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A ROBUST NUMERICAL SCHEME FOR SINGULARLY PERTURBED DELAY
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ON EQUIDISTRIBUTED GRIDS *
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Abstract. In this article, we propose a parameter-uniform computati@eanique to solve singularly perturbed
delay parabolic initial-boundary-value problems exhiigitparabolic boundary layers. The domain is discretized by
a uniform mesh in the time direction and a nonuniform mesh fosfiatial variable obtained via the equidistribution
of a monitor function. The numerical scheme consists of the gitfiuler scheme for the time derivative and the
classical central difference scheme for the spatial dévivaf truncation error analysis and a stability analyse ar
carried out. It is shown that the method converges uniformipédiscrete supremum norm with an optimal error
bound. Error estimates are derived, and numerical examplgsesented.
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1. Introduction. LetQ = (0,1), D = Q x (0,7], andT' = T, U T, UT,, wherel;
andl’, are the left- and right-hand sides of the rectarigleorresponding te = 0 andz = 1,
respectively, and’, = Q x [-7,0], whereQ2 = [0,1]. In this paper, we devise asn
uniform numerical method for the following class of singliaperturbed delay parabolic
initial-boundary-value problems:

(6 + £E> u(z,t) = =b(z,t)u(z,t — 7) + f(x,t), (x,t) €D,

ot
(11) u(x,t) = ¢b('r7t)7 (J},t) = Fb;
u(0,1) = ¢i(t), onT; ={(0,t):0<t<T},
u(1,t) = ¢.(t), onT, ={(1,t):0<t<T},
where

Lou(x,t) = —eug,(z,t) + alx)u(z, t),

0 < e < 1landr > 0 are given constants|z), b(z, t), f(z,t), (z,t) € D, ande;(t), ¢, (t),
ou(x,t), (x,t) € T, are sufficiently smooth and bounded functions, where

a(z) >0, b(z,t)>B>0, (xt)€D.

The terminal timéel" is assumed to satisfy the conditi@h= k7 for some positive integet.
The required compatibility conditions at the corner poantsl for the delay terms are

¢b(03 O) = ¢l(0)7 ¢b(170) = ¢7(0)7
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and
- quiO) _ 562%5(2),0) +a(0)¢(0,0) = —b(0,0)p(0, —7) + £(0,0),
' 2
d¢§75(0) = %g,m +a(1)gp(1,0) = —b(1,0)¢s(1, —7) + f(1,0).

Note thatg; (), ¢»(z, t), ande,.(t) are assumed to be smooth farZ) to make sense. Under
the above assumptions and conditions, problém) has a unique solutiori].

A numerical treatment of the IBVPL(D) is difficult because of the presence of boundary
layers in its solution. In particular, the classical finiifefence methods fail to yield satis-
factory numerical results on uniform meshes, and to obthility, one has to reduce the
spatial step-size in relation to The same is true for finite element methods in the case of a
uniform mesh and polynomial basis functions. Basicallyth®se methods one cannot obtain
e-uniform error estimates. When regular boundary layers egeemt, it is possible to con-
struct are-uniform method by using appropriately fitted finite diffece operators (i.e., finite
difference schemes with fitting factors) on uniform meshéswvever, in [L6] it is proved that
this approach is not possible when parabolic boundary $agex present; more details can
be found in [L1]. One can refer to the books of Farrell et &] pnd Roos et al.15] for
further results related to the theory and numerics of sendyuperturbed parabolic problems.
We also refer to the articled 3, 14] for efficient numerical methods for singular perturbation
problems arising in chemical reactor theory using asynptyiproximations by applying
various methods.

There are several numerical methods in the literature foguarly perturbed delay
parabolic PDEs. Often piecewise-uniform Shishkin-typeshes are used for parameter-
uniform convergence. Piecewise-uniform meshes are geukby using information about
the layer locations and width, and this yields a second+oageroximation in space up to
a logarithmic factor. To overcome such difficulties and ioy& the convergence rate, adap-
tive meshes are used and are generated by equidistribudsitive monitor functions. Dif-
ferent type of monitor functions are employed for singylarérturbed ordinary differential
equations. In9], the arc-length monitor function is used for quasi-lineae-dimensional
convection-diffusion problems, while ir2] 3], the singular part of the solution is used for
ordinary differential equations of reaction-diffusiondaconvection-diffusion type, respec-
tively.

The main goal of this paper is to provide aruniform numerical method for the
IBVP (1.1) with an adaptive mesh. We obtain the adaptive mesh throaghdea of an
equidistribution of the singular component @fz, t) at some fixed timdy, 0 < Ty, < T,
because the problen. () exhibits boundary layers along boundaries that do not it pa
time. One can also refer t@[3, 6, 7, 9, 17] for the stationary problem where an adaptive
mesh is applied. In this method, the time derivative is regdiaby the backward difference
scheme, and the spatial derivative is replaced by the deliffierence scheme. The proposed
scheme is parameter-uniform convergent of ordéit + N —2), which is optimal compared
to other methods in the literaturg, [10]. It is shown that the method converges uniformly in
the discrete supremum norm with an optimal error bound. isyghper, truncation errors are
estimated, a stability analysis is carried out, anaghiform error estimates are obtained. We
show that the numerical solution converges uniformly ofoselcorder in the space variable
as it is also indicated by the tables and figures in Sedion

The rest of the paper is organized as follows: in Secfiowe provide a-priori bounds
for the derivatives of the analytical solution via a decosipon. Sectior8 introduces the im-
plicit upwind finite difference scheme and also an adapiatial grid via the equidistribution
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principle. Moreover, we present the detailed numericabidigm in Sectior3.3. Afterwards,
we carry out the error analysis for the upwind scheme in 8edtand prove the main theo-
retical result, i.e., the-uniform optimal error bounds of the implicit upwind schefoethe
adaptive mesh. In Sectidi) we present numerical results for linear test problems lidate
the theoretical results. Finally in Secti6pwe summarize the main conclusions.
Throughout this paper;’ denotes a generic positive constant independent &f, M,
and the meshes:;, t,,), whereN and M are the number of mesh-intervals in the spatial and
temporal directions, respectively. The nojinfj, denotes the supremum norm on the domain
D. In the analysis, we assume thg@t < N !, which is the case of actual interest from the
practical point of view. It can also be replaced by the hypsifithat,/s < C N~ for some
fixed constantC without altering the conclusions of this paper.

2. Analytic solution. In this section we present some bounds for the analytical sol
tion u(z, t) of (1.1) and its partial derivatives and the maximum principle for tifferential
operator.

The reduced problem, by setting the parameter valge0 and removing the boundary
conditions in (.1), is

(uo)¢(z,t) — a(x)uo(z,t) = =b(x, t)uo(x,t — 1) + f(x,t), (x,t) €D,
Uo(l’,t) = ¢b($,t)7 (l',t) eTy.

Itis clear that the solution ofl(1) forms boundary layers oy, andl’,. in order to satisfy the
boundary conditions. The characteristics &flf are the vertical lines = C', which implies
that any boundary layer arising in the solution is of parathigipe. This type of problem can
be solved by fixing the spatial grid for all temporal levels.

The differential operator inl(1) satisfies the following maximum principle. HepeonT"
is defined by

(2.1)

¢:¢l Onl—‘h ¢:¢T0nrra ¢:¢b0nrb.
MAXIMUM PRINCIPLE. Let ¥(z,t) be a sufficiently smooth function satisfying
U(z,t) > 0onT. Then(& + £.) ¥(z,t) > 0in D implies that¥(z, ¢) > 0in D.
The following theorem gives stability of the continuous @ier (% + LE) and ane-
uniform bound for the probleni(1) in the maximum norm.
THEOREM 2.1. Let v be any function in the domain of definition of the differeintia
operator (£ + £.) in (1.1). Then
0
(5 +) o tole

and any solution of, of (1.1) has the=-uniform upper bound

[ull < (1 + o) max {[| £, |¢[lr}

where the constant = maxz{0,1 —a} < 1.

THEOREM2.2. Let the datau € C?T*(Q), b, f €CFT1+2/2)(D), ¢, €C*+/2([0,T)),
d, € CUTH2H/2)(Ty) ¢, € C2F/2([0,T]), a € (0, 1) with compatibility conditions of suf-
ficiently high order at the corners fulfilled. Thefl.1) has a unique solutionu
andu e cte2+a/2)(D). Furthermore, the derivatives of the solutiensatisfy, for all
non-negative integers j such thatd < i+ 25 < 4,

O tiy
‘ ‘ Oxtots

loll < (14 aT) max{‘

< Ce 2,
D
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Proof. The proof of this theorem can be found ij.[ 0

The above bounds do not contain an explicit dependence dootinedary layer. There-
fore, to obtain stronger estimates of the solutign, ¢) and its partial derivatives, we decom-
poseu(x,t) into its smooth and singular components.

Let « be the solution ofX.1) and write

u=v-+w,

wherev andw are the smooth and singular components afefined in the following way.
The smooth component is further decomposed into

v = vg + ey,

wherev,, v, are defined by

(vo)t + avg = —bvg(z,t — 7) + f, (z,t) € D,
vo(,t) = dp(,1), (z,t) € s,
and
0
(at + L',E) vy = —bvy(x,t —7) + (V0) v, (x,t) € D,
vi(x,t) =0, (x,t) €T

By definition of vy andwvy, the smooth componentand the singular component can be
defined as follows:

(aat + LE> v(x,t) = —bv(x,t —7) + f, (z,t) € D,
U(J],t) = ¢b($at)7 (.’Eﬂf) eIy,
v(0,1) = vo(0,1), (z,t) € Ty,
v(1,t) = vo(1,1t), (x,t) €Ty,
and
(Oat +L€) w(z,t) = —bw(z,t — 1), (x,t) € D,
w(zx,t) =0, (z,t) € Ty,
w(0,t) = ¢ (t) — vo(0,t), (z,t) € Ty,
U}(l,t) :¢r(t)_v0(17t)a (l‘,t) el

We further decompose the singular component into a left @it fayer componenty,
andw,., respectively, as follows:

(2.2) w(z, t) = wi(z, t) + w(z,t),

wherew; andw,. satisfy
(gt + LE) wy(x,t) = —bw(x,t — 1), (x,t) € D,
wl(07t) :¢l(t) _U0(07t)7 (x7t) GF[,
wy(z,t) =0, (x,t) ey UL,
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and
0
a‘i’ﬁ's wr(zvt) = 7bwr(zvt*7_)7 (I,t) €D7
wr(lvt) = ¢r(t) - 'UO(lvt)v (1’,t) el
wy(x,t) =0, (x,t) e T, UTY.

The following theorem provides the bounds for the smoothmamenty, the singular compo-
nentw, and their partial derivatives, which play a crucial rolé¢tia error analysis in Sectigh

THEOREM2.3. Assume that € C*+(Q), b, f e CUH2+2/2)(D), ¢, €C3+/2([0, T)),
by € CO+adta/2 () ¢, e C32/2([0,T]), a € (0,1) with compatibility conditions of
sufficiently high order at the corners fulfilled. Then, foteigersi, j such that) < i+2j5 < 4,
we have the estimates

Oy -
—i/2
(2.3) ‘ T 5§ C(1+&'77/2),
i+J . _
Zmi;j; (x,t)‘ < Cem'2emu/VE, (z,t) € D,
@0 < G211, (r.t)€D.

where(' is independent of.
Proof. The proof of this theorem can be found iij.[ 0
THEOREM 2.4. The partial derivatives ofv(x, t) satisfy

< OBV L OINE, (@)D,

0w
‘ Ozt ots

for integersi, j such thatd < i+ 25 < 4.
Proof. The proof of the theorem is completed by using the estinaft&égeorem2.3and
the decomposition(2). a

3. Numerical solution. In this section, we discretize the parabolic delay IBMPL),
The time derivative is replaced by the backward differerateeme, and the spatial derivative
is replaced by the central difference scheme. Subsequemiyntroduce the equidistribution
grid and derive a finite difference scheme. Finally, we pitevihe numerical algorithm for
obtaining the equidistributed grids.

3.1. Finite difference scheme.On the time domain [0,T], we introduce equidistant
meshes with a uniform time stept such that

AM = {t, =nAt, n=0,...,M, At = T/M},

whereM denotes the number of mesh elements inttd&ection on the interval, 7], and
the step lengthi\t satisfies the constraiptAt = 7, wherep is a positive integer;,, = nAt,
n > —p. We consider the finite difference approximation dflj on a non-uniform spatial
discretization

AN ={0=ag<z1 < <azy=1},
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and denote the spatial step sizes by
hi=x; —x;—1, t=1,...,N.

We use the methods of steps to praveniform convergence in Sectioh Now we de-
scribe the discretization of the domains in a systematic Wesy define discretized domains

= QY x AM, T = QY x A7, whereA? representg uniform mesh elements ir-7, 0].
The boundary pointsV of DV areI'¥ = DV N T. Similarly, we define the left and right
boundary points by = DY N T, andl'Y = DV NT,, respectively.

We further introduceD} = Q1Y x A”t, whereA” ; representg uniform mesh elements
n((j—1rgj7],forj=1, 2 k From the above discretization we can also observe that
DN = Ule D§V. These notat|ons are primarily used in Sectipwhere the errors in the
numerical solutions are analyzed with respect-tmiform convergence.

Before describing the scheme, for a given mesh functios, ¢,) = v, define the
forward and backward differencég, 5, in space by

n n n n
sy = Vitl — Y s = Ji Vi

. V)= —
T 7 hi+1 ? T V1 h'L ?

respectively, the second-order finite difference operétas

o ST
621}? — 2(6.1/ U; 6L U; )’
hi + hita

and the backward difference operadpin time by

vl — v?_l

At

We discretize equatiori (1) by means of the backward Euler scheme for the time deriva-
tive and the central difference for the spatial derivatitéence, the discretization ofl (1)

takes the form
(6t + LE) U;H’l = _b(‘riatn-‘rl)UZL_erl + f(‘riatn+1)7 for i = 1.. '7N -1,

no_
(5,%11» —

(3 1) USLJFI = ¢l (tn+1)7
Ujr\l]Jrl = ¢r(tn+1);
4 dv(is —t5), fori=1,...,N —1,

whereL U/ = —62U" + o, U
After rearranging the terms ir3(1), we obtain the following form of the difference
scheme:

ri UM+ iUt Ul = gt fori=1,...,N —1,
3.2 U(ZH_ = ¢l( n+1)
( ) ) Un+1 _
N ¢r( n+1)
U7 = pp(xi,—t;), fori=1,...,N—1,
where
—2eAt —2e At
r-*:# T*Z; rle—l—Atai—r;—rf,

! hi(hi + hit1)’ ! hiv1(hi + hiv1)’
a; = a(xi)7 g;n = Uzn + At {_b(mi7tn+1)Uin7p+1 + f(miythrl)} .
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To determine the value of the monitor functidh), we have to know the approximate value
of the singular componeni(z, t). To calculate the numerical valG&” of w(z;, t,), we use
the numerical approximate vald€” of v(x;, t,,) from the following recurrence relation:

(1+ Ata(z;)) V" = V' + At {_b(‘ri’tn+1)‘/in_p+1 + f($i7tn+1)} )

(33) 4
V. = ¢y, —t5), fori=1,...,N.

3.2. Adaptive spatial grids via equidistribution. Since the solution.(z,t) of the
IBVP (1.1) exhibits boundary layers, one has to use layer-adaptednifonm spatial grids,
which are fine inside the boundary layer region and coardeeiotiter region. To obtain such
a grid, we use the idea of equidistribution of a positive nmmfunction given in 8.6). Here
we consider the equidistribution afz, t) at some fixed timdy, 0 < Ty < T, because the
problem (L.1) exhibits regular layers along the boundaries, which dchaet any impact on
the temporal component. Moreover, we assumetfatT;) exhibits layer phenomena.

A grid is said to be equidistributing(z, Tp) if

T; Tit1
(3.4) / M (u(s,Tp),s)ds = M(u(s,Tp),s)ds, 1=1,...,N—1,
Ti—1

T;

where M (u(z, Tp), z) is a strictly positive,£,—integrable function. Equatior3{4) can also
be written in the form

X 1
(3.5) / M (u(s,Tp), s)ds = %/ M (u(s,Ty),s)ds, i=1,...,N.
Ti;—1 0

Here, we consider the monitor function
(3.6) M (u(x, Tp), ) = e + |waa (x, To)[Y™,  m > 2,

whereq.. is a positive constant that is independenio&ndw(z, t) is the singular component
of u(z,t). The one-dimensional version of the monitor functi@re) given by Beckett and
Mackenzie P] suggests that in order to distribute the grid points evembytake

1
(3.7) aC:/ lwaa (s, To) |/ ™ ds.
0

This choice of.. helps to distribute the number of mesh points inside anddeitee bound-
ary layer region equally. The effect of increasimgis to smooth out the monitor function,
which in turn leads to a smoother distribution of the gridnsi In [2], the influence of the
parametern can clearly be observed. In all of our numerical experimamsakemn = 2.

In order to compute the value of the monitor function atithenterior node of the spatial
mesh,M;, we assume thab(z;, Tp) = WZ.S, whereSAt = Ty, and define

(3.8) M; = ags + [2W5)7™ ) fori=1,...,N 1,

whereay;; is the discrete form of3.7), which can be written as

m N-—1 62WS 1/’m_~_ 52WS
ogis = hy |53W15}1/ +Zhi{|x z—1| a ’$ z|

i=

1/m
} +hy |2WE [
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For a truly adaptive algorithm, the monitor function has ¢cepproximated using the numer-
ical solution. For example, a simple discretization®#J results in the set of equations

Mifl/g(xi — .'L'ifl) = Mi+1/2('ri+1 — Z‘Z‘), fOI’i = 1, e ,N — 17

whereM; ./, is an approximation ta/ (u(z;41,2, 7o), Ti+1/2). This is equivalent to an ap-
proximation of the monitor function by a piecewise consfanttion. The detailed numerical
algorithm for obtaining the equidistribution grids is givim Section3.3.

LEMMA 3.1.Fori=1,2,..., N, the grid spacing satisfies

h; <CN™L.
Proof. From the equidistribution principl&(5), we have
/ M (u(s,Tp), s)ds = ﬁ/ M(u(s,Tp), s)ds, i=1,...,N.
Ti—1 0
Applying the Mean Value Theorem, we get
1
M (s To)m) = N [ M (a5, To), 5)ds
0

for somen; € (x;—1, ;). And therefore, we have

N1 fol M (u(s,Tp),s)ds
N M e o))

<CN,

which is the desired result. 0O
3.3. The numerical algorithm. To get the equidistribution grid and the corresponding

numerical solution, we use the following algorithm:

1. Setk = 0. Take the uniform spatial mes{hrgo)} as initial value for the iteration.
Choose a constait > 1 that controls when the algorithm has to be terminated.

2. Compute the discrete solutic{ﬁ]i’”(k)} and{Vi"’(k)} satisfying 8.2) and @.3), re-
spectively, with the help of the spatial mesh™'}.

3. Find the singular component of the discrete solutiomgy*) = /=" — v ),

4. For a given mesh{xgk)} and the singular component of the discrete so-
lution {1}, set

M+ m
Y = (1—12

5 > (xgk)—x,gli)l), fori=1,...,N,

whereMi(k’) is calculatgd fromg.8), and setMék) = Ml("’) andMJ(\,"') = M](\fll.
5. Setly=0andL; = >\, HJ(.k), fori =1,..., N. Define

c®) .= ﬁ max Hl-(k).
Ly i=0,1,...,N

(o2}

. IfC*) < C, then go to Step 9.
7. SetY; =iLy/N,fori=0,1,...,N. Interpolate the pointsL;, z;). Generate the
new mesh{xgkﬂ)} by evaluating this interpolant &, for: = 0,1,..., N.
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8. Setk = k + 1. Return to Step 2.

9. Take{xgk)} as the final mesh, and compdfé’(k); then stop.

For convergence of this algorithm for stationary probleorse can refer to9], where
the authors analyzed a predetermined number of iteratidgtisrespect tos-uniform con-
vergence. The results are proved for the well-kn@xerlength monitor functionwhich is
different from that one given ir3(6). More information can be found ir2] 3].

4. Error analysis. In this section, we carry out a stability analysis for thecti$e oper-
ator defined in3.1). Finally, we obtain am-uniform error estimate in the discrete maximum
norm. The following lemma provides a stability result for engral numerical scheme for
the IBVP (L.1). The proof of this lemma can be found ihg. Here, we are only stating the
result. Before that, we provide the definition of &frmatrix.

DEFINITION 4.1 (M-matrix). A matrix A is said to be an\/-matrix if its entriesa;;
satisfya;; < 0 fori # j and its inversed—! exists withA=! > 0.

LEMMA 4.2. Consider the IBVR1.1) and the difference schenfg.1). This difference
scheme (excluding the initial and boundary conditions) loanvritten as

(4.1) S U 4 LU .= AU — DU = F™, forn=0,...,M —1,

whereU™ = (U, ..., U )T, F™is a vector independent of the computed solution, and
and D are matrices. Moreover is an AM/-matrix, andD > 0.
Lety and z be two mesh functions witft* = (y2,...,y%)" andz" = (2F,...,2%)7,

for eachn. Assume thals,y" ™ + L.y" ™| < 62" + Lez" ™ forn = 0,..., M — 1,

and|y| < z on the boundary’, UT, UT,.. Then|y| < z onﬁiv X ﬁi\'{.
Proof. The difference schemé&.(l) can be written in the forn¥(1), forn=0,...,p — 1,
with A = (a;;) andD = (d;;) as

T ré r 1
Qi1 = ﬁa aj; = Klt’ Qiip1 = ﬁ, di; = AL

A short calculation shows that the matrixis an M -matrix and the matrixD satisfiesD > 0.
Therefore, the difference scheme satisfies the hypothé$és,d emma 3.2], and the result
follows immediately. The above argument can also be extttmlether time steps. O

The finite difference operatds, + L.) in (3.1) satisfies the following discrete maximum
principle onDY.

DISCRETE MAXIMUM PRINCIPLE. Assume thaW(z;,t,,) satisfies¥(z;,t,) > 0 on
(wi,t,) € TN, Then(8§; + L.) ¥(x;,t,) > 00N (z4,t,) € DY implies that¥ (z;,t,) > 0
at each poin{z;, t,) € DV.

Next, we provide an important theorem for theiniform convergence of the numerical
solution in the discrete maximum norm.

THEOREM4.3. Letu andU be, respectively, the continuous and the numerical saistio
of the IBVPY(1.1) and (3.2) satisfying compatibility conditions of sufficiently higider at
the corners. Then, we have the following bound

(4.2) max |(u — U)(z;,t,)| < C[At+ N3], forall (z;,t,) € DV,

whereU (z;,t,) = U".

Proof. We prove the theorem by the following steps. We first provergsult on the
interval [0, 7], i.e., the time discretization parametevaries from0 to p. Letn* = u* — U
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be the truncation error of the computed solution at each rpesit (z;,¢,). We write the
schemed.1) as

O UM + LU = =bi (i, tnp) + 1 i=1,...,N—1, n=1,...,p.

Therefore, the truncation error of the above scheme cangregsed in the following way as
in[4, 10

ot + Len® = X" + X0, for(zita) € DY,
whereX;‘ 4 andx;’ ~are defined as
K3 S

X;L. =L.U" — (L.u)} and X;, = dpult — (ug)}.
With this splitting of the truncation error, we can decomptise errom asn = ¢ + .
Here, the functionp! is, for each fixedh = 0, ..., p, the solution of the discrete two-point
boundary-value problem

4.3) L.o7} :XT,i7 fori=1,...,N —1,
¢o = ¢n =0,
and+? is the solution of the discrete parabolic problem
0t + Leapy :X;l’i—(std)?, fori=1,...,N—1,
Uy =Yk =0, forn=1,...,p,
V) = —¢?, fori=0,...,N.

Equation ¢.3) is a sequence of two-point boundary-value problems thag heen discretized
using L. with X?' playing the role of the truncation error, and its solution && bounded
)

using techniques from3]. The problem {.1) exhibits parabolic boundary layers, and the
same is true for4.3). Therefore, the following error bound derived B] Ean be invoked for
all time steps,

(4.4) l¢P| < CN~2,  foralli,n < p,

using the assumption that—! >> ,/z and the fact that our problem exhibits parabolic bound-
ary layers.

All that remains is to bound the other error compongnBy Lemmad4.2 and a discrete
maximum principle, we get the following bounds for the ewomponent),

071 € (max |68l + max g~ 0] ) . foricn <p,

Using the bounds of; ~and @.4), we obtain

(4.5) Y| < C [NQ + At + max |(5t¢f|} , fori,n <p.

It remains to bound;¢ in (4.5. Using the assumption tha{z) is independent of, the
definition @.3) implies thatd; ¢ satisfies

L8(5t¢):‘:6t><;‘, fori:l,...,N—l,

(4.6)
(6:0)g = (610) N =
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To analyze the sequence of two-point boundary value prablér), observe that the right-
hand side of the above equation can be written as

1
n o _ - n _ . n—1
6tX1,i At (XLi X )

1 n n n—1 n—1
- At ((L5u1 = (Leu)f) — (Lsui - (Lsu)i ))

1 n n—1 n n—1
T At ((Lﬁui — Leu; ) - ((Lﬁu)i — (Leu); )) ‘

Let £.u = —cu,, andL.u} = —ed2u?. Thatis,L.u is the discretization of the continuous
operatorl.u. Then, one can write the above formula as

1 tn
Sy = —
txl,i At‘/t

n—1

{f/ggtu(xi, t) — ﬁggu(xi, t)
By using Peano’s kernel theorem as & &nd following the argument given idl], we
obtains the same estimate fém(;_ as the bounds for the corresponding truncation error

arising in [3] for a standard two-point reaction-diffusion boundaryweaproblem. Now ana-
lyzing the problem in the same way a&3), we obtain the following bound faf; ¢7,

4.7) |6:07| < CN™2, foralli,n < p.
Combining é.4), (4.5), and @.7), we arrive at
max |(u — U)(z;, t,)| < C[At+ N2, for all (x;,t,) € DI,

whereU (x;, t,,) = U™
Fort > 7 itis not possible to follow the above argument because theydermu(z, t)
depends on(z, t — 7), which is unknown fort > 7. For this reason, we have to estimate
the difference between the numerical solutidrand the exact solution itself over the inter-
val [, 27]. The proof of this estimate follows an approach Hfip which a fitted piecewise
uniform mesh is used.
Consider the following singularly perturbed delay parabelquation on the domain

Dy =(0,1) x (7,27):

(8 + LE) u(z,t) = =b(z, t)u(z,t — 1) + f(x,t), (x,t) € Dy,

ot
(4.8) w(z, ) = u(z, t(p)), z€Q,
u(0,1) = ¢o(1), t € [r,27],
u(1,t) = ¢1(t), t € [r,27].

We discretize 4.8) by means of the backward Euler scheme for the time derwatind the
central difference quotient for the space derivative. Hetire discretization takes the form

(8¢ + L) Uy, t,) = 8:U — 62U + U}
— _bi,nUrLjnip + f(l'ivtn)v (:Ezvtn) S Dévv

(49) U(in,tn) = Ul (ﬂfi, tn): (xutﬂ) € Divv
U(O7tn) = d)O(tn)’ tn € Ag,ﬁ
U(L,tn) = ¢1(tn), tn € Mgy
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whereU; is the numerical solution calculated d». The solutionu of (4.8) is decom-
posed into smooth and singular components y + z. The smooth componentis further

decomposed intg = yy + €y1, wherey, andy; solve the following problems:

0
%(:&t) + ayo(x,t) = —byo(x,t — 7) + f(x,t), (x,t) € Do,
yo(z,t) = u(z,t), (x,t) € Q x [0, 7],
and

0 0

7+’£€ yl(xat)szyl(xat77)+ (Ivt)a (‘Tat) €D27

ot T
y1(z,t) =0, (z,t) € Q x [0,7],
yl(oat) = Ov te [Ta 27—]7
y1(1,t) =0, t € [r,27].

By the above definition of, andy,, the smooth componentsatisfies

0
(6’1& + LE> y(z,t) = =by(z,t — 1)+ f(z,t), (x,t) € Do,
y(x,t) = u(z,t), (x,t) € Q x[0,7],
y(O,t) = y0(07t)3 te [T7 27—]3
y(1,t) = yo(1,1), t € [r,27].
The singular componentsatisfies
0
<8t + L€> z(x,t) = =bz(z,t — 1), (x,t) € Dy,

z(z,t) =0, (x,t) € Q x [0, 7],
2(0,t) = ¢ (t) — yo(0,1), te [7’7 27’],
2(1,t) = ¢, (t) — yo(1,1), t € [r,27].

The singular component can be further decomposed as= z; + z,., where the left- and

right-hand side layer terms andz, satisfy

(6 + Le) zi(x,t) = —bz(x,t — 1),

(m,t) S DQ,

zi(xz,t) =0, (z,t) € Q x [0, 7],
Zl(oat) = (bl(t) - yO(Ovt)v [7—7 27—]1

21(1,t) =0, t € [r,27],

and
(;—FLE) ze(x,t) = —bzp(x,t — 7), (z,t) € Dy,

zr(x’t)— , (x,t)EQX[O,T],
2-(0,t) = 0, te [T,QT],
zr(1,t) = o (t) — yo(1,1), t € [r,27].
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The numerical solutio® of (4.9) can be decomposed into smooth and singular compo-
nents in an analogous manner to the decomposition of thé@oluof (4.8). That is,

U=Y + 72,

whereY is the solution of the following problem:

(6 + Le) Y (23, t0) = —binY (i, tn—p) + [, (i, tn) € DY,
Y(xi,tn) = Ur(ag, ty), (z4,tn) € DV,
Y (0,tn) = yo(0,tn), tn € Ay,
Y (1,t,) = yo(1,tn), t, € Ag,t.

By this equation, the approximation of the singular compbiesatisfies

(60 4+ Le) Z(zistn) = —bin Z(Tistn_p), (zi,tn) € DY,
Z(xi,tn) =0, (zi,t,) € DY,

Z(0,tn) = du(tn) — 40(0,t5), tn € Ag,ta

Z(1,tn) = ér(tn) — vo(1, tn), tn € Agﬁt'

Therefore, the error at the node;, ¢,,) can be written as
(U - u) (xivtn) = (Y - y) (xiatn) + (Z - Z) (xiatn)~
Thus,
| (U =) (zi, 1) S [ (Y =) (@i, tn)| + [ (Z = 2) (@i, tn)|-

By this inequality, it is enough to bound the error of the silag and the regular components
by an optimal bound. The truncation error of the smooth campbcan be written as

(6e + Le) (Y —y) = =binY (@i, tn—p) + f — (0t + Le) y
0
= bi,n(y(xivtnfp) - Y(:Civtnfp)) + <(3t + LE) - (5t + LE)) Yy
0
= bi,n(u(xiatnfp) - Ul(xhtnfp)) + ((at + Le) - (6t + LE)) Y.
Therefore, we have
(515 + La) (Y - y)
0? 9 0
= b n(u(itn_p) — Ur(xi, tn_p)) — € el 0 |y + prie 0 ) y.
Now taking the modulus and using.p) for the first part, this reduces to
0? 9 0
(5 =)o+ (5 -9)1]

Using a Taylor series expansion, it is easy to show that

| (5t + LE) (Y - y)(xhtn)‘ < C(N_2 + At) te

oy
Oz

0%y

| (0: + L) (Y —y)(zg, tn)| < C (N2 + At + (hiy1 + hy)%e 2

+At‘
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Applying Lemma3.1and the bounds for the derivatives ih§), we obtain
| (8 + L) (Y —y) (24, tn)| S C(N"2+ At),  for (z;,t,) € DY.

Now using the fact that the discrete operatér+ L.) satisfies a discrete maximum
principle and the inverse operator is uniformly bounded,aghove inequality can be reduced
to

(4.10) (Y — ) (i, tn)| < C(N"2 4 At),  for (z;,t,) € DY.

To estimate the singular component of the error, we diszgéetiin the same way as its
continuous counterpattis discretizedZ = Z; + Z,., whereZ; andZ, correspond to the left
and right layers of the numerical solutions, respectivEhey are defined by

(0t +Le) Zy = =bin Zi(2i, tn—p), (2i,tn) € DY,
Zi(wi,ty) = 0, (zistn) € DY,

Zl(07tn) — (bl(tn) - yO(Oatn)7 tn S Ag,ta

Zi(1,t,) =0, tn € Ay,

and

(6t + Le) Z, = _bi,an(iviatnfp)y (xivtn) € Dév7
Zp (i tn) = 0, (zi,tn) € DY,

Z:(0,t,) =0, tn € A,

Zr(1,tn) = &r(tn) — yo(1,t,), tn € AL ;.

The error can then be written in the form
(Z - Z) (xi;tn) = (Zl - Zl) (xutn) + (Zr - ZT) ($i7tn>7 (sz,tn) S Déva
and the errors/; — z; andZ,. — z,. associated with the boundary layerdpfandT’,., respec-

tively, can be estimated separately. Consider the éfror z;,

(0 + L) (Z1 — z1) = ((gt + LE) — (0 + LE)) 2

02 0

Taking the modulus and using a Taylor series expansion i@, time obtain
0? 5

|
(&)

By fixing ¢, the lateral part of the above inequality can be regarded g as the truncation
error of the two point reaction-diffusion boundary valuelgem corresponding to the left-
hand side layer. By this observation, the truncation emosgace can be analyzed in the
same way as in3, Lemma 8, 9] with the only difference that there it is given both layers,
whereas we only require the part of the left-hand side layence, we obtain

82 Zl

|(6t+LE)(Zl—zl)§C<N_2+At+5 ¥

SC(N‘2+At+5

‘ (615 + LE) (Zl — zl)(aci,tn)| < C(N_2 + At), (,Ti,tn) S Dév
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Now using the fact that the discrete operdifyr+ L.) satisfies a discrete maximum principle
and the inverse operator is uniformly bounded, the abowguialty can be reduced to

(4.11) (Z) — 21)(zi,tn)| < C(NT2 4 At),  for (z;,t,) € DY,

A similar analysis shows that the error corresponding taigife-hand side part can also be
bounded as

(4.12) (Z, — 2.) (@i, t)| < C(NT2 4 At),  for (z;,t,) € DY

Combining é.10), (4.11), and @.12 completes the proof for the second interfygR]. Sim-
ilarly, we can prove the estimate for successive intervathé temporal direction. O

5. Numerical results. In this section, we present the numerical results obtairyeithd
fully discrete scheme3(2) for two test problems on a rectangular mesfi-* = QN x AM,
whereQ2? is the equidistributed grid obtained from the numericabalyym. In all the numer-
ical experiments, we fixo = 2, which is used to define the monitor functidh®). Moreover,
in all the tables the results are given first for a coarsesteélization withV = 32 and a time
stepAt = 0.1, and each following column corresponds to a refined disattin compared
to the previous one, such that is multiplied by two andAt¢ is divided by four. The reason
for dividing At by four is to justify the spatial order of convergence proper

ExaMpPLE 5.1. Consider the following singularly perturbed delaygtenlic initial-
boundary-value problem:

up(x,t) — gy (x,t) = —2e_lu(x7t - 1), (z,t) € (0,1) x (0,2],
_ o (t+z/VE) _
(51) U(fl},t) € K (Ivt) E [07 1] X [ ]‘70}7
u(0,t) = e ", t€10,2],
u(1,t) = e~ H/VE), te0,2].

The exact solution is(z,t) = e~ (*+#/V%) From the exact solution, it is clear that there
is a parabolic boundary layer only in a neighborhood'gfand there is no boundary layer
alongl’,..

As the exact solution of the problerf.() is known, for eaclz, we calculate the maxi-
mum pointwise error by

el At = max (@i, tn) — UNA (2, 1,)],
(wi,tn)€DNM

whereu(z;, t,) andUN-2 (x4, t,,), respectively, denote the exact and the numerical solution
obtained on the mesh witN mesh intervals in the spatial direction aifimesh intervals in
the¢-direction such that\t = T'/M is the uniform time step. In addition, we determine the
corresponding order of convergence by

N,At el At

) . [

De - 10g2 (ezN,At/2> :
€

The calculated maximum pointwise errar§-2* and the corresponding order of conver-
gencep)-At for Example5.1are given in Tablés.1and Tables.2, respectively. From these
results one can observeuniform convergence of the numerical solution.
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Max-Error
Max-Error

10 10°
N N

(a) Maximum pointwise erroeév’m of the (b) Maximum pointwise error*f;v’m of the
solution. normalized flux.

FIG. 5.1.Log-log plot for Examplé. L

Furthermore, we calculate the normalized flux

ou(z,t)

Fou(z,t) = e 5

and its numerical approximation
ENUNAY (g t,) = ed U
The errors in the normalized flux are calculated as

At = 1?71%5\/[ [ Feu(zo, tn) — ENUNA (0, 1)),

and the rate of convergence is determined from
N,At At
5 _ 13
g = logy ( 2N,At/4) :
Te

The calculated maximum pointwise errors in the normalize® -2 and the corre-
sponding order of convergengg 2! for Example5.1are given in Tablés.3 and Table5.4.
Again, one can observe tlreuniform convergence in Tablg.3 and the first-order conver-
gence rate in Tablé.4. In Figure5.1 (a) and (b), the maximum pointwise errors of the
solution and the normalized flux are plotted, respectivéhese result reflect the first-order
convergence independentaof

ExAMPLE 5.2. Consider the following singularly perturbed delaygkenlic initial-
boundary value problem:

1 2
ut_€uwx+%u:t3_u(xat_l)v (I‘,t)e (071) X(O,Q],
(5.2) u(z,t) =0, (z,t) € [0,1] x [-1,0],
u(0,) = 0, 0<t<2,
u(l,t) =0, 0<t<2.
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Number of intervalsV/Time step size\t
€ 32/% 64% 128/% 256/% 512/%
100 2.7636e-03 7.3566e-04 1.8725e-04 4.7040e-05 1.1774e-05
1072 | 6.1484e-03 1.5722e-03 3.9528e-04 9.8968e-05 2.4751e-05
10~* | 5.8657e-03 1.4826e-03 3.7294e-04 9.4594e-05 2.3439e-05
107% | 5.5893e-03 1.4529e-03 3.6683e-04 9.2121e-05 2.3063e-05
1078 | 5.5955e-03 1.4285e-03 3.6602e-04 9.1809e-05 2.2997e-05
TABLE 5.2

Rate of convergenqév’m of the solution for Example.1

No. of intervalsN/Time step size\t

€ 32% 64% 128/% 256/@
10° 1.9094 1.9741 19930 1.9982
1072 | 1.9674 1.9919 1.9979  1.9995
1074 | 1.9842 1.9911 1.9791 2.0129
1076 | 1.9437 1.9858 1.9935 1.9979
1078 | 1.9698 1.9645 1.9952  1.9972

As the exact solution of the probler.p) is not known, to obtain the accuracy of the nu-
merical solution and also to demonstrate ¢heniform convergence of the proposed scheme,
we use the double mesh principle which is described in theviihg. The numerical solution
is plotted in Figures.2 (a) and (b) fore = 10~ ande = 10—, respectively. These figures
show the existence of the boundary layers near 0 andxz = 1.

Let U2N:At/2(z; ¢,) be the numerical solution obtained on the fine mesh
D2N2M — 2N 5 A2M yith 2N mesh intervals in spatial direction add/ mesh intervals
in t-direction. Then, for each, we calculate the maximum pointwise error by

EéV’At = max UN’At(xi,tn) — ﬁQN’Atﬂ(:ci,tn) ,

(zi,tn)eDYM

and the corresponding order of convergence by
PsN’At = log, (

The calculated maximum pointwise erraigY-2! and the corresponding order of conver-
gencePN-At for Example5.2 are given in Tablé.5and Tables.6, respectively. The results
there show a convergence independent of the diffusion peteam

The maximum pointwise errors for the solution are plottedading-log scale in Fig-
ure5.3. In this figure, one can easily observe thaniform convergence.

EéV’At )
2N,At/2 | °
FENAY

6. Conclusions. In this article, we solved singularly perturbed time-degamnt delay
reaction-diffusion problems.(1) numerically by the upwind finite difference scheme on layer
adapted nonuniform grids obtained by equidistributing riienitor function given in .6).

A truncation error analysis and a stability analysis arevigied. The proposed numerical
scheme is of first-order in the temporal and second-orderhm gpacial variables,
i.e., O(At+ N~2). Error estimates for the numerical scheme are derived, wduie inde-
pendent of the diffusion parameterNumerical results confirm the theoretical error estimate.
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of the normalized flux for Examptel

Number of intervalsV/Time step size\t

393

3213

64/%

128/-L

160

256/

640

512/

2560

2.5152e-02
6.1271e-02
7.5813e-02
7.4361e-02
7.6126e-02

1.0016e-02
2.8039e-02
3.2941e-02
3.4075e-02
3.6189e-02

4.3257e-03
1.3411e-02
1.5666e-02
1.6160e-02
1.6228e-02

2.0201e-03
6.5732e-03
7.7375e-03
7.8819e-03
7.9736e-03

9.8607e-04
3.2593e-03
3.4147e-03
3.9305e-03
3.9454e-03

TABLE 5.4
Rate of convergenoév’m of the normalized flux for Exampfel

No. of intervalsN/Time step size\¢
€ 32/{;  64l55 12875 256/

160 640
1.3284 1.2113 1.0985 1.0347
1.1278 1.0640 1.0287 1.0120
1.2026 1.0722 1.0177 1.1801
1.1258 1.0763 1.0358 1.0038
1.0728 1.1571

1.0252 1.0151

@e=10"1

(b) e = 1074,

FIG. 5.2.Numerical solution of Examp.2for N = 64 and At = 0.01.

TABLE 5.5

Maximum pointwise erroEéV’At of the solution for Examplg.2.

Number of intervalsV/Time step size\t
€ 32/%0 64/% 128/-L 256/

160 640

4.1424e-03
1.5664e-01
1.7038e-01
1.7120e-01
1.7083e-01

1.0515e-03
3.9664e-02
4.2971e-02
4.4325e-02
4.3954e-02

2.6387e-04
9.9476e-03
1.0809e-02
1.1403e-02
1.1329e-02

6.6030e-05
2.4885e-03
2.6916e-03
2.8745e-03
2.9009e-03
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Max-Error

e
O‘

107

FIG. 5.3.Log-log plot for the maximum pointwise erréiz At of the solution of Examplg.2

TABLE 5.6
Rate of convergencEEN’At of the solution for ExamplB.2

No. of intervalsN/Time step size\t

€ 32/% 64% 128/11ﬁ
10° 1.9780 1.9946 1.9986
1072 1.9816 1.9954 1.9990
104 1.9874 1.9911 2.0057
106 1.9495 1.9588 1.9880
1078 1.9585 1.9560 1.9654
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