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DISCONTINUOUS GALERKIN METHODS FOR THE P -BIHARMONIC
EQUATION FROM A DISCRETE VARIATIONAL PERSPECTIVE ∗

TRISTAN PRYER†

Abstract. We study discontinuous Galerkin approximations of thep-biharmonic equation forp ∈ (1,∞) from
a variational perspective. We propose a discrete variational formulation of the problem based on an appropriate
definition of a finite element Hessian and study convergence ofthe method (without rates) using a semicontinuity
argument. We also present numerical experiments aimed at testing the robustness of the method.
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1. Introduction, problem setup, and notation. Thep-biharmonic equation is a fourth-
order elliptic boundary value problem related to—in fact a nonlinear generalisation of—the
biharmonic problem. Such problems typically arise in elasticity; in particular, the nonlinear
case can be used as a model for travelling waves in suspensionbridges [15, 19]. It is a
fourth-order analog to its second-order sibling, thep-Laplacian, and, as such, is useful as a
prototypical nonlinear fourth-order problem.

The efficient numerical simulation of general fourth-orderproblems has attracted recent
interest. A conforming approach to this class of problems would require the use ofC1-finite
elements, the Argyris element for example [7, Section 6]. From a practical point of view,
this approach presents difficulties in that theC1-finite elements are difficult to design and
complicated to implement, especially when working in threespatial dimensions.

Discontinuous Galerkin (dG) methods form a class of nonconforming finite element
methods. They are extremely popular due to their successfulapplication to an ever expanding
range of problems. A very accessible unification of these methods together with a detailed
historical overview is presented in [1].

If p = 2, we have the special case that the (2–)biharmonic problem is linear. It has
been well studied in the context of dG methods, for example, the papers [14, 22] study the
use ofh-p dG finite elements (wherep here means the local polynomial degree) applied to
the (2-)biharmonic problem. To the authors knowledge, there is currently no finite element
method posed for the generalp-biharmonic problem.

In this work we use discrete variational techniques to builda discontinuous Galerkin
(dG) numerical scheme for thep-biharmonic operator withp ∈ (1,∞). We are interested
in such a methodology due to its application to discrete symmetries, in particular, discrete
versions of Noether’s Theorem [24].

A key constituent to the numerical method for thep-biharmonic problem (and second-
order variational problems in general) is an appropriate definition of the Hessian of a piece-
wise smooth function. To formulate the general dG scheme forthis problem from a variational
perspective, one must construct an appropriate notion of a Hessian of a piecewise smooth
function. Thefinite element Hessianwas first coined by [2] for use in the characterisation
of discrete convex functions. Later in [20] it was employed in a method for nonvariational
problems where the strong form of the PDE was approximated and put to use in the context of
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fully nonlinear problems in [21]. A generalisation of the finite element Hessian to incorporate
the dG framework is given in [10], which we also summarise here for completeness.

Convergence of the method we propose is proved using the framework set out in [11],
where some extremely useful discrete functional analysis results are given. Here, the authors
use the framework to prove convergence of a dG approximationto the steady-state incom-
pressible Navier-Stokes equations. A related but independent work containing similar results
is given in [6], where the authors study dG approximations to generic first-order variational
minimisation problems.

The rest of the paper is set out as follows: in the remaining part of this section, necessary
notation and the model problem we consider are introduced. In Section2 we give some
properties of the continuousp-biharmonic problem. In Section3 we give the methodology
for the discretisation of the model problem. In Section4 we detail solvability and convergence
of the discrete problem. Finally, in Section5 we study the discrete problem computationally
and summarise numerical experiments.

Let Ω ⊂ R
d be a bounded domain with boundary∂Ω. We begin by introducing the

Sobolev spaces [7, 13]

Lp(Ω) =

{
φ :

∫

Ω

|φ|p < ∞

}
for p ∈ [1,∞) and L∞(Ω) = {φ : ess supΩ |φ| < ∞} ,

W l
p(Ω) = {φ ∈ Lp(Ω) : Dαφ ∈ Lp(Ω), for |α| ≤ l} and H l(Ω) := W l

2(Ω),

which are equipped with the following norms and semi-norms:

‖v‖pLp(Ω) :=

∫

Ω

|v|p ,

‖v‖pl,p := ‖v‖pW l
p(Ω) =

∑

|α|≤k

‖Dαv‖pLp(Ω) ,

|v|pl,p := |v|pW l
p(Ω) =

∑

|α|=k

‖Dαv‖pLp(Ω) ,

‖v‖2l := ‖v‖2Hl(Ω) = ‖v‖2W l
2
(Ω) ,

whereα = {α1, . . . , αd} is a multi-index,|α| =
∑d

i=1 αi, and the derivativesDα are
understood in a weak sense. We pay particular attention to the casesl = 1, 2 and define

◦

W 2
p(Ω) :=

{
φ ∈ W 2

p (Ω) : φ =(∇φ)
⊺
n = 0

}
.

In this paper we use the convention that the derivativeDu of a functionu : Ω → R is a
row vector, while the gradient ofu, ∇u, is the derivatives transposed, i.e.,∇u = (Du)

⊺. We
make use of the slight abuse of notation following a common practice whereby the Hessian
of u is denoted asD2u (instead of the correct∇Du) and is represented by ad× d matrix.

LetL = L
(
x, u,∇u,D2u

)
be theLagrangian. We let

J [ · ; p] :
◦

W 2
p(Ω) → R

φ 7→J [φ; p] :=

∫

Ω

L(x, φ,∇φ,D2φ) dx

be known as theaction functional. For thep-biharmonic problem, the action functional is
given explicitly as

J [u; p] :=

∫

Ω

L(x, u,∇u,D2u) =

∫

Ω

1

p
|∆u|p − fu,
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where∆u := trace
(
D2u

)
is the Laplacian andf ∈ Lq(Ω) is a known source function. We

then look to find a minimiser over the space
◦

W 2
p(Ω), that is, to findu ∈

◦

W 2
p(Ω) such that

J [u; p] = min
v∈

◦

W 2
p(Ω)

J [v; p].

If we assume temporarily that we have access to a smooth minimiser, i.e.,u ∈ C4(Ω),
then, given that the Lagrangian is of second order, we have that the Euler-Lagrange equations
are (in general) of fourth order.

LetX:Y = trace(X⊺Y ) be the Frobenius inner product between matrices. We then let

X =



x1
1 . . . xd

1
...

. . .
...

x1
d . . . xd

d




and use

∂L

∂(X)
:=



∂L/∂x

1
1 . . . ∂L/∂x

d
1

...
. ..

...
∂L/∂x

1
d . . . ∂L/∂x

d
d


 .

The Euler-Lagrange equations for this problem now take the following form:

L [u; p] := D2 :

(
∂L

∂(D2u)

)
+

∂L

∂u
= 0.

These can then be calculated to be

(1.1) L [u; p] := ∆
(
|∆u|p−2

∆u
)
− f = 0.

Note that forp = 2, the problem coincides with the biharmonic problem∆2u = f, which is
well studied in the context of dG methods; see, e.g., [3, 14, 16, 25].

2. Properties of the continuous problem.To the authors knowledge, the numerical
method described here is the first finite element method presented for thep-biharmonic prob-
lem. As such, we will state some simple properties of the problem which are well known for
the problem’s second-order counterpart,thep-Laplacian[4, 7].

PROPOSITION 2.1 (Equivalence of norms over
◦

W 2
p(Ω) [17, Corollary 9.10]). Let Ω

be a bounded domain with Lipschitz boundary. Then the norms‖·‖2,p and
∥∥D2·

∥∥
Lp(Ω)

are

equivalent over
◦

W 2
p(Ω).

PROPOSITION2.2 (Coercivity ofJ ). Letu ∈
◦

W 2
p(Ω) andf ∈ Lq(Ω), where1

p+
1
q =1.

We have that the action functionalJ [ · ; p] is coercive over
◦

W 2
p(Ω), that is,

J [u; p] ≥ C |u|p2,p − γ ,

for someC > 0 andγ ≥ 0. Equivalently, let

A (u, v; p) =

∫

Ω

|∆u|p−2
∆u∆v,

then there exists a constantC > 0 such that

(2.1) A (v, v; p) ≥ C |v|p2,p ∀ v ∈
◦

W 2
p(Ω).
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Proof. By definition of the
◦

W 2
p(Ω)-norm and Proposition2.1, we have that

J [u; p] ≥ C(p) |u|p2,p − fu .

Upon applying Ḧolder and Poincaré-Friedrichs inequalities, we see that

J [u; p] ≥ C(p) |u|p2,p − ‖f‖Lq(Ω) ‖u‖Lp(Ω)

≥ C(p) |u|p2,p − C ‖f‖Lq(Ω) .

The statement (2.1) is clear due to Proposition2.1, which concludes the proof.

PROPOSITION2.3 (Convexity ofL). The Lagrangian of thep-biharmonic problem is
convex with respect to its fourth argument.

Proof. Using similar arguments to [7, Section 5.3] (also found in [5]), the convexity of
the functionalJ is a consequence of the convexity of the mapping

F : ξ ∈ R →
1

p
‖ξ‖p .

COROLLARY 2.4 (Weak lower semicontinuity).The action functionalJ is weakly

lower semicontinuous over
◦

W 2
p(Ω). That is, given a sequence of functions{uj}j∈N which

has a weak limitu ∈
◦

W 2
p(Ω), then

J [u; p] ≤ lim inf
j→∞

J [uj ; p].

Proof. The proof of this statement is a straightforward extensionof [13, Section 8.2,
Theorem 1] to second-order Lagrangians noting thatJ is coercive (from Proposition2.2)
and thatL is convex with respect to its fourth variable (from Proposition 2.3). We omit the
full details for brevity.

COROLLARY 2.5 (Existence and uniqueness).There exists a unique minimiser to the
p-biharmonic equation. Equivalently, there is a unique (weak) solution to the (weak) Euler-

Lagrange equations: findu ∈
◦

W 2
p(Ω) such that

∫

Ω

|∆u|p−2
∆u∆φ =

∫

Ω

fφ ∀ φ ∈
◦

W 2
p(Ω).

Proof. Again, the result can be deduced by extending the argumentsin [13, Section 8.2]
or [7, Theorem 5.3.1], noting the results of Propositions2.2 and2.3. The full argument is
omitted for brevity.

3. Discretisation. Let T be a conforming, shape regular triangulation ofΩ, namely,T
is a finite family of sets such that

1. K ∈ T impliesK is an open simplex (segment ford = 1, triangle ford = 2,
tetrahedron ford = 3),

2. for anyK,J ∈ T we have thatK ∩ J is a full subsimplex (i.e., it is either∅, a
vertex, an edge, a face, or the whole ofK andJ) of bothK andJ and

3.
⋃

K∈T
K = Ω.

The shape regularity ofT is defined as the number

µ(T ) := inf
K∈T

ρK
hK

,
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whereρK is the radius of the largest ball contained insideK andhK is the diameter ofK.
An indexed family of triangulations{T n}n is calledshape regularif

µ := inf
n

µ(T n) > 0.

We use the convention thath : Ω → R denotes the piecewise constantmeshsize function
of T , i.e.,

h(x) := max
x∈K

hK ,

which we shall commonly refer to ash.
Let E be the skeleton (set of common interfaces) of the triangulation T , and we say that

e ∈ E if e is on the interior ofΩ ande ∈ ∂Ω if e lies on the boundary∂Ω and sethe to be the
diameter ofe.

We also make the assumption that the mesh is sufficiently shape regular such that for
anyK ∈ T , we have the existence of a constant such that

(3.1)
∑

e∈∂K

he |e| ≤ C |K| ,

where|e| and|K| denote the(d−1)- andd-dimensional measure ofe andK, respectively.
Let Pk(T ) denote the space of piecewise polynomials of degreek over the triangula-

tion T , i.e.,

P
k(T ) =

{
φ such thatφ|K ∈ P

k(K)
}
,

and introduce thefinite element space

V := DG(T , k) = P
k(T )

to be the usual space of discontinuous piecewise polynomialfunctions.
DEFINITION 3.1 (Finite element sequence).A finite element sequence{vh,V} is a

sequence of discrete objects indexed by the mesh parameterh and individually represented
on a particular finite element spaceV, which itself has a discretisation parameterh, that is,
we have thatV = V(h).

DEFINITION 3.2 (Broken Sobolev spaces, trace spaces).We introduce the broken Sobo-
lev space

W l
p(T ) :=

{
φ : φ|K ∈ W l

p(K), for eachK ∈ T
}
.

We also make use of functions defined in these broken spaces restricted to the skeleton of the
triangulation. This requires an appropriate trace space

T (E ) :=
∏

K∈T

L2(∂K) ⊃
∏

K∈T

W
l− 1

2

p (K)

for p ≥ 2, l ≥ 1.
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DEFINITION 3.3 (Jumps, averages, and tensor jumps).We may define average, jump,
and tensor jump operators overT (E ) for arbitrary scalar functionsv ∈ T (E ) and vectors
v ∈ T (E )

d:

{{·}} : T (E ∪ ∂Ω) → L2(E ∪ ∂Ω),

v 7→

{
1
2 (v|K1

+ v|K2
) overE ,

v|∂Ω on∂Ω .

{{·}} : [T (E ∪ ∂Ω)]
d → [L2(E ∪ ∂Ω)]

d
,

v 7→

{
1
2 (v|K1

+ v|K2
) overE ,

v|∂Ω on∂Ω .

J·K : T (E ∪ ∂Ω) → [L2(E ∪ ∂Ω)]
d
,

v 7→

{
v|K1

nK1
+ v|K2

nK2
overE ,

(vn) |∂Ω on∂Ω .

J·K : [T (E ∪ ∂Ω)]
d → L2(E ∪ ∂Ω),

v 7→

{
(v|K1

)
⊺
nK1

+(v|K2
)
⊺
nK2

overE ,

(v⊺n) |∂Ω on∂Ω .

J·K⊗ : [T (E ∪ ∂Ω)]
d → [L2(E ∪ ∂Ω)]

d×d
,

v 7→

{
v|K1

⊗ nK1
+ v|K2

⊗ nK2
overE ,

(v ⊗ n) |∂Ω on∂Ω .

We will often use the following proposition, which we state in full for clarity but whose
proof is merely using the identities in Definition3.3.

PROPOSITION3.4 (Elementwise integration).For a generic vector-valued functionp
and scalar-valued functionφ, we have

∑

K∈T

∫

K

div(p)φ dx =
∑

K∈T

(
−

∫

K

p⊺∇hφ dx+

∫

∂K

φp⊺nK ds

)
.(3.2)

In particular, if p ∈ T (E ∪ ∂Ω)
d andφ ∈ T (E ∪ ∂Ω), the following identity holds

∑

K∈T

∫

∂K

φp⊺nK ds =

∫

E

JpK {{φ}} ds+

∫

E∪∂Ω

JφK
⊺ {{p}} ds

=

∫

E∪∂Ω

JpφK ds.

(3.3)

An equivalent tensor formulation of(3.2)–(3.3) is

∑

K∈T

∫

K

Dhpφ dx =
∑

K∈T

(
−

∫

K

p⊗∇hφ dx+

∫

∂K

φp⊗ nK ds

)
.



ETNA
Kent State University 

http://etna.math.kent.edu

334 T. PRYER

In particular, the following identity holds

∑

K∈T

∫

∂K

φp⊗ nK ds =

∫

E

JpK⊗ {{φ}} ds+

∫

E∪∂Ω

JφK⊗ {{p}} ds

=

∫

E∪∂Ω

JpφK⊗ ds.

(3.4)

The discrete problem we then propose is to minimise an appropriate discrete action func-
tional, that is to seekuh ∈ V such that

Jh[uh; p] = inf
vh∈V

Jh[vh; p].

REMARK 3.5. The choice of the discrete action functional is crucial. A naive choice
would be to take the piecewise gradient and Hessian operators and to substitute them directly
into the Lagrangian, i.e.,

Jh[uh; p] =

∫

Ω

L
(
x, uh,∇huh, D

2
huh

)
.

This is, however, an inconsistent notion of derivative operators (as noted in [6]). Since for the
biharmonic problem, the Lagrangian is only dependent on theHessian of the sought function,
we only need to construct an appropriate consistent notion of a discrete Hessian.

THEOREM 3.6 (dG Hessian [10]). Let v ∈
◦

W 2
p(T ), v̂ : H1(T ) → T (E ∪ ∂Ω) be

a linear form, andp̂ : H2(T ) × H1(T )d → T (E ∪ ∂Ω)
d a bilinear form representing

consistent numerical fluxes, i.e.,

v̂(v) = v|E∪∂Ω p̂(v,∇v) = ∇v|E∪∂Ω,

in the spirit of [1]. Then we define the dG Hessian,H[v] ∈ V
d×d, to be theL2-Riesz

representorof the distributional Hessian ofv. This has the general form
∫

Ω

H[v] Φ = −

∫

Ω

∇hv ⊗∇hΦ−

∫

E∪∂Ω

Jv̂ − vK⊗ {{∇hΦ}}

−

∫

E

{{ v̂ − v}} J∇hΦK⊗+

∫

E∪∂Ω

JΦK⊗ {{ p̂}} +

∫

E

{{Φ}} Jp̂K⊗

∀ Φ ∈ V.

Proof. Note that in view of Green’s Theorem, for smooth functionsw∈C2(Ω) ∩ C1(Ω),
we have

∫

Ω

D2wφ = −

∫

Ω

∇w ⊗∇φ+

∫

∂Ω

∇w ⊗ nφ ∀ φ ∈ C1(Ω) ∩ C0(Ω).

As such for a broken functionv ∈
◦

W 2
p(T ), we introduce an auxiliary variablep = ∇hv

and consider the following primal form of the representation of the Hessian of this function:
for eachK ∈ T ,

∫

K

H[v] Φ = −

∫

K

p⊗∇hΦ+

∫

∂K

p̂⊗ n Φ ∀ Φ ∈ V,(3.5)
∫

K

p⊗ q = −

∫

K

v Dq +

∫

∂K

q ⊗ n v̂ ∀ q ∈ V
d,(3.6)
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where∇h =(Dh)
⊺ is the elementwise spatial gradient. Noting the identity (3.4) and taking

the sum of (3.5) overK ∈ T , we observe that
∫

Ω

H[v] Φ =
∑

K∈T

∫

K

H[v] Φ =
∑

K∈T

(
−

∫

K

p⊗∇hΦ+

∫

∂K

p̂⊗ n Φ

)

= −

∫

Ω

p⊗∇hΦ+

∫

E∪∂Ω

JΦK⊗ {{ p̂}} +

∫

E

{{Φ}} Jp̂K⊗ .

Using the same argument for (3.6) yields
∫

Ω

p⊗ q =
∑

K∈T

∫

K

p⊗ q =
∑

K∈T

(
−

∫

K

v Dhq +

∫

∂K

q ⊗ n v̂

)

= −

∫

Ω

v Dhq +

∫

E∪∂Ω

Jv̂K⊗ {{q}} +

∫

E

{{ v̂}} JqK⊗ .

Note that, again making use of (3.4), we have for eachq ∈ H1(T )d andw ∈ H1(T )
that

(3.7)
∫

Ω

q ⊗∇hw = −

∫

Ω

Dhqw +

∫

E∪∂Ω

{{q}} ⊗ JwK +

∫

E

JqK⊗ {{w}} .

Takingw = v in (3.7) and substituting into (3.6), we see that

(3.8)
∫

Ω

p⊗ q =

∫

Ω

q ⊗∇hv +

∫

E∪∂Ω

Jv̂ − vK⊗ {{q}} +

∫

E

{{ v̂ − v}} JqK⊗ .

Now choosingq = ∇hΦ and substituting (3.8) into (3.5) concludes the proof.
EXAMPLE 3.7 ([10]). An example of a possible choice of fluxes is

v̂ =

{
{{v}} overE

0 on∂Ω
, p̂ ={{∇hv}} onE ∪ ∂Ω.

The result is an interior penalty (IP) type method [9] applied to represent the finite element
Hessian

∫

Ω

H[v] Φ = −

∫

Ω

∇hv ⊗∇hΦ+

∫

E∪∂Ω

JvK⊗ {{∇hΦ}} +

∫

E∪∂Ω

JΦK⊗ {{∇hv}}

=

∫

Ω

D2
hvΦ−

∫

E∪∂Ω

J∇hvK⊗ {{Φ}} +

∫

E∪∂Ω

JvK⊗ {{∇hΦ}} .

This will be the form of the dG Hessian which we assume for the rest of this exposition.
DEFINITION 3.8 (lifting operators).From the IP-Hessian defined in Example3.7, we

define the following lifting operatorl1, l2 : V → V
d×d such that

∫

Ω

l1[vh]Φ =

∫

E∪∂Ω

JvhK⊗ {{∇hΦ}} ,(3.9)
∫

Ω

l2[vh]Φ = −

∫

E∪∂Ω

J∇huhK⊗ {{Φ}} .

As such, we may write the IP-Hessian asH : V → V
d×d such that

(3.10)
∫

Ω

H[vh]Φ =

∫

Ω

(
D2

hvh + l1[vh] + l2[vh]
)
Φ ∀ Φ ∈ V,

whereD2
h denotes the piecewise Hessian operator.
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REMARK 3.9. WhenH[·] is restricted to act on functions inV ∩H1
0 (Ω), we have that

∫

Ω

H[vh]Φ =

∫

Ω

(
D2vh + l2[vh]

)
Φ ∀ Φ ∈ V ∩H1

0 (Ω).

This definition coincides with the auxiliary variable introduced in [18] for Kirchhoff plate
problems. In addition, it is the auxiliary variable used in [20, 21] for second-order nonvaria-
tional PDEs and fully nonlinear PDEs.

4. Convergence.In this section we use the discrete operators from Section3 to build a
consistent discrete variational problem and in addition prove convergence. To that end, we
begin by defining the natural dG-norm for the problem.

DEFINITION 4.1 (dG-norm).We define the dG-norm for this problem as

‖vh‖
p
dG,p :=

∥∥D2
hvh

∥∥p
Lp(Ω)

+ h1−p
e ‖J∇hvhK‖pLp(E∪∂Ω) + h1−2p

e ‖JvhK‖pLp(E∪∂Ω) ,

where‖·‖Lp(E∪∂Ω) is the(d− 1)-dimensionalLp-norm overE ∪ ∂Ω.
To prove convergence for thep-biharmonic equation, we modify the arguments given

in [11] to our problem. To keep the exposition clear, we use the samenotation as in [11]
wherever possible.

We state some basic propositions, i.e., a trace inequality and an inverse inequality in
Lp(Ω), the proofs of which are readily available in, e.g., [7]. Henceforth, in this section and
throughout the rest of the paper, we useC to denote an arbitrary positive constant which may
depend uponµ, p, andΩ but is independent ofh.

PROPOSITION 4.2 (Trace inequality).Let vh ∈ V be a finite element function, then
for p ∈ (1,∞) there exists a constantC > 0 such that

‖vh‖Lp(E∪∂Ω) ≤ Ch−1/p ‖vh‖Lp(Ω) .

PROPOSITION4.3 (Inverse inequality).Let vh ∈ V be a finite element function, then
for p ∈ (1,∞) there exists a constantC > 0 such that

‖∇hvh‖
p
Lp(Ω) ≤ Ch−p ‖vh‖

p
Lp(Ω) and

‖vh‖
p
Lp(Ω) ≤ Chp ‖∇hvh‖

p
Lp(Ω) .

LEMMA 4.4 (relating‖·‖dG,s- and‖·‖dG,t-norms). For s, t ∈ N with 1 ≤ s < t < ∞,
we have that there exists a constantC > 0 such that

‖vh‖dG,s ≤ C ‖vh‖dG,t .

Proof. The proof follows similar lines to [11, Lemma 6.1]. By definition of the‖·‖dG,s-
norm, we have that

‖vh‖
s
dG,s =

∫

Ω

∣∣D2
hvh

∣∣s + h1−s
e

∫

E∪∂Ω

|J∇hvhK|s + h1−2s
e

∫

E∪∂Ω

|JvhK|s .

Now let us denoter = t
s andq = r

r−1 , that is, we have1r + 1
q = 1. Hence, we may deduce
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that

‖vh‖
s
dG,s =

∫

Ω

∣∣D2
hvh

∣∣s +
∫

E∪∂Ω

h1/q
e h(1−t)/r

e |J∇hvhK|s +

∫

E∪∂Ω

h1/q
e h(1−2t)/r

e |JvhK|s

≤

(∫

Ω

1q
)1/q(∫

Ω

∣∣D2
hvh

∣∣t
)1/r

+

(
he

∫

E∪∂Ω

1q
)1/q(∫

E∪∂Ω

h1−t
e |J∇hvhK|t

)1/r

+

(
he

∫

E∪∂Ω

1q
)1/q(∫

E∪∂Ω

h1−2t
e |JvhK|t

)1/r

≤ C ‖vh‖
s
dG,t ,

where we have used the Hölder inequality together with

1− s = 1− t
r = 1

q + 1−t
r and 1− 2s = 1− 2t

r = 1
q + 1−2t

r ,

and the shape regularity ofT given in (3.1). This concludes the proof.
DEFINITION 4.5 (Bounded variation).Let V [·] denote the variation functional defined

as

V [u] := sup

{∫

Ω

u divφ : φ ∈ [C1
0 (Ω)]

d, ‖φ‖L∞(Ω) ≤ 1

}
.

The space ofbounded variations, denotedBV, is the space of functions with bounded varia-
tion functional,

BV := {φ ∈ L1(Ω) : V [φ] < ∞} .

Note that the variation functional defines a norm overBV ; we set

‖u‖BV = V [u].

PROPOSITION4.6 (Control of theL d
d−1

(Ω)-norm [12]). Letu ∈ BV . Then there exists

a constantC such that

‖u‖L d
d−1

(Ω) ≤ C ‖u‖BV .

PROPOSITION4.7 (Broken Poincaré inequality [6]). For vh ∈ V, we have that

‖vh‖L1(Ω) ≤ C

(∫

Ω

|∇hvh|+

∫

E∪∂Ω

|JvhK|

)
.

LEMMA 4.8 (Control on the BV norm).We have that for eachvh ∈ V andp ∈ [1,∞),
there exists a constantC > 0 such that

‖vh‖BV ≤ C ‖vh‖dG,p .

Proof. Owing to [11, Lemma 6.2], we have that

(4.1) ‖vh‖BV ≤

∫

Ω

|∇hvh|+

∫

E∪∂Ω

|JvhK| .
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Applying the broken Poincaré inequality given in Proposition4.7 to the first term in (4.1)
gives

‖vh‖BV ≤ C

(∫

Ω

∣∣D2
hvh

∣∣+
∫

E∪∂Ω

|J∇hvhK|+

∫

E∪∂Ω

|JvhK|

)

≤ C

(∫

Ω

∣∣D2
hvh

∣∣+
∫

E∪∂Ω

|J∇hvhK|+ h−1
e

∫

E∪∂Ω

|JvhK|

)

≤ C ‖vh‖dG,1 .

Applying Lemma4.4concludes the proof.
LEMMA 4.9 (Discrete Sobolev embeddings).For vh ∈ V, there exists a constantC > 0

such that

‖vh‖Lp(Ω) ≤ C ‖vh‖dG,p .

Proof. The proof mimics that of the Gagliardo-Nirenberg-Sobolevinequality in [13,
Theorem 1, p. 263]. We begin by noting that Proposition4.6together with Lemma4.8infers
the result forp = 1, i.e.,

‖vh‖L1(Ω) ≤ C ‖vh‖dG,1 .

Now, we divide the remaining cases into the two casesp ∈ (1, d) andp ∈ [d,∞).
Step 1. We begin withp ∈ (1, d). First note that the result of Proposition4.6 together

with Lemma4.8 infer that

‖vh‖L d
d−1

(Ω) ≤ C ‖vh‖dG,1 ∀ vh ∈ V.

Now takingvh = |wh|
γ , whereγ > 1 is to be chosen later, we find that

(∫

Ω

|wh|
γd
d−1

) d−1

d

≤ C

(∫

Ω

∣∣D2
h(|wh|

γ
)
∣∣+

∫

E∪∂Ω

|J∇h(|wh|
γ
)K|

+

∫

E∪∂Ω

h−1
e |J|wh|

γ
K|

)
.

(4.2)

We proceed to bound each of these terms individually. Firstly, note that by the chain rule, we
have that

∇h(|wh|
γ
) = γ |wh|

γ−1 ∇h(|wh|) = γ |wh|
γ−2

wh∇hwh.

Hence, we see that

D2
h(|wh|

γ
) = Dh(∇h|wh|

γ
) = Dh

(
γ |wh|

γ−2
wh∇hwh

)

= γ
(
Dh

(
|wh|

γ−2
)
wh∇hwh + |wh|

γ−2
Dhwh∇hwh + |wh|

γ−2
whD

2
hwh

)

= γ(γ − 1) |wh|
γ−2 ∇hwh ⊗∇hwh + γ |wh|

γ−2
whD

2
hwh.

Using a triangle inequality, it follows that
∫

Ω

∣∣D2
h(|wh|

γ
)
∣∣ ≤ γ

∫

Ω

∣∣∣|wh|
γ−1

D2
hwh

∣∣∣+ γ(γ − 1)

∫

Ω

∣∣∣|wh|
γ−2 ∇hwh ⊗∇hwh

∣∣∣
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By the Hölder inequality, we have that

∫

Ω

|wh|
γ−1 ∣∣D2

hwh

∣∣ ≤
(∫

Ω

|wh|
q(γ−1)

) 1

q
(∫

Ω

∣∣D2
hwh

∣∣p
) 1

p

,

whereq = p
p−1 . In addition, we have

∫

Ω

∣∣∣|wh|
γ−2 ∇hwh ⊗∇hwh

∣∣∣ ≤
(∫

Ω

∣∣∣|wh|
γ−2 ∇hwh

∣∣∣
q
) 1

q
(∫

Ω

|∇hwh|
p

) 1

p

.

Noting that

∇h

(
|wh|

γ−1
)
=(γ − 1) |wh|

γ−3
wh∇hwh,

we observe that
∫

Ω

∣∣∣|wh|
γ−2 ∇hwh ⊗∇hwh

∣∣∣ ≤ 1

γ − 1

(∫

Ω

∣∣∣∇h

(
|wh|

γ−1
)∣∣∣

q
) 1

q
(∫

Ω

|∇hwh|
p

) 1

p

≤
C

γ − 1

(∫

Ω

|wh|
q(γ−1)

) 1

q
(∫

Ω

∣∣D2
hwh

∣∣p
) 1

p

by the inverse inequalities from Proposition4.3. Hence, we have that

(4.3)
∫

Ω

∣∣D2
h(|wh|

γ
)
∣∣ ≤ Cγ

(∫

Ω

|wh|
q(γ−1)

) 1

q
(∫

Ω

∣∣D2
hwh

∣∣p
) 1

p

.

Now we must bound the skeletal terms appearing in (4.2). The jump terms here also act
like derivatives in that they satisfy a “chain rule” inequality. Using the definition of the jump
and average operators, it holds that

∫

E∪∂Ω

|J∇h |wh|
γ
K| ≤

∫

E∪∂Ω

2γ {{|wh|
γ−1 }} J∇hwhK

≤ 2γ
∥∥∥hα

e {{|wh|
γ−1 }}

∥∥∥
Lq(E∪∂Ω)

∥∥h−α
e J∇hwhK

∥∥
Lp(E∪∂Ω)

(4.4)

by the Ḧolder inequality.
Focusing our attention on the average term, in view of the trace inequality in Proposi-

tion 4.2, it holds that
∥∥∥hα

e {{|wh|
γ−1 }}

∥∥∥
q

Lq(E∪∂Ω)
≤ C

∑

K∈T

hqα−1
e

∥∥∥|wh|
γ−1

∥∥∥
q

Lq(K)

≤ Chqα−1
e

(∫

Ω

|wh|
q(γ−1)

)
.

Upon taking theq-th root, we find

(4.5)
∥∥∥hα

e {{|wh|
γ−1 }}

∥∥∥
Lq(E∪∂Ω)

≤ Ch
α− 1

q
e

(∫

Ω

|wh|
q(γ−1)

) 1

q

.

Choosingα = 1
q such that the exponent ofh vanishes and substituting into (4.4) gives

(4.6)
∫

E∪∂Ω

|J∇h |wh|
γ
K| ≤ C

(∫

Ω

|wh|
q(γ−1)

) 1

q
∥∥∥∥h

− 1

q
e J∇hwhK

∥∥∥∥
Lp(E∪∂Ω)

.
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The final term is dealt with in nearly the same way. Again, using the “chain rule” type
inequality, we see that

∫

E∪∂Ω

h−1
e |J|wh|

γ
K| ≤ 2γ

∫

E∪∂Ω

h−1
e {{|wh|

γ−1 }} |JwhK|

≤ 2γ
∥∥∥hα

e {{|wh|
γ−1 }}

∥∥∥
Lq(E∪∂Ω)

∥∥h−α−1
e JwhK

∥∥
Lp(E∪∂Ω)

,

which in view of (4.5) gives again

(4.7)
∫

E∪∂Ω

h−1
e |J|wh|

γ
K| ≤ C

(∫

Ω

|wh|
q(γ−1)

) 1

q
∥∥∥∥h

− 1

q
−1

e JwhK

∥∥∥∥
Lp(E∪∂Ω)

,

whereα = 1
q .

Collecting the three bounds (4.3), (4.6), and (4.7) and substituting into (4.2) yields

(∫

Ω

|wh|
γd
d−1

) d−1

d

≤

(∫

Ω

|wh|
q(γ−1)

) 1

q
(∥∥D2

hwh

∥∥
Lp(Ω)

+

∥∥∥∥h
− 1

q
e J∇hwhK

∥∥∥∥
Lp(E∪∂Ω)

+

∥∥∥∥h
− 1

q
−1

e JwhK

∥∥∥∥
Lp(E∪∂Ω)

)
.

(4.8)

The main idea of the proof is to now chooseγ such that γd
d−1 = q (γ − 1), i.e.,γ = p(d−1)

d−p .
Using this and dividing by the first term on the right hand sideof (4.8) yields

(∫

Ω

|wh|
pd

d−p

) d−1

d
− 1

q

≤

(∥∥D2
hwh

∥∥
Lp(Ω)

+

∥∥∥∥h
− 1

q
e J∇hwhK

∥∥∥∥
Lp(E∪∂Ω)

+

∥∥∥∥h
− 1

q
−1

e JwhK

∥∥∥∥
Lp(E∪∂Ω)

)
.

Now noting that

d− 1

d
−

1

q
=

d− p

dp
, h

− p
q

e = h1−p
e , and h

− p
q
−p

e = h1−2p
e

yields

‖wh‖Lp∗ (Ω) ≤ ‖wh‖dG,p ,

wherep∗ = pd
p−d is theSobolev conjugateof p. This yields the desired result sincep∗ > p

for p ∈ (1, d), and hence, we may use the embeddingLp∗(Ω) ⊂⊂ Lp(Ω).
Step 2. For the casep ∈ [d,∞) we setr = dp

d+p . We note thatr < d and that the Sobolev

conjugate ofr, r∗ = dr
d−r > r. Following the arguments given in Step 1, we arrive at

‖wh‖Lr∗ (Ω) ≤ ‖wh‖dG,r .

Note that

r∗ =
rd

d− r
=

d2p
d+p

d− dp
d+p

= p.



ETNA
Kent State University 

http://etna.math.kent.edu

DISCONTINUOUS GALERKIN METHODS FOR THEP -BIHARMONIC EQUATION 341

Hence, we see that

‖wh‖Lp(Ω) = ‖wh‖Lr∗ (Ω) ≤ C ‖wh‖dG,r ≤ C ‖wh‖dG,p ,

where the final bound follows from Lemma4.4concluding the proof.
ASSUMPTION4.10 (Approximability of the finite element space).Henceforth, we will

assume the finite element spaceV to be chosen such that theL2(Ω) orthogonal projection
operatorPV satisfies

lim
h→0

‖v − PV v‖Lp(Ω) = 0,

lim
h→0

‖∇v −∇h(PV v)‖Lp(Ω) = 0, and

lim
h→0

‖v − PV v‖dG,p = 0.

A choice ofk ≥ 2 satisfies these assumptions.
THEOREM4.11 (Stability).LetH[·] be defined as in Example3.7. Then the dG Hessian

is stable in the sense that

∥∥D2
hvh −H[vh]

∥∥p
Lp(Ω)d×d ≤ C

(
‖l1[vh] + l2[vh]‖

p
Lp(Ω)d×d

)

≤ C

(∫

E∪∂Ω

h1−p
e |J∇hvhK|p + h1−2p

e |JvhK|p
)
.

(4.9)

Consequently, we have

‖H[vh]‖
p
Lp(Ω)d×d ≤ C ‖vh‖

p
dG,p .

Proof. We begin by bounding each of the lifting operators individually. Let q = p
p−1 .

Then by the definition of theLp(Ω)-norm, we have that

‖l1[vh]‖Lp(Ω) = sup
z∈Lq(Ω)

∫

Ω

l1[vh]z

‖z‖Lq(Ω)

.

LetPV : L2(Ω) → V denote the orthogonal projection operator. Then using the definition of
l1[·] in (3.9), we see that

‖l1[vh]‖Lp(Ω)

= sup
z∈Lq(Ω)

∫

Ω

l1[vh] PV z

‖z‖Lq(Ω)

= sup
z∈Lq(Ω)

∫

E∪∂Ω

JvhK⊗ {{∇h(PV z)}}

‖z‖Lq(Ω)

≤ d2 sup
z∈Lq(Ω)

‖h−α
e JvhK‖Lp(E∪∂Ω) ‖{{h

α
e∇h(PV z)}}‖Lq(E∪∂Ω)

‖z‖Lq(Ω)

≤ d2 sup
z∈Lq(Ω)

(
‖h−α

e JvhK‖
p
Lp(E∪∂Ω)

)1/p(
‖{{hα

e∇h(PV z)}}‖qLq(E∪∂Ω)

)1/q

‖z‖Lq(Ω)

,

(4.10)

using the Ḧolder inequality followed by a discrete Hölder inequality and whereα ∈ R is
some parameter to be chosen.
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Using the definition of the average operator, we find that

‖{{hα
e∇h(PV z)}}‖qLq(E∪∂Ω) ≤

1
2

∑

K∈T

‖hα
e∇h(PV z)‖qLq(∂K) .

Now by the trace inequality in Proposition4.2, we have that

‖{{hα
e∇h(PV z)}}‖qLq(E∪∂Ω) ≤ C

∑

K∈T

hqα−1 ‖∇h(PV z)‖qLq(K) .

Making use of the inverse inequality given in Proposition4.3, we have

(4.11) ‖{{hα
e∇h(PV z)}}‖qLq(E∪∂Ω) ≤ C

∑

K∈T

hqα−1−q ‖PV z‖qLq(K) .

We chooseα = 2− 1
p such that the exponent ofh in the final term of (4.11) is zero. Substitut-

ing this bound into (4.11) and making use of the stability of theL2(Ω) orthogonal projection
in Lp(Ω) [8], we conclude that

‖l1[vh]‖
p
Lp(Ω) ≤ C

∥∥∥∥∥h
1
p−2

e JvhK

∥∥∥∥∥

p

Lp(E∪∂Ω)

≤ Ch1−2p
e ‖JvhK‖pLp(E∪∂Ω) .(4.12)

The bound onl2[·] is achieved using similar arguments. Following the steps given
in (4.10), it can be verified that

‖l2[vh]‖Lp(Ω)

≤ d2 sup
z∈Lq(Ω)

(∥∥h−β J∇hvhK
∥∥p
Lp(E∪∂Ω)

)1/p(∥∥{{hβPV z }}
∥∥q
Lq(E∪∂Ω)

)1/q

‖z‖Lq(Ω)

(4.13)

for someβ ∈ R. To bound the average term, we follow the same steps (withoutthe inverse
inequality), i.e.,

∥∥{{hβ
ePV z }}

∥∥q
Lq(E∪∂Ω)

≤ 1
2

∑

K∈T

∥∥hβPV z
∥∥q
Lq(∂K)

≤ C
∑

K∈T

hqβ−1 ‖PV z‖qLq(K) .

We chooseβ = 1− 1
p such that the exponent ofh vanishes and substitute into (4.13) to find

‖l2[vh]‖
p
Lp(Ω) ≤ C

∥∥∥∥∥h
1
p−1

e JvhK

∥∥∥∥∥

p

Lp(E∪∂Ω)

≤ Ch1−p
e ‖JvhK‖pLp(E∪∂Ω) .(4.14)

The result (4.9) now follows by noting the definition ofH given in (3.10), a Minkowski
inequality, and the two results (4.12) and (4.14).

To see (4.11) it suffices to again use a Minkowski inequality together with (3.10) and the
two results (4.12) and (4.14).

COROLLARY 4.12 (Strong convergence of the dG-Hessian).Given a smooth func-
tion v ∈ C∞

0 (Ω) with PV : L2(Ω) → V being theL2 orthogonal projection operator, we
have that

∥∥D2v −H[PV v]
∥∥
Lp(Ω)d×d ≤ C ‖v − PV v‖dG,p .

Hence, using the approximation properties given in Assumption 4.10, we have the conver-
gence result thatH[PV v] → D2v strongly inLp(Ω)

d×d.
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4.1. The numerical minimisation problem and discrete Euler-Lagrange equations.
The properties of the IP-Hessian allow us to define the following numerical scheme: find
uh ∈ V such that

(4.15) Jh[uh; p] = inf
vh∈V

Jh[vh; p].

Let D [vh] := traceH[vh], then the discrete action functionalJh is given by

Jh[vh; p] :=

∫

Ω

1

p
|D [vh]|

p
+ fvh +

σ

p

(∫

E∪∂Ω

h1−p
e |J∇hvhK|p + h1−2p

e |JvhK|p
)
,

whereσ > 0 is apenalisation parameter.
Let

Ah(uh,Φ; p) :=

∫

Ω

|D [uh]|
p−2 D [uh]D [Φ]

+ σ

(∫

E∪∂Ω

h1−p
e |J∇huhK|p−2

J∇huhK J∇hΦK

+ h1−2p
e |JvhK|p−2

JuhK JΦK

)
.

(4.16)

The associated (weak) discrete Euler-Lagrange equations to the problem are to
find (uh,H [uh]) ∈ V× V

d×d such that

(4.17) Ah(uh,Φ; p) =

∫

Ω

fΦ ∀ Φ ∈ V,

whereH is defined in Example3.7.
THEOREM 4.13 (Coercivity). Let f ∈ Lq(Ω) and {uh,V} be the finite element se-

quence of solutions to the discrete minimisation problem(4.15). Then there exists constants
C = C(p) > 0 andγ ≥ 0 such that

(4.18) Jh[uh; p] ≥ C ‖uh‖
p
dG,p − γ.

Equivalently, letAh(·, ·; p) be defined as in(4.16). Then

(4.19) Ah(uh, uh; p) ≥ C ‖uh‖
p
dG,p .

Proof. We have by the definition of‖·‖dG,p that

‖uh‖
p
dG,p =

∥∥D2
huh

∥∥p
Lp(Ω)

+ h1−p
e ‖J∇huhK‖pLp(E∪∂Ω) + h1−2p

e ‖JuhK‖pLp(E∪∂Ω) .

We conclude by a Minkowski inequality that

‖uh‖
p
dG,p ≤

∥∥D2
huh −H[uh]

∥∥p
Lp(Ω)

+ ‖H[uh]‖
p
Lp(Ω)

+ h1−p
e ‖J∇huhK‖pLp(E∪∂Ω) + h1−2p

e ‖JuhK‖pLp(E∪∂Ω) .

Hence, using the stability of the discrete Hessian given in Theorem4.11, we have that

‖uh‖
p
dG,p ≤ ‖H[uh]‖

p
Lp(Ω) +(1 + C(p))

(
h1−p
e ‖J∇huhK‖pLp(E∪∂Ω)

+ h1−2p
e ‖JuhK‖pLp(E∪∂Ω)

)

≤ C(p)Ah(uh, uh; p) ,
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where we have made use of a piecewise equivalent of Proposition2.1, hence showing (4.19).
The result (4.18) follows by a similar argument.

LEMMA 4.14 (Relative compactness).Let {vh,V} be a finite element sequence that is
bounded in the‖·‖dG,p-norm. Then the sequence is relatively compact inLp(Ω).

Proof. The proof is an application of Kolmogorov’s Compactness Theorem noting the
result of Lemma4.9which yields boundedness of the finite element sequence inLp(Ω).

LEMMA 4.15 (Limit). Given a finite element sequence{vh,V} that is bounded in
the‖·‖dG,p-norm. Then there exists a functionv ∈

◦

W 2
p(Ω) such that ash → 0, we have, up

to a subsequence,vh ⇀ v weakly inLp(Ω). Moreover,H[vh] ⇀ D2v weakly inLp(Ω)
d×d.

Proof. Lemma4.14infers that we may find av ∈ Lp(Ω) which is the limit of our finite
element sequence. To prove thatv ∈

◦

W 2
p(Ω), we must show that our sequence of discrete

Hessians converges toD2v.
Recall that Theorem4.11gives that

‖H[vh]‖Lp(Ω)d×d ≤ C ‖vh‖dG,p .

As such, we may infer that the (matrix-valued) finite elementsequence{H[vh],V
d×d} is

bounded inLp(Ω)
d×d. Hence, we have thatH[vh] ⇀ X ∈ Lp(Ω)

d×d weakly for some
matrix-valued functionX.

Now we must verify thatX = D2v. For eachφ ∈ C∞
0 (Ω) we have that

∫

Ω

H[vh]PV φ =

∫

Ω

D2
hvhPV φ−

∫

E

J∇hvhK⊗ {{PV φ}} +

∫

E∪∂Ω

JvhK⊗ {{∇h(PV φ)}} .

Note that
∫

Ω

D2
hvhPV φ = −

∫

Ω

∇hvh ⊗∇h(PV φ) +

∫

E

J∇hvhK⊗ {{PV φ}}

+

∫

E∪∂Ω

JPV φK⊗ {{∇hvh }}

=

∫

Ω

vhD
2
h(PV φ) +

∫

E

J∇hvhK⊗ {{PV φ}} − J∇h(PV φ)K⊗ {{vh }}

+

∫

E∪∂Ω

JPV φK⊗ {{∇hvh }} − JvhK⊗ {{∇h(PV φ)}}

=

∫

Ω

vhH[PV φ] +

∫

E

J∇hvhK⊗ {{PV φ}} −

∫

E∪∂Ω

JvhK⊗ {{∇h(PV φ)}} .

As such, we have that
∫

Ω

Xφ = lim
h→0

∫

Ω

H[vh]PV φ = lim
h→0

∫

Ω

vhH[PV φ] =

∫

Ω

vD2φ

by the strong convergence of the dG Hessian in Corollary4.12. Hence, we have thatX=D2v
in the distributional sense.

LEMMA 4.16 (A priori bound).Let f ∈ Lq(Ω) with q = p
p−1 , and let{uh,V} be the

finite element sequence satisfying(4.15). Then we have the following a priori bound:

‖uh‖dG,p ≤
(
C ‖f‖Lq(Ω)

)q/p

.
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Proof. Using the coercivity condition given in Theorem4.13and the definition of the
weak Euler-Lagrange equations, we have that

‖uh‖
p
dG,p ≤ CAh(uh, uh; p) ≤ C

∫

Ω

fuh.

Now using the Ḧolder inequality and the discrete Sobolev embedding given in Lemma4.9
yields

‖uh‖
p
dG,p ≤ C ‖f‖Lq(Ω) ‖uh‖Lp(Ω) ≤ C ‖f‖Lq(Ω) ‖uh‖dG,p .

Upon simplifying, we obtain the desired result.
THEOREM 4.17 (Convergence).Let f ∈ Lq(Ω) with q = p

p−1 , and suppose{uh,V} is
the finite element sequence generated by solving the nonlinear system(4.17). Then we have
that

uh → u in Lp(Ω) and

H[uh] → D2u in Lp(Ω)
d×d,

whereu ∈
◦

W 2
p(Ω) is the unique solution to thep-biharmonic problem(1.1).

Proof. Given f ∈ Lq(Ω) we have that, in view of Lemma4.16, the finite element
sequence{uh,V} is bounded in the‖·‖dG,p-norm. As such we may apply Lemma4.15
which shows that there exists a (weak) limit to the finite element sequence{uh,V}, which
we callu∗. We must now show thatu∗ = u, the solution of thep-biharmonic problem.

By Corollary2.4,J [·] is weakly lower semicontinuous, hence we have that

J [u∗] ≤ lim inf
h→0

[
1

p
‖D [uh]‖

p
Lp(Ω) +

∫

Ω

fuh

]

≤ lim inf
h→0

[
1

p
‖D [uh]‖

p
Lp(Ω) +

∫

Ω

fuh

+
σ

p

(
h1−p
e ‖J∇huhK‖pLp(Ω) + h1−2p

e ‖JuhK‖pLp(Ω)

)]
.

= lim inf
h→0

Jh[uh].

Now owing to Assumption4.10, we have that for anyv ∈ C∞
0 (Ω),

J [v] = lim inf
h→0

[
1

p
‖D [PV v]‖pLp(Ω) +

∫

Ω

f PV v

+
σ

p

(
h1−p
e ‖J∇h(PV v)K‖pLp(Ω) + h1−2p

e ‖JPV vK‖pLp(Ω)

)]

= lim inf
h→0

Jh[PV v] .

By the definition of the discrete scheme, we arrive at

J [u∗] ≤Jh[uh] ≤Jh[PV v] =J [v].

Now, sincev was a generic element, we may use the density ofC∞
0 (Ω) in

◦

W 2
p(Ω) and the

fact thatu is the unique minimiser to conclude thatu∗ = u.
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REMARK 4.18. In the papers [14, 25], rates of convergence are given for the2-biharmo-
nic problem. These are

‖u− uh‖ =

{
O(h2) for k = 2,

O(hk+1) for k > 2,

‖u− uh‖dG,p = O(hk−1).

Note that for piecewise quadratic finite elements, this convergence rate is suboptimal
in L2(Ω).

5. Numerical experiments. In this section we summarise some numerical experiments
conducted for the method presented in Section3. The numerical experiments were conducted
using the DOLFIN interface for FENICS [23]. The graphics were generated using GNU-
PLOT and PARAV IEW . For computational efficiency, we choose to representD [uh] by an
auxiliary variable in the mixed formulation, which only requires one additional variable as
opposed to the full discrete HessianH[uh], which would required2 ones (ord

2+d
2 if one uses

the symmetry ofH). We note that this is only possible due to the structure of the problem,
i.e., thatL = L(x, u,∇u,∆u) and would not be possible in a general setting.

5.1. Benchmarking. The aims of this section are to investigate the robustness ofthe
numerical method for a model test solution of thep-biharmonic problem. We show that the
method achieves the provable rates forp = 2 (Figure5.1) and numerically gauge the conver-
gence rates forp > 2 (Figures5.2 and5.3). To that end, we takeT to be an unstructured
Delaunay triangulation of the squareΩ = [0, 1]2. We fixd = 2, letx =(x, y)

⊺
, and choosef

such that

(5.1) u(x) := sin (2πx)
2
sin (2πy)

2
.

Note that this is comparable to the numerical experiment in [14, Section 6.1].
REMARK 5.1. Computationally, the convergence rates we observe are

‖u− uh‖Lp(Ω) =

{
O(h2) whenk = 2,

O(hk+1) otherwise,

and

‖∆u− D [uh]‖Lp(Ω) = O(hk−1).

REMARK 5.2. Note that the dG HessianH may be represented in a finite element space
with a different degree foruh ∈ V. Let W := P

k−1(T ). Then the proof of Theorem3.6
infers that we may choose to representH[uh] ∈ W

d×d. For clarity of exposition, we chose
to useH[uh] ∈ V

d×d, however, we see no difficulty extending the arguments presented here
to the lower-degree dG Hessian. Numerically, we observe thesame convergence rates as in
Remark5.1for the lower-degree dG Hessian.

6. Conclusion and outlook. In this work we presented a dG finite element method for
thep-biharmonic problem. To do this, we introduced an auxiliaryvariable, thefinite element
Hessianand constructed a discrete variational problem.

We proved that the numerical solution of this discrete variational problem converges to
the extrema of the continuous problem and that the finite element Hessian converges to the
Hessian of the continuous extrema.
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(a)Finite element approximation to (5.1). (b) k = 2, piecewise quadratic FEs.

(c) k = 3, piecewise cubic FEs. (d) k = 4, piecewise quartic FEs.

FIG. 5.1. Numerical experiment benchmarking the numerical method for the2-biharmonic problem. We fixf
such that the solutionu is given by(5.1). We plot the log of the error together with its estimated order of convergence.
We study theLp(Ω)-norms of the error of the finite element solutionuh as well as the represented auxiliary variable
D [uh] for the dG method(4.17) with k = 2, 3, 4. We also give a solution plot. We observe that the method achieves
the rates given in Remark4.18.

(a)k = 2, piecewise quadratic FEs. (b) k = 3, piecewise cubic FEs.

FIG. 5.2. The same test as in Figure5.1for the2.1-biharmonic problem, i.e.,p = 2.1 for k = 2 and3.



ETNA
Kent State University 

http://etna.math.kent.edu

348 T. PRYER

(a)k = 2, piecewise quadratic FEs. (b) k = 3, piecewise cubic FEs.

FIG. 5.3. The same test as in Figure5.2for the10-biharmonic problem, i.e.,p = 10.

We foresee that this framework will prove useful when studying other (possibly more
complicated) second-order variational problems such as discrete curvature problems like the
affine maximal surface equation, which is the topic of ongoing research.
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