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A STRUCTURE-PRESERVING ALGORITHM FOR SEMI-STABILIZING
SOLUTIONS OF GENERALIZED ALGEBRAIC RICCATI EQUATIONS  *

TIEXIANG LI T AND DELIN CHU#

Abstract. In this paper, a structure-preserving algorithm is devetbjor the computation of a semi-stabilizing
solution of a Generalized Algebraic Riccati Equation (GAREhe semi-stabilizing solution of GAREs has been
used to characterize the solvability of th& J’)-spectral factorization problem in control theory for geateational
matrices which may have poles and zeros on the extended impgira: The main difficulty in solving such a
GARE lies in the fact that its associated Hamiltonian/skeawriiitonian pencil has eigenvalues on the extended
imaginary axis. Consequently, it is not clear which eigenspaf the associated Hamiltonian/skew-Hamiltonian
pencil can characterize the desired semi-stabilizing molufThat is, it is not clear which eigenvectors and printipa
vectors corresponding to the eigenvalues on the extendegiriary axis should be contained in the eigenspace
that we wish to compute. Hence, the well-known generalizgdreipace approach for the classical algebraic Riccati
equations cannot be employed directly. The proposed ahgogbnsists of a structure-preserving doubling algorithm
(SDA) and a postprocessing procedure to determine the desijenvectors and principal vectors corresponding to
the purely imaginary and infinite eigenvalues. Under mild agstions, linear convergence of raitg2 for the SDA
is proved. Numerical experiments illustrate that the prog@dgorithm performs efficiently and reliably.

Key words. Generalized Algebraic Riccati Equation, structure-pnésg doubling algorithm, semi-stabilizing
solution
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1. Introduction. Throughout this paper, the setssf x n complex and real matrices
are denoted by=™*"™ andR™*", respectively. For convenience, we identy = C"*1,
C =C',R® =R"*! andR = R'. The open left-half complex plane and the imaginary axis
are denoted b andCy, respectively. The open unit disk and the unit circle areotieh
by D_ andD,, respectively. The notatioris,, «,(0,,) andl,, stand for then x n (m x m)
zero matrix and then x m identity matrix, respectively. The spectra of the matdiand the
matrix pair(A, B) are denoted by (A) ando (A, B), respectively.

In this paper, we consider the semi-stabilizing solutiorthe Generalized Algebraic
Riccati Equation (GARE) of the form

Al X, + XA, + (CTJC, — B,J'B]) — X B,J 'B] X, =0,

(1.1a)
E!X,=X]E,,
where
E 0 A B 0
(1'1b) Ea fr— |:O 0:| 5 Aa = |:O I7n:| ) Ca = [C D} ) Ba = |:—I,m:| )

inwhichE; A € R**" B e R**™ (C € RP*" D e RPX™_ J e RP*PJ ¢ R™*™,
andp > m. Furthermore, it is assumed that the pereNE + A is regular withE' being
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singular and thaf and.J’ are symmetric and nonsingular. A semi-stabilizing solutid the
GARE (1.1) is defined as follows.
DEFINITION 1.1 ([12, 13]). A solutionX, € R*tm)x(n+m) of the GARE(L.1) is
called a semi-stabilizing solution if
(i) the pencil A, — BaJ’_lB;rXa — A\E, is regular and its eigenvalues lie in
(C_ U (CO U {OO},
(i) the matrix pair(C,, A, —BaJ’_lBaTXa —AE,) has neither observable finite poles
on Cy nor observable impulsive poles.
The GARE (L.1) plays an important role in the/, J')-spectral factorization problem in
control theory, which has found many important applicationoptimal Hankel-norm model
reduction [L], H..-optimization P], transport theory10], and stochastic filteringl[].

DEeFINITION 1.2 ([12, 13]). Let all finite generalized eigenvalues of the perclE + A
be inC_ UC,. The(J, J')-spectral factorization problem for the descriptor system

Ei = Az + Bu,

(1.2)
y = Cx + Du,

is solvable ifG(\) = D + C(AE — A)~'B has a(J, J')-spectral factorization, i.e., there
exists an invertible matri€(\) € R™*™()) such that
() GT(=NJG\) =E(=N)J E(N),
(i) all poles and zeros cE(\) liein C_ U Cy U {oo},
(i) G(s)Z7Y(\) € RLEX™(\), whereRIL2X™()\) denotes the set qf x m proper
rational matrices without poles 08.
THEOREM1.3 ([12, 13]). Assume that all the finite generalized eigenvalues of theipen
—AE + AlieinC_uUC,, and
() (E,A,B) is finite dynamics stabilizable and impulse controllablee.,i

ranK—AFE + A B] = n,forall A € C\C_, andrank[E 4 B} =n+rank E),

0 F 0
. -AE+A B|| _
(i) ?gé({rank{ C D}} =n+m.

Then the(J, J')-spectral factorization problem for the descriptor systgn®) is solvable if
and only if the GARK1.1) has a semi-stabilizing solutioX,,, where

X1 Xio

Xa — , X c RTLXTL’X c R’mX’rn.
{Xm Xzz] 11 22

Furthermore, in this case, @J, J')-spectral factor=(\) is given by
EN) =T —J " Xag) = J T X1 (\E — A)7'B.

A numerical method involving a key step by seeking a nondargolution of a nonsym-
metric ARE was proposed iR, 13]. Indeed, there are few numerically reliable methods for
solving such a nonsymmetric ARE. Recently, numericallyfisdyle necessary and sufficient
conditions for the existence of the semi-stabilizing solubf the GARE (.1) and a numer-
ically reliable method for computing such a semi-stahilizsolution were proposed ][
The main idea inf] for solving the GARE (.1) is to find a suitable semi-stable eigenspace
corresponding to all eigenvalues@. and some part of the eigenvalues@nU {oo} of the
augmented matrix pencil associated withij,

(1.3) Mo — AEy = [_";;a :SH _ {E 0 } |
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where
H,=ClJC,—B,J'B], G,=B,J 'B].

It is easily seen thatH, )" = H.J and (£, )T = —&,J with 7 = {_OI é] Conse-
quently,H,—\&, forms a Hamiltonian/skew-Hamiltonian pencil, and its eiggdues occur in
quadruples\, A\, —\, —\ (including=+oc0). Note that the eigenstructure of the pef¢il — \&,
corresponding to the eigenvalues@pnU {oo} is much more complicated than the structure
of its stable eigenspace. Hence, we must analyze whethkrasueigenspace characterizes
the existence of the semi-stabilizing solution of the GARE); The following connection
between the semi-stabilizing solution df{) and the eigenspace of the matrix pHif — \&,
corresponding to eigenvalues Gn. andC, U {oc} can be obtained easily.

THEOREM 1.4 ([5]).

(i) X, is a solution of the GAREL.]) if and only if

I I

o260 1] =[] - 0o, - a5

(i) The GARE(1.1) has a solutionX, such that the penci{A, — G, X,) — A\E, is
regular and all its eigenvalues are ol U Cy U {oco} if and only if there exist
matrices[®] , @5 | and[¥], U ] with ®;, ¥, € Rv+m)x(n+m) (j — 1 2) and
rank(®;) = rank(¥'y) = n + m such that

A 1 I [T AN S A 5E
2 2
where S, — AT, € R(tm)x(n+m) s reqular and all its eigenvalues are on
C_ UCoU {oc}. Inthis case X, = @0, ".
Furthermore, from Weierstrass Theorem Chapter 12], there exists a regular p(aﬁA"g, fa)
which is equivalent t@S,, T,,) such that {.4) can be expressed as

14 174
(1.5) H, [ Xa] T, =&, [ XJ S,.

However, the relation inl(5) is only a necessary condition fat.4).

Theorem 1.4 reveals the relationship between the semi-stabilizingitemi of the
GARE (1.1) and the eigenspace &f, — A&, corresponding to eigenvalues @g U {oco}. As
mentioned above, the eigenstructuréff— A&, corresponding to eigenvalues @gU {oo}
is much more complicated than the stable eigenstructurés i$éue can be understood as
follows: letr; andr, denote the dimensions of the eigenspaces of the pgfacit \&, cor-
responding to the eigenvalues @n. andC, U {oo}, respectively. Sincé is singular, we
have

T <n, 7-1+%7-2:n+m
provided thatH, — A&, is regular. So there are many different eigenspaces witheiim
sionn 4+ m corresponding to the relevant part of the eigenvalue§ o) Cy U {oo}. Hence,
it is not possible to check whether one of these eigenspdwaaaterizes the existence of
the semi-stabilizing solution of the GARE.() without having some extra insight. Conse-
quently, it is not clear which eigenvectors and principaitees corresponding to the eigenval-
ues onCy U {oc} should be contained in the eigenspace that we wish to comphézefore,
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it is a challenge to develop a structure-preserving allgorifor the computation of a semi-
stabilizing solution of the GAREL(1).

The main contribution of this paper is to propose a struefueserving algorithm for the
computation of a semi-stabilizing solution of the GARE1j. The main ingredients of our
method include (i) computing the stable eigenspace of thmilttanian/skew-Hamiltonian
pencil’H, — A&, by a structure-preserving doubling algorithm and (ii) corinpy a suitable
semi-stable eigenspace #f, — \&, corresponding to the relevant part of the eigenvalues
onCy U {oo} by the eigenstructure decomposition.

2. The Cayley transform of (H,,&,). Let (H,,&,) be the Hamiltonian/skew-Hamil-
tonian pair defined in1(.3). By the Cayley transform with an appropriate parameter 0,
the pair(#H,, £,) can be transformed into a new p&,, + 7., Ha — vE,). The eigenpairs
of (Ha, &) and(H, + vEa, Ha — vE.) Satisfy the relation

(2.1) Hox = ANgx <=  (Ho+7E)x = u(Hog — vE)x,

wherep = (A +v)/(A — ) andX = y(u + 1)/(n — 1). The relation 2.1) implies the
following results immediately.

PrROPOSITION2.1. Let A and i be eigenvalues dfH,, &) and (Hy +vEa, Ha — vEa),
respectively, satisfyin(2.1). Then

() |\ =ocifandonlyify =1,

(i) A=0ifandonly ify = —1,

(i) A =4diBwith 5 e Rifand only if|u| = 1,

(iv) A\=a+ipwitha,f e Randa < 0 (o > 0) ifand only if|u| < 1 (Ju| > 1).

SinceH, — A&, is regular, there is @ > 0 such that{, — v&, is invertible. We choose
a suitable parameter > 0 so that the matrices

(2.2) A, = A, —vE,, W, = A} + H,A;'G,

are invertible. Let

AZ1 0 I o I 0 I A'G,
O R Rl P R Rl B

Then the matrix pai*, + v€., Ha — v€,) €an be transformed into the matrix p&ivt, £)
with

I+27AJ 'Ey — 29AJ G W T H ASPE, 0

M=TaTsTeTi(Ha +78) = oW H,AT'E I
¥y a ¥ a

)

Inpm 20AJ'GWTE]

(2.3) L=TuTsT2Ti(Ha — vEa) = lon_,’_m I+29WE]

The Sherman-Morrison-Woodbury Formula (SMWF) gives
I+ (20AS" — 29A G W T H A Y) E,

= T+2y[1 = A7'Ga (A] + HoAT'Ga) ™ Ha| AS'E,

—I+2v(A, +G,A; H,) ' E,

A As

=I+29yW; "E, =1+ {AQ AJ E,.
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Moreover, from 2.2) and the SMWF again, it follows that., := 2yAZ'G,W ' and
H, :=2yW'H,AJ' are symmetric. Partitiot’,, and H., as

— C7'1 G;— _ H1 H2T
GVZ[GQ |, m=|h M

whereG, = G|, H, = H] €¢ R™"andG, = G}, H, = H] € R™™, ThenM and.
in (2.3) can be rewritten as

I,+4A4E 0|0 0 I, 0 G ET 0
AyE I, 0 0 0 I, GoET 0
(24) M= , L=
-HE 0|1, O 0 0 |I,+AJET 0
—HE 0 |0 Iy 0 0 AJET I,

Note that from Propositio2.1 it is easily seen that the eigenvalues (d¥1, £) occur in
quadrupless, i, ;. + }.

By (2.2), H, — v&, is invertible and so i$, — T, whereS, andT, are given in {.4).
Thus, the relation in1(.4) is equivalent to

P Y
w9 = 3 -on. #Te. - aw,

whereR,, is similar to(S, + vT,)(Sa — vTw) ! with o(R,) € D_ UD;. Thatis,(M, £)

and (H,,&,) have the same invariant subspace correspondii@®tol) and(S,,T,), re-
spectively.

3. A structure-preserving algorithm for the GARE (1.1). In this section, we want
to develop a structure-preserving algorithm for solving @ARE (L.1) efficiently. We first
compute a basis for an auxiliary semi-stable subspa¢atfL) in (2.4) of the form

L+A4E 0 0 o][L o0
AQE Im 0 0 0 Im,
-HME 0 I, 0||X; 0
~HE 0 0 I,| |Xo X4
(3.1)
I, 0 G ET oL, o0
0 I, GLET 0 0 In [Rl o}
“lo 0 L+AJET o||xy o] lR Im
0 0 AJET I, | X2 Xy

wheres(R;) C D_ UD;. The special basis irB(1) spans a semi-stable subspacé¢.bf, £)
with the second block columns consistingmafeigenvectors corresponding to thetrivial
infinite eigenvalues ofH,, &,). Using this special structure of the basis, we construct the

basis|7,, ., X, | ' for the desired semi-stable subspacé.ef, £).

3.1. The Structure-preserving Doubling Algorithm (SDA) for X;. We denote by\1,
and £, the submatrices in2(4) corresponding to the first and third block-rows and block-
columns, respectively,

_ I7L+A1E On _ In GIET
(3:2) Ml_[ ~HE In]’ L= {on I+ ATET|"
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It is easy to see from3(1) and @.2) that X; satisfies

3.3) My [;J s [;1] Ry,

In [2, 3], the matrix disk function method for computing; was developed using a
swapping technique built on the QR-factorization. As dedlivn [2, 3], for a given matrix
pair (M, L), we compute the QR-factorization pf; , M| ]" by

L1 Qi1 Qo L1 R
3.4 = =
(3.4) < {—MJ {le sz] [—MJ [0]
where@ is orthogonal and is upper triangular. Define

(3-5) M\l = Oy My, 21 = Q92L;.

Itis easny verified tha(/\/ll, £1) satisfies the doubling property4], i.e., if M2 = Lz,
theanz = uzﬁlx Using @B.4)—(3.5), we propose the Doubling Algorithm (DA), Algo-
rithm 3.1, for computingX; in (3.3).

Algorithm 3.1 Doubling Algorithm (DA) for X;.

Require: Ay, E, G4, Hy; 7 (a small tolerance).

Ensure: An X; satisfying 8.3) with X; = H. E andH, being symmetric.
I+ AE o] £y e {1 G1ET }

1: Initialize k <+ 1, Ry < 09, M7 + {

~-H,E 0 I+A[ET|"

2: repeat

, 191 Qo Ri+1
3. Compute the QR factonzatlo%g21 Q22] [ Mk] { 0 ]
4 if ||'R,]€+1 — Rk” < T||Rk+1”, then
5: solve the least squares problem for
6: X1 —Mp(:,1:n)=M(n+1:2n)Xy,
7. else
8 setMpi1 < Qor My, Lpy1 < Qooly, k< k+1,
9. endif

10: until there is a symmetrié/., such thatX, = H  E.

Algorithm 3.1 has the disadvantage of destroying the special block stei@s given
in (3.2). To remedy this shortcoming, we develop the Structuregmmeng Doubling Algo-
rithm (SDA) for solving @.3).

Note that in i, 6, 11, 14], some SDAs are proposed for the computation of a basis
for the semi-stable subspace of a symplectic matrix paihefform (M, £;) as in 3.2
with E = I,,. However, in general, the matrix p&it, £,) in (3.2) is no longer symplectic.
Nevertheless, in this section, we describe a new SDA alguarior the computation ok
satisfying 8.3 with o(R;) C D_ U Dj.

As derived in [L1, 14], for the matrix pair(M, £,), we construct

I, TlGlET}

ﬁl* - |:On T2

[ 7 o,
(3.6) Ml*_[—TngE 1}

with T} = (I + A\E)I + GiE"H\E)"'andT, = (I + A ET)(I + HLEG,ET)~!
provided that(/ + G, E" H,F)~! exists and deduce tha1,.£; = L£;.M;. Note that
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I1+GETH\E is invertible if and only if I + H,EG,E" is invertible because
of O'(Gl(ETHlE)) = U(Hl(EGlET)) Define

(3.7) My = M My, L1=L1.L1.

Then(ﬁ/l\l, L,) satisfies the doubling property. By a careful calculatiowe, pair(ﬁ/l\l, L)
in (3.7) can be simplified to the special form as given 3 with

—~

I+ AE
My = | TAhE 0

, L
~HE I

)

o GET
YU 1+ ATET

where
I+ AE=(1I+AE)I+GE HE) ™ (I+AE)
=({I+AE){I-Gi(I+E"H\EG,) 'E"TH,E} (I + AiE)
(3.8a) =1+ A4+ (A —GETH\(I+ EGiE"H,)'(I + EA))] E,

H\E=HE+(I+A] E"I+ HEGE") 'H E(I + A|E)
(3.8b) =[Hi+(I+AE"I+ H,EG,E") 'H (I + EA;)| E,

GiE"T =GiE" +(I+ A E)I+GE"H\E)"'\GiE"(I+ A]ET)
(3.8¢) =[Gi+{I+AE)(I+GE HE)'Gi(I+E"A[)|ET,

I+AJET =(I+AJE")I+H,EGET) "I+ A[ET)
=(I+AE"{I-H(I+EGE"H)) 'EGE"} (I+A{ET)
=1+ [A] + (T +ATE")A] —(I+ HEG,E") 'H\EG,)| E".

SinceH,(I + EGYETH,) = (I + HiEG,E)H,, the matrix, in (3.85 is symmet-
ric. Similarly, G; in (3.89 can also be shown to be symmetric. Note that the matrix
(I + EG,ET Hy) in (3.8 should be assumed to be invertible so that the structuesepving
doubling process can continue. Hence, for the ddse £ H, EG,) being singular, the
doubling process should be switched back to Algorithia Using 3.7)—(3.8), the new SDA
algorithm for computingX; is summarized in Algorithn3.2

Under Assumptiod.2in Section4, convergence of the DA (Algorithi®.1) can be shown
in a similar way as inJ1] and convergence of the SDA (Algorith®2) will be proved
in Theorem4.7 in detail. In practice, the matriX + EGL,CETHL,C in the SDA is often
invertible. Thus, it is extremely rare to switch from SDA t&D

When Algorithm3.2 converges X satisfies 8.3) with some suitable matrik, € R™*"
with o(R;) CD_UD,. Thatis, spar{[[n, Xﬂ T} forms a semi-stable subspace 8, £4).

In the next section, we use this result to compute the unkreviamatrices?,, Xo, and X,
in (3.1).

3.2. The computation of X, and X4. Once X; is obtained by AlgorithnB.2, from
(3.2—(3.3), the matrix[R{ , R] | "in (3.1) can be computed by

R, o (I+G1ETX1)71(I+A1E)
Ry|  |AE - GoE"X (I +GETX) Y (I+ A E)|"

Subsequently, we compare the 1)-block of (3.1) and obtain
—HoE + Xy = (A3 ET X1 4+ Xo)Ry + X4 Ry,
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Algorithm 3.2 Structure-preserving Doubling Algorithm (SDA) fof; .
Require: Ay, E,Gq, Hy; 7 (a small tolerance).
Ensure: An X, satisfying 8.3 with X; = H. F (see .19 of Theorem4.7 for details)
and H, being symmetric.
1: Initialize k + 1, Al,l — AlaGl,l — Gl, H171 «— Hi.
2: repeat
3 if (I+ EGl,kETHLk) is nearly singular or singulathen
Ay Ay i, Gy < Gy, Hi < Hy i, and call Algorithm3.1,
else
A1 < Arg + (A — GixETHy (I + EG1xETHy 1)~ Y)(I + EA1 ),
G17k+1 — Glyk + (I + ALkE)(I + GLkETHLkE)*lGLk(I + ETAI,C),
Hyjyr < Hip+ (I + A ENH (I + EGLRETHyg) (I + EAL ),
end if
10 k+ k+1,
11: until ||H17k+1E — Hl,kE” < T||H1,k+1E||.
12: Xq + Hl,k+1E =H, L.

©® N O

Thus, the matriXXs, X,] can be computed by solving the underdetermined equation

I-R

39) e 1

] = HyE + A; E" X Ry.

REMARK 3.1. A number of methods can be applied to sol®¥&)( and any solution
of (3.9) can be chosen 4X5, X,].

In the following section, we want to use the auxiliary bagsi$3.1) to construct basek,
andV,, for the semi-stable subspaces corresponding to D_ UD;\{1} andX € {1},
respectively, which are essential for the computation efdésiredX,, .

Ry O]

3.3. The computation ofVg and V.. From (3.1) we see that the matrik = {R 7
2 1Im

has the same eigenvalues as the matrix pair

(A.B) = <[I+A1E O]’{IJrGlETXl oD.

A2E Im GQETXI Im
Let
(3.10) E Vo,V = [0, 0,] [% 0
. 0y Vr| — 0,YUr 0 A

be the singular value decompositionfof whereA = diagonal> 0 and[Vy, V,.] and[Uy, U,.]
are orthogonal withg, Uy € R™*¢. Then it holds that

T -
oo Mlrrar ol o v
VT 6n AQE Im 0 Im 0
(3.11a) (1. 0 Vil AU A
0 I.., ‘*
— |0 I, AU, A — [“m] 7
0 0 | IT+V,AUA 0 |¢
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T -
Vg IO I+GETX, 01[Ve 0 V.
VT oo GoE'Xy I, |0 I, O
i
(311b) -Ie 0 V'OTGlETXl‘/r 7 ‘ .
- |10 I, G2ET XV, E[”m .
00 |[T+V]GET XV, 0 |P

Now, we want to separate the eigenvaludrom the other semi-stable eigenvalues
of (A, B). Using the backward stable numerical algorithii][to compute the Kronecker
structure of the eigenvalueof (C, D), there are orthogonal matric€sandY = [Y7,Y3]

such that
T o C’l * Dl *
Q (C7D)Y_<|:O 02:|a|:0 -D2:|),

whereY; € R(=e)xf C, andD; e R/*f are upper triangular with diagonal elements
being one, and ¢ o(Cs, D3).

Let
_ VO 0 Vr v _Ie+m 0 AT Ie+m 0
O P | - P
Then from 8.11)—(3.12, we have
ST = ([Ci C3] [D1 Ds
619 avrasvi-([9 G5 %)

with

eo=(5 &L 5))

Sincec(Cy,Dq) No(Cy, Dy) = G withm’ = e+ m+ fandn’ = n —e — f, there are
matricesi¥; andW, such that

Ly Wol |Cy Cs| (I, W4 o
Kl el N R
L Wa| |Dy Ds| |Ipy Wi| _
K ol A

whereW; and W, solve the generalized Sylvester equationsv,; + W,C, = —C3 and
DWW +WsD5 = —D3. Here and hereafters” denotes the direct sum of two matrices. Let

(3.14) V=VY {I’g/ ?/1} .
Then from @3.1) and 3.13—(3.14), we have the matrix
I, 0
(3.15) V, = Ve = 0 In V(,m' 4+1:n+m) e RAntm)x(n=(e+f))
Vs,2 X, 0

Xy Xy
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whose columns span the semi-stable subspa¢atfL) corresponding t¢Cs, D3). Note
that1 ¢ (T(CQ, DQ)

On the other hand, using (12, (3.14), andY = [Y7, 2], we get the generalized eigen-
vectors

L, O Vi
10 I, ) N L 0
(3.16) We = X, 0 V(ie+m+1:m') = XV, Y;
X2 X4 XQV;’

corresponding t¢C;, D+ ). Then from 8.1) and @.10, we have

Vo O 0 0
Voo 1 0 In. 0 O 9
_ ’ — m (n+m)xv
(3.17) Voo o e We | €R
0 0 0 Im

spanning the semi-stable subspacgé/of, £) corresponding t¢l. ., ®C1, Lo+, ® D7) with
v =2(e+m) + f. Note thato(C4, D;) = {1}. Moreover, we have the following lemma.
LEMMA 3.2.V,, in (3.17) satisfiesV] 7€,V = 0.
Proof. From @.17) we haveV.l J&,Vee = Oz(erm) ® (WL TEWs). It suffices to
show thatW [ 7&,W,, = 0. SinceX, = H..E andH] = H,, from (3.16 we conclude
that

V.

0
X1V
XoVi

=Y, (-V.'X/EV, +V E"X,V,)Y1 =0. O

WioTEWe =Y, [-V,) X E,0,V,ET,0] Y;

Furthermore, fromZ.1), (3.19, and (.17, there exist matricegt;, € R™ <" and
N, € R¥*¥ such that

‘/s,l o Us,l V;,l o Us,l
(318) Ha |:V;72:| B |:U3>2:| RS, E[L |:Vv5*2:| B |:U5:2:| ’
Voo,l _ Uoo,l Voc,l _ Uoo,l
(3.19) Ha |:Voo,2:| N |:UOO,2:| ’ Ea |:Voc,2:| N |:Uoo,2:| Noo,
where R, is equivalent toy(Cy + D3)(Cy — Dy)~1 with o(Rs) € C_ U Cq and N, is

equivalent to(0x(c4.m)—1 @ Ko, r+1) With Ko, ;11 being the nilpotent matrix of siz¢ + 1.
(This coincides with Assumptiof. 2(ii) in Section4.)

3.4. The computation of X,. From the identities3.15 and @.17), we observe that
dim (spad [Vs, Vool}) = (n +m) + (e +m) > n + m. According to the second condition
in (1.4), we find a compression matriz,, € R**™ for V, andU,, such that

T
Vi
Ty T
Zoovoo,l

T
Vsa

(3.20) [ Z7 V;Q

:| [Us,27Uoo,2Zoo] = |: :| [Us,lano,IZoo}

andE€, Voo Zoo = Uso Zoo Noo fOr some appropriate nilpotent mati¥,. . The latter statement
will be proved in Theoren3.5below.
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From 3.14) and @.15), we have

Vo 0 V.
0 1, 0
(3.21) V.= [Vl} _ [Fl]
Vi,2 0 0 X,V (I
XoVo Xy X4V,
and
0 0 EV,
0 0 0
.= ] == v
Us,2 0 0 ETX V| [I2
0 0 0
where

] [Liwm O 0
)= e

with ; € R(e+m)xn" andl'y € R/*"' . SinceX, = H..F andH_, = H.., it holds that

0 0 0 r
VU= [T], T3] | 0 0 0 [Fl}VSTQUS,l.
0 0 V.ETX,V, 2

From (.18 and @.19), it follows that

NL(VIIU)R, = NV TH.V, = —-NLV.JH) TV,

3.22
(3.22) =—VIE TV, = -V TEV, = -V, JU,

and
(3.23) NL(ULTVi)Rs = VL TEV Ry = (V.LIU)Rs = =V, H, TV = —ULITV.

Sincec(N.,) = {0}, the Stein equations3(22 and @.23 (after ignoring all intermediate
terms) have only trivial solutions, i.6/.] 7U, = 0 andU_L 7V, = 0.
To show (.20), it remains to construct a matrix,. of full rank such that

2oV 1 Usc2Z06 = Z3 Vol 5Uso 1 Zoo.
Let

(3.24) Y=V, 1 Uso2 = Vi oUset = Vol THaVio = Vol TUsc.
SinceY is symmetric, we can compute its spectral decomposition
(3.25) T=Q'2Q,

whereX. = diagonal= 3, & (—X2) @ 0,, with 3; > 0 andX, > 0 of dimensiory; andr).,
respectively, andy = v — (11 + 12).
THEOREM 3.3. Withm' = e +m + f, there is a full rank matrixz, € R¥*™ with

(3.26) ZIYZ,.=0

if and only ifng + min{n;, o} > m/'.
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Proof. From @.24 and @3.29, it follows that ZI TZ. = 0 holds if and only if
ZIQ'vQZ, =0.Let¢ = QZ = [¢(/,¢),¢ |7 have the same partition iR. Then
Z1YZ,, = 0is equivalent to

(3.27) G216 — & Bl =0.

We prove necessity of the condition. Without loss of gerigralve assume that
m = min{n,ne}. Sinceny +n > m’ andny + m + 2 = v, it implies that
m <n <v—m' = e+ m. We choose

o~

¢

(3.28) G=(E)7E =) ¢

o~ ’ ’ T
with ¢ € R"™*™ being any matrix of full row rank angs € R"™*"™ such that[gth g;]

is of full column rank. It is easily seen that and(, satisfy 3.27). Thus, we have a full
column rank matrix

(3.29) Zoo =QT[¢],¢ ¢ 1T

satisfyingZ. 17, = 0.
We prove sufficiency of the condition. #f, + 71 < m/, then from 8.27) we see that

G
rank[ &
Thus, we have rarZ.,,) = rankQ'¢) < m'. Therefore, there is no full rank matri%.,
satisfying 8.26). a

REMARK 3.4. Note thatZ[ [ YZ., = Z) (V. Us2 — V.} 3Usc1)Zoo, @and such a
matrix pair(Vas Zoo, Uss Zoo ) is called bi-isotropic. In Theorer.3we gave a necessary and
sufficient condition for the bi-isotropicity df . Z., andU., Z.. In the following theorem,
we show that the matrix paiVo. Zo, Ux Z~) Spans a deflating subspace pain®f,, £,)
corresponding té/,,, Noo) with some suitable nilpotent matriX ...

THEOREM3.5.

(i) If no+min{ny, 72} = m’, then there is a nilpotent matri¥,, € R™ *™" such that

}=mmmém and  rank¢) = rank([¢; ¢ ¢ ]) < o+ <

(3.30) EaVioZoo = Uso ZooNeo,

whereZ, is given by(3.29.
(i) f no + min{n1,n2} > m’, then, generically, there is a nilpotent matrix
No € R™*m" sych that(3.30) holds, whereZ, is given by(3.40) below.
Proof. Without loss of generality, we assume that = min{7,72} and adopt the
notations used in Theorem3. From (.17 and .19, there is a matrix3., € RV*/ of full
column rank such thafl, Wy, = Usc Boo. Let Noo = [0, 2(c+m) | Boo]. We then have

(331) EaVoo = [0 | gaWoo] = [O | UooBoo] = UsoNo,

where0 = 02,4 m),2(e+m)- Partition@ andZ., in (3.29 as

Q" |Im Zson|fe+m

(3.32) Q=1[Q1,Q2,Q3]=1Q" [}na , Zoo = |Zooo|}e+m .
w7 @7 o Zoos |} f

e+m

4
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From Lemma3.2 and @3.24), it follows thatV. 7€,Ve = (VI JUL)N, = TN, = 0.
Therefore,YBo, = (QT2Q)Bs = Q' [21 & (—%2) @ 0,,]QBo = 0. From 3.32 we
have

/
(3.33) {Q”] By, =0.
By (3.28), ¢ can be expressed by
0
B 0 [¢
0 ‘[770

where¥] = ¥, % andX) = 3, (1 : m,1 @ m1). Since€yVooZoo = UsoNooZoo, it
holds thaté, Ve Zoo € R(UooZoo), UscBooZo,3 € R(UxZs) (by (3.31) and 3.32),
BooZoo,3 C R(Zso), and B Q3 ¢ € R(QTC) (by (3.29 and B.32) or Q B Q3 ¢ € R(¢).
Equivalently, by 8.33 and (3.34), there is a € R™ %™ such that

O(n1+nz)xm’ 6 Orpy xm
3.35 F =(P d = F
SO I Rad U NE
3 @3
where
Eil 0
Y/ T E2 0
0 I

7o

Thus, showing thaf, V., Zo. € R(UxZ) is equivalent to show tha8(35 holds.

N T N T
Case (i): Fonyy +n, = m/, [CT, QJ] is anm’ x m’-matrix. In this case{CT,CgT}
can be chosen to be invertible. S8,39) is always solvable fo®. Hence, there is a nilpotent
matrix N, such that .30 holds, whereZ, is given by 8.29.
Case (ii): Fomg + 1 > m/, we partition(s in (3.34) andF' in (3.39 as

G = [C&o]}l’ =m'—m e [Fn F12:| H

Galtd =no—1 "~ Fyy Fyl }d -
~—
,m/ d/
Rewrite
ét éo pm/
(3.36) = ;
Gs G|
where( := [CC } and(s = (3,1, then equation3.35 becomes
3,0

0 . . .
(3.37) {Fuéto N F12€:3] = (0P, Fo1C0 + Faa(s = (3P.



ETNA
Kent State University
http://etna.math.kent.edu

STRUCTURE-PRESERVING ALGORITHM FOR RICCATI EQUATIONS 409

Since(, can be chosen invertible, we partitigs, ', i1, and F», as

(338)  GGl=[ | slzz Y, Fu=[Fy | Fy )Y, Fa=[F | F 1.
Uit ! 1 r 71 14

With (3.38), equations3.37) can be written as a Riccati equation foy and a linear equation
for Q:

(3.39a) Qo F19Qs + Qo FY) — FpaQy — FY) =0,
(3.39b) (Fo2 — Qo Fr2)h = Qo FYy — F3.

Equation 8.399 for €, is generically solvable by the Schur method. The same holds
for (3.39h and the equation3(35 for ®. By (3.38), (3.36), and B.34), Z., can be cho-
sen as

S0
L0 I |2
3.40 Zoo=Q" |72 m )
( ) @ 0 0 [[91792]] 0
0 I

Hence, there is a nilpotetX.. such that.30) holds. a

REMARK 3.6. In our test examples, Exampel[12, 13] and Examples.2[16] in Sec-
tion 5, we will check that)y + min{n;,72} = m’ holds, which coincides with the condition
in case (i) in Theorers.5.

Finally, we letVoe = Voo Zoo andV, = [VS,\A/OO} = [“;‘“]. If Vo1 is invertible, then
a,2

the solutionX,, for (1.1) is given by X, = Va,QVajll. Therefore, we have to ensure that;
is invertible. In fact, from8.16), (3.17), and 8.21), we have

Vo 0 Vi |T Vo 0 0 0 V.Y,
Vai = [ Ve | VenZeo | = [00 . 0} {I‘;] {00 s 1} Z.
Vo 0 ViT Zea ] [Vo 0 Vi [Leswm 0] | Wi [gm,l}
10 Iy O T Y1Zoo73 10 I, 0 0 Y s 000,3 y
e+m

where Z,, = [Z;yl,Z;,Q,Z;B]T is defined in 8.32. Therefore,V, ; is nonsingular

if and only if [Z, |, Z;B]T is nonsingular. We summarize the above procedures for the

computation ofX, in Algorithm 3.3
REMARK 3.7. In Algorithm3.3, step 1 is carried out iteratively and converges quadrat-

“ T
ically under mild assumptions as proved in Theoem As for step 4-8, SinC%CT, CgT]

in (3.29 or Zo in (3.40 can be chosen as arbitrary nonsingular matrices, thermany de-
grees of freedom in obtaining an invertible matrix, ,, Z, ;] " and a desirable matri, ;.
Thus, Algorithm3.3solves the GAREX.1) efficiently and reliably in most cases as illustrated
by the numerical experiments presented in Seddion
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Algorithm 3.3 Structure-preserving Algorithm (SA) for GARE.({).
Require: A, As, A3, Hy, Hy, Gy, G2, E asin@.1).
Ensure: An X, for GARE (1.1).
1: ComputeX; by Algorithm 3.2
: ComputeX, and X, by (3.9).
- ComputeV; andV, by (3.15 and @.17), respectively.
. if the conditionny + min{n;, n2} > m’ in Theorem3.5holds,then
computeZ, by (3.29 or (3.40
else
there is no solution.
:end if
. Compute Vax| 2 Vi, Voo Zoo)-
Va,2
10: if V, 1 is invertible,then
10 Xo = VooV,
12: else
13:  fails.
14: end if

© 0N OO A WN

4. Convergence of the SDAWe denote the Jordan block of sigeorresponding to a
unimodular eigenvalue = ¢* by

w 1 0
K, p,=
.1
0 Wl up

The Jordan blocks,, , raised to the power af* can be evaluated to (see, e.8,,1p. 557])

Y1,k Y2k Vpk
(4.1) K2, = _ :
Y2,k
0 Y1,k
where

k@R 1) (28— i+ 2)
Tk = (i—1)!

w2’“—i+1 _ O(Qk(i—l))’
fori=1,...,p. If p=2q,let

4.2) Lyk= Kg?p(l cq:q+1:p).

We quote the useful lemma frorf]].
LEMMA 4.1. For p = 2¢q, the matrix in(4.2) is invertible and satisfies

_ k _ ko _ k _
(4.3) ILSGEE gl =0@7F),  IKE Lo K |l = 027F).

w,q 7w,k w,

To show convergence of the SDA algorithm, we first assumetlteabriginal matrix pencil
Ha — A\, satisfies the following assumption.
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ASSUMPTION4.2. For the Hamiltonian/skew-Hamiltonian paif,,£,), we assume
that

(i) the partial multiplicities of the eigenvalugare either one or even, and the number

of partial multiplicities equal to one 8y with rank( {é g]) =n+m—pu,

(ii) the eigenvaluex has a Jordan structur(aIQ(eJer), 02y, D 0201 @KO,QfH) with

F, E, 0
F, E,
(4.4a) nullity ) ) >e+1,

~

0 Fa  Ea gx(g+e)

whereg = (n +m) f and
o [AV, B A B P N oA
(4.4b) Fa:[cvﬁ D]’F“:[C D}’E“:{O Om]’E“:M’

in whichVj is given by(3.10),
(iif) each nonzero purely imaginary eigenvalue has everiglamultiplicity.
REMARK 4.3. The Jordan structure of the eigenvatuein case (ii) can also be con-

d
sidered being of the more general fofdy ¢ ¢4y, 02m © 0c © 0c—qg © Ko25,41 | With
=1

f=fi+...+fsandfy > ... > fi > 1. Then the condition in4.49 should be generalized
to

nullity - >ed (d—i+1),

~

n

= gix(gite)

fori = 1,...,dandf; > fi_1 (fo = 0), whereg; = (n + m)f;. Since the proof for
convergence of the SDA in Theorefn7 has a straightforward extension to the cdse 1,
we only consider the simple case with= 1 as in (ii) for convenience.

LEMMA 4.4, Let(H,, E,) satisfy Assumptiod.2. Then

(i) for p > 0, the null space of{, containsy linearly independent vectors of the form
¢ = [CI,QJ,OZ’H,Q]T e R2(vtm)xp with ¢; € R™, {,, and(y € R™,

(i) for f > 1, the generalized eigenvectors (,,&,) corresponding taxo of de-
gree; are of the formy; = [anl,anQ,O,,TL,l,nL]T € R2vFm) with n;, # 0 € R™,
nj2, mja € R™, forj =1,..., f, i.e., avectomy = [(Voo)", 87, (Uofy)T,éT]T
with 0 # a,v € R® and3,§ € R™ exists such that

(45) 5,1773' :Hanj_l, j = 1,...,f.
Proof. Since
A B I 0 A B
—cvjc —-CcTJD| =10 —-CTJ [C D} <n+m-—pu,
-DTJCc —-DTJD 0 —DTJ
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from Assumptiort.2 (i), (1.1b), and (L.3), it follows that

Lnsm O
nullity | Ho | 0 Opm
0 1,

(4.6) A B 0
lit I mCUR IS
= nuill
N1 =ctoe —cmip 0 =
-D'JC —-DTJD-.J I,
This proves the first assertion.
Let
N I n+m O . I n+m 0
(47) Ho = Ha 0 On,m y ga = ga 0 On,m 5
0 I, 0 I,
P | (O - [ I
(48) Ha,l - 7'[a I:O I2m:| ) gaql - 5a |:02m,n:| .

From Assumptior.2 (i), (4.7), and the equality of matrices id ©), we have

Han 0

~

&
(4.9 nullity ) ) >e+ 1

RSSO

~ o~

0 Ha Card g(gre)

Since nullitE) = e, the matrixﬁa,l is of full column rank andH, — A&, is regular.
From @.9) there are vectorg, = (aT,BT,éT)T, with 0 # a € R®, 8,6 € R™, and

M= (nj1mjnfs) 0 # 0 € R, With 0 # njy € R™, nja,mju € R™, j=1,...,f -1,
such that

o~ ~ o~ o~ ~ ~

(410) gaﬁl - Ha,lﬁOa gaﬁj - Huﬁj—h ga,lﬁf - Haﬁf—lv

forj =2,..., f — 1. By takingy = 0 andn;2, n;4 arbitrary, it follows from ¢.10 that @.5
holds. d
Let

T
(411) Ml _ |:I'n, + AlE O:| , ,Cl _ |:In GlE :l

~H\E I, 0 I,+AJET

be the submatrices 0¥1 and L in (2.4), respectively. By2.1) the matrix pairM, £) is the
Cayley transform of#H,, £,). Therefore, Assumptio#.2is adapted t¢.M,, £;) as follows.
ASSUMPTION4.5. For (M, £1) we assume that
(i) the partial multiplicities of the eigenvaluel are either one or even, and the number
of partial multiplicities equal to one 8y with rank( {é gD =n+m—pu,
(i) the eigenvaluel has a Jordan structure(lg(e+f),le el._168 K172f+1) satisfy-
ing (4.4),
(iif) each unimodular eigenvalue; with w; # —1 and 1 has even partial multiplic-
ity Qmj.



ETNA
Kent State University
http://etna.math.kent.edu

STRUCTURE-PRESERVING ALGORITHM FOR RICCATI EQUATIONS 413

LEMMA 4.6.Let (M, L) satisfy Assumptiod.5. Then

() for x> 0, the null space oM, + £, containsy linearly independent vectors of the
form[¢)",0, ,]" € R#Xn,

(ii) for f > 1, the generalized eigenvectors(a¥1,, £ ) corresponding td of degreej
are of the formy; = (anl,OL)T £0cR?, j=1,...,f, ie.,there exist a vector

m = [(Vo)T,0, ] such that
(Ml_ﬁl)%‘:ﬁlm‘q, ]:1’7]0

Proof. The assertions (i) and (ii) follow immediately from Lemmal and the Cayley
transform. 0

From Kronecker’'s Theoren/[ Chapter 12], there are nonsingular matriéand Z
such that

Jso(L)eJ.ei 080, &l el _
On La(-I)eJ,et] M

I, 0,
O ‘IG@IH@IT@Ie_A'_f

oM\ Z = {

(4.12) OL12 = [ =Jg,,

whereJ; € R°** consists of asymptotically stable blocks wjth/,) < 1,

Ju :le,ml @"'@Kwhml e R™" with Wi # 1,
Ly =Tim @ Ol With Ty, = em, €] ,
N=Kip ®l_y, L =K &L, Ti=epe].

On the other hand, if we interchange the roles\déf and£; in (4.12) and consider the
pair (L1, M), then there are nonsingular matrid@s@nd)’ such that

(4.13) PLY =Jnm,,  PMY=Jg,.

SinceJ, andJz, in (4.12 commute with each other and from.{2 and @.13, one can
derive that

(4.14) MiZJs, = L1206y, LYz, = MiVdw,.

PartitionZ and) in (4.14) as

|4 Zs Y

whereZ;, Y; € R"*" ¢ =1,...,4. From Lemmal.6, we see that

0s,0

(4.16) Z| L, |=0 and 2 {O"f@]:o.
On—s—/L,/L ¢

Let {(M1, L1x)},-, be the sequence generated by the SDA algorithm of the form

In Gl,kET

(4.17) My = [ Ly = [O In+A1T)kET:|

)

In+A1,kE 0
—Hi E I,
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with M1 = M; andL, ; = £,. From @.6—(3.7) and @.14), we have that

(4.18) M1,kZJ12;II = ﬁl,kZJJQ\fh, Ll,ksz%i = M1,kyJ/2\f(1-

THEOREM 4.7. Let (M1, L;) be given in(4.11) and satisfy Assumptiof.5. Let £
have the singular value decomposition(8110, and suppose that; andY5 in (4.15 are
invertible. If the sequencf(A; i, Gk, H1 1)} generated by the SDA is well-defined, then
we have

(4.19) |HixE — 2277 < O(p(J,)%) + 0(27%) = 0, as k — oo.

Here and hereaftel] - | denotes any matrix norm.
Proof. Substituting(Mi , £1) in (4.17), Z in (4.15, andJx, andJg, in (4.12) into
the first equation 0f4.18 and comparing both sides, we obtain

(4.20a) — H\BZy + Zo = (I + AL E Zo(J2 @ I, ® J2 & J?),

(—H\xEZs+ Z2)(J2 @ 1, & 1, & I )
(4.20b) =(In+A{ 4E")Z2(0, 00, ® Ty & T k)
+ I+ ALENZi(L o I, 0 J2 © T2,

where
! k
Fw7k = @Koz.;j72mj(l ST, M1 2m3)7
j=1
Fl,k = K127k2f+1(1 . f + ].,f +2: 2f + 1) b Oe—l,ev
l
Jf;k :@Kuzzj,mw J12k :K12,kf+1 @Iefhjlf :Kikf@le'
Jj=1
Define

-~ k
FLk = K12,2f+1(1 : faf + 2: 2f+ 1) 2] Oe,e
fork =0,1,2,... Then, from ¢.1), we have that

~ I O . 27fk’...727k
+ _ |4f Yfe _
Piply ) = [Ck 0. } with ¢ = [ 001 :
Consequently, from4(3) in Lemma4.1, we find that
~ 0r Oy K2* G 0 0
4.21 (I,,L — Ty ,IF ) A g B A Lf Sk | = [ Ve
( ) Lk 1k ! Ck I, Oe)f Ie_ Ck 1.
and
.
ok k K ~ K2 +
HJl Fik‘]% = H(Kif@le) Fik {Ol’ff ka]

2—k

(4.22) = | (k%@ 1) T, (K2 @ 1) + el = 0@ =0,
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ask — oo. Postmultiplying ¢.200 by (OS ®0,® F;’lkaf ® ffkjfk> yields

(~H1xEZs + Z1) (0,00, @ T4 J2 @ T J2")

(4.23) = (I + AT, ET) 2, (os 0,0 J2 @ rl,kffkjfk)
+ (I + AT BT Z1 (0,00, 0 J2TSRI2 o T3 T 2.

From (4.203, it follows that
(In+ AL ET) 22 (0, @0, @ J2 & T, T, 2
(4.24)
— —H\4EZy + 2y — (I, + A],ET) (ﬂ‘ O, 30,0 (- Fkafk)Jf’“) :
Substituting 4.24) into (4.23, we get

_H,LE [Zl — Zs (05 ©0, 0T 472 @ fkaf")} + Z

~ 7, (05 ©0, oT 402 & ffkjf’“)

(425) _ /\Qk/\
— (I +A]LET)Z4 (05 ©0, @ 2T L2 e r;ﬁ’“)

Jr(InJrAIkET)Z2 <]52k ©l,¢0,d B@ IOD

On the other hand, substituting; 5, M ) from (4.17) and) from (4.19 into the second
equation of 4.18), we have
(4.26a) (I + AL ET) Yo = (—Hy 4 EY; + Y2) (Jfk oL ®JY o Jfk> ,
(In -+ AIkET) Y4 (J?k D Iﬂ (S¥) Ir ¥ IG-‘rf)
(426b) = (_HlJCEYl + Yé) (OS @ Ou @ Fwﬁk 2] F1,Ic)
—~2k
+ (—H1 1, EY3 +Y)) <Is eI, & Jf,k & ) .
As above, postmultiplying4.260 by (05 ®0, D F;,lkaf ® ffkjfk) and using 4.263,
we get

(I + AL LET) [1/2 Y, (05 ©0, oI L7 @ flﬁkjf’“)]

(427) = (7H1J€EY1 +}/2) G I

I e, 80,8 [0 0”

—~2k
+ (—Hy xEY3 +Y)) (05 ®0,d Jj’“r;}ij’“ o Jp rfkjfk) .

Then from @.16), (4.21)—(4.22), and Lemmat. 1, (4.25 can be simplified by
HyxEZy (I, + 0(27F))

(4.28) = —Z+ 027) + (L + ALET) (0(p(J2)) + 0(279)).
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ask is sufficiently large. Since’; is invertible, substituting?,; E' in (4.28) into (4.27), we
conclude that

(I + ATLET) (Yo + O(p(J2)) + 0(27H)) = 0(1).

SinceY is invertible, it holds thaf|7,, + A] ,ET| < O(1) for all k. Again from ¢.16),
(4.21)—(4.22), and 4.3, it follows that

|Hi B — 2,77 < O(p(J2)) + 0(27F),

ask — oo. a

REMARK 4.8. In Theoremt.7, we assume that the sequerck i, G1 x, Hi 1} is well-
defined (or the SDA does not break down). How to guaranteexisteace of the sequence
is still an open problem and is under investigation.

5. Numerical results. In this section, we test the Structure-preserving AlgonitsA)
(Algorithm 3.3) for the GARE (L.1) on two numerical examples of®, 13] and [16] under
Assumptionst.2 or 4.5 to illustrate the convergence behavior. All computatioresenper-
formed in MATLAB R2008a on a PC with IEEE double-precisionating-point arithmetic
(epsv 2.22 x 10716),

ExampPLE 5.1 ([12, 13]). Given

1

0 1 0 0 0 0 0 0 1 0 0 0 0 O
-9 -6 0 0 0 O 1 0 0O 1 0 0 0 O
0 0O 0 0 0 O 0 1 001 0 0 0
A= 0 0O 0 1 0 O » B= 0 O B = 00 0 0 1 0}
0 0 0 0 1 0 0 0 00 0 0 01
(0 0 00 0 1] 0 -1 000000
01 1 0 0 O] [0 0 -1 0 0 10
c=100 -2 1 -1 ol,D=100 2|,J=10 10,J’:[0 _1]
00 0 0 0 0 0 0 0 0 1
The Kronecker structure df4,, &,) is
0 1 0
1 0 0 1 +1.4144 1
{0 —1}@{0 0}@[ 0 t1414i| O BP0 8 8 (1)

We choosey = 9 to transform(#,,&,) to (M, £) as in @.4). More details on finding a
parametery by a Fibonacci sequence so that the condition numbers,aind W, in (2.2)
are as small as possible can be foundain [

The corresponding Kronecker structure(éft, £) becomes

110
~125 0 1 1] [ 1
[ 0 —0.8}@{0 —1}@{0 z]®15@ 8 é 1 D |

with z = —0.952 £+ 0.3067:. The related quantities int(12) are given byn = 6, m = 2,
e=nullity(E)=1,f=1,s=1,r =3, u=0. We compute); =n, = 3,1, =1, and
no +m1 = e+ m+ f =m’ = 4, which coincides with case (i) in TheoreB. We verify
that Assumptiont.2 holds as

A B .
C D}7<”+m“8’ nthty{

AV B FE

rank[ Vo D 0

:|6+12.
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The SDA (Algorithm3.2) converges toX; = H; oF in 9 iterations. Using Algorithn3.3,
we get

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 8.0 0 4.0 —1.0e7 0 0
Y _ 0 0 4.0 0 2.0 —=5.0e8 0 0
@70 0 —1.0es7 0 —-5.0e8 —1.5e-7 0 0

0 —043 —-1.70 -—-0.64 -0.64 0.11 0 —1.38

0 050 —-1.74 -—-1.12 -1.12 0.93 1 -3.12

0 —1.12 -0.12 0.50 0.50 —0.80 0 0.81]

satisfying

|E] X0 — X, E,l|la = 1.47 x 10717,
Res= |A! X, + X A, + H, — X[ GuX,|l2 = 4.71 x 10714,
RelRes= Rey (2[|A) Xoll2 + | X GaXall2 + || Hall2) = 9.12 x 10716

ExAmPLE 5.2 ([1€]). Given

0 1 000 0 0 0 [0 0] 10 0]"
0O 0 0 01 O 0 0 0 0 0 0 0
0 0 0 0 0 500 0 O 0 0 01 0
o 0 000 O -11 0 0 0 0 1
A_l—IOOOO OO’B_—ll’C_OOO’
0 1 1 0 0 O 0 O 1 0 0 0 0
0 0 01 0 O 0 0 0 0 0 0 0
1 0 000 0 0 0 0 0 0 0 0]
[ -1 -1 0.005 —0.005 0 0 0 0
0 0 —0.005 —0.005 0 0 0 0
0 0 —0.001 0 0 -0.25 O 0 0 0
0 0 0 0 0 0 0 0
D= 8 (1) B = 0 0 0 0 0 0 0 0 ’
0 0 -5 0 0.1 0 0 0
0 0 025 —-025 0 0 0 0
. 0 0 0 =075 0 01 -0.2 —0.2
-1 00
J=|0 -10 ,J’:[_Ol?].
0 01
The Kronecker structure ¢f,, &, ) is
+1
01 0
+4.
02 @ 998 @ Lo, Lip®07,® [0 0 1
+3.79 00 0
+0.211

We choosey = 9 to transform(#,, &,) to (M, £). The corresponding Kronecker structure
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of (M, L) becomes

0.8 ~1.25
110
10 —0.407 245
[0 —1]@ —0.954 |7 ~1.05 @17@8 (1) ' 120
0.996 1.004

The related quantities iM(12 are given byn = 8, m = 2, e = nullity(E) = 2, f = 1,
s=4,7r=0,u=1. Wecomputey, =7, =4,1m9 = 1,andng+m = e+m+f =m' =5,
which coincides with case (i) in Theoredmb. To verify Assumptiord.2, we calculate

A B]:9<n+m—,u:10, nuIIity[AVO B E

CVo D 0

rank{c D

} =e+1=23.
The SDA (Algorithm3.2) converges taX; = H; 16E in 16 iterations. Then, using Algo-
rithm 3.3 we get

X, =

0 0 0 0
0 0.01 —4.9e4 0
0 0 0 0 0 0 0
0.66 —1.2 0.034 —-0.52 —T7.le4 0.037 —0.038 —1.24 0.72

0 0 0 0

0 0

0

0
0.26 —-0.17 0.16 —-0.58 —-34e3 0 0.88 —-0.88 —0.17 —0.42

0

0

0

0

0

0 0

o O O
o O O

0 0 0.5 0.025 —0.01 0 0 0 0 ’
0 0 0.47 0.025 —0.01 0 0 0 0
0 0 0.01 0 0 0 0 0 0
079 11 -0.14 1.6 2.9e3 —-0.28  0.27 0.15 0.51
—0.37 —-1.3 —-0.14 2.0 2.9e-3 —-0.031 0.031 —-1.3 0.35]

which satisfies
|ES X, — X[ E,|l2=1.37x1071°, Res=5.09 x 107!, RelRes=2.99 x 10715

6. Conclusions.In this paper, we propose a structure-preserving algor{siDA+post-
processing procedure) for a semi-stabilizing solutiontfer GARE (L.1). Under Assump-
tions 4.2 or 4.5, in Theorem4.7 we prove that the SDA algorithm converges globally and
linearly provided that it does not break down. The advantzghe SDA algorithm is evi-
dent in that theZ-symmetric solutionX; = H; . E with H; , being symmetric is obtained
by a structure-preserving doubling iterative process avithperforming any preprocessing
for deflating the associated unimodular eigenvalues. Thealized residuals of the desired
E,-symmetric solutionX,, for the tested examples computed by the structure-preseal
gorithm are accurate to machine precision.
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