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Abstract. In this article, we propose a parameter-uniform computational technique to solve singularly perturbed
delay parabolic initial-boundary-value problems exhibiting parabolic boundary layers. The domain is discretized by
a uniform mesh in the time direction and a nonuniform mesh for thespatial variable obtained via the equidistribution
of a monitor function. The numerical scheme consists of the implicit Euler scheme for the time derivative and the
classical central difference scheme for the spatial derivative. A truncation error analysis and a stability analysis are
carried out. It is shown that the method converges uniformly inthe discrete supremum norm with an optimal error
bound. Error estimates are derived, and numerical examples arepresented.

Key words. singularly perturbed delay parabolic problem, boundary layers, uniform convergence, equidistribu-
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1. Introduction. Let Ω = (0, 1), D = Ω × (0, T ], andΓ = Γl ∪ Γb ∪ Γr, whereΓl

andΓr are the left- and right-hand sides of the rectangleD corresponding tox = 0 andx = 1,
respectively, andΓb = Ω × [−τ, 0], whereΩ = [0, 1]. In this paper, we devise anε-
uniform numerical method for the following class of singularly perturbed delay parabolic
initial-boundary-value problems:

(1.1)

(

∂

∂t
+ Lε

)

u(x, t) = −b(x, t)u(x, t− τ) + f(x, t), (x, t) ∈ D,

u(x, t) = φb(x, t), (x, t) = Γb,

u(0, t) = φl(t), on Γl = {(0, t) : 0 ≤ t ≤ T},
u(1, t) = φr(t), on Γr = {(1, t) : 0 ≤ t ≤ T},

where

Lεu(x, t) = −εuxx(x, t) + a(x)u(x, t),

0 < ε ≤ 1 andτ > 0 are given constants,a(x), b(x, t), f(x, t), (x, t) ∈ D, andφl(t), φr(t),
φb(x, t), (x, t) ∈ Γ, are sufficiently smooth and bounded functions, where

a(x) ≥ 0, b(x, t) ≥ β > 0, (x, t) ∈ D.

The terminal timeT is assumed to satisfy the conditionT = kτ for some positive integerk.
The required compatibility conditions at the corner pointsand for the delay terms are

φb(0, 0) = φl(0), φb(1, 0) = φr(0),
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and

dφl(0)

dt
− ε

∂2φb(0, 0)

∂x2
+ a(0)φb(0, 0) = −b(0, 0)φb(0,−τ) + f(0, 0),

dφr(0)

dt
− ε

∂2φb(1, 0)

∂x2
+ a(1)φb(1, 0) = −b(1, 0)φb(1,−τ) + f(1, 0).

(1.2)

Note thatφl(t), φb(x, t), andφr(t) are assumed to be smooth for (1.2) to make sense. Under
the above assumptions and conditions, problem (1.1) has a unique solution [1].

A numerical treatment of the IBVP (1.1) is difficult because of the presence of boundary
layers in its solution. In particular, the classical finite difference methods fail to yield satis-
factory numerical results on uniform meshes, and to obtain stability, one has to reduce the
spatial step-size in relation toε. The same is true for finite element methods in the case of a
uniform mesh and polynomial basis functions. Basically, bythese methods one cannot obtain
ε-uniform error estimates. When regular boundary layers are present, it is possible to con-
struct anε-uniform method by using appropriately fitted finite difference operators (i.e., finite
difference schemes with fitting factors) on uniform meshes.However, in [16] it is proved that
this approach is not possible when parabolic boundary layers are present; more details can
be found in [11]. One can refer to the books of Farrell et al. [5] and Roos et al. [15] for
further results related to the theory and numerics of singularly perturbed parabolic problems.
We also refer to the articles [13, 14] for efficient numerical methods for singular perturbation
problems arising in chemical reactor theory using asymptotic approximations by applying
various methods.

There are several numerical methods in the literature for singularly perturbed delay
parabolic PDEs. Often piecewise-uniform Shishkin-type meshes are used for parameter-
uniform convergence. Piecewise-uniform meshes are generated by using information about
the layer locations and width, and this yields a second-order approximation in space up to
a logarithmic factor. To overcome such difficulties and improve the convergence rate, adap-
tive meshes are used and are generated by equidistributing positive monitor functions. Dif-
ferent type of monitor functions are employed for singularly perturbed ordinary differential
equations. In [9], the arc-length monitor function is used for quasi-linearone-dimensional
convection-diffusion problems, while in [2, 3], the singular part of the solution is used for
ordinary differential equations of reaction-diffusion and convection-diffusion type, respec-
tively.

The main goal of this paper is to provide anε-uniform numerical method for the
IBVP (1.1) with an adaptive mesh. We obtain the adaptive mesh through the idea of an
equidistribution of the singular component ofu(x, t) at some fixed timeT0, 0 < T0 ≤ T,
because the problem (1.1) exhibits boundary layers along boundaries that do not depend on
time. One can also refer to [2, 3, 6, 7, 9, 12] for the stationary problem where an adaptive
mesh is applied. In this method, the time derivative is replaced by the backward difference
scheme, and the spatial derivative is replaced by the central difference scheme. The proposed
scheme is parameter-uniform convergent of orderO(∆t+N−2), which is optimal compared
to other methods in the literature [1, 10]. It is shown that the method converges uniformly in
the discrete supremum norm with an optimal error bound. In this paper, truncation errors are
estimated, a stability analysis is carried out, andε-uniform error estimates are obtained. We
show that the numerical solution converges uniformly of second order in the space variable
as it is also indicated by the tables and figures in Section5.

The rest of the paper is organized as follows: in Section2, we provide a-priori bounds
for the derivatives of the analytical solution via a decomposition. Section3 introduces the im-
plicit upwind finite difference scheme and also an adaptive spatial grid via the equidistribution
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principle. Moreover, we present the detailed numerical algorithm in Section3.3. Afterwards,
we carry out the error analysis for the upwind scheme in Section 4 and prove the main theo-
retical result, i.e., theε-uniform optimal error bounds of the implicit upwind schemefor the
adaptive mesh. In Section5, we present numerical results for linear test problems to validate
the theoretical results. Finally in Section6, we summarize the main conclusions.

Throughout this paper,C denotes a generic positive constant independent ofε, N , M,
and the meshes(xi, tn), whereN andM are the number of mesh-intervals in the spatial and
temporal directions, respectively. The norm‖.‖D denotes the supremum norm on the domain
D. In the analysis, we assume that

√
ε ≤ N−1, which is the case of actual interest from the

practical point of view. It can also be replaced by the hypothesis that
√
ε ≤ CN−1 for some

fixed constantC without altering the conclusions of this paper.

2. Analytic solution. In this section we present some bounds for the analytical solu-
tion u(x, t) of (1.1) and its partial derivatives and the maximum principle for the differential
operator.

The reduced problem, by setting the parameter valueε = 0 and removing the boundary
conditions in (1.1), is

(2.1)
(u0)t(x, t)− a(x)u0(x, t) = −b(x, t)u0(x, t− τ) + f(x, t), (x, t) ∈ D,

u0(x, t) = φb(x, t), (x, t) ∈ Γb.

It is clear that the solution of (1.1) forms boundary layers onΓl andΓr in order to satisfy the
boundary conditions. The characteristics of (2.1) are the vertical linesx = C, which implies
that any boundary layer arising in the solution is of parabolic type. This type of problem can
be solved by fixing the spatial grid for all temporal levels.

The differential operator in (1.1) satisfies the following maximum principle. Hereφ onΓ
is defined by

φ = φl onΓl, φ = φr onΓr, φ = φb onΓb.

MAXIMUM PRINCIPLE . Let Ψ(x, t) be a sufficiently smooth function satisfying
Ψ(x, t) ≥ 0 onΓ. Then

(

∂
∂t + Lε

)

Ψ(x, t) ≥ 0 in D implies thatΨ(x, t) ≥ 0 in D.

The following theorem gives stability of the continuous operator
(

∂
∂t + Lε

)

and anε-
uniform bound for the problem (1.1) in the maximum norm.

THEOREM 2.1. Let v be any function in the domain of definition of the differential
operator

(

∂
∂t + Lε

)

in (1.1). Then

‖v‖ ≤ (1 + αT )max

{∥

∥

∥

∥

(

∂

∂t
+ Lε

)

v

∥

∥

∥

∥

, ‖v‖Γ
}

,

and any solution ofu of (1.1) has theε-uniform upper bound

‖u‖ ≤ (1 + αT )max {‖f‖, ‖φ‖Γ} ,

where the constantα = maxΩ̄{0, 1− a} ≤ 1.

THEOREM 2.2. Let the dataa∈C2+α(Ω), b, f ∈C(2+α,1+α/2)(D), φl∈C2+α/2([0, T ]),
φb ∈ C(4+α,2+α/2)(Γb),φr ∈ C2+α/2([0, T ]),α ∈ (0, 1) with compatibility conditions of suf-
ficiently high order at the corners fulfilled. Then(1.1) has a unique solutionu
and u ∈ C(4+α,2+α/2)(D). Furthermore, the derivatives of the solutionu satisfy, for all
non-negative integersi, j such that0 ≤ i+ 2j ≤ 4,

∥

∥

∥

∥

∂i+ju

∂xi∂tj

∥

∥

∥

∥

D

≤ Cε−i/2.
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Proof. The proof of this theorem can be found in [1].
The above bounds do not contain an explicit dependence on theboundary layer. There-

fore, to obtain stronger estimates of the solutionu(x, t) and its partial derivatives, we decom-
poseu(x, t) into its smooth and singular components.

Let u be the solution of (1.1) and write

u = v + w,

wherev andw are the smooth and singular components ofu defined in the following way.
The smooth component is further decomposed into

v = v0 + εv1,

wherev0, v1 are defined by

(v0)t + av0 = −bv0(x, t− τ) + f, (x, t) ∈ D,

v0(x, t) = φb(x, t), (x, t) ∈ Γb,

and
(

∂

∂t
+ Lε

)

v1 = −bv1(x, t− τ) + (v0)xx, (x, t) ∈ D,

v1(x, t) = 0, (x, t) ∈ Γ.

By definition of v0 andv1, the smooth componentv and the singular componentw can be
defined as follows:

(

∂

∂t
+ Lε

)

v(x, t) = −bv(x, t− τ) + f, (x, t) ∈ D,

v(x, t) = φb(x, t), (x, t) ∈ Γb,

v(0, t) = v0(0, t), (x, t) ∈ Γl,

v(1, t) = v0(1, t), (x, t) ∈ Γr,

and
(

∂

∂t
+ Lε

)

w(x, t) = −bw(x, t− τ), (x, t) ∈ D,

w(x, t) = 0, (x, t) ∈ Γb,

w(0, t) = φl(t)− v0(0, t), (x, t) ∈ Γl,

w(1, t) = φr(t)− v0(1, t), (x, t) ∈ Γr.

We further decompose the singular component into a left and right layer component,wl

andwr, respectively, as follows:

(2.2) w(x, t) = wl(x, t) + wr(x, t),

wherewl andwr satisfy
(

∂

∂t
+ Lε

)

wl(x, t) = −bwl(x, t− τ), (x, t) ∈ D,

wl(0, t) = φl(t)− v0(0, t), (x, t) ∈ Γl,

wl(x, t) = 0, (x, t) ∈ Γb ∪ Γr,
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and
(

∂

∂t
+ Lε

)

wr(x, t) = −bwr(x, t− τ), (x, t) ∈ D,

wr(1, t) = φr(t)− v0(1, t), (x, t) ∈ Γr,

wr(x, t) = 0, (x, t) ∈ Γb ∪ Γl.

The following theorem provides the bounds for the smooth componentv, the singular compo-
nentw, and their partial derivatives, which play a crucial role inthe error analysis in Section4.

THEOREM 2.3. Assume thata∈C4+α(Ω), b, f ∈C(4+α,2+α/2)(D), φl∈C3+α/2([0, T ]),
φb ∈ C(6+α,3+α/2)(Γb), φr ∈ C3+α/2([0, T ]), α ∈ (0, 1) with compatibility conditions of
sufficiently high order at the corners fulfilled. Then, for integersi, j such that0 ≤ i+2j ≤ 4,
we have the estimates

∥

∥

∥

∥

∂i+jv

∂xi∂tj

∥

∥

∥

∥

D

≤ C(1 + ε1−i/2),(2.3)

∣

∣

∣

∣

∂i+jwl

∂xi∂tj
(x, t)

∣

∣

∣

∣

≤ Cε−i/2e−x/
√
ε, (x, t) ∈ D,

∣

∣

∣

∣

∂i+jwr

∂xi∂tj
(x, t)

∣

∣

∣

∣

≤ Cε−i/2e−(1−x)/
√
ε, (x, t) ∈ D,

whereC is independent ofε.
Proof. The proof of this theorem can be found in [1].
THEOREM 2.4. The partial derivatives ofw(x, t) satisfy

∣

∣

∣

∣

∂i+jw

∂xi∂tj

∣

∣

∣

∣

≤ Cε−i/2{e−x/
√
ε + e−(1−x)/

√
ε}, (x, t) ∈ D,

for integersi, j such that0 ≤ i+ 2j ≤ 4.
Proof. The proof of the theorem is completed by using the estimatesof Theorem2.3and

the decomposition (2.2).

3. Numerical solution. In this section, we discretize the parabolic delay IBVP (1.1).
The time derivative is replaced by the backward difference scheme, and the spatial derivative
is replaced by the central difference scheme. Subsequently, we introduce the equidistribution
grid and derive a finite difference scheme. Finally, we provide the numerical algorithm for
obtaining the equidistributed grids.

3.1. Finite difference scheme.On the time domain [0,T], we introduce equidistant
meshes with a uniform time step∆t such that

ΛM
t = {tn = n∆t, n = 0, . . . ,M, ∆t = T/M},

whereM denotes the number of mesh elements in thet-direction on the interval[0, T ], and
the step length∆t satisfies the constraintp∆t = τ , wherep is a positive integer,tn = n∆t,
n ≥ −p. We consider the finite difference approximation of (1.1) on a non-uniform spatial
discretization

ΩN
x = {0 = x0 < x1 < · · · < xN = 1},
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and denote the spatial step sizes by

hi = xi − xi−1, i = 1, . . . , N.

We use the methods of steps to proveε-uniform convergence in Section4. Now we de-
scribe the discretization of the domains in a systematic way. We define discretized domains
DN = ΩN

x ×ΛM
t , ΓN

b = ΩN
x ×Λp

t , whereΛp
t representsp uniform mesh elements in[−τ, 0].

The boundary pointsΓN of DN areΓN = DN ∩ Γ. Similarly, we define the left and right
boundary points byΓN

l = DN ∩ Γl andΓN
r = DN ∩ Γr, respectively.

We further introduceDN
j = ΩN

x ×Λp
j,t, whereΛp

j,t representsp uniform mesh elements
in [(j − 1)τ, jτ ], for j = 1, 2, . . . , k. From the above discretization we can also observe that
DN =

⋃k
j=1D

N
j . These notations are primarily used in Section4, where the errors in the

numerical solutions are analyzed with respect toε-uniform convergence.
Before describing the scheme, for a given mesh functionv(xi, tn) = vni , define the

forward and backward differencesδ+x , δ−x in space by

δ+x v
n
i =

vni+1 − vni
hi+1

, δ−x v
n
i =

vni − vni−1

hi
,

respectively, the second-order finite difference operatorδ2x as

δ2xv
n
i =

2(δ+x v
n
i − δ−x v

n
i )

hi + hi+1
,

and the backward difference operatorδt in time by

δtv
n
i =

vni − vn−1
i

∆t
.

We discretize equation (1.1) by means of the backward Euler scheme for the time deriva-
tive and the central difference for the spatial derivative.Hence, the discretization of (1.1)
takes the form

(3.1)

(δt + Lε)U
n+1
i = −b(xi, tn+1)U

n−p+1
i + f(xi, tn+1), for i = 1, . . . , N − 1,

Un+1
0 = φl(tn+1),

Un+1
N = φr(tn+1),

U−j
i = φb(xi,−tj), for i = 1, . . . , N − 1,

whereLεU
n+1
i = −εδ2xUn+1

i + aiU
n+1
i .

After rearranging the terms in (3.1), we obtain the following form of the difference
scheme:

(3.2)

r−i U
n+1
i−1 + rciU

n+1
i + r+i U

n+1
i+1 = gni , for i = 1, . . . , N − 1,

Un+1
0 = φl(tn+1),

Un+1
N = φr(tn+1),

U−j
i = φb(xi,−tj), for i = 1, . . . , N − 1,

where

r−i =
−2ε∆t

hi(hi + hi+1)
, r+i =

−2ε∆t

hi+1(hi + hi+1)
, rci = 1 +∆tai − r−i − r+i ,

ai = a(xi), gni = Un
i +∆t

{

−b(xi, tn+1)U
n−p+1
i + f(xi, tn+1)

}

.



ETNA
Kent State University 

http://etna.math.kent.edu

382 S. GOWRISANKAR AND S. NATESAN

To determine the value of the monitor function (3.6), we have to know the approximate value
of the singular componentw(x, t). To calculate the numerical valueWn

i of w(xi, tn), we use
the numerical approximate valueV n

i of v(xi, tn) from the following recurrence relation:

(1 + ∆ta(xi))V
n+1
i = V n

i +∆t
{

−b(xi, tn+1)V
n−p+1
i + f(xi, tn+1)

}

,

V −j
i = φb(xi,−tj), for i = 1, . . . , N.

(3.3)

3.2. Adaptive spatial grids via equidistribution. Since the solutionu(x, t) of the
IBVP (1.1) exhibits boundary layers, one has to use layer-adapted nonuniform spatial grids,
which are fine inside the boundary layer region and coarse in the outer region. To obtain such
a grid, we use the idea of equidistribution of a positive monitor function given in (3.6). Here
we consider the equidistribution ofu(x, t) at some fixed timeT0, 0 < T0 ≤ T, because the
problem (1.1) exhibits regular layers along the boundaries, which do nothave any impact on
the temporal component. Moreover, we assume thatu(x, T0) exhibits layer phenomena.

A grid is said to be equidistributingu(x, T0) if

(3.4)
∫ xi

xi−1

M(u(s, T0), s)ds =

∫ xi+1

xi

M(u(s, T0), s)ds, i = 1, . . . , N − 1,

whereM(u(x, T0), x) is a strictly positive,L1–integrable function. Equation (3.4) can also
be written in the form

(3.5)
∫ xi

xi−1

M(u(s, T0), s)ds =
1

N

∫ 1

0

M(u(s, T0), s)ds, i = 1, . . . , N.

Here, we consider the monitor function

(3.6) M(u(x, T0), x) = αc + |wxx(x, T0)|1/m, m ≥ 2,

whereαc is a positive constant that is independent ofN andw(x, t) is the singular component
of u(x, t). The one-dimensional version of the monitor function (3.6) given by Beckett and
Mackenzie [2] suggests that in order to distribute the grid points evenly, we take

(3.7) αc =

∫ 1

0

|wxx(s, T0)|1/m ds.

This choice ofαc helps to distribute the number of mesh points inside and outside the bound-
ary layer region equally. The effect of increasingm is to smooth out the monitor function,
which in turn leads to a smoother distribution of the grid points. In [2], the influence of the
parameterm can clearly be observed. In all of our numerical experimentswe takem = 2.

In order to compute the value of the monitor function at theith interior node of the spatial
mesh,Mi, we assume thatw(xi, T0) =WS

i , whereS∆t = T0, and define

(3.8) Mi = αdis +
∣

∣δ2xW
S
i

∣

∣

1/m
, for i = 1, . . . , N − 1,

whereαdis is the discrete form of (3.7), which can be written as

αdis = h1
∣

∣δ2xW
S
1

∣

∣

1/m
+

N−1
∑

i=2

hi

{

|δ2xWS
i−1|1/m +

∣

∣δ2xW
S
i

∣

∣

1/m

2

}

+ hN
∣

∣δ2xW
S
N−1

∣

∣

1/m
.
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For a truly adaptive algorithm, the monitor function has to be approximated using the numer-
ical solution. For example, a simple discretization of (3.4) results in the set of equations

Mi−1/2(xi − xi−1) =Mi+1/2(xi+1 − xi), for i = 1, . . . , N − 1,

whereMi+1/2 is an approximation toM(u(xi+1/2, T0), xi+1/2). This is equivalent to an ap-
proximation of the monitor function by a piecewise constantfunction. The detailed numerical
algorithm for obtaining the equidistribution grids is given in Section3.3.

LEMMA 3.1. For i = 1, 2, . . . , N, the grid spacing satisfies

hi ≤ CN−1.

Proof. From the equidistribution principle (3.5), we have

∫ xi

xi−1

M(u(s, T0), s)ds =
1

N

∫ 1

0

M(u(s, T0), s)ds, i = 1, . . . , N.

Applying the Mean Value Theorem, we get

hiM(u(ηi, T0), ηi) = N−1

∫ 1

0

M(u(s, T0), s)ds

for someηi ∈ (xi−1, xi). And therefore, we have

hi = N−1

∫ 1

0
M(u(s, T0), s)ds

M(u(ηi, T0), ηi)
≤ CN−1,

which is the desired result.

3.3. The numerical algorithm. To get the equidistribution grid and the corresponding
numerical solution, we use the following algorithm:

1. Setk = 0. Take the uniform spatial mesh{x(0)i } as initial value for the iteration.
Choose a constantC > 1 that controls when the algorithm has to be terminated.

2. Compute the discrete solution{Un,(k)
i } and{V n,(k)

i } satisfying (3.2) and (3.3), re-

spectively, with the help of the spatial mesh{x(k)i }.

3. Find the singular component of the discrete solution byW
n,(k)
i = U

n,(k)
i − V

n,(k)
i .

4. For a given mesh{x(k)i } and the singular component of the discrete so-

lution {Wn,(k)
i }, set

H
(k)
i =

(

M
(k)
i−1 +M

(k)
i

2

)

(x
(k)
i − x

(k)
i−1), for i = 1, . . . , N,

whereM (k)
i is calculated from (3.8), and setM (k)

0 =M
(k)
1 andM (k)

N =M
(k)
N−1.

5. SetL0 = 0 andLi =
∑i

j=1H
(k)
j , for i = 1, . . . , N . Define

C(k) :=
N

LN
max

i=0,1,...,N
H

(k)
i .

6. If C(k) ≤ C, then go to Step 9.
7. SetYi = iLN/N, for i = 0, 1, . . . , N . Interpolate the points(Li, xi). Generate the

new mesh{x(k+1)
i } by evaluating this interpolant atYi, for i = 0, 1, . . . , N .
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8. Setk = k + 1. Return to Step 2.
9. Take{x(k)i } as the final mesh, and computeUn,(k)

i ; then stop.
For convergence of this algorithm for stationary problems,one can refer to [9], where

the authors analyzed a predetermined number of iterations with respect toε-uniform con-
vergence. The results are proved for the well-knownarc-length monitor function, which is
different from that one given in (3.6). More information can be found in [2, 3].

4. Error analysis. In this section, we carry out a stability analysis for the discrete oper-
ator defined in (3.1). Finally, we obtain anε-uniform error estimate in the discrete maximum
norm. The following lemma provides a stability result for a general numerical scheme for
the IBVP (1.1). The proof of this lemma can be found in [15]. Here, we are only stating the
result. Before that, we provide the definition of anM -matrix.

DEFINITION 4.1 (M -matrix). A matrixA is said to be anM -matrix if its entriesaij
satisfyaij ≤ 0 for i 6= j and its inverseA−1 exists withA−1 ≥ 0.

LEMMA 4.2. Consider the IBVP(1.1) and the difference scheme(3.1). This difference
scheme (excluding the initial and boundary conditions) canbe written as

(4.1) δtU
n+1 + LεU

n+1 := AUn+1 −DUn = Fn, for n = 0, . . . ,M − 1,

whereUn = (Un
1 , . . . , U

n
N−1)

T , Fn is a vector independent of the computed solution, andA
andD are matrices. Moreover,A is anM -matrix, andD ≥ 0.

Let y andz be two mesh functions withyn = (yn0 , . . . , y
n
N )T andzn = (zn0 , . . . , z

n
N )T ,

for eachn. Assume that
∣

∣δty
n+1 + Lεy

n+1
∣

∣ ≤ δtz
n+1 + Lεz

n+1, for n = 0, . . . ,M − 1,

and|y| ≤ z on the boundaryΓb ∪ Γl ∪ Γr. Then|y| ≤ z onΩ
N

x × Ω
M

t .
Proof. The difference scheme (3.1) can be written in the form (4.1), for n=0, . . . , p− 1,

with A = (aij) andD = (dij) as

ai,i−1 =
r−i
∆t

, ai,i =
rci
∆t

, ai,i+1 =
r+i
∆t

, di,i =
1

∆t
.

A short calculation shows that the matrixA is anM -matrix and the matrixD satisfiesD ≥ 0.
Therefore, the difference scheme satisfies the hypotheses of [15, Lemma 3.2], and the result
follows immediately. The above argument can also be extended to other time steps.

The finite difference operator(δt + Lε) in (3.1) satisfies the following discrete maximum
principle onDN .

DISCRETE MAXIMUM PRINCIPLE. Assume thatΨ(xi, tn) satisfiesΨ(xi, tn) ≥ 0 on
(xi, tn) ∈ ΓN . Then(δt + Lε)Ψ(xi, tn) ≥ 0 on (xi, tn) ∈ DN implies thatΨ(xi, tn) ≥ 0
at each point(xi, tn) ∈ DN .

Next, we provide an important theorem for theε-uniform convergence of the numerical
solution in the discrete maximum norm.

THEOREM 4.3. Letu andU be, respectively, the continuous and the numerical solutions
of the IBVPs(1.1) and (3.2) satisfying compatibility conditions of sufficiently high order at
the corners. Then, we have the following bound

(4.2) max
i,n

|(u− U)(xi, tn)| ≤ C[∆t+N−2], for all (xi, tn) ∈ DN ,

whereU(xi, tn) = Un
i .

Proof. We prove the theorem by the following steps. We first prove the result on the
interval[0, τ ], i.e., the time discretization parametern varies from0 to p. Let ηni = uni − Un

i
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be the truncation error of the computed solution at each meshpoint (xi, tn). We write the
scheme (3.1) as

δtU
n
i + LεU

n
i = −bi,nφb(xi, tn−p) + fni , i = 1, . . . , N − 1, n = 1, . . . , p.

Therefore, the truncation error of the above scheme can be expressed in the following way as
in [4, 10]

δtη
n
i + Lεη

n
i = χn

1,i
+ χn

2,i
, for (xi, tn) ∈ DN

1 ,

whereχn

1,i
andχn

2,i
are defined as

χn

1,i
:= LεU

n
i − (Lεu)

n
i and χn

2,i
:= δtu

n
i − (ut)

n
i .

With this splitting of the truncation error, we can decompose the errorη asη = φ + ψ.
Here, the functionφni is, for each fixedn = 0, . . . , p, the solution of the discrete two-point
boundary-value problem

Lεφ
n
i = χn

1,i
, for i = 1, . . . , N − 1,

φn0 = φnN = 0,
(4.3)

andψn
i is the solution of the discrete parabolic problem

δtψ
n
i + Lεψ

n
i = χn

2,i
− δtφ

n
i , for i = 1, . . . , N − 1,

ψn
0 = ψn

N = 0, for n = 1, . . . , p,

ψ0
i = −φ0i , for i = 0, . . . , N.

Equation (4.3) is a sequence of two-point boundary-value problems that have been discretized
usingLε with χn

1,i
playing the role of the truncation error, and its solution can be bounded

using techniques from [3]. The problem (1.1) exhibits parabolic boundary layers, and the
same is true for (4.3). Therefore, the following error bound derived in [3] can be invoked for
all time steps,

(4.4) |φni | ≤ CN−2, for all i, n ≤ p,

using the assumption thatN−1 ≫ √
ε and the fact that our problem exhibits parabolic bound-

ary layers.
All that remains is to bound the other error componentψ. By Lemma4.2and a discrete

maximum principle, we get the following bounds for the errorcomponentψ,

|ψn
i | ≤ C

(

max
i

|φ0i |+max
i,n

|χn

2,i
− δtφ

n
i |
)

, for i, n ≤ p.

Using the bounds ofχn

2,i
and (4.4), we obtain

|ψn
i | ≤ C

[

N−2 +∆t+max
i,n

|δtφni |
]

, for i, n ≤ p.(4.5)

It remains to boundδtφ in (4.5). Using the assumption thata(x) is independent oft, the
definition (4.3) implies thatδtφ satisfies

Lε(δtφ)
n
i = δtχ

n

1,i
, for i = 1, . . . , N − 1,

(δtφ)
n
0 = (δtφ)

n
N = 0.

(4.6)
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To analyze the sequence of two-point boundary value problems (4.6), observe that the right-
hand side of the above equation can be written as

δtχ
n

1,i
=

1

∆t

(

χn

1,i
− χn−1

1,i

)

=
1

∆t

(

(Lεu
n
i − (Lεu)

n
i )−

(

Lεu
n−1
i − (Lεu)

n−1
i

))

=
1

∆t

((

Lεu
n
i − Lεu

n−1
i

)

−
(

(Lεu)
n
i − (Lεu)

n−1
i

))

.

Let L̂εu = −εuxx andL̂εu
n
i = −εδ2xuni . That is,L̂εu is the discretization of the continuous

operatorLεu. Then, one can write the above formula as

δtχ
n

1,i
=

1

∆t

∫ tn

tn−1

[

L̂ε
∂

∂t
u(xi, t)− L̂ε

∂

∂t
u(xi, t)

]

.

By using Peano’s kernel theorem as in [8] and following the argument given in [4], we
obtains the same estimate forδtχn

1,i
as the bounds for the corresponding truncation error

arising in [3] for a standard two-point reaction-diffusion boundary-value problem. Now ana-
lyzing the problem in the same way as (4.3), we obtain the following bound forδtφni ,

(4.7) |δtφni | ≤ CN−2, for all i, n ≤ p.

Combining (4.4), (4.5), and (4.7), we arrive at

max
i,n

|(u− U)(xi, tn)| ≤ C[∆t+N−2], for all (xi, tn) ∈ DN
1 ,

whereU(xi, tn) = Un
i .

For t ≥ τ it is not possible to follow the above argument because the delay termu(x, t)
depends onu(x, t − τ), which is unknown fort ≥ τ . For this reason, we have to estimate
the difference between the numerical solutionU and the exact solutionu itself over the inter-
val [τ, 2τ ]. The proof of this estimate follows an approach of [1] in which a fitted piecewise
uniform mesh is used.

Consider the following singularly perturbed delay parabolic equation on the domain
D2 = (0, 1)× (τ, 2τ):

(4.8)

(

∂

∂t
+ Lε

)

u(x, t) = −b(x, t)u(x, t− τ) + f(x, t), (x, t) ∈ D2,

u(x, τ) = u(x, t(p)), x ∈ Ω,

u(0, t) = φ0(t), t ∈ [τ, 2τ ],

u(1, t) = φ1(t), t ∈ [τ, 2τ ].

We discretize (4.8) by means of the backward Euler scheme for the time derivative and the
central difference quotient for the space derivative. Hence, the discretization takes the form

(4.9)

(δt + Lε)U(xi, tn) ≡ δtU
n
i − εδ2xU

n
i + aUn

i

= −bi,nUn−p
i + f(xi, tn), (xi, tn) ∈ DN

2 ,

U(xi, tn) = U1(xi, tn), (xi, tn) ∈ DN
1 ,

U(0, tn) = φ0(tn), tn ∈ Λp
2,t,

U(1, tn) = φ1(tn), tn ∈ Λp
2,t,
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whereU1 is the numerical solution calculated onDN
1 . The solutionu of (4.8) is decom-

posed into smooth and singular componentsu = y + z. The smooth componenty is further
decomposed intoy = y0 + εy1, wherey0 andy1 solve the following problems:

∂y0
∂t

(x, t) + ay0(x, t) = −by0(x, t− τ) + f(x, t), (x, t) ∈ D2,

y0(x, t) = u(x, t), (x, t) ∈ Ω× [0, τ ],

and
(

∂

∂t
+ Lε

)

y1(x, t) = −by1(x, t− τ) +
∂2y0
∂x2

(x, t), (x, t) ∈ D2,

y1(x, t) = 0, (x, t) ∈ Ω× [0, τ ],

y1(0, t) = 0, t ∈ [τ, 2τ ],

y1(1, t) = 0, t ∈ [τ, 2τ ].

By the above definition ofy0 andy1, the smooth componenty satisfies
(

∂

∂t
+ Lε

)

y(x, t) = −by(x, t− τ) + f(x, t), (x, t) ∈ D2,

y(x, t) = u(x, t), (x, t) ∈ Ω× [0, τ ],

y(0, t) = y0(0, t), t ∈ [τ, 2τ ],

y(1, t) = y0(1, t), t ∈ [τ, 2τ ].

The singular componentz satisfies
(

∂

∂t
+ Lε

)

z(x, t) = −bz(x, t− τ), (x, t) ∈ D2,

z(x, t) = 0, (x, t) ∈ Ω× [0, τ ],

z(0, t) = φl(t)− y0(0, t), t ∈ [τ, 2τ ],

z(1, t) = φr(t)− y0(1, t), t ∈ [τ, 2τ ].

The singular componentz can be further decomposed asz = zl + zr, where the left- and
right-hand side layer termszl andzr satisfy

(

∂

∂t
+ Lε

)

zl(x, t) = −bzl(x, t− τ), (x, t) ∈ D2,

zl(x, t) = 0, (x, t) ∈ Ω× [0, τ ],

zl(0, t) = φl(t)− y0(0, t), [τ, 2τ ],

zl(1, t) = 0, t ∈ [τ, 2τ ],

and
(

∂

∂t
+ Lε

)

zr(x, t) = −bzr(x, t− τ), (x, t) ∈ D2,

zr(x, t) = 0, (x, t) ∈ Ω× [0, τ ],

zr(0, t) = 0, t ∈ [τ, 2τ ],

zr(1, t) = φr(t)− y0(1, t), t ∈ [τ, 2τ ].
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The numerical solutionU of (4.9) can be decomposed into smooth and singular compo-
nents in an analogous manner to the decomposition of the solution u of (4.8). That is,

U = Y + Z,

whereY is the solution of the following problem:

(δt + Lε)Y (xi, tn) = −bi,nY (xi, tn−p) + f, (xi, tn) ∈ DN
2 ,

Y (xi, tn) = U1(xi, tn), (xi, tn) ∈ DN
1 ,

Y (0, tn) = y0(0, tn), tn ∈ Λp
2,t,

Y (1, tn) = y0(1, tn), tn ∈ Λp
2,t.

By this equation, the approximation of the singular componentZ satisfies

(δt + Lε)Z(xi, tn) = −bi,nZ(xi, tn−p), (xi, tn) ∈ DN
2 ,

Z(xi, tn) = 0, (xi, tn) ∈ DN
1 ,

Z(0, tn) = φl(tn)− y0(0, tn), tn ∈ Λp
2,t,

Z(1, tn) = φr(tn)− y0(1, tn), tn ∈ Λp
2,t.

Therefore, the error at the node(xi, tn) can be written as

(U − u) (xi, tn) = (Y − y) (xi, tn) + (Z − z) (xi, tn).

Thus,

| (U − u) (xi, tn)| ≤ | (Y − y) (xi, tn)|+ | (Z − z) (xi, tn)|.

By this inequality, it is enough to bound the error of the singular and the regular components
by an optimal bound. The truncation error of the smooth component can be written as

(δt + Lε) (Y − y) = −bi,nY (xi, tn−p) + f − (δt + Lε) y

= bi,n(y(xi, tn−p)− Y (xi, tn−p)) +

((

∂

∂t
+ Lε

)

− (δt + Lε)

)

y

= bi,n(u(xi, tn−p)− U1(xi, tn−p)) +

((

∂

∂t
+ Lε

)

− (δt + Lε)

)

y.

Therefore, we have

(δt + Lε) (Y − y)

= −bi,n(u(xi, tn−p)− U1(xi, tn−p))− ε

(

∂2

∂x2
− δ2x

)

y +

(

∂

∂t
− δt

)

y.

Now taking the modulus and using (4.2) for the first part, this reduces to

| (δt + Lε) (Y − y)(xi, tn)| ≤ C(N−2 +∆t) + ε

∣

∣

∣

∣

(

∂2

∂x2
− δ2x

)

y

∣

∣

∣

∣

+

∣

∣

∣

∣

(

∂

∂t
− δt

)

y

∣

∣

∣

∣

.

Using a Taylor series expansion, it is easy to show that

| (δt + Lε) (Y − y)(xi, tn)| ≤ C

(

N−2 +∆t+ (hi+1 + hi)
2ε

∥

∥

∥

∥

∂4y

∂x4

∥

∥

∥

∥

+∆t

∥

∥

∥

∥

∂2y

∂t2

∥

∥

∥

∥

)

.
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Applying Lemma3.1and the bounds for the derivatives in (2.3), we obtain

| (δt + Lε) (Y − y)(xi, tn)| ≤ C(N−2 +∆t), for (xi, tn) ∈ DN
2 .

Now using the fact that the discrete operator(δt + Lε) satisfies a discrete maximum
principle and the inverse operator is uniformly bounded, the above inequality can be reduced
to

(4.10) |(Y − y)(xi, tn)| ≤ C(N−2 +∆t), for (xi, tn) ∈ DN
2 .

To estimate the singular component of the error, we discretizeZ in the same way as its
continuous counterpartz is discretized,Z = Zl+Zr, whereZl andZr correspond to the left
and right layers of the numerical solutions, respectively.They are defined by

(δt + Lε)Zl = −bi,nZl(xi, tn−p), (xi, tn) ∈ DN
2 ,

Zl(xi, tn) = 0, (xi, tn) ∈ DN
2 ,

Zl(0, tn) = φl(tn)− y0(0, tn), tn ∈ Λp
2,t,

Zl(1, tn) = 0, tn ∈ Λp
2,t,

and

(δt + Lε)Zr = −bi,nZr(xi, tn−p), (xi, tn) ∈ DN
2 ,

Zr(xi, tn) = 0, (xi, tn) ∈ DN
2 ,

Zr(0, tn) = 0, tn ∈ Λp
2,t,

Zr(1, tn) = φr(tn)− y0(1, tn), tn ∈ Λp
2,t.

The error can then be written in the form

(Z − z) (xi, tn) = (Zl − zl) (xi, tn) + (Zr − zr) (xi, tn), (xi, tn) ∈ DN
2 ,

and the errorsZl − zl andZr − zr associated with the boundary layers ofΓl andΓr, respec-
tively, can be estimated separately. Consider the errorZl − zl,

(δt + Lε) (Zl − zl) =

((

∂

∂t
+ Lε

)

− (δt + Lε)

)

zl

= −ε
(

∂2

∂x2
− δ2x

)

zl +

(

∂

∂t
− δt

)

zl.

Taking the modulus and using a Taylor series expansion in time, we obtain

| (δt + Lε) (Zl − zl)| ≤ C

(

N−2 +∆t+ ε

∥

∥

∥

∥

(

∂2

∂x2
− δ2x

)

zl

∥

∥

∥

∥

+∆t

∥

∥

∥

∥

∂2zl
∂t2

∥

∥

∥

∥

)

≤ C

(

N−2 +∆t+ ε

∥

∥

∥

∥

(

∂2

∂x2
− δ2x

)

zl

∥

∥

∥

∥

)

.

By fixing t, the lateral part of the above inequality can be regarded as in [3] as the truncation
error of the two point reaction-diffusion boundary value problem corresponding to the left-
hand side layer. By this observation, the truncation error in space can be analyzed in the
same way as in [3, Lemma 8, 9] with the only difference that there it is given for both layers,
whereas we only require the part of the left-hand side layer.Hence, we obtain

| (δt + Lε) (Zl − zl)(xi, tn)| ≤ C(N−2 +∆t), (xi, tn) ∈ DN
2 .
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Now using the fact that the discrete operator(δt + Lε) satisfies a discrete maximum principle
and the inverse operator is uniformly bounded, the above inequality can be reduced to

(4.11) |(Zl − zl)(xi, tn)| ≤ C(N−2 +∆t), for (xi, tn) ∈ DN
2 .

A similar analysis shows that the error corresponding to theright-hand side part can also be
bounded as

(4.12) |(Zr − zr)(xi, tn)| ≤ C(N−2 +∆t), for (xi, tn) ∈ DN
2 .

Combining (4.10), (4.11), and (4.12) completes the proof for the second interval[τ, 2τ ]. Sim-
ilarly, we can prove the estimate for successive intervals in the temporal direction.

5. Numerical results. In this section, we present the numerical results obtained by the
fully discrete scheme (3.2) for two test problems on a rectangular meshDN,M

ε =ΩN
x ×ΛM

t ,
whereΩN

x is the equidistributed grid obtained from the numerical algorithm. In all the numer-
ical experiments, we fixm = 2, which is used to define the monitor function (3.6). Moreover,
in all the tables the results are given first for a coarsest discretization withN = 32 and a time
step∆t = 0.1, and each following column corresponds to a refined discretization compared
to the previous one, such thatN is multiplied by two and∆t is divided by four. The reason
for dividing∆t by four is to justify the spatial order of convergence properly.

EXAMPLE 5.1. Consider the following singularly perturbed delay parabolic initial-
boundary-value problem:

(5.1)

ut(x, t)− εuxx(x, t) = −2e−1u(x, t− 1), (x, t) ∈ (0, 1)× (0, 2],

u(x, t) = e−(t+x/
√
ε), (x, t) ∈ [0, 1]× [−1, 0],

u(0, t) = e−t, t ∈ [0, 2],

u(1, t) = e−(t+1/
√
ε), t ∈ [0, 2].

The exact solution isu(x, t) = e−(t+x/
√
ε). From the exact solution, it is clear that there

is a parabolic boundary layer only in a neighborhood ofΓl, and there is no boundary layer
alongΓr.

As the exact solution of the problem (5.1) is known, for eachε, we calculate the maxi-
mum pointwise error by

eN,∆t
ε = max

(xi,tn)∈DN,M
ε

|u(xi, tn)− UN,∆t(xi, tn)|,

whereu(xi, tn) andUN,∆t(xi, tn), respectively, denote the exact and the numerical solution
obtained on the mesh withN mesh intervals in the spatial direction andM mesh intervals in
thet-direction such that∆t = T/M is the uniform time step. In addition, we determine the
corresponding order of convergence by

pN,∆t
ε = log2

(

eN,∆t
ε

e
2N,∆t/2
ε

)

.

The calculated maximum pointwise errorseN,∆t
ε and the corresponding order of conver-

gencepN,∆t
ε for Example5.1 are given in Table5.1 and Table5.2, respectively. From these

results one can observeε-uniform convergence of the numerical solution.
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FIG. 5.1.Log-log plot for Example5.1.

Furthermore, we calculate the normalized flux

Fεu(x, t) =
√
ε
∂u(x, t)

∂x

and its numerical approximation

FN
ε U

N,∆t(xi, tn) =
√
εδ+x U

n
i .

The errors in the normalized flux are calculated as

rN,∆t
ε = max

1≤n≤M
‖Fεu(x0, tn)− FN

ε U
N,∆t(x0, tn)‖,

and the rate of convergence is determined from

qN,∆t
ε = log2

(

rN,∆t
ε

r
2N,∆t/4
ε

)

.

The calculated maximum pointwise errors in the normalized flux rN,∆t
ε and the corre-

sponding order of convergenceqN,∆t
ε for Example5.1 are given in Table5.3 and Table5.4.

Again, one can observe theε-uniform convergence in Table5.3 and the first-order conver-
gence rate in Table5.4. In Figure5.1 (a) and (b), the maximum pointwise errors of the
solution and the normalized flux are plotted, respectively.These result reflect the first-order
convergence independent ofε.

EXAMPLE 5.2. Consider the following singularly perturbed delay parabolic initial-
boundary value problem:

(5.2)

ut − εuxx +
(1 + x)2

2
u = t3 − u(x, t− 1), (x, t) ∈ (0, 1)× (0, 2],

u(x, t) = 0, (x, t) ∈ [0, 1]× [−1, 0],

u(0, t) = 0, 0 ≤ t ≤ 2,

u(1, t) = 0, 0 ≤ t ≤ 2.
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TABLE 5.1
Maximum pointwise erroreN,∆t

ε of the solution for Example5.1.

Number of intervalsN /Time step size∆t

ε 32/ 110 64/ 140 128/ 1
160 256/ 1

640 512/ 1
2560

100 2.7636e-03 7.3566e-04 1.8725e-04 4.7040e-05 1.1774e-05
10−2 6.1484e-03 1.5722e-03 3.9528e-04 9.8968e-05 2.4751e-05
10−4 5.8657e-03 1.4826e-03 3.7294e-04 9.4594e-05 2.3439e-05
10−6 5.5893e-03 1.4529e-03 3.6683e-04 9.2121e-05 2.3063e-05
10−8 5.5955e-03 1.4285e-03 3.6602e-04 9.1809e-05 2.2997e-05

TABLE 5.2
Rate of convergencepN,∆t

ε of the solution for Example5.1.

No. of intervalsN /Time step size∆t

ε 32/ 110 64/ 140 128/ 1
160 256/ 1

640

100 1.9094 1.9741 1.9930 1.9982
10−2 1.9674 1.9919 1.9979 1.9995
10−4 1.9842 1.9911 1.9791 2.0129
10−6 1.9437 1.9858 1.9935 1.9979
10−8 1.9698 1.9645 1.9952 1.9972

As the exact solution of the problem (5.2) is not known, to obtain the accuracy of the nu-
merical solution and also to demonstrate theε-uniform convergence of the proposed scheme,
we use the double mesh principle which is described in the following. The numerical solution
is plotted in Figure5.2 (a) and (b) forε = 10−1 andε = 10−4, respectively. These figures
show the existence of the boundary layers nearx = 0 andx = 1.

Let Ũ2N,∆t/2(xi, tn) be the numerical solution obtained on the fine mesh
D̃2N,2M

ε = Ω2N
x × Λ2M

t with 2N mesh intervals in spatial direction and2M mesh intervals
in t-direction. Then, for eachε, we calculate the maximum pointwise error by

EN,∆t
ε = max

(xi,tn)∈DN,M
ε

∣

∣

∣
UN,∆t(xi, tn)− Ũ2N,∆t/2(xi, tn)

∣

∣

∣
,

and the corresponding order of convergence by

PN,∆t
ε = log2

(

EN,∆t
ε

E
2N,∆t/2
ε

)

.

The calculated maximum pointwise errorsEN,∆t
ε and the corresponding order of conver-

gencePN,∆t
ε for Example5.2are given in Table5.5and Table5.6, respectively. The results

there show a convergence independent of the diffusion parameterε.
The maximum pointwise errors for the solution are plotted ona log-log scale in Fig-

ure5.3. In this figure, one can easily observe theε-uniform convergence.

6. Conclusions. In this article, we solved singularly perturbed time-dependent delay
reaction-diffusion problems (1.1) numerically by the upwind finite difference scheme on layer
adapted nonuniform grids obtained by equidistributing themonitor function given in (3.6).
A truncation error analysis and a stability analysis are provided. The proposed numerical
scheme is of first-order in the temporal and second-order in the spacial variables,
i.e.,O(∆ t+N−2). Error estimates for the numerical scheme are derived, which are inde-
pendent of the diffusion parameterε. Numerical results confirm the theoretical error estimate.
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TABLE 5.3
Maximum pointwise errorrN,∆t

ε of the normalized flux for Example5.1.

Number of intervalsN /Time step size∆t

ε 32/ 110 64/ 140 128/ 1
160 256/ 1

640 512/ 1
2560

100 2.5152e-02 1.0016e-02 4.3257e-03 2.0201e-03 9.8607e-04
10−2 6.1271e-02 2.8039e-02 1.3411e-02 6.5732e-03 3.2593e-03
10−4 7.5813e-02 3.2941e-02 1.5666e-02 7.7375e-03 3.4147e-03
10−6 7.4361e-02 3.4075e-02 1.6160e-02 7.8819e-03 3.9305e-03
10−8 7.6126e-02 3.6189e-02 1.6228e-02 7.9736e-03 3.9454e-03

TABLE 5.4
Rate of convergenceqN,∆t

ε of the normalized flux for Example5.1.

No. of intervalsN /Time step size∆t

ε 32/ 110 64/ 140 128/ 1
160 256/ 1

640

100 1.3284 1.2113 1.0985 1.0347
10−2 1.1278 1.0640 1.0287 1.0120
10−4 1.2026 1.0722 1.0177 1.1801
10−6 1.1258 1.0763 1.0358 1.0038
10−8 1.0728 1.1571 1.0252 1.0151
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FIG. 5.2.Numerical solution of Example5.2for N = 64 and∆t = 0.01.

TABLE 5.5
Maximum pointwise errorEN,∆t

ε of the solution for Example5.2.

Number of intervalsN /Time step size∆t

ε 32/ 110 64/ 140 128/ 1
160 256/ 1

640

100 4.1424e-03 1.0515e-03 2.6387e-04 6.6030e-05
10−2 1.5664e-01 3.9664e-02 9.9476e-03 2.4885e-03
10−4 1.7038e-01 4.2971e-02 1.0809e-02 2.6916e-03
10−6 1.7120e-01 4.4325e-02 1.1403e-02 2.8745e-03
10−8 1.7083e-01 4.3954e-02 1.1329e-02 2.9009e-03
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FIG. 5.3.Log-log plot for the maximum pointwise errorEN,∆t
ε of the solution of Example5.2.

TABLE 5.6
Rate of convergencePN,∆t

ε of the solution for Example5.2.

No. of intervalsN /Time step size∆t

ε 32/ 110 64/ 140 128/ 1
160

100 1.9780 1.9946 1.9986
10−2 1.9816 1.9954 1.9990
10−4 1.9874 1.9911 2.0057
10−6 1.9495 1.9588 1.9880
10−8 1.9585 1.9560 1.9654
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