03 .9515-10%  1.44 | .3380-10"* 1.73
1/30 | .6783-107°  1.94  5815-10%  1.21 | .2872-10"*  0.40

TABLE 5.3
Errors of velocity and stress by Algorithn2for ¢ = 0.2.

velocity stress
grid L?>error  L?rate H'error H'rate| L2?error L?rate
3x3 |.2645-1071 .3244-1073 28531073

5x5 | .8043-107° 1.72 .1291-1073 1.33 | .8307-107* 1.78
O9x9 |.1859-10"° 2.11  .2477-107% 2.38 | .1960-10"*  2.08
13 x 13| .1139-107° 1.21  .1112-10~* 1.98 | .8538-107°  2.05
17 x 17 | .9111-10~S 78 7286 -107° 1.47 | 4681-10~°  2.09

TABLE 5.4
Errors of velocity and stress by Algorithnd for ¢ = 0.2.

velocity stress
grid L?error  L?rate H'error H'rate| L?error  L?rate
3x3 | .2778-107* 3483 -1073 34131073

5x5 | .9417-107° 156 .1570-10"%  1.15 | .1006-10"%  1.76
9%x9 | .1455-107° 2.69 .2544.10"* 263 | .2172-107* 2.21
13x 13 | .6049-10-¢ 216 .1230-10~* 1.79 | .1002-10~* 1.91
17 x 17 | .3916-107% 151  .6256-107° 235 | 6734-107° 1.38

If a # 1 and if A and M are not too large (as required by Theorefm3and4.5), as time
proceeds beyond the initial value, the solution componardsd o are expected to decay,
eventually leading tju||1 o, = ||ol0,o, = 0. Provided the algorithms presented in Section
are stable, the computed approximations should decay ds We divergence-free initial
velocity, shown in Figur&.1, is given by

10(z} — 223 + 22) (223 — 323 + )
—10(22% — 323 + x1) (23 — 223 + 23) |’

the initial stress isr = 2a.D(u), and the initial pressure is = 0. We use the parameter
valuesa = 0 anda = 0.5. Computations were performed on a uniform mesh with ini-
tial width » = 1/8 and time-stepA¢t = 0.025 for the values\ = 0.1 and X = 1.0, and
were allowed to continue until the nornijsl||1.o, and| oo, were sufficiently small. A
plot of these norms of solution components as time progseissgiven for each value of

in Figures5.2 and5.3, respectively. As is observed in the plots, the computedaqma-
tions do decay for both methods. Note that for largethe numerical stability degrades,
due to the fact that the hypothedis- 4M X\ > 0 of Theorems4.3 and4.5is violated, as
M > ||[Vugl|s = 0.625.
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FiG. 5.1.Initial velocity profile, Experiment 2.

Norms of Computed Approximations, A = 0.1
0.16
T T

= = =Velocity H* norm, First-order method
“““ Velocity H norm, Second-order method ||
—— stress L? error, First-order method

‘== Stress L? error, Second-order method

0.5 1 15
Time

FiG. 5.2.Norms of computed approximations—= 0.1.

Norms of Computed Approximations, A = 1.0
0.25
T T T

T T
—— Stress L? norm, First-order method
‘== Stress L? norm, Second-order method
= = =Velocity H norm, First-order method
“““ Velocity H' norm, Second-order method ]

FiG. 5.3.Norms of computed approximations—= 1.0.
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6. Concluding remarks. We have presented a rigorous stability analysis of a finite el
ement method for the ALE formulation of viscoelastic flowsanmoving domain. There
have been numerical results reported on viscoelastic flovdgformable domains or fluids
coupled with elastic solids. However, there are few anedytstudies in literature for such
problems. This is our initial effort towards an analyticatlenumerical study of viscoelastic
flows in an elastic solid structure. Our numerical tests suppe analytical stability results,
and suggest that the mesh convergence result for a fixed dgrablem may still hold in the
case of moving domain problems. Subsequent work will furtteyelop the fluid-structure
interaction model and include numerical experiments thatdesigned to determine if the
fluid model significantly affects the behavior of the coupdgdtem.
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