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CONVERGENCE ANALYSIS OF THE FEM COUPLED WITH FOURIER-MODE
EXPANSION FOR THE ELECTROMAGNETIC SCATTERING BY BIPERIODIC

STRUCTURES∗

GUANGHUI HU† AND ANDREAS RATHSFELD†

Abstract. Scattering of time-harmonic electromagnetic plane waves by a doubly periodic surface structure
in R3 can be simulated by a boundary value problem of the time-harmonic curl-curl equation. For a truncated FEM
domain, non-local boundary conditions are required in orderto satisfy the radiation conditions for the upper and
lower half spaces. As an alternative to boundary integral formulations, to approximate radiation conditions and
absorbing boundary methods, Huber et al. [SIAM J. Sci. Comput., 31 (2009), pp. 1500–1517] have proposed a
coupling method based on an idea of Nitsche. In the case of profile gratings with perfectly conducting substrate,
the authors have shown previously that a slightly modified variational equation can be proven to be equivalent to
the boundary value problem and to be uniquely solvable. Now it is shown that this result can be used to prove
convergence for the FEM coupled by truncated wave mode expansion. This result covers transmission gratings and
gratings bounded by additional multi-layer systems.

Key words. electromagnetic scattering, diffraction gratings, convergence analysis, finite element methods,
mortar technique
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1. Introduction. The diffraction of light by biperiodic gratings, e.g., by doubly periodic
surface structures, can be simulated by the time-harmonic Maxwell equations. Eliminating
the magnetic field, the electric field is the solution of a boundary value problem for the time-
harmonic curl-curl equation. For finite element methods (FEM), this problem is reduced
to a finite domain, where quasi-periodic lateral boundary conditions and non-local boundary
conditions over the upper and lower boundary face are required. The first idea for the solution
of the boundary value problem is to express the non-local boundary conditions by integral
operators and to couple FEM with boundary elements (cf. [10, 18]). With this approach,
for the solution of the boundary value problem, either the case of wave modes propagating
parallel to the surface is to be excluded or standard methodsfor integral operators with non-
trivial null space are to be applied. As an alternative to integral operators, a saddle point type
formulation (cf., e.g., [1]) or absorbing boundary conditions (cf., e.g., [24]) can be used.

On the other hand, the radiation conditions mean that the solutions can be extended in
the form of a Rayleigh series expansion of upward respectively downward radiating Fourier
modes. So the idea to couple finite elements and Rayleigh expansions is natural. Huber
et al. [15] propose such a method, where the finite elements and the Rayleigh series are
coupled employing a mortar technique by Nitsche (cf. [20, 27]). In [14], the case of perfectly
conducting profile gratings has been considered and the coupling terms of [15] have been
slightly modified. It has been proved that the variational equation for the coupling of FEM and
Rayleigh expansions is equivalent to the boundary value problem for scattering by gratings. If
the last problem is uniquely solvable, then the operator of the variational equation is uniquely
solvable, too.In the references [3, 4, 5, 6] similar solvability results for all frequencies except
for a countable set of Rayleigh frequencies were obtained inperiodic chiral structures, and
the coupling of finite element and integral equation methodswas proposed and analyzed. For
a general coupling of finite elements and boundary elements we also refer to [13].
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FIG. 3.1.Geometry of grating.

The subject of the present paper is to generalize the resultson the variational formula-
tion of [14] to the transmission problem, i.e., we analyze a formulation based on a mortar
technique, which is a slight modification of the method proposed without proof in [15]. We
show existence and uniqueness even in the case of resonance,where a Rayleigh frequency
is allowed. Finally, we prove the convergence of the discretization scheme, i.e., for the cou-
pling of the FEM (Ńed́elec’s edge elements) with truncated Rayleigh series expansions. Note
that our mortar approach includes a natural coupling of Fourier modes with finite element
functions and is easy to implement.

The plan of the paper is as follows. Weformulate the boundary value problem and some
solvability results in Section3. In Section4 we define the variational form and derive the
Fredholm property for the operator corresponding to this form. The numerical discretization
of the variational equation is introduced in Section5. The stability and convergence of this
method is proved. Of course, edge elements (cf., e.g., [17]) are employed for the FEM. In
Section6 we discuss the case of multi-layer systems beneath the grating structure. Instead of
an extension of the FEM domain by the layers of the multi-layer system, we replace the down-
going Fourier modes by special wave modes of the multi-layersystem. Note that this idea
goes back to the authors of [15]. The convergence analysis of Section5 can be generalized
to the multi-layer case too. Finally, we add a simple test showing that our method converges
to the same solution as the 2D FEM for periodic 2D gratings andto the same solution as the
method of [15].

2. Preliminaries. Throughout the paper, the symbolsej (j = 1, 2, 3) denote the unit
coordinate vectors in the three-dimensional Cartesian coordinate system. The symbol(·)⊤
denotes the transpose of a vector inC

2 orC3, while the symbola⊥b means the orthogonality
of the vectorsa = (a1, a2, a3),b = (b1, b2, b3) ∈ C

3 in the sense that
∑3

j=1 ajbj = 0.
Denote the unit sphere byS2 := {x = (x1, x2, x3)

⊤ ∈ R
3 : ||x|| = 1}, and define

x′ := (x1, x2) for x ∈ R
3. The branchof the square root

√
a is chosen such that the

imaginary part of
√
a is always positive, i.e.,

√
a = i

√−a if a < 0.
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3. Diffraction problem. Consider the scattering of a time-harmonic electromagnetic
plane wave by a biperiodic structure (diffraction grating)which consists ofat least twooptical
materials. By biperiodic or doubly periodic structure (cf.Fig. 3.1), we mean that the structure
is periodic in two orthogonal directionsx1 andx2 and bounded inx3. The optical material
inside the grating can be completely characterized by its dielectric coefficient and its magnetic
permeability. For simplicity we assume that the medium is nonmagnetic with a constant
magnetic permeabilityµ(x) = µ0 > 0 in R

3. However, our arguments can be adapted to the
case whereµ(x) is a periodic and piecewise constant function. The electricpermittivity ǫ(x)
and the conductivityσ(x) are supposed to beΛj-periodic inxj (j = 1, 2) inside the grating
and are homogeneous above and below the grating structure. More precisely, we assume that
there exists a constantb > 0 such that

ǫ(x1 + n1Λ1, x2 + n2Λ2, x3) = ǫ(x1, x2, x3),

σ(x1 + n1Λ1, x2 + n2Λ2, x3) = σ(x1, x2, x3),

in Ω̃ := {x : |x3| < b} for anyn = (n1, n2) ∈ Z
2, and

ǫ(x) = ǫ+0 > 0, σ(x) = 0, in x3 > b,

ǫ(x) = Re ǫ−0 , σ(x) = ωIm ǫ−0 > 0 in x3 < −b,

with the circular frequencyω > 0. Further, we restrict ourselves to the mostly used gratings,
whereǫ(x) andσ(x) are piecewise constant functions satisfying

0 < ǫ0 < ǫ(x) < ∞, 0 ≤ σ(x) < ∞ in R
3.(3.1)

Let Ω̃± := {x : x3 ≷ ±b}. Suppose thata time-harmonic electromagnetic plane wave
Ein(x)e−iωt with Ein of the form

Ein(x) := q exp(ik+x · θ̂) = q exp
(
i(x′ · α− βx3)

)
, i :=

√
−1(3.2)

is incident on the grating from̃Ω+. Herek+ := ω
√

ǫ+0 µ0 (respectivelyk− := ω
√
ǫ−0 µ0) is

defined as the wavenumber characterizing the homogenous medium in Ω̃+ (respectivelỹΩ−).
In (3.2), the symbol̂θ denotes the direction of incidence

θ̂ := (sin θ1 cos θ2, sin θ1 sin θ2,− cos θ1)
⊤∈ S

2,

with the incident anglesθ1 ∈ [0, π/2), θ2 ∈ [0, 2π). Further, in (3.2), the three-dimensional
vectorq = (q1, q2, q3)

⊤ ∈ S
2 stands for the direction of polarization satisfyingq⊥θ̂, and

α=(α1, α2)
⊤ :=k(sin θ1 cos θ2, sin θ1 sin θ2)

⊤∈R
2, β :=k cos θ1.

Eliminating the magnetic field from the reduced time-harmonic Maxwell’s equations, we end
up with the electriccurl-curl equation

curl curlE(x)− k2(x)E(x) = 0 for x∈R
3,(3.3)

wherek2(x) := ω2µ0(ǫ(x) + iσ(x)/ω) and the electric fieldE in Ω̃+ is the sum of the in-
cident fieldEin and the scattered fieldEsc. The periodicity of the grating together with the
form of Ein motivates us to look forα-quasiperiodic solutions in the sense that
E(x) exp(−iα · x′) is (Λ1,Λ2)-periodic inx′. In other words, it is required that

E(x1 + Λ1, x2, x3) = exp(iΛ1α1)E(x1, x2, x3),

E(x1, x2 + Λ2, x3) = exp(iΛ2α2)E(x1, x2, x3),
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for all x ∈ R
3. Since the domain is unbounded in thex3-direction, a radiation condition must

be imposed. Noting thatk(x) = k± in Ω̃±, we suppose that the scattered fieldEsc in Ω̃+

and the electric fieldE in Ω̃− are composed of bounded outgoing plane waves in the form of

Esc(x) =
∑

n∈Z2

E+
n exp

(
i(αn ·x′+β+

n x3)
)

for x3 > b, E+
n ⊥(αn, β

+
n )⊤,

(3.4)
E(x) =

∑

n∈Z2

E−
n exp

(
i(αn ·x′−β−

n x3)
)

for x3 < −b, E−
n ⊥(αn,−β−

n )⊤,

whereαn :=(α
(1)
n , α

(2)
n )∈R

2, with α
(j)
n =αj + 2πnj/Λj , j = 1, 2, for n = (n1, n2)

⊤∈Z
2,

and

β±
n = β±

n (k±, α) :=
√
(k±)2 − |αn|2.

We say that the scattered fields satisfy the radiation condition if expansions of the form (3.4)
exist. These expansions are also referred to as the Rayleighseries expansions.The constant
vectorsE±

n are called Rayleigh coefficients. Sinceβ±
n are real-valued only for finitely many

indicesn, we observe that only a finite number ofwave modesin (3.4) propagate into the far
field, while the remaining part consists of evanescent (or surface) waves decaying exponen-
tially asx3 → ±∞. Thus, the above expansion forEsc resp.E converges uniformly with all
derivatives in the halfspace{x3 > a} respectively{x3 < −a} for anya > b.

Since the squared wave numberk2(x) is (Λ1,Λ2)-periodic inx′ and both the incident and
scattered fields are quasiperiodic, we can reduce the scattering problem to a single periodic
cell. To this end, we introduce the following notation

Γ̃±
b :=

{
(x1, x2, x3)

⊤ ∈ R
3: x3 = ±b

}
,

Γ±
b :=

{
(x1, x2, x3)

⊤ ∈ Γ̃±
b : 0 < xj < Λj , j = 1, 2,

}
,

Ω± :=
{
(x1, x2, x3)

⊤ ∈ Ω̃±: 0 < xj < Λj , j = 1, 2
}
,

Ω :=
{
x ∈ Ω̃ : 0 < xj < Λj , j = 1, 2}.

We next introduce some scalar and vector valuedα-quasiperiodic Sobolev spaces. Let
Hs(Γ̃±

b ) be the complex-valuedL2-based Sobolev spaces of orders overΓ̃±
b . Write

Hloc(curl , Ω̃) :=
{
G : χG, curl (χG) ∈ L2(Ω̃)3, ∀χ ∈ C∞

0 (R3)
}
,

Hs
loc(Γ̃

±
b ) :=

{
G : χG ∈ Hs(Γ̃±

b ), ∀χ ∈ C∞
0 (Γ̃±

b )
}
,

Hs
t,loc(Γ̃

±
b ) :=

{
G ∈ Hs

loc(Γ̃
±
b )

3: e3 ·G = 0
}
,

Hs
t,loc(Div , Γ̃±

b ) :=
{
G : G ∈ Hs

t,loc(Γ̃
±
b ), DivG ∈ Hs

t,loc(Γ̃
±
b )
}
,

Hs
t,loc(Curl , Γ̃

±
b ) :=

{
G : G ∈ Hs

t,loc(Γ̃
±
b ), CurlG ∈ Hs

t,loc(Γ̃
±
b )
}
,
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and

H(curl ,Ω) :=
{
G|Ω: G ∈ Hloc(curl , Ω̃), G is α-quasiperiodic

}
,

Hs
qp(Ω) :=

{
g|Ω: g ∈ Hs

loc(Ω̃), g is α-quasiperiodic
}
,

Hs
t (Γ

±
b ) :=

{
G|Γ±

b
: G ∈ Hs

t,loc(Γ̃
±
b ), G is α-quasiperiodic

}
,

Hs
t (Div ,Γ±

b ) :=
{
G|Γ±

b
: G ∈ Hs

t,loc(Div , Γ̃±
b ), G is α-quasiperiodic

}
,

Hs
t (Curl ,Γ

±
b ) :=

{
G|Γ±

b
: G ∈ Hs

t,loc(Curl , Γ̃
±
b ), G is α-quasiperiodic

}
,

whereDiv (·) andCurl (·) stand for the surface divergence and the surface scalar rotational
operators, respectively. Note that, forx′ 7→ E(x′,±b) in Hs

t (Γ
±
b ), s ∈ R, we have the

Fourier series expansion

E(x′,±b) =
∑

n∈Z2

E±
n exp(iαn · x′),

E±
n := (Λ1Λ2)

−1

∫ Λ1

0

∫ Λ2

0

E(x′,±x3) exp(−iαn · x′)dx1dx2 ∈ C
3.

Then, the spacesHs
t (Γ

±
b ), H

s
t (Div ,Γ±

b ), andHs
t (Curl ,Γ

±
b ) can be equipped with the fol-

lowing equivalent Sobolev norms

||E||Hs
t (Γ

±
b ) =

(
∑

n∈Z2

|E±
n |2

(
1 + |αn|2

)s
)1/2

,

||E||Hs
t (Div ,Γ±

b ) =

(
∑

n∈Z2

(
1 + |αn|2

)s (|E±
n |2 + |E±

n · (αn, 0)
⊤|2
)
)1/2

,

||E||Hs
t (Curl ,Γ±

b ) =

(
∑

n∈Z2

(
1 + |αn|2

)s (|E±
n |2 + |E±

n ×(αn, 0)
⊤|2
)
)1/2

.

Recall that the space dual toHs
t (Div ,Γ±

b ) with respect to theL2-scalar product is
Hs

t (Div ,Γ±
b )

′ = H−s−1
t (Curl ,Γ±

b ), and that, fors = −1/2,

H
−1/2
t (Div ,Γ±

b ) =
{
(e3×E)|Γ±

b
: E∈H(curl ,Ω)

}
,

H
−1/2
t (Curl ,Γ±

b ) =
{
(e3×E)|Γ±

b
×e3 : E∈H(curl ,Ω)

}
.

Further, the trace mappings fromH(curl ,Ω) to the tangential spacesH−1/2
t (Div ,Γ±

b ) and

H
−1/2
t (Curl ,Γ±

b ) are continuous and surjective (see [9, 17] and the references there). Fi-
nally, define our variational space

X = Xb :=
{
E : Ω → C

3 : E ∈ H(curl ,Ω)
}

endowed with the norm

||E||X := ||E||H(curl ,Ω) =
(
||E||2L2(Ω)3 + ||curlE||2L2(Ω)3

)1/2
.



ETNA
Kent State University 

http://etna.math.kent.edu

FEM FOR ELECTROMAGNETIC SCATTERING BY BIPERIODIC STRUCTURES 355

The boundary value problem for our scattering problem can bestated as follows.
(BVP): Given an incident electric fieldEin, determine the quasiperiodic total electric field

E ∈ Hloc(curl ,R
3) such thatE(x)|Ω satisfies thecurl- curl equation (3.3) in Ω in

the distributional sense and that the scattered fieldEsc = E−Ein in x3 > b as well
as the transmitted fieldE in x3 < −b admit a Rayleigh expansion of the form (3.4).

Introduce the set

Υres := Υ+
res ∪Υ−

res, Υ±
res :=

{
n ∈ Z

2: β±
n (k±, α) = 0

}
.(3.5)

An incident angular frequencyω with Υres 6= ∅ is called Rayleigh frequency. Note that the
setF of all Rayleigh frequencies depends onk±, Λ1, andΛ2 but not on the shape ofΓ.

Below we collect some uniqueness and existence results of (BVP) for a broad class of
incident plane waves. Assume that the incident electric wave takes the form

Ein
gen :=

∑

n: βn>0

Qn exp
(
αn · x′ − βnx3

)
,(3.6)

whereQn ∈ C
3 satisfiesQn⊥(αn,−βn)

⊤. Note thatEin of (3.2) is of the form (3.6), where
Qn = q, for n = (0, 0)⊤, andQn = (0, 0, 0)⊤ otherwise.

THEOREM 3.1. Consider the scattering problem (BVP) withEin replaced byEin
gen.

(i) There exists a unique solution to (BVP) for allω ∈ R
+\D, whereD is a discrete set

with the only accumulating point at infinity.
(ii) The problem (BVP) admits at least one solution for anyω ∈ R

+. Moreover, the
far-field part of the solution scattered into the half spacex3 ≷ ±b is unique, i.e.,
the Rayleigh coefficients of the plane wave modes propagating into the half space
x3 ≷ ±b (namely, thoseE±

n with β±
n > 0) are unique.

(iii) There exists a small frequencyω0 > 0 such that the problem (BVP) admits a unique
solution for allω ∈ (0, ω0].

The assertions (i) and (ii) follow from the existence and uniqueness of the magnetic field
in the spaceH1(Ω)3; see [8, 7, 11, 25, 26]. Note that the constant magnetic permeability
implies thepiecewiseH1-regularity of the magnetic field, which is not true for the electric
field. In the non-resonance case (i.e.,Υres = ∅), (i) and (ii) can also be proved by studying
the following variational formulation for the electric field E in Ω: find E ∈ X such that

∫

Ω

[
curlE · curlϕ− k2(x)E · ϕ

]
dx−

∫

Γ+
b

R+(e3×E) · (e3×ϕ)ds

+

∫

Γ−
b

R−(e3×E) · (e3×ϕ)ds

=

∫

Γ+
b

[
(curlEin)T −R+(e3×Ein)

]
· (e3×ϕ)ds ,

(3.7)

for all ϕ ∈ X, where(·)T := [e3 × (·)]|Γ+
b
× e3 and the operators

R±: H
−1/2
t (Div ,Γ±

b ) → H
−1/2
t (Curl ,Γ±

b )

are the Dirichlet-to-Neumann maps defined by

(R±Ẽ)(x′) = ∓
∑

n∈Z2

1

iβ±
n

[
k2Ẽ±

n − (αn · Ẽ±
n )αn

]
exp(iαn · x′),
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for Ẽ(x′) =
∑

n∈Z2 Ẽ±
n exp(iαn · x′) ∈ H

−1/2
t (Div ,Γ±

b ), Ẽ
±
n ∈ C

2; see [1, 2]. Note
that the operatorR+ mapse3×Esc to (curlEsc)T on Γ+

b and thatR− maps−e3×E to
the trace(e3× curlE)×e3 on Γ−

b . If the incident frequencyω is sufficiently small, then
the setΥres is always empty and one can prove that the sesquilinear form generated by the
left-hand side of (3.7) is positive coercive overX ×X under the assumption (3.1). We refer
to [14, Lemma 6.1] for the proof of the third assertion for perfectly conducting grating profiles
using a variational formulation analogously to (3.7) but posed only in the upper half space.
These results can be easily extended to transmission gratings.

There are two drawbacks in using (3.7) to compute the electric field. First, the trans-
parent boundary operatorsR± do not make sense ifβ±

n = 0 (i.e., in the resonance case).
Thus, Rayleigh frequencies must be excluded. Second, in practice,R± cannot be computed
straightforwardly from (3.7). Instead, they must be approximated by taking sufficientlymany
terms in the expansions; see [7, Section 6] for the error estimates. Motivated by the varia-
tional formulations proposed in [15, 23] and based on the mortar technique of Nitsche (see
Nitsche [20] and Sternberg [27]), we employ a consistent coupling of the electric fieldE on
the interfacesΓ±

b as a replacement of the Dirichlet-to-Neumann maps. This waywe propose
a more general variational formulation than (3.7) for the electric field, which allows us not
only to handle (BVP) in the resonance case but also to approximate the non-local boundary
operators onΓ±

b . Numerical experiments and convergence rate for a similar variational for-
mulation were already reported in [15]. The goals of this paper are to provide a theoretical
justification of the modified Nitsche’s method and to prove the convergence of its numerical
discretization using Ńed́elec’s finite elements.

4. Variational formulation based on a coupling method. In this section wepropose
a variational formulation equivalent to (BVP). We begin with the fact that any column vector
E+

n ∈C
3 satisfying(αn, β

+
n )⊤⊥E+

n for somen= (n1, n2)
⊤ ∈ Z

2 can be represented as a
linear combination of two vectorsE+

n,0, E
+
n,1 ∈ C

3:

E+
n = C+

n,0 E+
n,0 + C+

n,1 E+
n,1, C+

n,0, C
+
n,1 ∈ C,

where

E+
n,0:=

{
(−α

(2)
n , α

(1)
n , 0)⊤/|αn| ∈ S

2 if |αn| 6= 0,

(0, 1, 0)⊤ otherwise,

E+
n,1:=

{
|αn|

h+
n
(αn, β

+
n )⊤×E+

n,0=(−α
(1)
n β+

n ,−α
(2)
n β+

n , |αn|2)⊤/h+
n if |αn| 6=0,

(−1, 0, 0)⊤ otherwise,

with h+
n := |αn|

√
|αn|2 + |β+

n |2. Obviously, it holds that(αn, β
+
n )⊤⊥E+

n,l, |E+
n,l| = 1, for

l = 0, 1, n ∈ Z
2. One can observe further thatE+

n,1 ∈ S
2 if β+

n ∈ R, and thatE+
n,1 = e3 if

β+
n = 0. The above decomposition ofE+

n allows us to rewrite the Rayleigh expansion (3.4)
for Esc as (see also [23, Section 2.5])

Esc(x) =
∑

n∈Z2, l=1,2

C+
n,l U

+
n,l(x), U

+
n,l := E+

n,l exp
(
i[αn · x′ + β+

n x3]
)
, C+

n,l∈C,

for x3 > b. Analogously, there holds

E(x) =
∑

n∈Z2, l=1,2

C−
n,l U

−
n,l(x), U

−
n,l := E−

n,l exp
(
i[αn · x′ − β−

n x3]
)
, C−

n,l∈C,
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for x < −b, whereE−
n,0 = E+

n,0 and

E−
n,1 :=

{
|αn|

h−
n
(αn,−β−

n )⊤×E−
n,0=(α

(1)
n β−

n , α
(2)
n β−

n , |αn|2)⊤/h−
n if |αn| 6=0,

(−1, 0, 0)⊤ otherwise,

with h−
n := |αn|

√
|αn|2+|β−

n |2. Define the layersD± of height one aboveΓ+
b and belowΓ−

b

by

D+ :=
{
x ∈ R

3: 0 < xj < Λj , j = 1, 2, b < x3 < b+ 1
}
,

D− :=
{
x ∈ R

3: 0 < xj < Λj , j = 1, 2, −b− 1 < x3 < −b
}
.

Now we introduce the Sobolev spacesY ±
l as follows:

Y ±
l :=

{
U ∈ H(curl , D±) : U(x) =

∑

n∈Z2

C±
n,l U

±
n,l(x), C

±
n,l ∈ C

}
, l = 0, 1.(4.1)

Then we see that the functionE+(x) := Esc|D+ belongs to the spaceY + := Y +
0 ⊕Y +

1 ,
and thatE−(x) := E|D− belongs to the spaceY − := Y −

0 ⊕ Y −
1 . Hence, the following

problem is equivalent to (BVP):
(BVP’): Given an incident electric fieldEin, find theα-quasiperiodic fields(E,E+, E−)

in H := X×Y +×Y − such thatE satisfies the curl-curl equation (3.3) in Ω in a
distributional sense and the transmission conditions

e3×(E − Ein − E+) = 0, e3×curl (E − Ein − E+)= 0 on Γ+
b ,

e3×(E − E−) = 0, e3×curl (E − E−) = 0 on Γ−
b .

Motivated by the arguments in [23, Section 3.2] and the variational formulations
in [14, 15], we propose a new variational formulation that is equivalent to (BVP’). For the
triples of functions (E,E+, E−), (V, V +, V −) ∈ H, define the sesquilinear form
a(·, ·) : H×H → C by

a
(
(E,E+, E−), (V, V +, V −)

)

:=

∫

Ω

{
curlE · curlV − k2(x)E · V

}
dx

−
∫

Γ+
b

{
curlE+ · e3×V − e3×(E−E+) · curlV +

}
ds

+

∫

Γ−
b

{
curlE− · e3×V − e3×(E−E−) · curlV −

}
ds

− η+
∑

n∈Υ+

[∫

Γ+
b

e3×(E−E+) · (e3×U
+

n,0) ds

∫

Γ+
b

e3×V + · (e3×U
+

n,0)ds

]

− η−
∑

n∈Υ−

[∫

Γ−
b

e3×(E−E−) · (e3×U
−

n,0) ds

∫

Γ−
b

e3×V − · (e3×U
−

n,0)ds

]
,

(4.2)

whereη± > 0 are constant factors. The setΥ± is a finite fixed subset ofZ2 with Υ±
res ⊆ Υ±

(cf. (3.5)). Our variational formulation is to find(E,E+, E−) ∈ H such that

a
(
(E,E+, E−), (V, V +, V −)

)
= −a

(
(0, Ein, 0), (V, V +, V −)

)
(4.3)
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for all (V, V +, V −) ∈ H. Note that terms like
∫
Γ±
b
curlE± · e3×V ds are bounded. Indeed,

sinceE± is the solution of thecurl-curl equation inD±, we getcurlE± ∈ H(curl , D±)
and(curlE±)|Γ±

b
∈ H−1/2(Curl ,Γ±

b ). Further, note that the second part of the second and
third terms on the right-hand side of (4.2) both have opposite signs than the corresponding
terms in [15]. Moreover, the integrals with the factorη± in (4.2) are modifications of the
following terms involved in the variational equation of [15]:

η±
∫

Γ±
b

e3×(E − E±) · e3×(V − V ±)ds.(4.4)

The expressions in (4.4) are not meaningful for general(E,E+, E−), (V, V +, V −) ∈ H

since bothe3×(E−E±) ande3×(V − V ±) belong to the spaceH−1/2
t (Div ,Γ±

b ). Integrals
like η

∫
Γ±
b
e3×u · e3×v ds in the mortar approach make sense for finite element methods,

whereu andv are finite element functions andη tends to zero with the mesh size. The idea
employed in [23] is to replace the integral (4.4) by the Galerkin approximation

∑

n,l:|n|2<N

β±
n 6=0 or l=0

[
η±
∫

Γ±
b

e3×(E − E±) · e3×U
±

n,lds

∫

Γ±
b

e3×(V − V ±) · e3×U
±

n,lds

]
(4.5)

+η±
∑

n:β±
n =0

[∫

Γ±
b

e3×(E − E±) · U±

n,0ds

∫

Γ±
b

e3×(V − V ±) · U±

n,0ds

]
(4.6)

with a sufficiently large numberN > 0. It is also mentioned in [23] that the summation
in (4.5) and (4.6) can even be restricted to alln ∈ Z

2 with β±
n = 0. In the present paper,

we only use the terms of (4.5) with n ∈ Υ± and simplify them to getthe last two terms
in (4.2). Note that choosingΥ± larger thanΥ±

res makes the numerical scheme more stable in
the near-resonance case.

Arguing similarly to [14, Lemma 3.3], we can prove the equivalence of the variational
formulation (4.3) and the problem (BVP’). Moreover, in the non-resonance case,
i.e.,Υres = ∅, and forΥ = Υres, the variational formulations (4.3) and (3.7) are equivalent;
see [14, Remark 3.4]. Thus, the variational formulation (4.3) is indeed more general than (3.7).
It is worth to mention that, using (4.3), we can also prove the solvability results in Theo-
rem 3.1 since the arguments in [14] for perfectly conducting grating profiles can be easily
adapted to transmission gratings. To prepare the convergence analysis of the finite element
discretization, in this paper we only check the Fredholm property of the operatorA : H → H

′

generated by the bounded sesquilinear forma(·, ·) defined in Section4, i.e.,A is given by

a
(
(E,E+, E−), (V, V +, V −)

)
=
〈
A(E,E+, E−), (V, V +, V −)

〉
.(4.7)

HereH′ denotes the space dual toH with respect to the duality〈·, ·〉 extending the scalar
product inL2(Ω)3 × L2(D+)3 × L2(D−)3. The rest of this section is devoted to verify the
following theorem.

THEOREM 4.1. The operatorA defined by(4.7) is a Fredholm operator with index zero.
First we recall the following definition.

DEFINITION 4.2. A bounded sesquilinear forml(·, ·) given on some Hilbert spaceY is
called strongly elliptic if there exists a compact forml̃(·, ·) and a constantc > 0 such that

Re l(u, u) ≥ c ||u||2Y − l̃(u, u), ∀ u ∈ Y.

To prove Theorem4.1, we need a periodic analogue of the Hodge decomposition ofX.
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LEMMA 4.3.
(i) We haveX = X0 ⊕X1, where

X1 :=
{
∇p : p ∈ H1

qp(Ω)
}
⊂ X,

X0 :=
{
E0∈X :

∫

Ω

k2(x)∇p · E0 dx = 0 for all ∇p ∈ X1

}

and the spaceX0 is compactly embedded intoL2(Ω)3.
(ii) We havediv (k2(x)E0) = 0 in Ω ande3 · E0 = 0 onΓ±

b for anyE0 ∈ X0.

Proof. See, e.g., [3, Section 3.1] for the proof of the first assertion in more general
periodic chiral structures and [17, Section 4.4] in the case of non-periodic structures where
k2(x) is allowed to be a complex-valued function. Using integration by parts, it follows from
the definition ofX0 thatdiv (k2(x)E0) = 0 in Ω ande3 · k2(x)E0 = 0 onΓ±

b . Sincek2(x)
is anon-vanishingpiecewise constant function inΩ, we obtaine3 · E0 = 0 onΓ±

b .
By Lemma4.3 and the definitions ofY ±

l , we can decompose our spaceH into six sub-
spaces

H = (X0 ⊕X1)× (Y +
0 ⊕ Y +

1 )× (Y −
0 ⊕ Y −

1 ).

For (E,E+, E−), (V, V +, V −) ∈ H, we may assume that

E = ∇p+ E0, E± = E±
0 + E±

1 , where ∇p ∈ X1, E0 ∈ X0, E
±
l ∈ Y ±

l , l=0, 1,

V = ∇ξ + V0, V ± = V ±
0 + V ±

1 , where ∇ξ ∈ X1, V0 ∈ X0, V ±
l ∈ Y ±

l , l=0, 1.

For the analysis of the forma, we define several sesquilinear forms as follows. Let

a1(∇p,∇ξ) :=

∫

Ω

k2(x)∇p · ∇ξ dx, ∀ ∇p,∇ξ ∈ X1,

a2(E0, V0) :=

∫

Ω

{
curlE0 · curlV0 − k2(x)E0 · V0

}
dx, ∀ E0, V0 ∈ X0,

a±3 (E
±
0 , V ±

0 ) := ±
∫

Γ±
b

e3×E±
0 · curlV ±

0 ds, ∀ E±
0 , V ±

0 ∈ Y ±
0 ,

a±4 (E
±
1 , V ±

1 ) := ±
∫

Γ±
b

e3×E±
1 · curlV ±

1 ds, ∀ E±
1 , V ±

1 ∈ Y ±
1 ,

and let

a±5

(
(E,E+, E−), (V, V +, V −)

)
:= ±

∫

Γ±
b

e3×E · curlV ±
ds,

a±6

(
(E,E+, E−), (V, V +, V −)

)

:=−η±
∑

n∈Υ±

{∫

Γ±
b

e3×(E − E±) · (e3×U
±

n,0) ds

∫

Γ±
b

(e3×V ±) · (e3×U
±

n,0) ds

}
,

for any(E,E+, E−), (V, V +, V −) ∈ H. For brevity we write

a±5

(
(E,E+, E−), (V, V +, V −)

)
= a±5 (E, V ±), ∀ E ∈ X, V ± ∈ Y ±.
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LEMMA 4.4. For any∇ξ ∈ X1 andV ±
0 ∈ Y ±

0 , we havea±5 (∇ξ, V ±
0 ) = 0.

Proof. Assume that∇ξ ∈ X1 andV +
0 ∈ Y +

0 . Without loss of generality,ξ can be
assumed to be smooth. We can expand the functionξ(x) into the series

ξ(x) =
∑

n∈Z2

fn(x3) exp(iαn · x′), fn ∈ C2(R+),

in a sufficiently small neighborhood ofΓ+
b . This implies that

(e3 ×∇ξ)|Γ+
b
=
∑

n∈Z2

ifn(b)(−α(2)
n , α(1)

n , 0)⊤ exp(iαn · x′).

Making use ofcurlU+
n,0 = iU+

n,1

√
|αn|2 + |β+

n |2 (see [14, Lemma 3.1]), and recalling the

definition ofU+
n,1 and the sesquilinear forma+5 , we end up with the identity

a+5 (∇ξ, V +
0 ) =

∫

Γ+
b

(e3×∇ξ) · curlV +
0 ds = 0.

The proof fora−5 can be carried out analogously.
Note that the last proof is a newand simplerproof of [14, Lemma 4.3]. Using Lem-

mas4.3and4.4andthe definition ofa, a simple calculation implies(see Table4.1)

a
(
(E,E+, E−), (V, V +, V −)

)

= a
(
(∇p+ E0, E

+
0 + E+

1 , E−
0 + E−

1 ), (∇ξ + V0, V
+
0 + V +

1 , V −
0 + V −

1 )
)

= −a1(∇p,∇ξ)+a2(E0, V0)−a+3 (E
+
0 , V +

0 )− a+4 (E
+
1 , V +

1 )+a+5 (E0, V
+
0 )

− a+5 (V0, E
+
0 ) + a+5 (E0, V

+
1 )−a+5 (V0, E

+
1 ) + a+5 (∇p, V +

1 )−a+5 (∇ξ, E+
1 )

+ a+6

(
(E,E+, E−), (V, V +, V −)

)
+a−3 (E

−
0 , V −

0 ) + a−4 (E
−
1 , V −

1 )−a−5 (E0, V
−
0 )

+ a−5 (V0, E
−
0 )− a−5 (E0, V

−
1 )+a−5 (V0, E

−
1 )− a−5 (∇p, V −

1 )+a−5 (∇ξ, E−
1 )

+ a−6

(
(E,E+, E−), (V, V +, V −)

)
.

Proof of Theorem4.1. Obviously, we have
• a1 is coercive onX1, i.e., there exists some constantC > 0 such that

Re [a1(∇p,∇p)] ≥ C||∇p||X , ∀ ∇p ∈ X1.

• a2 is strongly elliptic overX0 due to the estimate

Re [a2(E0, E0)] ≥ ||E0||X − [1 + ||k2||L∞(Ω)] ||E0||2L2(Ω)3 ,

for anyE0 ∈ X0 and the compact imbedding ofX0 intoL2(Ω)3 (see Lemma4.3).
• a±6 are compact forms overH since each of them corresponds to a finite rank oper-

ator overH.
To demonstrate the Fredholm property of the sesquilinear form a, we now need to study the
other formsa±3 , a

±
4 , anda±5 . Concerninga+3 anda+4 , it is shown in [14, Lemma 4.5] that

there exist compact forms̃a+3 : Y +
0 ×Y +

0 → C andã+4 : Y +
1 ×Y +

1 → C such that

−Re a+3 (E
+
0 , E+

0 ) ≥ C+
3 ||E+

0 ||2H(curl ,D+) − ã+3 (E
+
0 , E+

0 ), ∀E+
0 ∈ Y +

0 ,

Re a+4 (E
+
1 , E+

1 ) ≥ C+
4 ||E+

1 ||2H(curl ,D+) − ã+4 (E
+
1 , E+

1 ), ∀E+
1 ∈ Y +

1 ,
(4.8)
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for some constantsC+
3 , C+

4 > 0, i.e., the sesquilinear forms−a+3 anda+4 are strongly elliptic
overY +

0 andY +
1 , respectively. The proof of the estimates in (4.8) can be easily extended to

the sesquilinear formsa−3 anda−4 . That is, we can find compact formsã−3 : Y −
0 ×Y −

0 → C

andã−4 : Y −
1 ×Y −

1 → C such that

Re a−3 (E
−
0 , E−

0 ) ≥ C−
3 ||E−

0 ||2H(curl ,D−) − ã−3 (E
−
0 , E−

0 ), ∀E−
0 ∈ Y −

0 ,

−Re a−4 (E
−
1 , E−

1 ) ≥ C−
4 ||E−

1 ||2H(curl ,D−) − ã−4 (E
−
1 , E−

1 ), ∀E−
1 ∈ Y −

1 ,
(4.9)

for some constantsC−
3 , C−

4 > 0. Hence the strong ellipticity ofa−3 and−a−4 follows. Finally,
in view of [14, Lemma 4.7] we have

• a+5 is compact overX0×Y +
1 ,

and analogously
• a−5 is compact overX0×Y −

1 .
To prove the Fredholm property of the variational formulation (4.3), it suffices to verify

that the operator corresponding to the sesquilinear forma − a+6 − a−6 is Fredholm overH
with index zero. For this purpose, we define the spacesHj = Xj×Y +

j ×Y −
j for j = 0, 1, so

that we can rewriteH = X×Y +×Y − = H0 ⊕H1. Define the sesquilinear forms

b0

(
(E0, E

+
0 , E−

0 ), (V0, V
+
0 , V −

0 )
)

:= a2(E0, V0)− a+3 (E
+
0 , V +

0 ) + a−3 (E
−
0 , V −

0 )

+a+5 (E0, V
+
0 )− a+5 (V0, E

+
0 )− a−5 (E0, V

−
0 ) + a−5 (V0, E

−
0 ),

for all (E0, E
+
0 , E−

0 ), (V0, V
+
0 , V −

0 ) ∈ H0, and

b1

(
(∇p,E+

1 , E−
1 ), (∇ξ, V +

1 , V −
1 )
)

:= −a1(∇p,∇ξ)− a+4 (E
+
1 , V +

1 ) + a−4 (E
−
1 , V −

1 )

+a+5 (∇p, V +
1 )− a+5 (∇ξ, E+

1 )− a−5 (∇p, V −
1 ) + a−5 (∇ξ, E−

1 ),

for all (∇p,E+
1 , E−

1 ), (∇ξ, V +
1 , V −

1 ) ∈ H1. Now split the form in Table4.1 in blocks cor-
responding to the splittingH = H1×H2. Then the restriction toH1 is the formb0 with the
strongly elliptic quadratic form

Re b0

(
(E0, E

+
0 , E−

0 ), (E0, E
+
0 , E−

0 )
)

= Re a2(E0, E0)− Re a+3 (E
+
0 , E+

0 ) + Re a−3 (E
−
0 , E−

0 ).

The restriction toH1 is the formb1, and−b1 has the strongly elliptic quadratic form

−Re b1

(
(∇p,E+

1 , E−
1 ), (∇p,E+

1 , E−
1 )
)

= Re a1(∇p,∇p) + Re a+4 (E
+
1 , E+

1 )− Re a−4 (E
−
1 , E−

1 ).

Consequently, the diagonal blocks of the splitting into2×2 blocks of size3×3 correspond to
Fredholm operators with index zero. On the other hand, the full form in Table4.1differs from
the diagonal block matrix only by compact terms. Hence the form a generates a Fredholm
operator with index zero. ✷
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TABLE 4.1
The diagram for the sesquilinear forma− a

+

6
− a

−
6

overH× H, whereH = X×Y + × Y −.

H0 := X0×Y +
0 ×Y −

0

X0(E0) Y +
0 (E+

0 ) Y −
0 (E−

0 )

H0

X0(V0) a2(E0, V0) −a+5 (V0, E
+
0 ) a−5 (V0, E

−
0 )

Y +
0 (V +

0 ) a+5 (E0, V
+
0 ) −a+3 (E

+
0 , V +

0 ) 0

Y −
0 (V −

0 ) − a−5 (E0, V
−
0 ) 0 a−3 (E

−
0 , V −

0 )

H1

X1(∇ξ) 0 0 0

Y +
1 (V +

1 ) a+5 (E0, V
+
1 ) 0 0

Y −
1 (V −

1 ) − a−5 (E0, V
−
1 ) 0 0

H1 := X1×Y +
1 ×Y −

1

X1(∇p) Y +
1 (E+

1 ) Y −
1 (E−

1 )

H0

X0(V0) 0 − a+5 (V0, E
+
1 ) a−5 (V0, E

−
1 )

Y +
0 (V +

0 ) 0 0 0

Y −
0 (V −

0 ) 0 0 0

H1

X1(∇ξ) −a1(∇p,∇ξ) − a+5 (∇ξ, E+
1 ) a−5 (∇ξ, E−

1 )

Y +
1 (V +

1 ) a+5 (∇p, V +
1 ) −a+4 (E

+
1 , V +

1 ) 0

Y −
1 (V −

1 ) − a−5 (∇p, V −
1 ) 0 a−4 (E

−
1 , V −

1 )

5. Numerical analysis of the Finite Element Method.

5.1. Finite elementspacesand the FEM. As mentioned in the introduction, weas-
sumethat the optical medium inR3 is piecewise smooth. Fortheconvergence analysis, we
suppose that the interface between any two different materials is a polyhedral surface. Let
τh = τh(Ω) be a partition ofΩ by tetrahedronsK of diameterhK , i.e.,Ω = ∪K∈τhK, where
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h denotes the maximum diameter of the elements inτh. Of course, we suppose thatǫ and
k are constant over eachK ∈ τh. We will use standardNéd́elec’s edge elements (cf. [17])
and analyze convergence forh → 0. For each elementK ∈ τh andk > 1, denote byP k

the polynomials of maximal total degreek and byP̃k the homogeneous polynomials of to-
tal degreek. Define the subspaceSk of homogeneous vector polynomials of degreek by
Sk :={p∈(P̃k)

3| x · p(x)=0}. Thecurl conforming edge elements of Néd́elec rely on the
use of the vector polynomial spaceRK := (P k−1)

3 ⊕ Sk. More precisely,the Ńed́elec finite
element space of edge elements of degreek are defined as follows.

DEFINITION 5.1. LetXh⊂X be the set of functionsEh : Ω → C
3 such that:

(i) For anyK ∈ τh, we haveEh|K ∈ RK .
(ii) For any edgee of the FE partition and for anyK,K ′ ∈ τh s.t.e ⊆ K ∩K

′
, we have∫

e
(Eh|K) · τ q de=

∫
e
(Eh|K′) · τ q de for anyq ∈ P k−1. Here,τ is the unit vector

pointing into the direction ofe.
(iii) For any facef of the FE partition and for anyK,K ′ ∈ τh such thatf ⊆ K ∩K ′,

there holds
∫
f
(Eh|K)·q ds=

∫
f
(Eh|K′)·q ds for anyq ∈ (P k−2)

3 withq·νf = 0.
Here,νf denotes the normal to the facef .

To define thediscretizedspaces forY ±
l , for some constantC > 0, we introduce the finite

setΥh :={n∈Z
2 : |n|≤C/h}. Then set

Y ±
h := Y ±

h,0 ⊕ Y ±
h,1, Y ±

h,l := span
{
U±
n,l : n ∈ Υh

}
, l = 0, 1.

The discretized full space is defined asHh := Xh × Y +
h × Y −

h . Now the finite element
approximation associated to (4.3) can be formulated as follows: find(Eh, E

+
h , E−

h ) ∈ Hh

such that

a
(
(Eh, E

+
h , E−

h ), (Vh, V
+
h , V −

h )
)
= −a

(
(0, Ein, 0), (Vh, V

+
h , V −

h )
)
,(5.1)

for all (Vh, V
+
h , V −

h ) ∈ Hh.

5.2. Auxiliary notation and facts. Let (F, F+, F−) ∈ H
′
h be defined as the right-hand

side of equation (5.1), and letPh := (PXh , PY +
h , PY −

h ) be the orthogonal projection ofH
ontoHh. Then we obtain the operator equation of the FEM

Ah(Eh, E
+
h , E−

h ) = (Ph)
∗(F, F+, F−), Ah := (Ph)

∗A|Hh
,(5.2)

whereA: H → H
′ is given in (4.7). Note that the operatorsAh : Hh → H

′
h are uniformly

bounded inh > 0. It follows from [17, Lemma 10.10] thatPXh −→ I in X, and by the
definitions ofY ±

h , we see thatPY ±
h −→ I in Y ±

h . This implies strong convergence ofPh

to I in H. Consequently, the convergence(Ph)
∗ −→ I holds inH′ andAhPh −→ A.

DEFINITION 5.2. The operatorsAh : Hh −→ H
′
h are called stable if there exists an

h0 > 0 such thatAh is invertible for allh ≤ h0 and if ||A−1
h || ≤ c for some constantc > 0

independent ofh ∈ (0, h0).

Note thatthe operator norm of the inverse operatorA−1
h can be computed as

||A−1
h ||−1= inf

(0,0,0) 6=(Eh,Eh
+,Eh

−)

(Eh,Eh
+,Eh

−)∈Hh

sup
(0,0,0) 6=(Vh,Vh

+,Vh
−)

(Vh,Vh
+,Vh

−)∈Hh

∣∣∣a
(
(Eh, E

+
h , E−

h ), (Vh, V
+
h , V −

h )
)∣∣∣

‖(Eh, Eh
+, Eh

−)‖H ‖(Vh, V
+
h , V −

h )‖H
.

DEFINITION 5.3. We say that the FEM for(4.3) is convergent if, for any(F, F+, F−)
in H

′ and for allh < h0, the approximate solution(Eh, E
+
h , E−

h ) to

a
(
(Eh, E

+
h , E−

h ), (Vh, V
+
h , V −

h )
)
=
〈
(F, F+, F−), (Vh, V

+
h , V −

h )
〉
,(5.3)
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for all (Vh, V
+
h , V −

h ) ∈ Hh exists and is unique, and if(Eh, E
+
h , E−

h ) converges strongly
in H to the exact solution(E,E+, E−) of the continuous variational problem

A(E,E+, E−)=(F, F+, F−).

Now we recalltwo well-known results on the convergence and perturbations (cf., e.g.,
[21, Chapter 1], [22]), which are our main tools for analyzing the discrete variational prob-
lem (5.1). Lemma5.4 is a simple consequence of the Banach-Steinhaus theorem and, for the
reader’s convenience, weprovide a short proof of Lemma5.5.

LEMMA 5.4. Suppose the strong convergencePh −→ I. Then the finite element
scheme(5.3) is convergent if and only if the operatorsAh defined in(5.2) are stable.

LEMMA 5.5. Suppose thatPh → I. Furthermore, suppose that the operators
Bh : Hh −→ H

′
h are stable, and that the convergenceBhPh −→ B holds ash → 0 for

some operatorB: H −→ H
′. Moreover, letT : H → H

′ be a compact operator such that
C := B + T is invertible. Let the operatorsCh : Hh −→ H

′
h be small perturbations of

Bh + (Ph)
∗T |Hh

, i.e.,

Ch = Bh + (Ph)
∗T |Hh

+Dh, ||Dh|| → 0 ash → 0.

Then the operatorsCh are stable.
Proof. The small perturbationsDh can be treated by the usual Neumann series argument.

Hence, it suffices to prove that the operatorsBh + (Ph)
∗T |Hh

: Hh −→ H
′
h are stable, i.e.,

thatthe inverse operators ofBh + (Ph)
∗T |Hh

exist and are uniformly bounded.
We first show thatB−1 exists. SinceC is invertible andT is compact,B is a Fredholm

operator with index zero. Hence, we only need to show thatKerB = {0}. Noting that the op-
eratorsBh are stable, we get, for anyu ∈ H, that||Phu||H= ||B−1

h BhPhu||H≤c ||BhPhu||H′

with a constantc > 0 independent ofh. Lettingh → 0, we obtain||u||H ≤ c||Bu||H′ , which
impliesKerB = {0}.

Now the pointwise convergenceB−1
h (Ph)

∗ → B−1 is easy to see, and thus the norm
convergence||[B−1

h (Ph)
∗ −B−1]T || → 0 ash → 0 follows. A simple calculation shows

Bh + (Ph)
∗T |Hh

= Bh[I|Hh
+B−1

h (Ph)
∗T |Hh

]

= Bh

{
Ph(I +B−1T )|Hh

+ Ph[B
−1
h (Ph)

∗ −B−1]T |Hh

}
.

To prove the stability ofBh + (Ph)
∗T |Hh

, we only need to prove that ofPh(I + B−1T )|Hh

because the second termin the curly bracketsof the previous identity tends to zero ash → 0.
From the invertibility ofC, the existence of(I +B−1T )−1 follows. Then, we can verify that

[Ph(I +B−1T )−1|Hh
][Ph(I +B−1T )|Hh

]

= [Ph(I +B−1T )−1(Ph − I)(I +B−1T )|Hh
] + I|Hh

= [Ph(I +B−1T )−1(Ph − I)B−1T |Hh
] + I|Hh

,

where ||Ph(I + B−1T )−1(Ph − I)B−1T |Hh
|| ≤ c ||(Ph − I)B−1T || → 0. Hence, the

product of([Ph(I + B−1T )−1(Ph − I)B−1T |Hh
] + I|Hh

)−1 and[Ph(I + B−1T )−1|Hh
] is

the uniformly bounded inverse ofPh(I +B−1T )|Hh
.

REMARK 5.6. The projectionPh in Lemma5.5 can be replaced by operators which
are not projections. If thePh are orthogonal projections and ifBh = (Ph)

∗B|Hh
, then

Lemma 5.5 reduces to the classical stability property of projection methods; see,
e.g., [16, Theorem 13.7].
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5.3. Convergence analysis of the FEM.To prove convergence of the FEM, we need
the Hodge decomposition of the discrete functions inXh. Define

Sh := {ph ∈ H1
qp(Ωb) : ph|K ∈ P k for all K ∈ τh}.

We have the discrete Hodge decompositionXh = Xh,0 ⊕Xh,1 analogously to Lemma4.3,
where

Xh,1 :=
{
∇ph : ph ∈ Sh

}
⊆ X1,

Xh,0 :=
{
Eh ∈ Xh : 0 =

∫

Ω

k2(x)Eh · ∇ph dx for all ∇ph ∈ Xh,1

}
.

Unfortunately, it is not true thatXh,0 ⊂ X0. This causes difficulties in our convergence
analysis. The following property of discrete compactness will help usto overcome these
difficulties.

DEFINITION 5.7. We say thatthe subspacesXh,0 havethe discrete compactness prop-
erty if, for any sequenceEn,0 ∈ Xhn,0, n = 1, 2, · · · , such that‖En,0‖X < c with somec
independent of indexn, there is an elementE0 ∈ X0 and a subsequence ofEn,0 converging
in L2(Ω)3 toE0.

DEFINITION 5.8. Let ρK denote the diameter of the largest sphere inscribed in the
tetrahedronK. We say that thepartitions τh are regular ash → 0 if there exist constants
c, h0 > 0 such thatmaxK∈τh(hK/ρK) ≤ c for all h ∈ (0, h0).

Analogously to [17, Theorems 7.17, 7.18, and 11.11], we can prove the followingLemma.
LEMMA 5.9. Suppose that thepartitionsτh areregular. Then the subspacesXh,0 posses

the property of discrete compactness.

Finally, the main convergence result is stated in the next theorem.
THEOREM 5.10. Suppose that there only exists the trivial solution to the homogeneous

variational equation(4.3) and that the partitionsτh of Ω are regular. Then the finite element
method(5.1) with Néd́elec’s edge elementscoupled to truncated Rayleigh series expansions
converges.

Proof. Define thediscretesubspacesHh,l := Xh,l × Y +
h,l × Y −

h,l ⊂ Hh for l = 0, 1.

Let PY ±
h,l : H −→ Y ±

h,l, PXh,l : H −→ Xh,l, andPHh,l : H −→ Hh,l be orthogonal
projections. Note thatPXh,1 −→ PX1 ash → 0, wherePX1 is the orthogonal projec-
tion from H to X1. Indeed, for∇p ∈ X1, the problem of finding∇ph ∈ Xh,1 such that
〈∇ph,∇qh〉 = 〈∇p,∇qh〉 for all ∇qh ∈ Xh,1 corresponds to the finite element scheme for
the quasi-periodic boundary value problem of findingf ∈ H1

qp(Ω) such that

∆f = ∆p in Ω, e3 · ∇f = e3 · ∇p, onΓ±
b .

This boundary value problemonly admits the unique quasiperiodic solutionf = p if X
does not contain constant functions. IfX contains constants, i.e., if the direction of inci-
dence isθ̂ = (0, 0,−1)⊤, thenthe finite element scheme〈∇ph,∇qh〉 = 〈∇p,∇qh〉 can be
considered in the factor spaceH1

qp(Ω)/C. In any case, we have∇ph → ∇p in L2(Ω)3

andPXh,1 −→ PX1 ash → 0. This together withPX
h −→ PX implies the convergence

PXh,0 −→ PX0 ash → 0. It is easy to see thatPY ±
h,l −→ PY ±

l .
Let the operatorA: H → H

′ be given as in (4.7). To prove convergence of the FEM,
by Lemma5.4, we only need to prove the stability of(Ph)

∗A|Hh
. For clarity, we divide our

proof into five steps by introducing several auxiliary operators and then apply Lemma5.5.
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Step 1. Introduce a new operatorB1: H1 → H
′
1 as

〈
B1(∇p,E+

1 , E−
1 ), (∇ξ, V +

1 , V −
1 )
〉

:=
〈
A|H1

(∇p,E+
1 , E−

1 ), (∇ξ, V +
1 , V −

1 )
〉
− ã+4 (E

+
1 , V +

1 )− ã−4 (E
−
1 , V −

1 )

− a+6
(
(∇p,E+

1 , E−
1 ), (∇ξ, V +

1 , V −
1 )
)
− a−6

(
(∇p,E+

1 , E−
1 ), (∇ξ, V +

1 , V −
1 )
)
,

where the sesquilinear forms̃a±4 are given in (4.9). Obviously,−B1 is positively coercive
overH1, i.e.,

− Re
〈
B1(∇p,E+

1 , E−
1 ), (∇p,E+

1 , E−
1 )
〉

= a1(∇p,∇p) + [a+4 (E
+
1 , E+

1 ) + ã+4 (E
+
1 , E+

1 )] + [−a−4 (E
−
1 , E−

1 ) + ã−4 (E
−
1 , E−

1 )]

≥ c
(
||∇p||2H(curl ,Ω) + ||E+

1 ||2H(curl ,D+) + ||E−
1 ||2H(curl ,D−)

)
,

for some constantc > 0. Thus, the operators[(Ph,1)
∗B1|Hh,1

] are stable as the Galerkin
approximations ofB1.

Define the operatorB0 : Z → Z ′, Z := H0 ×X1 by

〈
B0(E0 +∇p,E+

0 , E−
0 ), (V0 +∇ξ, V +

0 , V −
0 )
〉

=− a+3 (E
+
0 , V +

0 )+ã+3 (E
+
0 , V +

0 ) +a+5 (E0, V
+
0 ) − a+5 (V0, E

+
0 )

− a−5 (E0, V
−
0 ) + a−5 (V0, E

−
0 ) +a−3 (E

−
0 , V −

0 )+ ã−3 (E
−
0 , V −

0 )

+

∫

Ω

[
curlE0 · curlV 0 + k2(x)E0 · V 0 + k2(x)∇p · ∇ξ

]
dx,

with the sesquilinear forms̃a±3 given in (4.8). From the proof of Theorem4.1,B0 is positively
coercive overZ, i.e.,

Re
〈
B0(E,E+

0 , E−
0 ), (E,E+

0 , E−
0 )
〉

≥ c
(
||E||2H(curl ,Ω) + ||E+

0 ||2H(curl ,D+) + ||E−
0 ||2H(curl ,D−)

)
,

(5.4)

whereE = E0 +∇p. Consequently, the operators(PHh,0)∗B0|Hh,0
inherit the coercivity of

B0 in (5.4). Note that, althoughHh,0 ⊂ H0 does not hold in general, we haveHh,0 ⊂ Z.
Therefore,theoperators(PHh,0)∗B0|Hh,0

: Hh,0 → H
′
h,0 are stable.

Next, we define the operatorsB : H → H
′ andBh : Hh → H

′
h as follows:

〈
B(E,E+, E−), (E,E+, E−)

〉

:=
〈
B0(E0, E

+
0 , E−

0 ), (V0, V
+
0 , V −

0 )
〉
+
〈
B1(∇p,E+

1 , E−
1 ), (∇p,E+

1 , E−
1 )
〉
,

Bh(Eh, E
+
h , E−

h ) :=

[
(PHh,0)∗B0|Hh,0

0
0 (PHh,1)∗B1|Hh,1

] [
(Eh,0, E

+
h,0, E

−
h,0)

(∇ph, E
+
h,1, E

−
h,1)

]
.

Obviously, the operatorsBh are stable andthe limit operatorlimh→0 BhPh is equal toB. If
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we introduce the operatorsTj : H → H
′, j = 0, 1, by

〈
T0(E,E+, E−), (V, V +, V −)

〉
:= −2

∫

Ω

k2(x)E · V dx,

〈
T1(E,E+, E−), (V, V +, V −)

〉
:=

−ã+3 (E
+
0 , V +

0 )− ã−3 (E
−
0 , V −

0 ) + ã+4 (E
+
1 , V +

1 ) + ã−4 (E
−
1 , V −

1 )

+a+5 (E0, V
+
1 )− a−5 (E0, V

−
1 )− a+5 (V0, E

+
1 ) + a−5 (V0, E

−
1 )

+a+6
(
(E,E+, E−), (V, V +, V −)

)
+ a−6

(
(E,E+, E−), (V, V +, V −)

)
,

then we arrive at

(Ph)
∗A|Hh

= Bh + (Ph)
∗T1|Hh

+

[
(PHh,0)∗T0|Hh,0

(PH0

h )∗(A− T1)|Hh,1

(PHh,1)∗(A− T1)|Hh,0
0

]
.

(5.5)

Step 2. It is easy to see thatT1 is compact overH, and the term(Ph)
∗T1|Hh

can be
treated by Lemma5.5. Next we show that(PHh,0)∗T0|Hh,0

can be treated by Lemma5.5
as well. Denote byΠ the orthogonal projection from the spaceX into X0 with respect to
the inner product〈E, V 〉X =

∫
Ω
{curlE · curlV + E · V }dx. Then,Π is also an orthog-

onal projection in theL2(Ω)3 sense. Moreover, by the proof of Lemma4.3, the operator
I −Π: X −→ X1 is an orthogonal projection too. By the definitions ofT0 andΠ,

[
(PHh,0)∗T0|Hh,0

]
PHh,0 |Hh

= (Ph)
∗T2|Hh

+D
(0)
h +D

(1)
h ,

D
(0)
h := −2(PXh,0)∗[k2(x)(I −Π)]|Xh,0

PXh,0 |Hh
,

D
(1)
h := −2(Ph)

∗(PXh,0 − PX0)∗[k2(x)Π]|Xh,0
PXh,0 |Hh

− 2(Ph)
∗(PX0)∗[k2(x)Π]|Xh,0

(PXh,0 − PX0)|Hh
,

T2 := −2(PX0)∗[k2(x)Π]PX0 .

(5.6)

HereT2 is compact due to Lemma4.3. Again (Ph)
∗T2|Hh

can be treated by Lemma5.5and

it remains to show‖D(j)
h ‖Hh→H′

h
→ 0 for j = 0, 1.

The convergence‖D(1)
h ‖ → 0 follows easily since[k2(x)Π] : X → X ′ is compact

and since(PXh,0 −PX0) → 0. Consequently, it remains to prove that‖D(0)
h ‖ → 0 as

h → 0. It suffices to show that‖(I − Π)|Xh,0
‖Xh,0→X′ → 0 with h → 0, i.e., that,

for any sequence‖(I − Π)|Xhn,0
‖Xhn,0→X′ with hn → 0, there is a subsequence tend-

ing to zero. ChooseEhn,0 ∈ Xhn,0 such that‖Ehn,0‖X = 1 and‖(I − Π)Ehn,0‖X′ =
‖(I − Π)|Xhn,0

‖Xhn,0→X′ . Recalling Lemma5.9, without loss of generality we can as-
sume the convergenceEhn,0 −→ E0 ∈ X0 in L2(Ω)3. SinceΠ is bounded inL2, we have
(I − Π)Ehn,0 → (I − Π)E0 = 0 in L2(Ω)3. Noting thatX ⊆ L2(Ω)3 andL2(Ω)3 ⊆ X ′,
we finally conclude

‖(I −Π)Ehn,0‖X′ ≤ ‖(I −Π)Ehn,0‖L2(Ω)3 → ‖(I −Π)E0‖L2(Ω)3 = 0.

This gives||D(0)
h || → 0 ash → 0.

Step 3. ForEh, Vh ∈ Xh, recall the decompositions

Eh = Eh,0 +∇ph = Π(Eh,0) + (I −Π)(Eh,0) +∇ph,

Vh = Vh,0 +∇ξh = Π(Vh,0) + (I −Π)(Vh,0) +∇ξh,
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with Eh,0, Vh,0 ∈ Xh,0 and∇ph,∇ξh ∈ Xh,1. We setT := T0 + T1 and claim that

(Ph)
∗A|Hh

= Bh + (Ph)
∗T |Hh

+D
(0)
h +D

(1)
h +D

(2)
h ,(5.7)

whereD(2)
h : Hh → H

′
h is defined by

〈
D

(2)
h (Eh, E

+
h , E−

h ), (Vh, V
+
h , V −

h )
〉

:= a+5

(
(I −Π)(Eh,0), V

+
h,1

)
− a−5

(
(I −Π)(Eh,0), V

−
h,1

)

− a+5

(
(I −Π)(Vh,0), E

+
h,1

)
+ a−5

(
(I −Π)(Vh,0), E

−
h,1

)
.

In fact, the formulas (5.5) and (5.6) imply (5.7) if we can show that the operatorD(2)
h is the

off-diagonal part of the matrix on the right-hand side of (5.5). Hence, it suffices to prove
D

(2)
h = [(PHh,0)∗(A− T1)|Hh,1

]PHh,1 + [(PHh,1)∗(A− T1)|Hh,0
]PHh,0 . We conclude

〈
(PHh,1)∗(A− T1)|Hh,0

(Eh, E
+
h , E−

h ), (Vh, V
+
h , V −

h )
〉

= −a1
(
(I−Π)(Eh,0),∇ξh

)
+ a+5

(
(I−Π)(Eh,0), V

+
h,1

)

− a−5

(
(I−Π)(Eh,0), V

−
h,1

)

= a+5

(
(I−Π)(Eh,0), V

+
h,1

)
− a−5

(
(I−Π)(Eh,0), V

−
h,1

)
,

(5.8)

where we have used the identity

a1
(
(I −Π)(Eh,0),∇ξh

)
=

∫

Ω

k2(x)Eh,0 · ∇ξhdx−
∫

Ω

k2(x)Π(Eh,0) · ∇ξhdx = 0.

Analogously, it can be seen that
〈
(PHh,0)∗(A− T1)|Hh,1

(Eh, E
+
h , E−

h ), (Vh, V
+
h , V −

h )
〉

= −a+5

(
(I −Π)(Vh,0), E

+
h,1

)
+ a−5

(
(I −Π)(Vh,0), E

−
h,1

)
.

(5.9)

Equations(5.8) and (5.9) imply that

[(PHh,0)∗(A−T1)|Hh,1
]PHh,1 + [(PHh,1)∗(A−T1)|Hh,0

]PHh,0

coincides withD(2)
h . Formula (5.7) is thus proven.

Step 4. We prove||D(2)
h || → 0. First we derive that||(PHh,1)∗(A−T1)|Hh,0

|| → 0.
By (5.8), we choose functions Eh,0 and V ±

h,1 with ||Eh,0||H(curl ,Ω) = 1 and

||V ±
h,1||H(curl ,D±) = 1 such that

||(PHh,1)∗(A−T1)|Hh,0
|| = a+5 (∇qh, V

+
h,1)− a−5 (∇qh, V

−
h,1), ∇qh := (I −Π)Eh,0.

Using the definition ofa+5 , we get

a+5 (∇qh, V
+
h,1) = −

∫

Γ+
b

e3×∇qh · curlV +
h,1 ds,

|a+5 (∇qh, V
+
h,1)| ≤ ||e3 ×∇qh||H−1/2

t (Γ+
b )

||curlV +
h,1||H1/2

t (Γ+
b )
.(5.10)
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On the one hand, we have that for anya ∈ C,

||e3 ×∇qh||H−1/2
t (Γ+

b )
= ||∇Γ+

b
(qh + a)||

H
−1/2
t (Γ+

b )
≤ c ||qh + a||H1/2(Γ+

b )

≤ c ||qh + a||H1(Ω),

where∇Γ+
b

denotes the surface gradient operator overΓ+
b . Hence,

||e3 ×∇qh||H−1/2
t (Γ+

b )
≤ c inf

a∈C

||qh + a||H1(Ω) ≤ c ||∇qh||L2(Ω)3 .(5.11)

On the other hand, forV +
h,1 =

∑
n: |n|≤C/|h| cnU

+
n,1 ∈ Y +

1 , there holds

||curlV +
h,1||H1/2

t (Γ+
b )

≤ ||curlV +
h,1||H1(D+)3(5.12)

=
∥∥∥

∑

n: |n|≤C/|h|

cn curlU
+
n,1

∥∥∥
H1(D+)3

.

In view of the identity curlU+
n,1 = −i(k+)2/

√
|αn|2 + |β+

n |2 U+
n,0 (see [14, Lemma 3.1])

and the relation
√
|αn|2 + |β+

n |2 = O(|n|) as|n| → ∞, we get

∥∥∥
∑

n: |n|≤C/|h|

cn curlU
+
n,1

∥∥∥
H1(D+)3

≤ c




∑

n: |n|≤C/|h|

|cn|2|n|−2||U+
n,0||H1(D+)3




1/2

≤ c




∑

n: |n|≤C/|h|

|cn|2 ||U+
n,0||L2(D+)3




1/2

≤ c




∑

n: |n|≤C/|h|

|cn|2 ||U+
n,1||L2(D+)3




1/2

,

where the last two equalities follow from the estimates derived in the proof of [14, Lemma
4.5]. Recalling (5.12) and therepresentationof V +

h,1 as an expansion with respect to the basis

functionsU+
n,1, we obtain

||curlV +
h,1||H1/2

t (Γ+
b )

≤ c ||V +
h,1||L2(D+)3 ≤ c ||V +

h,1||H(curl ,D+) ≤ c.(5.13)

Inserting the estimates (5.11) and (5.13) into (5.10) yields|a+5 (∇qh, V
+
h,1)|≤ c+5 ||∇qh||L2(Ω)3

for somec+5 > 0, and analogously, there exists another non-negative constant c−5 such that
|a−5 (∇qh, V

−
h,1)| ≤ c−5 ||∇qh||L2(Ω)3 . Thus, to prove||(PHh,1)∗(A− T1)|Hh,0

|| → 0, we
only need to verify||∇qh||L2(Ω)3 → 0 ash → 0. However, we can chooseEh,0 with
‖Eh,0‖X = 1 such that||(PHh,1)∗(A − T1)Eh,0|| = ||(PHh,1)∗(A − T1)|Hh,0

||. From the
discrete compactness of the spaceXh,0 in Lemma5.9, for any sequenceEhn,0, we can al-
ways find a subsequence converging inL2(Ω)3 to anE0 ∈ X0. We denote this subsequence
again byEhn,0. Then||∇qhn

||L2(Ω)3 = ||(I −Π)Ehn,0||L2(Ω)3 → ||(I −Π)E0||L2(Ω)3 = 0.
In other words, any sequence||(PHhn,1)∗(A−T1)Ehn,0|| has a subsequence tending to zero.
Consequently,||(PHh,1)∗(A− T1)Eh,0|| converges to zero.

Arguing analogously, one can prove the convergence||(PHh,0)∗(A−T1)|Hh,1
|| → 0 as

h→0 via the identity (5.9). Hence, it holds that||D(2)
h ||→0.
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FIG. 6.1.Grating withmulti-layer system.

Step 5. SettingDh := D
(0)
h + D

(1)
h + D

(2)
h , equation (5.7) is the representation of

Lemma5.5. It can be concluded from Steps 1- 4 that the operatorsBh are stable,T is
compact, and thatDh is only a small perturbation. By the uniqueness assumption in The-
orem5.10, we see from Theorem3.1 thatA is invertible. Now, applying Lemma5.5 yields
the stability of(Ph)

∗A|Hh
. The proof of the convergence of the FEM is thus completed.

6. Multi-layer system beneath the grating structure. In many applications there is an
adjacent multi-layer system beneath the lower facex3 =−b of the grating. More precisely,
as indicated in Figure6.1, for a sequencebk, k = 0, . . . ,K, of x3-coordinates such that
−b=b0>b1>. . .>bK , the functionǫ(x) + iσ(x)/ω in the layerbk−1 > x3 > bk takes the
constant valueǫk with Im ǫk ≥ 0 such thatRe ǫk > 0 for Im ǫk = 0. Of course, in the lower
half spacebK>x3, we supposeǫ(x) + iσ(x)/ω=ǫ−0 .

For a variational formulation adapted to the multi-layer system, we need modified spaces
Y −
l , l = 0, 1. Clearly, the tangential traces ofE and curlE are continuous over the in-

terfacesx3 = bk. Solving these transmission problems, each downward propagating mode
E = exp(−iβ−

n b)U−
n,l in the half spacebK>x3 corresponds to an extended fieldE in b0>x3

such thatE(x) = κup
n,l,kU

up
n,l,k(x) + κdo

n,l,kU
do
n,l,k(x) for bk−1 > x3 > bk, k = 1, 2, . . . ,K,
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whereκup
n,l,k, κ

do
n,l,k ∈ C and

Uup
n,0,k(x)

:= ei[αn·x
′+βn,k(x3+b)]





(0,−1, 0)⊤ if |αn|=0,
1+i(x3+b)

|αn|
(−α

(2)
n , α

(1)
n , 0)⊤ if βn,k=0,

1
|αn|

(−α
(2)
n , α

(1)
n , 0)⊤ otherwise,

Uup
n,1,k(x)

:= ei[αn·x
′+βn,k(x3+b)]





(1, 0, 0)⊤ if |αn|=0,

1√
|αn|2+|αn|4

(
− αn, |αn|2

(
1+i(x3+b)

))⊤
if βn,k=0,

1

|αn|
√

|αn|2+|βn,k|2
(−βn,kαn, |αn|2)⊤ otherwise,

Udo
n,0,k(x)

:= ei[αn·x
′−βn,k(x3+b)]





(0, 1, 0)⊤ if |αn|=0,
1−i(x3+b)

|αn|
(α

(2)
n ,−α

(1)
n , 0)⊤ if βn,k=0,

1
|αn|

(α
(2)
n ,−α

(1)
n , 0)⊤ otherwise,

Udo
n,1,k(x)

:= ei[αn·x
′−βn,k(x3+b)]





(−1, 0, 0)⊤ if |αn|=0,

1√
|αn|2+|αn|4

(
αn, |αn|2

(
1−i(x3+b)

))⊤
if βn,k=0,

1

|αn|
√

|αn|2+|βn,k|2
(βn,kαn, |αn|2)⊤ otherwise,

βn,k :=
√

ω2µ0ǫk − |αn|2, βn,K+1 := β−
n .

Fix n and l. It is not hard to see (cf. [19, Section III.4]) that, for each linear combination
of Uup

n,l,K+1 andUdo
n,l,K+1 in the half spacex3 <bK , there exist unique linear combinations

of theUup
n,l,k andUdo

n,l,k in the layersbk <x3 < bk−1, k=1, . . . ,K, such that the tangential
traces over the interfacesx3 = bk, k = 1, . . . ,K, of the functions and of their curls in the
adjacent layers coincide. Similarly, to each linear combination ofUup

n,l,1 andUdo
n,l,1 in the

layer b1 < x3 < b0 there exist unique linear combinations of theUup
n,l,k andUdo

n,l,k in the
layersbk <x3 <bk−1, k=2, . . . ,K, and in the half spacex3 <bK such that the tangential
traces of the functions and of their curls in adjacent layerscoincide. Hence, the coefficients
κup
n,l,k, κ

do
n,l,k are uniquely determined. For instance, if all theβn,k are non-zero and|αn| 6= 0,

then

(
κup
n,l,1

κdo
n,l,1

)
= Mn,l,1 Mn,l,2 . . . Mn,l,K

(
0
1

)
,(6.1)

Mn,0,k :=

(
βn,k+1+βn,k

2βn,k
ei[βn,k+1−βn,k]b k

βn,k+1−βn,k

2βn,k
e−i[βn,k+1+βn,k]b k

βn,k+1−βn,k

2βn,k
ei[βn,k+1+βn,k]b k

βn,k+1+βn,k

2βn,k
e−i[βn,k+1−βn,k]b k

)
,
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Mn,1,k :=

√
|αn|2 + |βn,k|2

|αn|2 + |βn,k+1|2



[
|αn|

2+β2
n,k+1

|αn|2+β2
n,k

+
βn,k+1

βn,k

]
ei[βn,k+1−βn,k]b k

[
|αn|

2+β2
n,k+1

|αn|2+β2
n,k

− βn,k+1

βn,k

]
e−i[βn,k+1+βn,k]b k

[
|αn|

2+β2
n,k+1

|αn|2+β2
n,k

− βn,k+1

βn,k

]
ei[βn,k+1+βn,k]b k

[
|αn|

2+β2
n,k+1

|αn|2+β2
n,k

+
βn,k+1

βn,k

]
e−i[βn,k+1−βn,k]b k


.

Note that the coefficientsκup
n,l,1 andκdo

n,l,1 can be computed by numerically stable algorithms;
see, e.g., [19, Section III.6].

SettingŨ−
n,l := κdo

n,l,1U
do
n,l,1+κup

n,l,1U
up
n,l,1, we define themodifiedspacesY −

l by (4.1) but

with U−
n,l replaced bỹU−

n,l. Now the new variational formulation for the transmission problem

is just (4.3) with a modified sesquilinear form (4.2) defined overH := X×Y +×(Y −
0 ⊕Y −

1 )
including the modified spacesY −

l . The modified sesquilinear form is the sum of (4.2) and
the additional term

−η−
1∑

l=0

∑

n: e3×Ũ−
n,l=0

[∫

Γ−
b

e3×(E−E−) · (e3×U
−

n,l) ds

∫

Γ−
b

(curlV −) · (curlU −

n,l) ds

]
.

REMARK 6.1. All the results for the variational formulation and forthe FEM coupled by
the wave modes remain true for the case of multi-layer systems beneath the grating structure
and the new variational form.

Indeed, we sketch the proof. From the definitions of theUup
n,l,1 andUdo

n,l,1, we observe that

e3×Uup
n,l,1=−e3×Udo

n,l,1 and(curlUup
n,l,1)T =(curlUdo

n,l,1)T over the curveΓ−
b . Consequently,

the traces entering the sesquilinear forms satisfy

e3×Ũ−
n,l = [κdo

n,l,1 − κup
n,l,1] e3×Udo

n,l,1,

(curl Ũ−
n,l)T = [κdo

n,l,1 + κup
n,l,1] (curlU

do
n,l,1)T .

(6.2)

If βn,1 = 0, then [κdo
n,1,1−κup

n,1,1] 6= 0 since otherwisee3× Ũ−
n,1 = 0, which together with

(curl Ũ−
n,1)T = 0 would be a contradiction to the one-to-one mapping between the linear

combinations of wave modes mentioned above. This fact and the special choice of the ad-
ditional term in the modified sesquilinear form guarantee (cf. [14, proof of Lemma 3.3]) the
equivalence of the boundary value problem and the variational equation in the case of multi-
layer systems.

The Fredholm property with index zero for the variational operator and convergence of
the FEM coupled by wave modes follow from the fact that the operator corresponding to the
modified variational form is a compact perturbation of that of the original form. To see this
fact, we observe that

βn,k/|n|→ i for |n|→∞, and βn,k−βn,k+1 = (k2
k
−k2

k+1)/(βn,k+βn,k+1) ∼ |n|−1

with kk := ω
√
ǫkµ0. Consequently, equation (6.1) implies thatκdo

n,l,1 → 1, κup
n,l,1 → 0 and

[κdo
n,l,1 ± κup

n,l,1]→1 for the factors in (6.2). In other words, the difference between the mod-
ified operator and the original one is the multiplication by operators represented with re-
spect to the wave mode basis by the diagonal matrices([κdo

n,l,1 ± κup
n,l,1]δn,n′)n,n′ . In view of
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FIG. 7.1.Geometry of grating: left: echelle grating, right: blaces.

Udo
n,l,1 = exp(−iβ−

n b)U−
n,l and

∥∥∥∥∥
∑

n∈Z2

1∑

l=0

cn,lU
−
n,l

∥∥∥∥∥
H(curl ,D−)

∼
(
∑

n∈Z2

1∑

l=0

e−2|n|b 1 + |n|2l
1 + |n| |cn,l|2

)1/2

(cf. [14, Lemma 3.1]), such a diagonal operator is a compact perturbation of the identity.

7. Numerical example. For a simple numerical test, we consider two profile gratingson
the surface of a SiO2 body. The echelle grating (cf. the left of Fig.7.1) is designed to deflect
light into the direction specular with respect to the inclined upper faces. The idea of blazes
(cf. the right of Fig.7.1) with the widthb less and the lengthl larger than the wavelength of
light λ, is to provide a similar effective medium distribution and to function like an echelle
grating. Hopefully, such blazes are of better stability (cf. [12]).

In Table7.1we compare the new 3D coupling algorithm (4.3) of Section5.1applied to
the 2D echelle grating with the reliable results of the 2D FEMcode solving the Helmholtz
equation. The efficiencies

e+n :=
β+
n

β+
(0,0)

|E+
n |2 , e+n :=

(k+)2

(k−)2
β−
n

β+
(0,0)

|E−
n |2

of the electric field solution are computed for wavelengthλ = 500nm, periodl = 10µm,
and heighth=0.5µm. The grating is illuminated exactly from above under TE polarization.
The FEM of Section5.1 is applied with quadratic edge elements. The upper couplingmodes
n=(n1, n2) are restricted to|n1|≤22 and|n2|≤2, the lower modes to|n1|≤32 and|n2|≤ 2.
Moreover, the coupling parametersη± are set to zero. For the mesh-size tending to zero, the
3D results converge to those of the 2D simulation. Adding more coupling modes does not
improve the accuracy.

Next we apply the same 3D algorithm to the blazes and compare the results with those ob-
tained by the algorithm of Huber et al. (cf. [15]). Here the periods are chosen as
Λ1= l=10µm andΛ2 = b= λ/2 and the other parameters like for the echelle grating. The
resulting efficiencies coincide up to numerical errors; seeTable7.2.
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TABLE 7.1
Computation of efficiencies for echelle grating. Comparison of FEM from Section5.1 with two-dimensional

FEM simulation.

meshsize e+−2,0 e+0,0 e−1,0 e−2,0
125.0 nm 4.82 0.0027 43.23 3.78
62.5 nm 4.530 0.0022 45.0080 4.1289
31.2 nm 4.5039 0.0019 45.0559 4.1142
2D code 4.5025 0.0019 45.0630 4.1145

TABLE 7.2
Computation of efficiencies for blaces. Comparison of the FEM from Section5.1(left numbers in column) with

the FEM of [15] (right numbers).

meshsize e+0,0 e+0,0 e+1,0 e+1,0
125.0 nm 2.8328 3.0985 0.1661 0.1661
62.5 nm 2.8172 2.8333 0.1918 0.1918
31.2 nm 2.8119 2.8136 0.1944 0.1944

meshsize e−0,0 e−0,0 e−1,0 e−1,0
125.0 nm 75.2800 76.289 10.1503 10.1465
62.5 nm 75.5412 75.553 10.7248 10.7197
31.2 nm 75.4717 75.490 10.7787 10.7711
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[22] , Projektionsverfahren und die näherungsweise L̈osung singul̈arer Gleichungen, Teubner, Leipzig,

1977.
[23] A. RATHSFELD, Shape derivatives for the scattering by biperiodic gratings, Appl. Numer. Math., 72 (2013),

pp. 19–32.
[24] A. SCHAEDLE, L. ZSCHIEDRICH, S. BURGER, R. KLOSE, AND F. SCHMIDT, Domain decomposition method

for Maxwell’s equations: scattering of periodic structures, J. Comput. Phys., 226 (2007), pp. 477–493.
[25] G. SCHMIDT, On the diffraction by biperiodic anisotropic structures, Appl. Anal., 82 (2003), pp. 75–92.
[26] , Electromagnetic scattering by periodic structures, J. Math. Sci. (N. Y.), 124 (2004), pp. 5390–5405.
[27] R. STERNBERG, Mortaring by a method of J. A. Nitsche, in Computational Mechanics. New trends and Appli-

cations, S. Idelsohn, E. Onate, and E. Dvorkin, eds., CIMNE,Barcelona, Spain, 1988.


