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CONVERGENCE ANALYSIS OF THE FEM COUPLED WITH FOURIER-MODE
EXPANSION FOR THE ELECTROMAGNETIC SCATTERING BY BIPERIODIC
STRUCTURES*

GUANGHUI HUT AND ANDREAS RATHSFELD

Abstract. Scattering of time-harmonic electromagnetic plane waves bgublgt periodic surface structure
in R3 can be simulated by a boundary value problem of the time-hammmi-curl equation. For a truncated FEM
domain, non-local boundary conditions are required in otdesatisfy the radiation conditions for the upper and
lower half spaces. As an alternative to boundary integrahtdations, to approximate radiation conditions and
absorbing boundary methods, Huber et al. [SIAM J. Sci. Com31t.(2009), pp. 1500-1517] have proposed a
coupling method based on an idea of Nitsche. In the case olgofitings with perfectly conducting substrate,
the authors have shown previously that a slightly modifiedatianal equation can be proven to be equivalent to
the boundary value problem and to be uniquely solvable. Na® $hown that this result can be used to prove
convergence for the FEM coupled by truncated wave mode eigranEhis result covers transmission gratings and
gratings bounded by additional multi-layer systems.

Key words. electromagnetic scattering, diffraction gratings, cogeace analysis, finite element methods,
mortar technique
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1. Introduction. The diffraction of light by biperiodic gratings, e.g., byudy periodic
surface structures, can be simulated by the time-harmomiowdll equations. Eliminating
the magnetic field, the electric field is the solution of a ldany value problem for the time-
harmonic curl-curl equation. For finite element methodsMir&his problem is reduced
to a finite domain, where quasi-periodic lateral boundarydéions and non-local boundary
conditions over the upper and lower boundary face are reduirhe first idea for the solution
of the boundary value problem is to express the non-locahBiary conditions by integral
operators and to couple FEM with boundary elements (3, 18]). With this approach,
for the solution of the boundary value problem, either theecaf wave modes propagating
parallel to the surface is to be excluded or standard metfowdstegral operators with non-
trivial null space are to be applied. As an alternative tegnal operators, a saddle point type
formulation (cf., e.g.,]) or absorbing boundary conditions (cf., e.@4]) can be used.

On the other hand, the radiation conditions mean that theienk can be extended in
the form of a Rayleigh series expansion of upward respdgtd@vnward radiating Fourier
modes. So the idea to couple finite elements and Rayleighnsig®s is natural. Huber
et al. [L5] propose such a method, where the finite elements and theeighyseries are
coupled employing a mortar technique by Nitsche 28, P7]). In [14], the case of perfectly
conducting profile gratings has been considered and thelinguerms of [L5] have been
slightly modified. It has been proved that the variationalapn for the coupling of FEM and
Rayleigh expansions is equivalent to the boundary valuelenofor scattering by gratings. If
the last problem is uniquely solvable, then the operatonefariational equation is uniquely
solvable, tooln the references3] 4, 5, 6] similar solvability results for all frequencies except
for a countable set of Rayleigh frequencies were obtainggkiiodic chiral structures, and
the coupling of finite element and integral equation methaals proposed and analyzed. For
a general coupling of finite elements and boundary elemeatslso refer to13].
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FiG. 3.1.Geometry of grating.

The subject of the present paper is to generalize the resuitse variational formula-
tion of [14] to the transmission problem, i.e., we analyze a formutabased on a mortar
technique, which is a slight modification of the method psmmbwithout proof in 15]. We
show existence and uniqueness even in the case of resondmme a Rayleigh frequency
is allowed. Finally, we prove the convergence of the diszagibn scheme, i.e., for the cou-
pling of the FEM (Necklec’s edge elements) with truncated Rayleigh series esxpas Note
that our mortar approach includes a natural coupling of ifoumodes with finite element
functions and is easy to implement.

The plan of the paper is as follows. id@mulate the boundary value problem and some
solvability results in Sectio®. In Section4 we define the variational form and derive the
Fredholm property for the operator corresponding to thimforhe numerical discretization
of the variational equation is introduced in Sect®nThe stability and convergence of this
method is proved. Of course, edge elements (cf., €ld]) fre employed for the FEM. In
Section6 we discuss the case of multi-layer systems beneath thegisttiucture. Instead of
an extension of the FEM domain by the layers of the multi4@ystem, we replace the down-
going Fourier modes by special wave modes of the multi-laystem. Note that this idea
goes back to the authors df]. The convergence analysis of Sectidean be generalized
to the multi-layer case too. Finally, we add a simple testshg that our method converges
to the same solution as the 2D FEM for periodic 2D gratingstarile same solution as the
method of [L5)].

2. Preliminaries. Throughout the paper, the symbels(j = 1,2, 3) denote the unit
coordinate vectors in the three-dimensional Cartesiandooate system. The symbol) "
denotes the transpose of a vectotihor C, while the symbob.Lb means the orthogonality
of the vectorsa = (ay,az,a3),b = (by,ba,b3) € C? in the sense thazj.’:1 ajb; = 0.
Denote the unit sphere by? = {z = (z1,79,23)" € R®: ||z|| = 1}, and define
2’ = (w1,22) for x € R3. The branchof the square root/a is chosen such that the
imaginary part ofy/a is always positive, i.ey/a = i/—a if a < 0.
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3. Diffraction problem. Consider the scattering of a time-harmonic electromagneti
plane wave by a biperiodic structure (diffraction gratindiich consists ot least twaptical
materials. By biperiodic or doubly periodic structure €f. 3.1), we mean that the structure
is periodic in two orthogonal directions; andx, and bounded in:3. The optical material
inside the grating can be completely characterized byéediric coefficient and its magnetic
permeability. For simplicity we assume that the medium ismagnetic with a constant
magnetic permeability.(z) = o > 0 in R?. However, our arguments can be adapted to the
case whereu(z) is a periodic and piecewise constant function. The elepgimittivity e(x)
and the conductivity («) are supposed to hk;-periodic inz; (j = 1, 2) inside the grating
and are homogeneous above and below the grating structare. precisely, we assume that
there exists a constaht> 0 such that

€(w1 +n1A1, w2 + nalo, 23) = €(w1, 2, 73),
o(z1 +n1Ay, m2 + 2o, x3) = o (21, T2, 3),
in Q := {x: |z3] < b} foranyn = (ny,n,) € Z2, and
e(r) = el >0, o(z) =0, in x5 > b,
e(z) = Regy, o(z) =wlmey >0 in w3 < b,

with the circular frequency > 0. Further, we restrict ourselves to the mostly used gratings
wheree(z) ando (z) are piecewise constant functions satisfying

(3.2) 0<e<e(z)<oo, 0<o(r)<oo INR3

Let O* := {z: z3 > +b}. Suppose thaa time-harmonic electromagnetic plane wave
E™(z)e~ ™t with E™ of the form

(3.2) E"(x) := qexp(iktz - 0) = gexp (z(z’ ca— Bxg)), i=+-1

is incident on the grating fro*. Herekt :=w ef 1o (respectivelyk ™ := w4 /€5 o) is

defined as the wavenumber characterizing the homogenousmn'ﬂfl:ffr (respectivel)ﬁ‘).
In (3.2), the symbob denotes the direction of incidence

0 := (sin 6, cos fa, sin Oy sin O3, — cos 91)T€ S?,

with the incident angle8, € [0,7/2), 62 € [0,27). Further, in 8.2), the three-dimensional
vectorg = (q1, g2, q3) | € S? stands for the direction of polarization satisfyipgé, and

a=(ay, ag)T :=k(sin 0 cos 05, sin 0 sin HQ)TE R2, B:=kcosb.

Eliminating the magnetic field from the reduced time-harrndhaxwell’s equations, we end
up with the electrigurl-curl equation

(3.3) curl curl E(z) — k*(z)E(x) =0 for zeR3,

wherek?(z) := w?puo(e(z) + io(x)/w) and the electric fields in QT is the sum of the in-
cident field £ and the scattered fiel#*. The periodicity of the grating together with the
form of E™ motivates us to look fora-quasiperiodic solutions in the sense that
E(z)exp(—ia - 2') is (A1, As)-periodic inz’. In other words, it is required that

E(Sﬂl —+ Al, 2, xg) = exp(iAloq)E(:L'l, T2, Sﬂg),
E(z1, 22 + Ao, 23) = exp(ilgas) E(21, 2, 23),
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for all z € R3. Since the domain is unbounded in thedirection, a radiation condition must
be imposed. Noting that(z) = £+ in QF, we suppose that the scattered fi&ldr in QF

and the electric fieldZ in 2~ are composed of bounded outgoing plane waves in the form of

E*(x Z Ef exp( QT +ﬁ+x5)) forzs > b, Ef L(an, 5)7,
(3.4) neL
Z E,; exp( QT —ﬁ;m)) forazs < —b, E, L(an,—06,)",
nez?

whereq,, (a%l), ag)) cR?, with aﬁf) =a; +2mn; /A, 7 =1,2,forn = (n, 77/2)T €72,
and

B =B (K, a) =/ (k)2 — | 2.

We say that the scattered fields satisfy the radiation cimdit expansions of the forni3(4)
exist. These expansions are also referred to as the Rayderigs expansiong.he constant
vectorsE:" are called Rayleigh coefficients. Singg are real-valued only for finitely many
indicesn, we observe that only a finite numberwéve modesn (3.4) propagate into the far
field, while the remaining part consists of evanescent (diasa) waves decaying exponen-
tially asx3 — +oo. Thus, the above expansion B¢ resp. E converges uniformly with all
derivatives in the hal§pace{z; > a} respectively{z3 < —a} for anya > b.

Since the squared wave numiétz) is (A1, A,)-periodic inz’ and both the incident and
scattered fields are quasiperiodic, we can reduce the gongtfgoblem to a single periodic
cell. To this end, we introduce the following notation

1‘1,.%2,33‘3 G R3: xr3 = ib},

$17x2,$3 EF;‘ZZO<£Ej<A]‘,j:1,27},
Z1

,IQ,Ig Eﬁi10<$j<Aj,j:1,2},

={
=1l
=1
{er 0<zj <Aj,j=1,2}

We next introduce some scalar and vector valaegluasiperiodic Sobolev spaces. Let
H*(T'#) be the complex-valuefi*-based Sobolev spaces of ordesverT';. Write

Hige(curl, Q) := {G: xG, curl (xG) € L2(Q)%, ¥y € C° (Rd)}
H,o (D)
t loc(rlz)t)

H; 1oo(Div, T) -

G:xG € H*([),vx € G () },

GeH (M) es G = 0},

i
lantun Wanten Wanten W anden Wt N

G:G e Hfsloc(f‘l:)t)v DivG € Hts,loc(fg:)}a

f,loc(curlaf‘l:)t) G:Ge Htgloc(~ ) CurlG € I{tgloc(f )}’
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and
H(curl, Q) {G|Q G € Hjpe(curl, Q) Gisa- quasmenod@
= {g|Q ge Hp (Q),gis a-quasiperiodi%,
= {G|Fi G e H;,.(TF), Gis a—quasiperiodi%,
H; (Div,T'f) = {G|F:{: G € H;,,.(Div,T¥), Gis a—quasiperiodi%,

Hf(Curl,Fbi) = {G|Fbii G € H} },.(Curl , T), Gis a-quasiperiodi(},

whereDiv (-) andCurl (-) stand for the surface divergence and the surface scaldiorab
operators, respectively. Note that, fer +— E(z’,+b) in H(I'f), s € R, we have the
Fourier series expansion

E(z',£b) = Z EZ exp(io, - 2'),

nez?
Ay Ao
= (A1A2)71/ / E(2', £x3) exp(—iay, - 2')dzidzy € C3.
0

Then, the spaceH; ('), Hy (Div, ['f), and Hy (Curl, T') can be equipped with the fol-
lowing equivalent Sobolev norms

1/2
||E||H;(Fbi) = <Z |E:ﬂ2 <1+|an|2>s> )

nez?

1/2
||EHH§(Div IE) = <Z (1 + ‘an|2)s (|Evjﬂ2 + \E;TL ’ (Oén,O)TF)) )

nez?

1/2
B b (cum 1) = <Z (L4 lan*)" (1271 + EfX(amO)TIQ)) :

nez?

Recall that the space dual th (Div, ) with respect to theL?-scalar product is
Hy(Div,TF) = H;*~*(Curl,T), and that, fos = —1/2,

H;V*(Div, TE) = {(eng)|Fi EeH(cul, Q)}
H;l/Q(Curl,I‘b )= {(63XE)|Fbi Xes: EEH(curl,Q)}.

Further, the trace mappings frofi(curl , Q) to the tangential spacd#; '/*(Div,T'}') and

_1/2 (Curl, F ) are continuous and surjective (s& 17] and the references there). Fi-
naIIy, define our variational space

X=X, := {E QS ChEe H(curl,Q)}
endowed with the norm

1/2
E|lx = |E]|#(curt ) = <||E||%2(sz)3 + HCUFIEH?LZ(Q)S) :
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The boundary value problem for our scattering problem castéted as follows.

(BVP): Given an incident electric field*, determine the quasiperiodic total electric field
E € Hjpe(curl ,R?) such thatF(z)|q, satisfies theurl- curl equation 8.3) in Q2 in
the distributional sense and that the scattered figld= F — £ in x5 > b as well
as the transmitted fieldl in x3 < —b admit a Rayleigh expansion of the for@.4).

Introduce the set

(3.5) Tres i= Tioe Ul e Tihy = {n € 2% BE(k*,0) = 0}

An incident angular frequenay with Y., # 0 is called Rayleigh frequency. Note that the
setF of all Rayleigh frequencies depends b, A;, andA, but not on the shape &f.

Below we collect some uniqueness and existence results\@®)Bor a broad class of
incident plane waves. Assume that the incident electricantakkes the form

(3.6) Ef;;n = Z Q, exp (an sz — ang),

n: Bn,>0

whereQ,, € C3 satisfiesQ,, L (a,, —3,)". Note that"" of (3.2) is of the form @8.6), where
Qn =q,forn=(0,0)T,andQ,, = (0,0,0)T otherwise.

THEOREM3.1. Consider the scattering problem (BVP) wi" replaced byE!"”, .

(i) There exists a unique solution to (BVP) for alle R\ D, whereD is a discrete set
with the only accumulating point at infinity.

(i) The problem (BVP) admits at least one solution for any= R*. Moreover, the
far-field part of the solution scattered into the half spage= =+b is unique, i.e.,
the Rayleigh coefficients of the plane wave modes propagatto the half space
x3 = +b (namely, thosds: with 3 > 0) are unique.

(iii) There exists a small frequenay, > 0 such that the problem (BVP) admits a unique
solution for allw € (0, wo].

The assertions (i) and (ii) follow from the existence andjueiness of the magnetic field
in the spaceff!(Q)3; see B, 7, 11, 25, 26]. Note that the constant magnetic permeability
implies thepiecewiseH *-regularity of the magnetic field, which is not true for theetic
field. In the non-resonance case (i%,.s = 0), (i) and (ii) can also be proved by studying
the following variational formulation for the electric fieE in : find £ € X such that

/ [cwrtl B - cwrl g — k*(2)E - 7| do — R (e3x E) - (e3xp)ds
Q ry

(3.7) + [ R (esxE) - (e3x@)ds
ry

— / [(curl E™)p — RT (e3x E™)] - (e3xp)ds,
ry
forall ¢ € X, where(:)r := [eg x (-)]|Fb+ x eg and the operators

RE: H; V2 (Div, TF) — H; 2 (Curl , TF)
are the Dirichlet-to-Neumann maps defined by

(RYE)(z') =F Z zﬁ% [kzzﬁf — (ay, - Ef)an} exp(ia, - 1),

nez?
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for E(z') = Y,e EE explia, - ') € H; '*(Div,T}), EX € C% see [, 2]. Note
that the operatoR ™ mapses x E*¢ to (curl E*¢)r on Fb+ and thatR~ maps—es x F to
the trace(es x curl E) x e3 on I',". If the incident frequency is sufficiently small, then
the setY, is always empty and one can prove that the sesquilinear femergted by the
left-hand side of§.7) is positive coercive ovek x X under the assumptio (). We refer
to [14, Lemma 6.1] for the proof of the third assertion for perfgctbnducting grating profiles
using a variational formulation analogously @ 7%) but posed only in the upper half space.
These results can be easily extended to transmission gsatin

There are two drawbacks in using.{) to compute the electric field. First, the trans-
parent boundary operatofd®™ do not make sense X = 0 (i.e., in the resonance case).
Thus, Rayleigh frequencies must be excluded. Second, gtipeaR* cannot be computed
straightforwardly from3.7). Instead, they must be approximated by taking sufficiemtyy
terms in the expansions; seg [Section 6] for the error estimates. Motivated by the varia-
tional formulations proposed irlp, 23] and based on the mortar technique of Nitsche (see
Nitsche p0] and SternbergZ7]), we employ a consistent coupling of the electric fiélcbn
the inten‘acefjE as a replacement of the Dirichlet-to-Neumann maps. Thisweapropose
a more general variational formulation thah) for the electric field, which allows us not
only to handle (BVP) in the resonance case but also to appaiei the non-local boundary
operators orfbi. Numerical experiments and convergence rate for a simédational for-
mulation were already reported ifig]. The goals of this paper are to provide a theoretical
justification of the modified Nitsche’s method and to prove tlnvergence of its numerical
discretization using Bdelec's finite elements.

4. Variational formulation based on a coupling method. In this section wepropose
a variational formulation equivalent to (BVP). We beginiwihe fact that any column vector
Ef € C3 satisfying(a,,, 8;7) T L E;f for somen = (ny,n2)" € Z? can be represented as a

linear combination of two vector,! , E' | € C:
Ef=CtyEf +CH EF,, Cry, CF eC,
where
b ) ol al 0T /lan| €87 if Jan| #0,
" (0,1,007 otherwise

o Bl BT X B = (—all B —al® B lan )T/ e £0,
wl (-1,0,0)7 otherwise
with b5 = an|y/|an|? + |57, Obviously, it holds thate,, 5,1) " LE; . |E | = 1, for
I =0,1,n € Z*. One can observe further thaf' , € S?if 8 € R, and thatE,} | = e if

n,l =
+ = 0. The above decomposition @ allows us to rewrite the Rayleigh expansi@n4
for E°¢ as (see alsd3, Section 2.5])

E*(z) = Z C;il Unfl(az:)7 U:;l = E;l exp (i[an ca + ﬁ,‘fxg]), CTJ{J eC,
nez? 1=1,2
for x5 > b. Analogously, there holds

E(x) = Z Co U (@), U ==E_exp (i[an ca — ﬁ;m]), C,.€C,
nez?1=1,2
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forz < —b, whereE, , = E,/ ; and

P ‘:"‘wn,—ﬂ ) x By =(ar By i By o) /by i Jan] £0,
(-1,0,0)" otherwise

with Ay, :=|an |/ |an|2+|Bn |2. Define the layer®* of height one abovE;™ and belowl”;
by

Dt i={zeR*0<z;<Aj,j=12 b<az<b+1},
D™ ={zeR%0<z;<A;,j=12 -b—1<az3<—b}.

Now we introduce the Sobolev spades as follows:

4.1) v = {U € H(curl, D*): =N ¢ US (), CF € c}, 1=0,1.
nez?

Then we see that the functidii™ (z) := E*¢|p+ belongs to the spadé™ := Y;" @ VT,
and thatE~ (z) := E|p- belongs to the spacE~ := Y, @ Y, . Hence, the following
problem is equivalent to (BVP):

(BVP’): Given an incident electric field?, find the a-quasiperiodic field§E, B+, E~)
in H := X x YT x Y~ such that? satisfies the curl-curl equatioB.g) in Q in a
distributional sense and the transmission conditions

esx(E—E"—E") =0, esxcul(E—E™—-E")=0 on I},
esx(E—E7)=0, esxcurl(F—E7) =0 on T,.

Motivated by the arguments i2B, Section 3.2] and the variational formulations
in [14, 15], we propose a new variational formulation that is equinat® (BVP’). For the
triples of functions (E,E*,E~), (V,V*, V=) € H, define the sesquilinear form
a(+,-) :Hx H— Cby

a((E,E+,E—), (V,V+, V—))
::/{curlE ceurlV — k*(z)E -V} da
Q
- / {curlE+ ce3xV —e3x (E—ET)- curlv+} ds
Ty

(4.2) +/ {curlE_-eng—e;gx(E—E_)-curlv_}ds

nt Z [/ esx (E—ET)- (egxﬁzo) ds/ engJr-(eng,tO)ds]

T
neY+t Ty

—-n~ Z l/ esx(E—E7)- (€3XUm0)dS/€3XV_'(€3XUm0)dS],

neY—

wheren® > 0 are constant factors. The $&t is a finite fixed subset ¢£? with Y, C T+
(cf. (3.5)). Our variational formulation is to findF, E+, £~ ) € H such that

(4.3) a((E,E+,E—), (V. V+,V—)) - —a((o,Em,o), % V+,v—))
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forall (V,V+,V~) € H. Note that terms Iikgfrzc curl E* - e3x V ds are bounded. Indeed,
since E* is the solution of theurl-curl equation inD*, we getcurl E* € H(curl, D¥)

and (curl B+)| .+ € H~Y/2(Curl,Ti). Further, note that the second part of the second and
third terms on the right-hand side of.@) both have opposite signs than the corresponding
terms in [L5]. Moreover, the integrals with the factgi in (4.2) are modifications of the
following terms involved in the variational equation 4H:

(4.4) ni/iegx(E—Ei) cegx (V — VFE)ds.
Fb
The expressions in4(4) are not meaningful for genergb, E*, E~), (V,V*, V") € H
since bothez x (E — E*) andes x(V — V) belong to the spacH[l/z(Div ,[F). Integrals
like nfri e3 X u - ez xvds in the mortar approach make sense for finite element methods,
b

whereu andv are finite element functions angdtends to zero with the mesh size. The idea
employed in 23] is to replace the integrali(4) by the Galerkin approximation

(4.5) Z lni/ egx(E—Ei)engflds/ €3X(V*Vi)'€3XU:ldS
Jr# ' '

+
b 'Fb

nl:n|><N
BE#00ri=0

(4.6) +nt Z [/ esx (E — E*). Uiods /i esx (V —VE) ~Uiods

r
6’71/ _() b b

with a sufficiently large numbeN > 0. It is also mentioned inZ3] that the summation

in (4.5 and @.6) can even be restricted to all € Z? with 5* = 0. In the present paper,
we only use the terms of4(5 with n € T+ and simplify them to gethe last two terms

in (4.2). Note that choosin@ * larger tharl £, makes the numerical scheme more stable in
the near-resonance case.

Arguing similarly to [L4, Lemma 3.3], we can prove the equivalence of the variational
formulation @.3) and the problem (BVP’). Moreover, in the non-resonanceecas
i.e., T,es = 0, and forY = T, the variational formulationsi(3) and @.7) are equivalent;
see [L4, Remark 3.4]. Thus, the variational formulatiegh3) is indeed more general thak ).

It is worth to mention that, using4(3), we can also prove the solvability results in Theo-
rem 3.1 since the arguments iri4] for perfectly conducting grating profiles can be easily
adapted to transmission gratings. To prepare the conveegamalysis of the finite element
discretization, in this paper we only check the Fredholnpprty of the operatod : H — H’
generated by the bounded sesquilinear fafm-) defined in Sectiod, i.e., A is given by

(4.7) a((E, E*,E7),(V,VT, V*)) - <A(E,E+,E*), (V,V*+, V*)>.

HereH’ denotes the space dual Ebwith respect to the duality-, -) extending the scalar
product inL?(2)® x L?(D*)? x L?(D~)3. The rest of this section is devoted to verify the
following theorem.

THEOREM4.1. The operatorA defined by4.7) is a Fredholm operator with index zero.
First we recall the following definition.

DEFINITION 4.2. A bounded sesquilinear fori-, -) given on some Hilbert space is
called strongly elliptic if there exists a compact fof(n -) and a constant > 0 such that

Rel(u,u) > c||ul|?% = l(u,u), VY ueY.

To prove Theoremd.1, we need a periodic analogue of the Hodge decomposition. of
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LEMMA 4.3.
(i) We have X = Xy & X1, where

X = {Vpipe HLO} C X,

Xo = {EoeX: / k2(2)Vp - Eo dz = 0 forall Vp € Xl}
Q

and the space is compactly embedded infc (2)3.
(i) We havediv (k%(z)Ey) = 0in Q andes - Ey = 0 onl“bjE for any Fy € Xp.

Proof. See, e.g.,d, Section 3.1] for the proof of the first assertion in more gahe
periodic chiral structures and ¥, Section 4.4in the case of non-periodic structures where
k?(x) is allowed to be a complex-valued function. Using integnatdy parts, it follows from
the definition ofX, thatdiv (k?(z)Ey) = 0in Q andes - k*(z)Ey = 0 onTf. Sincek?(x)
is anon-vanishingpiecewise constant function {a, we obtaines - Ey = 0 on Fff. 0

By Lemma4.3and the definitions of;*, we can decompose our spddento six sub-
spaces

H=(Xo®X1) x (% @Y") x (Y5 @)
For(E,E*T,E™),(V,V*, V™) € H, we may assume that

E=Vp+FE,, E*=FEf+Ef, whereVpec X, Fyc< X, Ef €Y*, 1=0,1,
V=Vt VE=VE+VE where Ve € Xy, V€ X, VE eYE, 1=0,1.

For the analysis of the form, we define several sesquilinear forms as follows. Let
(VP V¢) = [ B(@)Vp- VE da, v Up,VE € X,
Q
GQ(E(), Vo) = / {curl E() . curlvo — k2($)E() . v()} d{E, V .E()7 VE) S X(),
Q

af (BE,V§F) ::i/Fi esx EE - curl Vg ds, Y EE Vi e v,

b
af (BE,VE) ;:j:/Fi esx BE . curl Vy ds, VEE VE e v,

b

and let

aE ((E,E*,E*), (V,V+, V*)) = ﬁ:/i esx E - curl V' ds,
T

b

at ((E,E+, E),(V,V*, V—))

—t —=+
= Z {/1“* €3X(E—Ei>~(€3XUn’O> ds /1“5(63XVi).(63XUn’0) ds},

b

forany(E, ET,E~),(V,V*,V~) € H. For brevity we write

aE ((E,E*,E*), (v, V+,V*)) =a(E,VE), VEeX, Vtevt
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LEMMA 4.4.For anyV¢ € X, andVi* € Y5, we haverE (Ve, ViF) = 0.
Proof. Assume thatv¢ € X; and VOJr € Y. Without loss of generality¢ can be
assumed to be smooth. We can expand the fungtiohinto the series

f(l‘) = Z fn(x?)) eXp(ian -x’), fn € 02(R+)>

n€ez?
in a sufficiently small neighborhood 6’@ This implies that

(3 X Vs = > ifa(B)(—al?,a), 0)T expia, - o).

nez?

Making use of curl U, = iU,}; 1/|an|? + |51 (see [14, Lemma 3.1]) and recalling the
definition of U;, and the sesquilinear fory, we end up with the identity

ai (VEVh) = / (e3x V&) -cuerTJ‘Fds =0.
ry
The proof fora; can be carried out analogously. 0
Note that the last proof is a neand simplemroof of [14, Lemma 4.3]. Using Lem-
mas4.3and4.4 andthe definition ofa, a simple calculation impliesee Tablet.1)

a((E, ET,E7),(V, V*,V*))
= a((Vp+ Bo, B + B, By + B, (VE+ Vo, Vi + Vi, Vg + V7))
= —a1(Vp, V&) +az(Eo, Vo) —az (Ey, V") — aif (B, Vi") +a5 (Eo, V")
—ai (Vo, ) + af (Bo, V") —af (Vo, BY ) + af (Vp, V") a3 (VE, EY)
+af (BB, B7),(V,VF, V7)) +a5 (By, Vi) + a3 (B7, Vi) —a5 (o, Vi)
+ a5 (Vo, By ) — a5 (Eo, V") +as (Vo, By ) — a5 (Vp, Vi) +a5 (V& Ey)
+ag ((E,E+,E—),(V, V+,V—)).

Proof of Theoremd.1.  Obviously, we have
e aj is coercive onXy, i.e., there exists some const&nt> 0 such that

Rela1(Vp,Vp)] > C||Vpllx, VVpe X;.
e ay is strongly elliptic overX, due to the estimate
Re [az(Eo, Eo)] > || Eollx — [1+ [[E*|| = @] || Bol |72 (s

for any Ey € X, and the compact imbedding af; into L?()3 (see Lemma.3).
e af are compact forms ovéi since each of them corresponds to a finite rank oper-
ator overH.
To demonstrate the Fredholm property of the sesquilinean {9 we now need to study the
other formsa; , af, andas. Concerningz; anda], it is shown in L4, Lemma 4.5] that
there exist compact formis} : Y," xY;" — C andaj : ;" xY;" — C such that

—Rea;(ES_7E(—)~_) 2 C?j_ ‘|EJ|‘2H(Cur17D+) - d;(ES_7E(—)~_)7 VES_ € YO+7
(4.8) -
4

Reai<E1+7E1+) 2 CI HE1+H3'{(cur1,D+) —a (ET>E1+>7 VE;F € Y1+’
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for some constants;", C;” > 0, i.e., the sesquilinear formsas anda; are strongly elliptic
overYo+ andY;", respectively. The proof of the estimates 4ngj can be easily extended to
the sesquilinear forms; anda, . That is, we can find compact formg : Y, xY; — C
anda, :Y; xY; — C such that

Reag (Ey , By ) > Cg ||Eq |[5yewn,p-y — @3 (Bg , Bq), VE; €Yy,

(4.9) o B B o B B
—Reay (E7,Ey) > Cf |[E; H?f(curl,D*) —ay (Ey,By), VE €Yy,

for some constants; ", C; > 0. Hence the strong ellipticity af;” and—a, follows. Finally,
in view of [14, Lemma 4.7] we have

e a; is compact oveXy x YT,
and analogously

e a; is compact oveXyxY; .

To prove the Fredholm property of the variational formuat{4.3), it suffices to verify
that the operator corresponding to the sesquilinear ferma; — ag is Fredholm ovet
with index zero. For this purpose, we define the spétes- X; x YjJr xY; forj=0,1,s0
that we can rewritél = X xY+xY ~ = Hj, ¢ H;. Define the sesquilinear forms

bO((E07E(-)‘r7EO_)7 (V05V0+7V0_))
= az(Eo, Vo) — ad (Ef, Vo) +az (Ey,Vy)
+ag_(E07 VO+) - a;(%vEJ) - a5_(E07 VO_) + ag(%aEO_)v

forall (Eo, Ef, Ey), (Vo, Vyt, V) € Hy, and

b (Vo B D), (Ve Vi V)
= _al(vP7 Vf) - ai(Efr, V1+) + aZ(Efv Vli)
+af (Vp,Vi") = ai (V& Ef) — a5 (Vp, Vi) + a5 (V€ EY),

for all (Vp, Ef, Ey), (VE,ViT, V") € Hy. Now split the form in Tablet.1in blocks cor-
responding to the splittingl = H; x Hy. Then the restriction tél; is the formby with the
strongly elliptic quadratic form

Re bo((Eo,Eg,Eg), (Bo. By, Ey)
= Reaz(Ey, Ey) — Read (Ef, Ef) + Rea; (Ey , Ey).
The restriction td} is the formb,, and—b; has the strongly elliptic quadratic form
“Reb; ((Vp7 Ef,E7), (Vp, Bf  BY))
= Rea;(Vp,Vp) + Reaf (Ef, Ef) —Reay (B, Ey).

Consequently, the diagonal blocks of the splitting iRta2 blocks of size3 x3 correspond to
Fredholm operators with index zero. On the other hand, théfmm in Table4.1 differs from
the diagonal block matrix only by compact terms. Hence tmefe generates a Fredholm
operator with index zero. |
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TABLE 4.1
The diagram for the sesquilinear fora— az; — ag overH x H, whereH = XxYt xYy—.

HO = )(0)(1/0+ Xyoi
Xo(Eo) Yo' (Eg) Yo (Eq)

Xo(Vo) as(Eo, Vo) —as (Vo, E7) as (Vo, Ey)
Ho

Yor(Voh) | ad (Bo, Vi") | —ad (BF, VD) 0

Yo (Vo) | —as(Eo, V) 0 az (Ey, V)

X1(V¢) 0 0 0
Hy

Vi) | ad (Bo, Vi) 0 0

Y (Vi) | —a5(Eo, Vi) 0 0

Hl = X1 va1+ ><Y17
X1(Vp) Y (EY) Yy (EY)

Xo(Vo) 0 —af (Vo, BY) | az (Vo, EY)
Ho

Vit (Vi) 0 0 0

Vi (Vi) 0 0 0

Xi(VE) | —ar(Vp,VE) | —af(VEET) | a5 (VE EY)
Hy

iV | oad (Ve Vi) | —af (B, V) 0

Yl_ (‘/1_) - a’5_ (vp7 ‘/1_) 0 CLZ (El_v Vl_)

5. Numerical analysis of the Finite Element Method.

5.1. Finite elementspacesand the FEM. As mentioned in the introduction, waes-
sumethat the optical medium iiR? is piecewise smooth. Fdhe convergence analysis, we
suppose that the interface between any two different nadgeis a polyhedral surface. Let
i, = () be a partition of2 by tetrahedron# of diameterhx, i.e.,Q = Uxe,, K, Where
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h denotes the maximum diameter of the elements,inOf course, we suppose thatnd

k are constant over eadki € 7,. We will use standarfléctlec’s edge elements (cfLT])
and analyze convergence fbr— 0. For each elemenk” € 7, andk > 1, denote byPy
the polynomials of maximal total degréeand by P the homogeneous polynomials of to-
tal degreek. Define the subspac8, of homogeneous vector polynomials of degkeby
Sc:={p€(P)3| z - p(x)=0}. Thecurl conforming edge elements ofdklec rely on the
use of the vector polynomial spaég, := (P._1)® © Sx. More preciselythe Necelec finite
element space of edge elements of degraee defined as follows.

DEFINITION 5.1. Let X}, C X be the set of functiong}, : Q — C? such that

(i) ForanyK € 7, we haveE,|x € Rik.

(i) For any edge: of the FE partition and for anys, K’ € 7, s.t.e C K N K, we have
J(Enlk) -7 qde= [ (En|k)- T q deforanyq € P,_;. Here,r is the unit vector
pointing into the direction of.

(iii) For any facef of the FE partition and for anys, K’ € 75, such thatf C K N K,
there holdsf, (Ex|x)-q ds= [,(Ep|x)-q dsforanyq € (Pyx—2)* withq-v; = 0.
Here,v; denotes the normal to the fage

To define thaliscretizedspaces fol;*, for some constant' > 0, we introduce the finite

setYy,:={neZ?: |n|<C/h}. Then set

Yhi = th,[o ® Yhi,l’ Yhi,l = span{Uni’l 1 n e Th}, 1=0,1.
The discretized full space is defined Hg := X} x Y,f x Y,”. Now the finite element
approximation associated td.8) can be formulated as follows: fin(tEh,E}f,E,j) € Hy
such that

61 (BB ED, i VD) = —a((0,E7,0), (Vi Vi VD)),

forall (V4,,V,", V") € Hy,.

5.2. Auxiliary notation and facts. Let (F, F'*, F~) € Hj, be defined as the right-hand
side of equationq.1), and letP, := (PX», PYx", PYx ) be the orthogonal projection &i
ontoH,. Then we obtain the operator equation of the FEM
(52) Ah(Eh,E;,E,?) = (Ph)*(F,F+,F_), Ah = (Ph)*A‘Hm
whereA: H — H’ is given in @.7). Note that the operatord,,: H;, — Hj, are uniformly
bounded ink > 0. It follows from [17, Lemma 10.10] thaP*» — I in X, and by the

definitions onhi, we see thaPYs — Tin Yhi. This implies strong convergence 6%,
to I in H. Consequently, the convergen@®,)* — I holds inH’ and A, P, —> A.

DEFINITION 5.2. The operatorsd;, : H; — Hj, are called stable if there exists an
ho > 0 such that4,, is invertible for allh < hg and if|\A;1|| < ¢ for some constant > 0
independent of € (0, hg).

Note thatthe operator norm of the inverse opera}@qu1 can be computed as

’Cl((Em EfED), (Vi Vi Vh7)> ‘

1A= inf sup — .
(00.0Z(Ep B BiT)  (0,0,0)(Vy ViF Vi) ”(Eh’Eth’Ehi)HH |‘(Vh’vh+7vh )HH
(By. Bt B el (Vi Vit vy emy,

DEFINITION 5.3. We say that the FEM fof4.3) is convergent if, for anyF, F+, F'~)
in H" and for all h < hg, the approximate solutiofE),, E,j, E, ) to

(5-3) a((EhaE}T’E}:)v (VhthJr?Vh_)) = <(F’ F+7F—)7 (thvh+’ Vh_)>7
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for all (V,,V,",V, ) € H, exists and is unique, and (), E;, E; ) converges strongly
in H to the exact solutiolF, E+, E~) of the continuous variational problem

A(E,E* E7)=(F,F* F).

Now we recalltwo well-known results on the convergence and perturbatfo, e.g.,
[21, Chapter 1], 22]), which are our main tools for analyzing the discrete @wi@al prob-
lem (5.1). Lemmab.4is a simple consequence of the Banach-Steinhaus theorerfoattie
reader’s convenience, weovide a short proof of Lemm&a5.

LEMMA 5.4. Suppose the strong convergenBg — I. Then the finite element
schemdb5.3) is convergent if and only if the operators, defined in(5.2) are stable.

LEMMA 5.5. Suppose that?, — 1. Furthermore, suppose that the operators
By, : H, — H, are stable, and that the convergenBg P, — B holds ash — 0 for
some operato3: H — H'. Moreover, letT: H — H’ be a compact operator such that
C = B+ T is invertible. Let the operator§, : H;, — Hj, be small perturbations of
By, + (Ph)*ThHI;Ly i.e.,

Ch, = By + (Ph)*ThHI;L + Dh, ||DhH —0 ash — 0.

Then the operator€’, are stable.

Proof. The small perturbation®;, can be treated by the usual Neumann series argument.
Hence, it suffices to prove that the operat®s+ (P,)*T'|m, : H, — H), are stable, i.e.,
thatthe inverse operators &), + (P,)*T|u, exist and are uniformly bounded.

We first show that3—! exists. Since” is invertible andl’ is compact,B is a Fredholm
operator with index zero. Hence, we only need to showlhka®B = {0}. Noting that the op-
eratorsBy, are stable, we get, for any< H, that|| P}, u||g =] \B}lehPhu| | <c||BpPrul|m
with a constant: > 0 independent of. Letting s — 0, we obtain||u||x < ¢||Bul|g, which
impliesKerB = {0}.

Now the pointwise convergencB, ' (P,)* — B~ is easy to see, and thus the norm
convergencdl (B, ' (P,)* — B~'|T|| — 0 ash — 0 follows. A simple calculation shows

Bh + (Pn)*T|u, = BulIls, + By, ' (Pn)"T)u,]
= Bp {Pu(I + B~'T)|g, + Pu[B;, (Pn)* = B T|w, } -

To prove the stability of3;, + (P,)*T|u, , we only need to prove that @¥,(I + B~1T)|u,
because the second temthe curly bracketsf the previous identity tends to zero/as— 0.
From the invertibility ofC, the existence off + B~'T")~! follows. Then, we can verify that

[Po(I+ B 'T)  m, |[Pa(I + B~'T)|m, ]
= [P}L(I+ BilT)il(Ph - I)(I+ BilT)hth] + I‘Hh
= [P(I+B'T)" (P, — I)B'T|u,] + I|s,,

where||P,(I + B~'T)"Y(P, — I)B~'T|g,|| < ¢||(P, — I)B~'T|| — 0. Hence, the
product of ([P, (I + B~'T)"Y (P, — I)B~'T|g,] + I|g,) "' and [P, (I + B~'T) Yy, ] is

the uniformly bounded inverse @, (I + B=1T)|, - O
REMARK 5.6. The projection?, in Lemmab.5 can be replaced by operators which
are not projections. If thé?, are orthogonal projections and B, = (P,)*B|u,, then

Lemma 5.5 reduces to the classical stability property of projectioretmods; see,
e.g., [L6, Theorem 13.7].
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5.3. Convergence analysis of the FEMTo prove convergence of the FEM, we need
the Hodge decomposition of the discrete functionXjn Define

Sy, = {ph S H;p(Qb)Z ph|K € P forall K € Th}.

We have the discrete Hodge decomposition = X, o ® X,,1 analogously to Lemma.3,
where

Xni = {Vphi Ph € Sh} C Xy,

Xpo = {Eh €Xp: 0= / k2(2) By, - Vpy, da for all Vpy, € Xh_rl}.
Q

Unfortunately, it is not true thak;, o C X,. This causes difficulties in our convergence
analysis. The following property of discrete compactness will helptasovercome these
difficulties.

DEFINITION 5.7. We say thathe subspaceX}, o havethe discrete compactness prop-
erty if, for any sequenc&,, o € X, 0, n = 1,2,---, such that| E,, || x < ¢ with somer
independent of index, there is an elemerfty € X, and a subsequence &f, (, converging
in L2(Q)3 to Ey.

DEFINITION 5.8. Let px denote the diameter of the largest sphere inscribed in the
tetrahedronk. We say that th@artitions 7;, are regular ash — 0 if there exist constants
¢, hg > 0 such thatmaxger, (hi/pr) < cforall h € (0, hy).

Analogously to L7, Theorems 7.17, 7.18, and 11.11], we can prove the follolemgma.
LEMMA 5.9. Suppose that theartitions 7, areregular. Then the subspacés, ( posses
the property of discrete compactness.

Finally, the main convergence result is stated in the needrbm.

THEOREM 5.10. Suppose that there only exists the trivial solution to thembgeneous
variational equation(4.3) and that the partitions;, of (2 are regular. Then the finite element
method(5.1) with Necelec’s edge elementaupled to truncated Rayleigh series expansions
converges.

Proof. Define thediscretesubspacesl,; := X, x V;}, x Y, , C H,, for I = 0,1.

Let PYii: H —s Y,jfl, PXwi: H — X, and PHni 0 H — Hy,,; be orthogonal
projections. Note thaPX»+ — PX1 ash — 0, where PX! is the orthogonal projec-
tion from H to X;. Indeed, forVp € X;, the problem of findingvp, € X} i such that
(Vpn, Van) = (Vp, V) for all Vg, € X, 1 corresponds to the finite element scheme for
the quasi-periodic boundary value problem of findjhg H(}p(Q) such that

Af=Ap inQ, e3-Vf=e3-Vp, onlf.

This boundary value problemnly admits the unique quasiperiodic solutign= p if X
does not contain constant functions. Af contains constants, i.e., if the direction of inci-
dence i = (0,0,—1)T, thenthe finite element schem&py, Var) = (Vp, Vg) can be
considered in the factor spadé;,(Q2)/C. In any case, we hav®p, — Vp in L*(Q)?
and PX»1 — PX1 ash — 0. This together with?X — PX implies the convergence

PXno 5 pXoash — 0. Itis easy to see thae¥n: —s PV

Let the operatord: H — H' be given as in4.7). To prove convergence of the FEM,
by Lemmab5.4, we only need to prove the stability ¢, )* A|m, . For clarity, we divide our
proof into five steps by introducing several auxiliary opers.and then apply Lemnfab.
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Step 1. Introduce a new operatBy: H; — H) as

<Bl(VP» EvaE;)a (vavl+vvli)>
= <A|H1 (VPv Ef_vEl_)? (v€7‘/1+v Vl_)> - &I(Ef_7‘/l+) - dZ(El_’ Vl_)

- ag((Vpa E;raEf)’ (V§7 V1+7 Vf)) - ag ((VPv E1+7 E;)a (Vf, VlJr7 Vli))7

where the sesquilinear forna?s‘f are given in ¢.9). Obviously,— B is positively coercive
overH,, i.e.,

—Re (Bi(Vp, B E7). (V0. B B7) )
= a1(Vp, Vp) + [af (EY, EY) +aj (B, EY)] + [—a; (Ey, Ey) + ay (Ey, EY))]

2 2 2
>c (HVPHH(curl,Q) + 1B N eurt .oy + 1 B7 HH(curl,D*)) .

for some constant > 0. Thus, the operator§ Py, 1)* Bi|u, ,] are stable as the Galerkin
approximations of3;.

Define the operatoB, : Z — 7', Z := Hy x X; by
(Bo(Eo + Vp, Ef B ). (Vo + VE V", V)
=—az (Ey, Vo' )+az (By, Vy") +a3 (Bo, Vy") — ag (Vo, By)
—a5 (Eo,Vy ) + a5 (Vo, Ey ) +az (B, Vo )+as (B, V)
+/ [Curl Ey-curl Vo + kQ(x)EO Vo + k:z(a:)Vp . Va dz,
Q

with the sesquilinear formssjE givenin (4.8). From the proof of Theorem.1, By is positively
coercive overz, i.e.,

Re (Bo(E, Bf, By ), (B, Ef  By))
®4) 2 +112 —2
> ¢ (11B1Breunt ) + VB Wr(eunt 0y + 1B rgeunt 0 )

whereE = Ey + Vp. Consequently, the operatc(rBHth)*Bomh,o inherit the coercivity of
By in (5.4). Note that, althouglil;, ¢ C H, does not hold in general, we ha¥®, o, C Z.
Thereforetheoperatorg P»0)* By |, , : Hy,0 — H,  are stable.

Next, we define the operatofs: H — H' and By, : H;, — Hj, as follows:
<B(E,E+,E*), (E7E+,E*)>
= <BO(EOa E(—)i_a E()_)7 (‘/07 V()+7 ‘/0_)>+<Bl(vpa Eii_a El_)v (va E;rv E1_)>7

B PHh,o)*B |IHI 0 (EhO E+ E- )
B (En, E;f E;) = ( OlHr.0 00 Zh,00 Fh,0) |
h( hy g h ) [ 0 (PHh‘l)*Bl|Hh,1 (vPh’El_z‘—,hEh,l)

Obviously, the operatorB), are stable anthe limit operatolim,, . By, Py, is equal toB. If
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we introduce the operatof§ : H — H', j = 0, 1, by

<T0(E,E+,E—),(V, V+,V—)> = —2/ k*(2)E - Vdz,

Q
<T1(E E*,E7),(V, V+,V—)> =
—ag (By, Vo) — a3z (Ey, Vo ) +aif (B, ViT) +ag (By, V)

+af (Eo,Vi") — a5 (Eo, Vi) — a (Vo, EY) + a5 (Vo, EY)
+ag (B, E*Y,E7),(V,V*, V7)) +ag (B, E*,E7),(V,V*, V7)),

then we arrive at
(Pn)*Alm, = Bn + (Pn)"T1m,

(6-5) L Tl (BE)(A =T,
(PHh’l)*(A - T1)|Hh,o 0

Step 2. Itis easy to see th@t is compact ovef, and the term(P;,)*T; |y, can be
treated by Lemm#&.5. Next we show thaf P*».0)*Ty|y, , can be treated by Lemnia5
as well. Denote byll the orthogonal projection from the spa&einto X, with respect to
the inner productE,V)x = [, {curl E-curlV 4+ E - V}dz. Then,II is also an orthog-
onal projection in thel.2(Q2)® sense. Moreover, by the proof of Lemmzas, the operator
I —1II: X — X is an orthogonal projection too. By the definitionsigfandIl,

[(PH0) Ty s, o] PH0ls, = (Po)*Tals, + Dy + Dy,
DEF’ = —2(PXn0) (k2 (2) (I — )] x,. P,
(5.6) DY = —2(P,)*(PXre — PXo)*[k2(2)]|x, o PX"0[m,
(

= 2(P) " (P0)* [k ()1, o (PF"0 — PXO) g,
Ty := —2(P%0)*[k? ()T PXo.

HereT; is compact due to Lemm&3. Again (Py,)*T» |, can be treated by Lemnta5and
it remains to shovMD,(f)HHh_,m —0forj =0,1.

The convergenc&ﬁDﬁll)H — 0 follows easily sincgk?(z)IT]: X — X’ is compact
and since(PXro — pXo) — 0. Consequently, it remains to prove tHHD,(lO)H — 0 as
h — 0. It suffices to show thafi(I — II)|x, .l x,,—»x — 0 with b — 0, i.e., that,
for any sequencd(/ — II)|x, ,llx,, ,—»x' with h, — 0, there is a subsequence tend-
ing to zero. Choosé),, o € Xj, o such that|Ey,, ollx = 1 and|(I — )Ep, olx =
(I —T0)|x,, ollx,, o—x/- Recalling Lemmab.9, without loss of generality we can as-
sume the convergendsg,, o — FEy € X, in L*(Q)3. Sincell is bounded inL?, we have
(I —=T)Ep, o0 — (I —I)Ey = 01in L?(Q2)3. Noting thatX C L?(Q)% andL?(Q)? C X/,
we finally conclude

I = T By ollx < (T = OB, ollzay — (I — 1) Eollp2ay = 0.

This gives||D\”|| — 0 ash — 0.
Step 3. FotEy,, V), € Xy, recall the decompositions
En=FEno+ Vpn, =1(Eho) + (I —II)(Eno) + Vs,
Vie="Vho + V& =(Vio) + (I —)(Vio) + Vén,
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with Ej, 0, Vio € Xp0 @andVpy, VE, € Xy, 1. We setl” := Ty + T and claim that
(57) (Pa)* Alis, = Bn + (Pa) T, + D + DY + DY,
whereD'* : Hj, — H, is defined by
(DI B, BB, (Vi ViF i)
= b (I =)(Bno) Vi) = a5 (L= T)(Eno). Vi)

—at (I =)(Vao), i) + a5 (=) (Vho). By, ).

In fact, the formulas $.5) and 6.6) imply (5.7) if we can show that the operatmﬁf) is the
off-diagonal part of the matrix on the right-hand side 6f3. Hence, it suffices to prove

DI = [(PEr0)* (A = Ty) s, P50 4 [(PH42)7 (A = T1)[, o PP We conclude
(P (A= T (B B B, (Vi Vi VD))
= —a1 (I-T)(Eno), V&n) + af ((T-T(Eno), ViF,)
— a5 (=T)(Eno), Vis)
= o (I-T)(Bno).Vi'y) = a5 ((I-T)(Eno). Vi) +

where we have used the identity

(5.8)

ar (I = I0)(Ep,0), Vén) =/

k‘2(af)Eh)0 -Vépdr — / k2(x)H(Eh70) -Vépdr = 0.
Q Q

Analogously, it can be seen that

<(PHh,.o)*(A —T)|w, , (En, B B, (Vi Vi, Vh_)>
(5.9)

= —a (I =M)(Vao). By ) + a5 ((T = T)(Vio), By )-
Equationg5.8) and £.9) imply that
[(PFr0) (A=T1) [, J P+ [(PH0) (A=T1) [, o P70

coincides WithD,(f). Formula 6.7) is thus proven.

Step 4. We prov¢|D,(f)\| — 0. First we derive that|(P"»1)*(A=T1)|m, .|| — 0.
By (5.8, we choose functions E, and Vhfl with || Ep ol g (curt,0) = 1 and
Vi (curt %) = 1 such that

[(PP) (A=T)lg, o] = a (Van, Vity) — a5 (Van, Vi), Vag == (I — D By

Using the definition ofi, we get

as (Van, V,fl) = —/ e3x Vg - curl Vhfl ds,

+
Iy

(5.10)  lad (Van, Vi)l < lles x Vaull vz o llewrl Vil pora s



ETNA
Kent State University
http://etna.math.kent.edu

FEM FOR ELECTROMAGNETIC SCATTERING BY BIPERIODIC STRUCTUES 369
On the one hand, we have that for any¢ C,

||63 X vqhHH;l/Q(p;r) = Hva‘*'(Qh + a)HHffl/Z(er) < Cth + aHH1/2(Fb‘*’)

< cllgn + allm (),

whereVF; denotes the surface gradient operator dver Hence,
(5.11) lles x Vanll 172 psy < € inf [lan + alln o) < cllVanllzz (-

On the other hand, for,", = 37, .\, <c/n e U1 € YiT, there holds

(5.12) ||curl V,j,1||Ht1/2(F;) < lewrl Vi | g1 (p+ye
= H Z cncurlU,j'lH .
ey
n: |n|<C/|h|
In view of the identity curl U7, = —i(k™)2/\/|an|? + |81 2 U, (see 14, Lemma 3.1])

and the relation/|a,|2 + |84 |2 = O(|n|) as|n| — oo, we get

2 —2
> encwlUn || <ol X el U
n: |n|<C/|h| n: |n|<C/|h|

1/2

|H1(D+)3

1/2
<c > el U ollz2pey
n: |n|<C/|h|

1/2

<cl X lealPlUSllemes |y
n: In|<C/1h

where the last two equalities follow from the estimatesw@gtiin the proof of 14, Lemma

4.5]. Recalling §.12) and therepresentationf V,fl as an expansion with respect to the basis
functionsU ", we obtain

n,l?

(513) HCU.I‘]VhJ,rlHHg/z(F:r) < C||VhJ’r1HL2(D+)3 < c||VhT1HH(curl,D+) <ec.

Inserting the estimate$ (11) and 6.13 into (5.10) yields|az (Vagn, V7)) < ¢ [|[Vanl| L2 )3
for someci > 0, and analogously, there exists another non-negative aonst such that
a5 (Van, Vi)l < ¢ |IVanllz2 . Thus, to prove]|(P™1)*(A — T1)l, || — 0, we
only need to verify|[Vqu||r2qps — 0 ash — 0. However, we can choosg}, o with
| Enollx = 1 such that]|(PH»1)*(A — Ty)Eyof| = |[(P"*1)*(A — T1)|m, ,||. From the
discrete compactness of the spatg, in Lemma5.9, for any sequencéy},, o, we can al-
ways find a subsequence convergind.t{Q2)? to anE, € X,. We denote this subsequence
again bthmo. Then||thn||Lz(Q)3 = ||(I—H)Ehm0||LZ(Q)3 — ||(I—H)E0||L2(Q)3 = 0.
In other words, any sequenfieP™.1)*(A —T1)Ey, o|| has a subsequence tending to zero.
Consequentlyl|(P™1)*(A — T1) Ej, o|| converges to zero.

Arguing analogously, one can prove the converge@@™-°)*(A—11)|u, ,|| — 0 as

h—0 via the identity 6.9). Hence, it holds that D{*|| — 0.
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' 1
| 1
1
: |
| 1
| 1
i :
: 1
1
: |
' 1
| 1
\ 1
]
—b: up up do , ,do :
X Kn,l,lun,l,l"'K n,I,lU nl1 &
1
| up | jup do ;do !
bl: Kn,I,ZUn,I,2+ Kn,I,2U n,l,2 : )
b, '
: 1 83
1
1
b !
T 1
! 1
! 1
! |
! 1
: 1
! 1
—l: 1 SK
T 1
! up up do do ! -
bK' Kn,I,K+1 Un,I,K+1+Kn,I,K+1 Un,I,K+l : €
1
1

= expiB,hUn

FIG. 6.1.Grating withmulti-layer system.

Step 5. Setting D), := D,SO) + D,(ll) + D(Q), equation %.7) is the representation of
Lemmab5.5 It can be concluded from Steps 1-4 that the operafgysare stable,T" is
compact, and thab;, is only a small perturbation. By the uniqueness assumptiorhie-
orem5.10 we see from TheorerB.1that A is invertible. Now, applying Lemma.5yields
the stability of( P, )* Alm, . The proof of the convergence of the FEM is thus completed.

a

6. Multi-layer system beneath the grating structure. In many applications there is an
adjacent multi-layer system beneath the lower fage- —b of the grating. More precisely,
as indicated in Figur®.1, for a sequencéy, k = 0,..., K, of xz3-coordinates such that
—b=by>by>...>bg, the functione(z) + io(z)/w in the layerby_1 > x5 > by takes the
constant value, with Im ¢, > 0 such thafRe e, > 0 for Im ¢, = 0. Of course, in the lower
half spacé > x3, we suppose(x) + io(z)/w=¢, .

For a variational formulation adapted to the multi-layestsyn, we need modified spaces
Y, ", 1 =0,1. Clearly, the tangential traces @& andcurl £ are continuous over the in-
terfacesrs = byx. Solving these transmission problems, each downward gedjrey mode
E = exp(—if3, b)U, , inthe half spacéx > z3 corresponds to an extended fidldn by > x5

such thatE(z) = k5 UM\ (2) + K99 Ui () for by > @3 > by, k = 1,2,..., K,
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wherex ", . 0%, € Cand

Unlo k(@) .
(Ov_laO)T If ‘Oén|_
= ei[an~x’+ﬁn,1k(x3+b)] W( ( ) agll ) ) If Bn k—
(- ol? ol 0)T otherW|se
U;j,pl,k(z) .
(1,0,0) " if || =0,
T
= eifona e f —d (= ay, o (1+i(+0)) ) i Bue=0
=e ns n 3 n,k )
\V4 |0‘n|2+‘an|4 ’
RS B 2\ T therwi
Unx(@) .
(O,I,O)T if ‘O‘n|7
— gilan ' Boi(zatb)] W(a(z) —a),0)T if B,4=0,
|al ‘(af), —aiP0)T otherwise
Un? () .
(-1,0,0)7 if |a,| =0,
.
= ei[a".mliﬁnrk(z3+b)] ‘7 W (Olna |an|2(172(x3+b))) |f ﬂn,k:07

m(ﬁn,kana an|?) T otherwise

/Bn,k =V w2M0€k - |a71,|2a Bn,K+1 = ﬂ;

Fix n and!l. Itis not hard to see (cf.1P, Section 1l1.4]) that, for each linear combination
of UpY) 1y andUSS -, in the half spacers < by, there exist unique linear combinations

of the U andU;ij in the layersh, < x3 <br_1, k=1,..., K, such that the tangential
traces over the interfaces = b, k=1,..., K, of the functions and of their curls in the
adjacent layers coincide. Similarly, to each linear coraton of U“‘; , andU, ‘;1 in the

layer by < a3 < by there exist unique linear combinations of tbig" and U9, in the
layersby < x3 <by_1, k=2,..., K, and in the half space; < bx such that the tangentlal
traces of the functions and of thelr curls in adjacent lageiacide. Hence, the coefficients
R Ko i @re uniquely determined. For instance, if all thgx are non-zero anfdy,,| # 0,
then

nll

K11 0
(61) do = Mn,l,l Mn,l,Q cee Mn,l,K 1 ,

2B,. 2Bn k
B ktr1— ﬂn k oilBn k1B .k]bk Bn,k«#l""ﬂn,kefi[ﬁnyk_'_lfﬂn'k]bk

Bn, k+1+6n k ‘[Bn ktb1— Bn. k] K 6n,k+1_6n.k e_i[ﬁn,k+l+6n,k]bk
Mn 0,k -—
2fn .k 2fBn k
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‘an|2 + |ﬁn,k‘2
|an|? + [Bn k1

|:|(¥n,|2+6ﬁ,,k+l + 571.k+1i| i Bn i 1—Bn ilbi |:|O¢n‘2+[3721_k+1 5n,k+1} e—ilBn st 1+Bn wbi

Mn,l,k =

[ 2+82 Bk [oanlP+B2, Bk

2 2
lan| j”ﬂn,kﬁ—l Bkt ei1Bn i+ 1+Bn Kbk lovn |*+87 k1 Brkt1 e—1Bn k1= Bn k] bk
lan |2+87 Bk \Oén\QJr,@n K Bk

Note that the coefﬁuemgzpl 1 andndol 1 can be computed by numerically stable algorithms;
see, e.g. J[9 Section 111.6].

SettingU, 1= R U +wh U | we define thenodifiedspaced;™ by (4.1) but
with U, replaced by - - Now the new variational formulation for the transmissioalgem

is just @.3) with a modified sesquilinear forrd(2) defined ovefl := X x Y x (Y, @Y;")
including the modified spaceé§™. The modified sesquilinear form is the sum &fZ) and
the additional term

- Z Z l/egx(E—E_) - (es XU;Z) ds / (curlV—) - (curlU;l)ds

=Y n: €3><U7 =0

REMARK 6.1. All the results for the variational formulation and tbe FEM coupled by
the wave modes remain true for the case of multi-layer systegneath the grating structure
and the new variational form.

Indeed, we sketch the proof. From the definitions oftitj§ , andUy ,, we observe that

esxUT | =—esxUSS ; and(curl U | )r = (curl UG )7 over the curve’;”. Consequently,

the traces entering the sesqumnear forms satisfy

d; do
(6 2) €3 XUnl - [ n(,)l,l - H;lzl,)l,l] ez X U 0,10
’ d
(Curl Un,l)T = ["{n(,)l,l + K;lzp,)l,l] (Curl Un,l,l)T'

If Bn1 =0, then[s9% ; — k)" 1] # 0 since otherwise:; x U,y = 0, which together with

(curl Un71)T = 0 would be a contradiction to the one-to-one mapping betwhenlihear
combinations of wave modes mentioned above. This fact amdpbcial choice of the ad-
ditional term in the modified sesquilinear form guarantde[(cl, proof of Lemma 3.3]) the
equivalence of the boundary value problem and the variatiequation in the case of multi-
layer systems.

The Fredholm property with index zero for the variationa¢gior and convergence of
the FEM coupled by wave modes follow from the fact that therafme corresponding to the
modified variational form is a compact perturbation of thiathe original form. To see this
fact, we observe that

Bux/In|—i for|n|—oo, and Bnx—LBaki1 = (ki —ker1)/Bok+Bnkir) ~ |

with ki := w,/eo. Consequently, equatiord (1) implies thatmnl e U 71— 0and
(k991 £ %5 4] — 1 for the factors in §.2). In other words, the difference between the mod-
ified operator and the original one is the multiplication lpemtors represented with re-
spect to the wave mode basis by the diagonal mat(i[@él%,1 + “Zf’z,ﬁfsn,n’)n,n’- In view of
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Sio, sio,

FIG. 7.1.Geometry of grating: left: echelle grating, right: blaces.

Ud 9.1 = exp(—iB, b)U, , and

n, n,l

1
Z chJUnl

neZ? =0

1 1/2
Ze 2lnlb = T 1T 1+ |n| | cn l|2
1+|n[ =7

H(curl ,D—) ("622 =0

(cf. [14, Lemma 3.1]), such a diagonal operator is a compact petiarbaf the identity.

7. Numerical example. For a simple numerical test, we consider two profile gratomys
the surface of a SiPbody. The echelle grating (cf. the left of Fig.1) is designed to deflect
light into the direction specular with respect to the inetinupper faces. The idea of blazes
(cf. the right of Fig.7.1) with the widthb less and the lengthlarger than the wavelength of
light )\, is to provide a similar effective medium distribution ardftinction like an echelle
grating. Hopefully, such blazes are of better stability [££]).

In Table7.1we compare the new 3D coupling algorithrh3) of Section5.1 applied to
the 2D echelle grating with the reliable results of the 2D FEddle solving the Helmholtz
equation. The efficiencies

+ . 5: |E+|2 el — k+)2 ﬂ;

. n o — |E‘7|2
n 5(070) ] k )2 n

e

B0,0)

of the electric field solution are computed for wavelengtk= 500 nm, period/ = 10 um,

and heighty=0.5 um. The grating is illuminated exactly from above under TEapiaktion.

The FEM of Sectiorb.1is applied with quadratic edge elements. The upper couptiodes
n=(ny, ng) are restricted ton; | <22 and|ny| <2, the lower modes tpr; | <32 and|ny| < 2
Moreover, the coupling parametef$ are set to zero. For the mesh-size tending to zero, the
3D results converge to those of the 2D simulation. Addingemmupling modes does not
improve the accuracy.

Next we apply the same 3D algorithm to the blazes and compamesults with those ob-
tained by the algorithm of Huber et al. (cflq]). Here the periods are chosen as
Ay =1=10pum andAs = b= \/2 and the other parameters like for the echelle grating. The
resulting efficiencies coincide up to numerical errors; Eage7.2
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TABLE 7.1
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Computation of efficiencies for echelle grating. Comparisé FEM from Sectiorb.1 with two-dimensional

FEM simulation.

meshsize

61—2,0 63"0 €1.0 €2.0
125.0 nm| 4.82 0.0027| 43.23 3.78
62.5nm| 4.530 | 0.0022| 45.0080| 4.1289
31.2nm| 4.5039| 0.0019| 45.0559| 4.1142
2D code| 4.5025| 0.0019| 45.0630| 4.1145
TABLE 7.2

Computation of efficiencies for blaces. Comparison of thBIFi&m Sectiorb. 1 (left numbers in column) with

the FEM of [L5] (right numbers).

meshsize| e, edo ey el o
125.0nm| 2.8328  3.0985 0.1661  0.1661
62.5nm| 2.8172 2.8333 0.1918 0.1918
31.2nm| 2.8119 2.8136/ 0.1944  0.1944
meshsize| e; €0.0 €10 €l o
125.0nm| 75.2800 76.289 10.1503 10.1465
62.5nm| 75.5412 75.553 10.7248 10.7197
31.2nm| 75.4717 75.490 10.7787 10.7711
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