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DISCONTINUOUS GALERKIN METHODS FOR THE P-BIHARMONIC
EQUATION FROM A DISCRETE VARIATIONAL PERSPECTIVE *

TRISTAN PRYER

Abstract. We study discontinuous Galerkin approximations ofjtHgiharmonic equation fop € (1, co) from
a variational perspective. We propose a discrete variatitormulation of the problem based on an appropriate
definition of a finite element Hessian and study convergenteeomethod (without rates) using a semicontinuity
argument. We also present numerical experiments aimed atgéisémobustness of the method.
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1. Introduction, problem setup, and notation. Thep-biharmonic equation is a fourth-
order elliptic boundary value problem related to—in fact alimear generalisation of—the
biharmonic problem. Such problems typically arise in étast in particular, the nonlinear
case can be used as a model for travelling waves in suspebsdges [L5, 19]. Itis a
fourth-order analog to its second-order sibling, thkeaplacian, and, as such, is useful as a
prototypical nonlinear fourth-order problem.

The efficient numerical simulation of general fourth-orgesblems has attracted recent
interest. A conforming approach to this class of problemald/oequire the use af'!-finite
elements, the Argyris element for example ection 6]. From a practical point of view,
this approach presents difficulties in that theé-finite elements are difficult to design and
complicated to implement, especially when working in thepatial dimensions.

Discontinuous Galerkin (dG) methods form a class of nonmoning finite element
methods. They are extremely popular due to their succesgflication to an ever expanding
range of problems. A very accessible unification of thesenot together with a detailed
historical overview is presented ifi][

If p = 2, we have the special case that tl2e-)piharmonic problem is linear. It has
been well studied in the context of dG methods, for example papersi4, 22] study the
use ofh-p dG finite elements (wherg here means the local polynomial degree) applied to
the @-)biharmonic problem. To the authors knowledge, there isetiily no finite element
method posed for the genegabiharmonic problem.

In this work we use discrete variational techniques to baildiscontinuous Galerkin
(dG) numerical scheme for thebiharmonic operator witlp € (1,00). We are interested
in such a methodology due to its application to discrete sgirigs, in particular, discrete
versions of Noether's Theorer24].

A key constituent to the numerical method for thdiharmonic problem (and second-
order variational problems in general) is an appropriafeniion of the Hessian of a piece-
wise smooth function. To formulate the general dG schemiafeproblem from a variational
perspective, one must construct an appropriate notion oéssidn of a piecewise smooth
function. Thefinite element Hessiawas first coined byZ] for use in the characterisation
of discrete convex functions. Later i&(] it was employed in a method for nonvariational
problems where the strong form of the PDE was approximatdgbatto use in the context of
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fully nonlinear problems ing1]. A generalisation of the finite element Hessian to incoaper
the dG framework is given inl], which we also summarise here for completeness.

Convergence of the method we propose is proved using thesfvank set out in 11],
where some extremely useful discrete functional analgsislts are given. Here, the authors
use the framework to prove convergence of a dG approximatidhe steady-state incom-
pressible Navier-Stokes equations. A related but indegringdork containing similar results
is given in [6], where the authors study dG approximations to genericdirdér variational
minimisation problems.

The rest of the paper is set out as follows: in the remainimggddhis section, necessary
notation and the model problem we consider are introducedSelction2 we give some
properties of the continuoysbiharmonic problem. In Sectiod we give the methodology
for the discretisation of the model problem. In Sectiome detail solvability and convergence
of the discrete problem. Finally, in Sectiérwe study the discrete problem computationally
and summarise numerical experiments.

Let Q@ ¢ R? be a bounded domain with bounda®®. We begin by introducing the
Sobolev spaceg|[13]

L,(Q) = {(b: " < oo} forpe[1,00) and Lo () = {¢: esssupq |p| < o},
Q
WHQ) ={¢ € Lp(Q) : D*¢ € L,(Q), for |a| <1} and H'(Q) := Wj(Q),

which are equipped with the following norms and semi-norms:

p o p
o1 e = [ IoP

Il = Iollfyaiey = D 1IP0I @) -

lo| <k
[olf = 0y = D 1D%0lIE, () -
|a|=k
[0l = ol oy = lolivzco -
wherea = {a1,...,aq4} is a multi-index, |a| = Zle «;, and the derivativeD* are

understood in a weak sense. We pay particular attentioretogke$ = 1, 2 and define
W2(Q) ={peW;(Q): ¢=(V¢)"n=0}.

In this paper we use the convention that the derivatieeof a functionu : Q@ — Ris a
row vector, while the gradient af, Vu, is the derivatives transposed, i.¥y = (Du)". We
make use of the slight abuse of notation following a commactice whereby the Hessian
of u is denoted a®)?« (instead of the corred¥ Du) and is represented bydax d matrix.

Let L = L(z,u, Vu, D*u) be theLagrangian We let

Ilipl: W) 5 R
b Floip] = /Q L(z. 6, V6, D*) dz

be known as thaction functional For thep-biharmonic problem, the action functional is
given explicitly as

A usp] = /QL(%U,VU, D*u) = /Q % |Aul” — fu,
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whereAuw := trace(D?u) is the Laplacian and € L,(€) is a known source function. We
then look to find a minimiser over the spad€’ ((2), that is, to findu € W2 () such that

Huipl = min - Zv;p].

VEW2(Q)

If we assume temporarily that we have access to a smooth ms@in.e.,u € C*(),
then, given that the Lagrangian is of second order, we hatdhb Euler-Lagrange equations
are (in general) of fourth order.

Let X:Y = trace(XTY") be the Frobenius inner product between matrices. We then let

X = : :
zh o a2l
and use
o BL/-axi 8L/.8xf
dL/dxy ... OLJoxY

The Euler-Lagrange equations for this problem now takedheviing form:

1. p2.( 9L oL _
Llu;pl := D .<3(D2u) +8u =0.

These can then be calculated to be
(1.1) Lu;p) == A(|Au\p72 Au) —f=0.

Note that forp = 2, the problem coincides with the biharmonic problésfw = f, which is
well studied in the context of dG methods; see, e3).14, 16, 25].

2. Properties of the continuous problem.To the authors knowledge, the numerical
method described here is the first finite element method predd€or thep-biharmonic prob-
lem. As such, we will state some simple properties of the leralbwhich are well known for
the problem’s second-order counterpérg p-Laplacian[4, 7].

PropPosITION2.1 (Equivalence of norms ovve,(Q) [17, Corollary 9.10]). Let ©
be a bounded domain with Lipschitz boundary. Then the ndrfiys, and || D e
equivalent oveiV2(Q2). )

PROPOSITION2.2 (Coercivity of 7). Letu € W3 (Q) andf € Ly(€2), where, + ¢ =1.
We have that the action functiongl [ - ; p| is coercive oveiV2 (), that is,

Hu;pl > Cluly , — 7,

for someC' > 0 andvy > 0. Equivalently, let

’HL,,(Q) ar

o (u,v; p) :/ |AuP~2 Aulw,
Q

then there exists a constafit> 0 such that

2.1) A (v,vip) 2 Clls,  VveW2(Q).
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Proof. By definition of thel/(f/f)(ﬂ)-norm and Propositioi.1, we have that
Flusp] = Cp)uly, — fu.
Upon applying Hblder and Poinc&-Friedrichs inequalities, we see that

A u;pl > C(p) lu ]2771) - ||fHLq(Q) ”UHLP(Q)
> C(p) uly, = Cllf Il -

The statementX 1) is clear due to Propositioh 1, which concludes the proof. 0O

PrROPOSITION2.3 (Convexity ofL). The Lagrangian of the-biharmonic problem is
convex with respect to its fourth argument.

Proof. Using similar arguments td/[ Section 5.3] (also found irb]), the convexity of
the functional/ is a consequence of the convexity of the mapping

1
FigeRo . D

COROLLARY 2.4 (Weak lower semicontinuity).The action functional? is weakly
lower semicontinuous ové#’2(Q2). That is, given a sequence of functiops; } jen which
has a weak limit. € 2(22), then

A lusp] < lijniglff[uy';p}

Proof. The proof of this statement is a straightforward extensibfil3, Section 8.2,
Theorem 1] to second-order Lagrangians noting tffats coercive (from Propositio@.2)
and thatl is convex with respect to its fourth variable (from Propiosit2.3). We omit the
full details for brevity. 0

COROLLARY 2.5 (Existence and uniquenesshhere exists a unique minimiser to the
p-biharmonic equation. Equivalently, there is a unique (esolution to the (weak) Euler-

Lagrange equations: find € I/%Q%(Q) such that

/\AUW*QMM:/M Ve Q).
Q Q

Proof. Again, the result can be deduced by extending the argunrefit8, Section 8.2]
or [7, Theorem 5.3.1], noting the results of Propositi@igdand2.3. The full argument is
omitted for brevity. 0

3. Discretisation. Let .7 be a conforming, shape regular triangulatioflohamely,7
is a finite family of sets such that
1. K € 7 implies K is an open simplex (segment fdr= 1, triangle ford = 2,
tetrahedron fotl = 3),
2. foranyK,J € .7 we have thatik N .J is a full subsimplex (i.e., it is eithd}, a
vertex, an edge, a face, or the wholefofand./) of both K and.J and

3. Ukesr K =10
The shape regularity of is defined as the number

— inf PK
M) =t
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wherepg is the radius of the largest ball contained insideand i is the diameter of<.
An indexed family of triangulation$.7 ™} is calledshape regulaif

wo=inf p(7™) > 0.

We use the convention that: @ — R denotes the piecewise constam¢shsize function
of 7,i.e,

h(x) := max hy,
e K

which we shall commonly refer to ds

Let & be the skeleton (set of common interfaces) of the trianguia? , and we say that
e € & if eis on the interior of2 ande € 99 if e lies on the boundargs2 and set:. to be the
diameter ofe.

We also make the assumption that the mesh is sufficientlyeshegular such that for
any K € .7, we have the existence of a constant such that

(3.1) > helel < CK],

ecdK

where|e| and| K | denote théd —1)- andd-dimensional measure efand K, respectively.

Let P*(.7) denote the space of piecewise polynomials of degreger the triangula-
tion 7, i.e.,

P¥(7) = {¢ such thap|x € P¥(K)},
and introduce théinite element space
V:=DG(7,k) = P*(7)

to be the usual space of discontinuous piecewise polyndmmiations.

DerINITION 3.1 (Finite element sequencel finite element sequendey,, V} is a
sequence of discrete objects indexed by the mesh paramated individually represented
on a particular finite element spadg which itself has a discretisation parameterthat is,
we have thaVV = V(h).

DEFINITION 3.2 (Broken Sobolev spaces, trace spac@ introduce the broken Sobo-
lev space

WAT):={¢: ¢|lx € WL(K), foreachK € T }.

We also make use of functions defined in these broken spatesteal to the skeleton of the
triangulation. This requires an appropriate trace space

T() = [] L00K) > [] W * (K)

Keo KeZ

forp>2,1>1.
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DerINITION 3.3 (Jumps, averages, and tensor jumpAk may define average, jump,
and tensor jump operators ovér(&’) for arbitrary scalar functionsy € 7 (&) and vectors
veT(E)™

{3 T(EUIN) — La(EU0N),

L(olw, +vlr,)  overs,
v]ag onof.

{3} [T(EUQ)" —[Lo(& V),

{%(vhﬁ +v|g,) overé,
v

v]aq onon.

[1: T(&UN) —[La(& LN,
’U|K1’I’LK1 -|-’U|K2’I’LK2 overé”,
(N g
(U’I’L) |aQ onof.

[1: [T(€UdN)]" — Ly(& U N,

(v|k,) "k, +(v|k,)"nK, overs,
(vTn) |aq onon.

[lo: [T(EUOQ)" —[Lao(& UOQ) P,

vk, @K, + |k, ®nK, OVers,
(v®n) o onoQ.

We will often use the following proposition, which we statefill for clarity but whose
proof is merely using the identities in Definiti@3.

PrRoPOSITION3.4 (Elementwise integration)For a generic vector-valued functiom
and scalar-valued function, we have

32 /K div(p) ¢de = 3 ( /K PV da + /8 K¢ande).

KeZ KeZ

In particular, if p € T(& U 6Q)d and¢ € T (& U 09), the following identity holds

(3.3) Kze;q 6K¢anKdS:/g[[p]] {o} d8+/£u

B /guaﬂ po} ds

An equivalent tensor formulation ¢8.2)—3.3) is

Z /Kthsﬁdm: Z </Kp®vh¢da:+/8K¢p®ans).

Keo KeZ

[o]" {p} ds
o0
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In particular, the following identity holds
> [ epenias= [ (ol to as+ [

(3.4)  Kez oK
[ el as
EU0N

The discrete problem we then propose is to minimise an apigtemiscrete action func-
tional, that is to seek;, € V such that

[¢]® {p} ds
o0

G]

Inlup;p) = Uihner/h [un; ).

REMARK 3.5. The choice of the discrete action functional is crucialnaive choice
would be to take the piecewise gradient and Hessian opsratalto substitute them directly
into the Lagrangian, i.e.,

Inlun;p] = / L(z,up, Viun, Diug) .
Q

This is, however, an inconsistent notion of derivative apens (as noted irf]). Since for the
biharmonic problem, the Lagrangian is only dependent oiiissian of the sought function,
we only need to construct an appropriate consistent nofierdiscrete Hessian.

THEOREM 3.6 (dG Hessianl[]). Letv € ﬁ/g(ﬂ), v: HY(T) — T(£UoN) be

a linear form, andp : H2(.7) x H(7)* — T(& U 0Q)" a bilinear form representing
consistent numerical fluxes, i.e.,

v(v) = v|susn p(v, Vu) = Volsusa,

in the spirit of [1]. Then we define the dG HessiaRl[v] € V¢*?, to be theL,-Riesz
representoof the distributional Hessian af. This has the general form

/QH[U]@:_/thvewh@—/gum[[@—u}}@{{vh@}
- [ -l [ @le @+ [ 19}l

Vo eV.

Proof. Note that in view of Green’s Theorem, for smooth functians C?(Q2) N C*(€),
we have

Dwp=— | VuaVé+ [ Vwong Yo e CHQ) N CO@).
Q

Q 1°19]

As such for a broken function € v°v§,(9), we introduce an auxiliary variabje = Vv
and consider the following primal form of the representatié the Hessian of this function:
for eachK € .7,

(3.5) /H[v]@:—/p®vh<1>+/ pend Vo eV,
K K oK

(3.6) /p@q:—/qu+/ qeani Vqe Ve,
K K oK
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whereV;, =(D,)" is the elementwise spatial gradient. Noting the idenfity)(and taking

the sum of 8.5) over K € .7, we observe that
(—/ p®Vh<I>+/ ﬁ@n@)
K oK

/QH[v]q>= > /KHM‘P= >
== [povios [ [eletp}+ [ (o} 1Al

KeZ KeT
Using the same argument fd.6) yields
jg j{: K j{: K " 0K
—~ [vDig+ [ @@ dah + [ {9} lal
Q EUON &

KeZ Keo
Note that, again making use &.¢), we have for eaclq € H'(7)% andw € H*(7)
that

@ [awVio=- [ Diqu+ /  Aapelul+ [ el dut

Takingw = v in (3.7) and substituting into3.6), we see that

(3.8) /Qp®q=/Qq®vhv+/gum[[a—v}]®{{q}+[§{a—v} [,

Now choosingg = V,;,® and substitutingd.8) into (3.5 concludes the proof. [
ExampLE 3.7 ([10)). An example of a possible choice of fluxes is

&
5= {g”} z\r/s?rﬂ . p={Vav} onE U

The result is an interior penalty (IP) type meth&@}l §pplied to represent the finite element
Hessian

/ Hv]® = —/ Vv ® V,® —I—/ [v] ® {V,2} —|—/ [®] @ {Viv}
Q Q EUON EUIN
- / D2ud — / [Vl (@) + / []® {Vad} .
Q EUON EUON
This will be the form of the dG Hessian which we assume for &st of this exposition.

DerINITION 3.8 (lifting operators).From the IP-Hessian defined in Exam@de7, we
define the following lifting operatdy, I, : V — V¢*4 such that

(3.9) [nte= [ [ulo (vie),
Q EUON
/ la[on]® = — / [Vrun], 23
Q EUIN
As such, we may write the IP-HessianHs: V — V4*4 such that

(3.10) /QH[vh]cb = /Q(D,%vh Fhop) +lafvn]) @ VB eV,

whereD? denotes the piecewise Hessian operator.
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REMARK 3.9. WhenH [] is restricted to act on functions Win H{ (Q2), we have that
/ Hiv,|® = / (D?vp + lo[vp]) @ Y& eVnHQ).
Q Q

This definition coincides with the auxiliary variable inteced in [L8] for Kirchhoff plate
problems. In addition, it is the auxiliary variable used 29,[21] for second-order nonvaria-
tional PDEs and fully nonlinear PDEs.

4. Convergence.In this section we use the discrete operators from Seé&torbuild a
consistent discrete variational problem and in additiawwgrconvergence. To that end, we
begin by defining the natural dG-norm for the problem.

DEFINITION 4.1 (dG-norm).We define the dG-norm for this problem as

thHZG,p = HDivhHip(Q) + hi_p H[[thh}]”ip(g’uag) + hé_zp H[[Uh]]nip(guag) )

where||-[|;, (s00) is the(d — 1)-dimensionall,-norm overs’ U 9X1.

To prove convergence for thebiharmonic equation, we modify the arguments given
in [11] to our problem. To keep the exposition clear, we use the saoteion as in 11]
wherever possible.

We state some basic propositions, i.e., a trace inequaiitlyaa inverse inequality in
L,(£2), the proofs of which are readily available in, e.g]. [Henceforth, in this section and
throughout the rest of the paper, we (&0 denote an arbitrary positive constant which may
depend upom, p, and2 but is independent di.

PROPOSITION4.2 (Trace inequality).Let v, € V be a finite element function, then
for p € (1, 00) there exists a constaidt > 0 such that

||”UhHLp(£an) <Contr lvnllz, ) -

PrRoPOSITION4.3 (Inverse inequality) Let v, € V be a finite element function, then
for p € (1, 00) there exists a constadt > 0 such that

IVhvnll}, (@) < CRTP ol (o) and

lonll7 ) < CRP IVhvnll}, () -

LEMMA 4.4 (relating||-|| ; ;- @and||-|| ;o ,-norms). For s,z € Nwith1 < s <t < oo,
we have that there exists a constant> 0 such that

||UthG,s <C ||Uh||dG,t :

Proof. The proof follows similar lines tol[1, Lemma 6.1]. By definition of thé- ||, .-
norm, we have that

ol = [ (DRl nt= [ ol eni [
Q EUON EUOQ

Now let us denote = g andg = -, that is, we have} + % = 1. Hence, we may deduce

r—1"



ETNA
Kent State University
http://etna.math.kent.edu

DISCONTINUOUS GALERKIN METHODS FOR THEP-BIHARMONIC EQUATION 337

that

||”h||¢sic;,s:/ ‘Divhls-i-/ hé/qh(el_t)/rH[thh]Hs-i—/ hi/qh(el—gt)/r‘[[vhms
Q EUON Q

5U

1/q . 1/r 1/q 1/r
(L (e (o ) ()
Q Q EUOQ EUOQ
1/q 1/r
o) (o)
EUON EUON

<C thHle,t )
where we have used thedkler inequality together with
l-s=1-t=1411 and 1-2s=1-2=1412
and the shape regularity of given in (3.1). This concludes the proof. 0O

DerINITION 4.5 (Bounded variation)Let ¥'[-] denote the variation functional defined
as

V] = sup{/gudivqb: o < [Ca()]Y, 9l 0 < 1}.

The space obounded variationslenotedBV, is the space of functions with bounded varia-
tion functional,

BV :={¢ € Li1(Q): ¥|[¢] < o}.
Note that the variation functional defines a norm o¥r’; we set
[ull gy = #[u].

PROPOSITION4.6 (Control of theL%(Q)-norm [12]). Letu € BV. Then there exists
a constant”' such that

HUHL¢(§2) < Cllullpy -
d—1

PROPOSITION4.7 (Broken Poincd inequality p]). For v, € V, we have that

lonlls,ior < C( [ Waonl+ [ j1ondl).
Q EUON

LEMMA 4.8 (Control on the BV norm)We have that for eacty, € Vandp € [1, ),
there exists a constagt > 0 such that

lonll gy < Cllonllag, -

Proof. Owing to [L1, Lemma 6.2], we have that

@) lonloy < [ 9wl + [ Jpu.
Q EU0N
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Applying the broken Poincérinequality given in Propositiod.7 to the first term in 4.1)
gives

|vh||Bvs0< [1ptol+ [ i+ [ |uvh]]|)
Q EUON EUON

< C’</ |D}2LUh| +/ [IVror]] + hgl/ [[vh]]|)
Q £UQ £UOQ

<C ||”h||dG,1 :

Applying Lemma4.4 concludes the proof. 0O
LEMMA 4.9 (Discrete Sobolev embedding&pr v, € V, there exists a constant > 0
such that

[onllz, @) < Cllvallag,, -

Proof. The proof mimics that of the Gagliardo-Nirenberg-Sobdleequality in [L3,
Theorem 1, p. 263]. We begin by noting that Propositdidiitogether with Lemmd.8infers
the result fop =1, i.e.,

lonllz, @) < Cllvnllag,y -

Now, we divide the remaining cases into the two cases(1, d) andp € [d, c0).
Step 1. We begin witlp € (1,d). First note that the result of Propositidrt together
with Lemmad4.8infer that

||UhHL a4 () < c HUh”dG,l V’U}L cV.

d—1

Now takingv;, = |wy,|”, wherey > 1 is to be chosen later, we find that

wn U wi#) " <o ([ 1Dt [ 9l
).

We proceed to bound each of these terms individually. yjnstite that by the chain rule, we
have that

Va(jwn]") =7 [wa "™ Vi(Jwnl) = 7 [wn]" ™ 0, Viws.

Hence, we see that
D} (lwnl") = Da(Valwnl") = Di (3 leonl "™ w V.
= fy(Dh <|wh|vi2) whvhwh + |wh|772 thhvhwh + |wh|772 whD,%wh>

= y(y = 1) lwa|" 7 Viwn @ Viwn 4+ |lwa|" ™ wp D wp,.

Using a triangle inequality, it follows that

[ 102w < [ flun ™ Diun| +90r= 1) [ Jlun "™ T © Ty
Q Q Q
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By the Holder inequality, we have that

1 1
[t Dl < ([ o) ([ o)
Q Q Q

whereq = p%l. In addition, we have

B B Q\ @ b
/ ’\whp thwh ® Vhwh‘ < </ ’|wh|7 2Vhwh’ > (/ |Vhwh|p) .
Q Q Q

Noting that

I (Jun™1) = (7 = 1) lwnl" " wn Vawn,

we observe that

- 1 o q % %
/ ‘|wh|7 ZVhwh ®Vhwh‘ < — (/ ‘Vh(|wh"y 1)’ > (/ |Vhwh|P>
Q 7—1\Ja Q
7—1\Ja Q

by the inverse inequalities from Propositiér8. Hence, we have that

4.3) /Q | D (|wa|")| <Cv( /Q |wh|q<“>)q< /Q ID,%whlp)p.

Now we must bound the skeletal terms appearingtif)( The jump terms here also act
like derivatives in that they satisfy a “chain rule” ineqjtyal Using the definition of the jump
and average operators, it holds that

[ 9l < [ 2 s} [Van]
EU0Q EU0N

(4.4)
ne flunl 3|

SQ’Y’

Ly (£U0R) 17 [Vwn] HLp(guan)

by the Holder inequality.
Focusing our attention on the average term, in view of theetinequality in Proposi-
tion 4.2, it holds that

|2 theon

q 119
<0 3 e ™|
L, (£U8%0) s L, (K)

< Opaa—1 (/ |whq(v—1)> )
< Chg ;
Upon taking the;-th root, we find

1
a—1 q
< Chy q(/ |wh(I("/—1)> )
Ly (£U00Q) Q

Choosingey = % such that the exponent afvanishes and substituting inté.4) gives

(4.6) /guaﬂ [[Vh|wn|"]| < C’(/Q |whq(v1)>q ‘

(4.5) ‘

he flual" ™'}

he * [Viwn]

L, (EU0Q)
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The final term is dealt with in nearly the same way. Again, gshre “chain rule” type
inequality, we see that

[ owt ey [ ht ™ sl
EUON EU0N

S%‘

he {|wh‘7_1}H [ [[wh]]HLp(é"uE)Q) ’

L, (£009)

which in view of @.5) gives again

4.7) /g’uaﬂ he_l IHwn|"]| < C(/Q |wh|q('y_1)) a '

wherea = 1.

Collect?ng the three boundé4.Q), (4.6), and @.7) and substituting into4.2) yields

d—1 1
vd d _ a
(L) ™ < (L) (1050, 0
(48) Q Q

_1 _1_7q
he ¢ [[Vhwhﬂ he * [[’wh]]

_1_q
he © [wa]

)

L,(£08Q)

i

"

L, (6U0Q) L, (£U09Q) ) .

The main idea of the proof is to now choogesuch thatdl%jl1 =q(y—1),ie.,y= %’1}).
Using this and dividing by the first term on the right hand fl¢4.8) yields

P d 1
(Lr#) " < (1080l 0

_1 _1_7q
+ ‘ hed [Vawn] B wn]

i

L,(£U8Q) L, (£U0%Q) ) .

Now noting that

d—1

1 S and  h, 0 P =plo%
d q dp e’ ’

e
yields
lwnlly, . @) < llwnllag,, -

wherep* = p’%dd is the Sobolev conjugatef p. This yields the desired result sinpé > p
forp € (1,d), and hence, we may use the embedding(2) CC L,(2).

Step 2. For the cagec [d, o) we setr = %pp. We note that < d and that the Sobolev
conjugate of-, r* = % > r. Following the arguments given in Step 1, we arrive at

HwhHLr*(Q) < ||wh||dG,r'
Note that

d?p
rd _ arp

d—r g_ o —
d+p
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Hence, we see that

||wh||Lp(Q) = Hwh”L,,,* () <C HwthG,r <C HwthG,p’

where the final bound follows from Lemn#a4 concluding the proof. a

AssumPTION4.10 (Approximability of the finite element spacéjenceforth, we will
assume the finite element spa¢eo be chosen such that the, (Q2) orthogonal projection
operatorPy satisfies

li - P =
hlg%HU VUHLP(Q) 0,
%IL% HVU — Vh(PV v)”LP(Q) =0, and

li - P =0.
lim [0 = Py ol 4,

A choice oft > 2 satisfies these assumptions.
THEOREMA4.11 (Stability).Let H|[-] be defined as in Examp®?7. Then the dG Hessian
is stable in the sense that

1D7vn = Hlonll[} i < C(lislon) + Lalonllly oyena )

(4.9)
C(/g’uag hEP([Vhop]lP + i |[[vh]]p> )

IN

Consequently, we have
IH [oa]15 s < C llonllie,

Proof. We begin by bounding each of the lifting operators indialiyy Let g = ﬁ.
Then by the definition of th&,, (©2)-norm, we have that

l1[vp]z
l1|v = sup —_—
Il ””LP(Q) zeLy, () Ja ||ZHL,1(Q)

LetPy : Lo(Q2) — V denote the orthogonal projection operator. Then using éfiaition of
l1[]in (3.9), we see that

11 [vn]llL, ()
/ll[vh] PVz
= sup —_—
2€L,(Q) JQ HZHLq(Q)
P
— s / [on] ® Vi (Pv 2) }
(4.10) 2€Lq(Q) J £UIN ||Z||Lq(Q)
< 1he ® [vnlllL, suog) I§REVR(PY 2)} 1, (000
T 2eL,(Q) ||ZHL,1(Q)
—« P p « q a
P (L] 0 [y I (AR ey
= sup 5
2€L4(Q) ”ZHLQ(Q)

using the Hblder inequality followed by a discreteditier inequality and where € R is
some parameter to be chosen.
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Using the definition of the average operator, we find that

IR VAPy L, vom < 8 D IFEVA Py )% o) -
KeT

Now by the trace inequality in Propositi@n2, we have that

IR Vi(Py 23T, suo0) < C Y B M IVR(PY 2T, k) -
KeT

Making use of the inverse inequality given in Propositio8 we have

(4.11) reVa(Py MG su00) SC D WPy zl] k)
KeT

We choosex = 2 — % such that the exponent afin the final term of ¢.11) is zero. Substitut-
ing this bound into4.11) and making use of the stability of tHe, (2) orthogonal projection
in L, () [8], we conclude that

1 P

. -2
@12)  llonlly @ < C B2 [l

< Chl=?r ITon]ll7, (sua0) -
L, (6U69)

The bound only[-] is achieved using similar arguments. Following the steperyi
in (4.10), it can be verified that

”lQ[Uh]HLP(Q) /
1/p
(4.13) (Hhiﬁ [[Vh”hﬂuip(guaﬂ)) (H{{hﬁPV Z}thq(guaﬂ))

<d* sup
2€Lq(Q) ||Z||Lq(f2)

1/q

for somes € R. To bound the average term, we follow the same steps (witlheuinverse
inequality), i.e.,

1822w 22, svom < 3 22 7Pzl oy S C D0 AP THIPw 2T, )
Keo Keo

We choosed =1 — % such that the exponent afvanishes and substitute inté.{3 to find

1 p

-1
(4.14) liaon]l7, ) < C{[hE [va] < Che ™ | [wnlllf, sus0) -

L,(£U0Q)

The result 4.9) now follows by noting the definition off given in (3.10, a Minkowski
inequality, and the two resultg.(l2 and @.14).

To see {.1]) it suffices to again use a Minkowski inequality togethehw&.10 and the
two results ¢.12) and @.14). 0

COROLLARY 4.12 (Strong convergence of the dG-Hessia@iven a smooth func-
tion v € C°(Q2) with Py : Ly(2) — V being theL, orthogonal projection operator, we
have that

HDQ'U - H[PV U]HLP(Q)dXd < C ||U - PVUHdG,p .

Hence, using the approximation properties given in Assionpt.10 we have the conver-
gence result thaH [Py v] — D?v strongly inL, (£)?*4.
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4.1. The numerical minimisation problem and discrete EulerLagrange equations.
The properties of the IP-Hessian allow us to define the falgwnumerical scheme: find
uy, € V such that

(4.15) Inlun;p) = 1)£%fV/h [vn; p).

Let Z[vy] := trace H [vy], then the discrete action functiong, is given by

1
nlvn; ==/ = |2[vn]” + fon + 0(/ hi_pI[[thh]]lerhi_QpH[vh]]lp)7
Qb P \Jeuon

whereo > 0 is apenalisation parameter
Let

A, B p) = /Q Dun)P~* D [un) 2[)
(4.16) +U</g - WP [V hun] P72 [Vaun] [Va®]

2 ([on] P2 [un] [@] )

The associated (weak) discrete Euler-Lagrange equationthe problem are to
find (up, H[uy]) € V x V4% such that

(4.17) A (up, P;p) = / fe Vo eV,
Q

whereH is defined in Exampl&.7.

THEOREM 4.13 (Coercivity). Let f € L,(Q2) and {uy, V} be the finite element se-
quence of solutions to the discrete minimisation prob{érh5. Then there exists constants
C = C(p) > 0andvy > 0 such that

(4.18) Inlun;p) > Cllunlfq, — -
Equivalently, lete, (-, -; p) be defined as if4.16). Then
(4.19)  (up, up;p) > C ||Uh||§c,p-

Proof. We have by the definition df[| ,, , that
lunltrp = 1 DRunlls gy + B2 IV Aund, sunn) + B2 1Tunlly (suom) -
We conclude by a Minkowski inequality that
lunllfe , < || Diun — H[“h]“ip(g) + | Hunlll7, o)
+he P ||[[vh“h]]||lzp(£u89) +he ||[[“h]]|‘lzp(guag) :
Hence, using the stability of the discrete Hessian giverhiecfermé.11, we have that

ol < VORI + 0+ €O (1 IVt TIE s

T ATA

S C(p>v<2{h(uha U/h,p) )
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where we have made use of a piecewise equivalent of Propogitl, hence showing4(.19).
The result 4.18 follows by a similar argument. O

LEMMA 4.14 (Relative compactnesd)et {vy,, V} be a finite element sequence that is
bounded in the-||,; ,-norm. Then the sequence is relatively compadt;ft2).

Proof. The proof is an application of Kolmogorov's Compactnesgdrem noting the
result of Lemmat.9which yields boundedness of the finite element sequentg(if?).

d

LEMMA 4.15 (Limit). Given a finite element sequen¢e,, V} that is bounded in
the (||| 4, ,-norm. Then there exists a functions W2(€2) such that as — 0, we have, up
to a subsequence;, — v weakly inL,(2). Moreover,H [v,] — D?v weakly inL, ()<,

Proof. Lemma4.14infers that we may find a € L, () which is the limit of our finite
element sequence. To prove that W%(Q), we must show that our sequence of discrete
Hessians converges 10%v.

Recall that Theorem.11gives that

| H [vn] HLP(Q)dxd < Cllvnllag,y -
As such, we may infer that the (matrix-valued) finite elemsequence H [vy,], VI*1} is
bounded inL,(92)4*?. Hence, we have thal[v;] — X € L,(9)%*? weakly for some

matrix-valued functionX .
Now we must verify thatX = D?v. For eachp € C5°(©2) we have that

/Q Hlon]Py 6 = / D2vnPy 6 — /g [Vl {Pv o} + [g e AVaPr o}
Note that
/QD;%UhPVqS = — /Q Vivn @ Vi (Py ¢) + /@@ [[thh]]@, {Pv o}
+ A PRETE S
- / onD2(Py 6) + /g [Vl £Pv 6} — [V4(Py 6)],, fon}
+ / [Py 6] ® {Vhun} — [on] @ {VA(Py 6)}
EUOQ
_ / onH[Py §] + /g [Vl {Pv 6} — [f PROEIACT
As such, we have that

/QX(;S:}IL% QH[vh]Pws:}lL%/thH[PW]:/QUD%

by the strong convergence of the dG Hessian in Corollatg. Hence, we have th& = D?v
in the distributional sense. 0O

LEMMA 4.16 (A priori bound).Let f € L,(Q2) with ¢ = -2+, and let{u;, V} be the
finite element sequence satisfy{dgl5. Then we have the folrowing a priori bound:

q/p
lunllacp < (C M lyey) -
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Proof. Using the coercivity condition given in Theorefnl3and the definition of the
weak Euler-Lagrange equations, we have that

||U}L||§G7p < Cﬂh(uh;uh;p) < C/quh-

Now using the Hlder inequality and the discrete Sobolev embedding gimelneimmad4.9
yields

||Uh||5c;,p <C ||f||Lq(Q) ||uh||Lp(Q) <C Hf”Lq(Q) ||Uh||dG,p-
Upon simplifying, we obtain the desired result. O
THEOREM4.17 (Convergence)let f € L,(Q2) with ¢ = -2, and supposé¢u;, V} is
the finite element sequence generated by solving the nanﬁyetenw.l?). Then we have
that

up — U in L,(£2) and
Hlup,] — D?u in L,(Q)**?,
whereu € I/%Q%(Q) is the unique solution to the-biharmonic problen{1.1).

Proof. Given f € L,(©) we have that, in view of Lemm4&.16 the finite element
sequence{uy,, V} is bounded in the|-|,, -norm. As such we may apply Lemn#al5
which shows that there exists a (weak) limit to the finite edatrsequencéu;,, V}, which
we callu*. We must now show that* = u, the solution of the)-biharmonic problem.

By Corollary2.4, #-] is weakly lower semicontinuous, hence we have that

* fn 1 p
A1) < it | 19l + [ F]
N p
<tgint | 212 furllf @ + [ Son
g _ —
+ 2 (B ITh 1 + 1 Wl ) |
= h%}ii(?f/h [up]-
Now owing to Assumptiord.10, we have that for any € C3° (),
= lim inf L 2P P P
S [v] = limin ];II Py olllz, @) + Qf v

o( 1, _o,
+ ? (hi PIIVR(Py U)HHZP(Q) +he " (|[Py U]]lep(m) ]
= lim inf P .
minf Zh[Pv o]
By the definition of the discrete scheme, we arrive at

A W] < Inlun] < Fn[Pyol = Zv].

Now, sincev was a generic element, we may use the densityPf(2) in V?/f)(Q) and the
fact thatu is the unique minimiser to conclude that = w. 0
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REMARK 4.18. In the paperdl}, 25, rates of convergence are given for theiharmo-
nic problem. These are

= un| = O(h?) fork =2,
"Il omE Yy fork > 2,

flu— Uh”dc,p = O(hkil)-

Note that for piecewise quadratic finite elements, this eagence rate is suboptimal
in Lo(2).

5. Numerical experiments. In this section we summarise some numerical experiments
conducted for the method presented in Seciiohhe numerical experiments were conducted
using the DOLFIN interface for FECS [23]. The graphics were generated using&
pLOT and RRAVIEW . For computational efficiency, we choose to represgpt;| by an
auxiliary variable in the mixed formulation, which only igices one additional variable as
opposed to the full discrete HessiaR v, ], which would requirel? ones (or‘% if one uses
the symmetry ofH). We note that this is only possible due to the structure efpfoblem,

i.e., thatL = L(x,u, Vu, Au) and would not be possible in a general setting.

5.1. Benchmarking. The aims of this section are to investigate the robustnesiseof
numerical method for a model test solution of fieiharmonic problem. We show that the
method achieves the provable ratesjfer 2 (Figure5.1) and numerically gauge the conver-
gence rates fop > 2 (Figures5.2 and5.3). To that end, we take to be an unstructured
Delaunay triangulation of the squaie= [0, 1]2. We fixd = 2, letx = (z,y)T, and choos¢
such that

(5.1) w(x) = sin (2rz) sin (2my)> .

Note that this is comparable to the numerical experimentdn$ection 6.1].
REMARK 5.1. Computationally, the convergence rates we observe are

O(h?) whenk = 2,

O(h*+1)  otherwise,

Ju— uhHLp(Q) = {

and

1Aw = Dlun]llp,, ) = O(h*1).

REMARK 5.2. Note that the dG Hessidid may be represented in a finite element space
with a different degree fou;, € V. LetW := P*~1(.7). Then the proof of Theorerd.6
infers that we may choose to represéhtu,] € W<, For clarity of exposition, we chose
to useH [u;] € V2%, however, we see no difficulty extending the arguments pieséhere
to the lower-degree dG Hessian. Numerically, we observeange convergence rates as in
Remark5.1for the lower-degree dG Hessian.

6. Conclusion and outlook. In this work we presented a dG finite element method for
the p-biharmonic problem. To do this, we introduced an auxiligayiable, thdinite element
Hessiamand constructed a discrete variational problem.

We proved that the numerical solution of this discrete el problem converges to
the extrema of the continuous problem and that the finite eteérdlessian converges to the
Hessian of the continuous extrema.
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(a) Finite element approximation t& (). (b) k = 2, piecewise quadratic FEs.
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(c) k = 3, piecewise cubic FEs.

(d) k = 4, piecewise quartic FEs.

FiG. 5.1. Numerical experiment benchmarking the numerical methoth&2-biharmonic problem. We fix

such that the solution is given by(5.1). We plot the log of the error together with its estimated oafeconvergence.
We study thel,, (€2)-norms of the error of the finite element solution as well as the represented auxiliary variable
P[up, for the dG method@4.17) with k = 2, 3, 4. We also give a solution plot. We observe that the methoeaehi

the rates given in Remark 18

T 100 T
||U'U|||||.p _— ||U'Un|||_p _—
|IDelta u—D[u,,]II,_p J— 1wk ||Delta U-D[u..lllLv —
1}
0C =0.99
EOC =1.00 o1l 0C =1.99
1k . EQOC =2.00
0.01 |
0.1 0001
0.0001
001
1605
1806
0.001 | 3.99
1e-07 [
EOG = 4.00
0001 . . . . 1 . . . .
0.000 100 1000 10000 100000 1e+06 1e+07 e—08100 1000 10000 100000 1e+06 1e+07

(a) k = 2, piecewise quadratic FEs.

(b) k = 3, piecewise cubic FEs.

FIG. 5.2. The same test as in Figukelfor the2.1-biharmonic problem, i.ep = 2.1 for £ = 2 and3.
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(a) k = 2, piecewise quadratic FEs. (b) k = 3, piecewise cubic FEs.

FiG. 5.3. The same test as in Figuke2 for the 10-biharmonic problem, i.ep = 10.

We foresee that this framework will prove useful when stadyother (possibly more
complicated) second-order variational problems suchssetie curvature problems like the
affine maximal surface equation, which is the topic of ongoigsearch.
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