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MULTIGRID PRECONDITIONING OF THE NON-REGULARIZED AUGMENTED
BINGHAM FLUID PROBLEM *

ALEXIS APOSPORIDIS, PANAYOT S. VASSILEVSKF, AND ALESSANDRO VENEZIANIf

Abstract. In the numerical solution of visco-plastic fluids, one of tte@dproblems is the effective detection of
rigid or plug regions. These occur when the strain-rate tensor vanisttesansequently the equations for the fluid
region become singular. In order to manage this lack of retyldifferent approaches are possibiRegularization
procedureseplace the plug regions with high-viscosity fluid regioiesturing a regularization parameter> 0. In
Aposporidis et al. [Comput. Methods Appl. Mech. Engrg., 2D01(1), pp. 2434-2446], an augmented formulation
for Bingham fluids was introduced to improve the regularitygarties of the problem. Results presented there show
that the augmented formulation is more effective for numericappses and it works also in the non-regularized
case £ = 0) without a significant degradation of the non-linear sob/@erformance. However, when solving
high-dimensional Bingham problems, the augmented formuld#ads to more challenging linear systems. In this
paper we develop a strategy for preconditioning large moyuarized augmented Bingham systems. We use the
regularized problem as a preconditioner for the non-regdd case. Then, we resort to a nonlinear geometric mul-
tilevel preconditioner to accelerate the convergence®fldxible Krylov linear solver for the regularized Bingham
preconditioner. Results presented here demonstrate #aieéness of the strategy also in realistic (non-academic)
test cases.
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1. Introduction. Many fluids of industrial, geophysical, and medical inteéreshibit
a shear-dependent viscosity. In particular, visco-ptastaterials show properties of a rigid
continuum as long as the applied stress remains below arcttashold and become incom-
pressible fluids if this critical value is exceeddd], A common example of a visco-plastic
material is the Bingham fluidl, 38]. If « denotes the velocity field of an incompressible
fluid in the domair(2 andp is the pressure, we denote By = %(Vu—FVuT) the strain rate

tensor and consider its Frobenius ndd| = /tr(Du” Dw). In Bingham fluids, setting

D
(1.1) T =2uDu + Ts—u, when|r| > 7,
|Dul

we solve the system

p[au-k(u'V)u}—V-’r—f—Vp:f

(1.2) ot in Q.

V-u=20

Here,u > 0 (plastic viscosity, p > 0 (fluid density, andrs > 0 (yield stresyare assumed to
be constant. Whepr| < 75, we set

Du = 0.
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The region of©2 where the latter equation holds is callégid or plug region, as opposed to
thefluid region, where1.2) is assumed to hold. The constitutive relation therefoagise

0 if < 75 (plug region),
3) Du:{ 7| < 7. (plug region)

(1 T ) I if |7| > 7, (fluid region).

[T]) 2p

Equations {.1), (1.2) can be viewed as a generalization of the Navier-Stokestiensa
with shear-dependent viscosify = 2y + ﬁ in the fluid region, reducing to the classi-
cal Navier-Stokes equations with constant viscosity, it= 0. A major difficulty associated
with solving the Bingham equations is that the flow and plugjars are unknowm priori.
Notice that/ is singular in the plug region whelt®w| vanishes. These difficulties can be
addressed byegularizing .. The most common types of regularization are the Bercovier-
Engelmann regularizatio®], in which | Du| is replaced byDu|. = /|Du|? + €2, and the
Papanastasiou variard]. In practice, regularization techniques replace the pagijon by
a high viscosity flow region. This clearly improves the regity of the problem and even-
tually the performance of the nonlinear solvers even thatigffects the accuracy. For this
reason, other methods based on a different formulation bege proposed. Among them,
we mention here the method introduced by Duvaut and Lit8s0]. The latter approach is
based on a variational inequality and Uzawa-like iterathethods, whose convergence may
be slow.

In this paper, we consider the augmented formulation of tinggam fluid, further re-
ferred to as the ABF problem, introduced B).[An auxiliary symmetric tensoil’ = % is

defined and.2), (1.3) are reformulated as

p{?j—k(wV)u} — V- Q2uDu+T1,W)+Vp=f»
(1.4) V.ou=0

Du — |Du|W = 0.

Note that this formulation contains no division hu|, so the overall regularity of the
problem including rigid regions is improved. In this respét.4) is more regular than the
primitive formulation (L.1), (1.2). The idea of circumventing a singularity by adding an un-
known was inspired byl]2], where a similar approach has been successfully applied to
total-variation based image processing problem; see ao Also in the case of ABF, we
may think of a regularized version by replacii@u| with |Du|.. In [3] in particular, the
augmented steady Stokes Bingham problem, whef.#) the Lagrangian time derivative is
dropped, was considered. An analysis of well-posednedseakgularized augmented prob-
lem was carried out. Moreover, numerical results indichg the iterative nonlinear solver
for the augmented formulation—when either Picard or Newilomtinearizations are carried
out—converges within a small number of iterations. It is aigbust with respect to both
mesh size and and predicts flow and plug regions accurately. In partictke augmented
formulation works also in the non-regularized case= 0). In addition, it shows supe-
rior convergence properties when compared to the Uzaveantiithod by Duvaut and Lions
mentioned above. However, the results presented]inefer to academic test cases where
the size of the linear systems makes it affordable usingtireethods. As a matter of fact,
ABF for real (large) practical problems has the drawbackn@foducing more challenging
linear systems. The specific purpose of this paper is to addre effective way for solving
ABF for practical applications expected to be large. Moecgsely, we introduce an efficient
and robust preconditioner to accelerate the convergenaekoylov subspace method. The
preconditioning procedure is based on two ingredients.
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(i) TheregularizedBingham problem is used as a preconditioner for solvingnibre-
regularizedproblem. In this respect, the regularization parametsgrves as a con-
trol parameter driving the performance of the precondéraather than as a pertur-
bation of the problem.

(ii) The regularized problem is then approximately solvethg a multilevel technique.
In particular, we introduce a geometric multilevel precitioder where the smooth-
ing is performed by a flexible GMRES (FGMRES) scheme precdard by an
overlapping additive Schwarz domain decomposition methblde multigrid iter-
ations are based on recursive cycles performed again wathiexible FGMRES
scheme on different grids. The overall scheme gives rise riordinear method
sometimes referred to as the nonlinatgebraic multilevel iteratiofAMLI [ 42).

At the coarsest level, we use a direct solver.

Since we are concerned with problems of real interest, hereomsider the unsteady version
of the problem including the nonlinear convective term. Nwical results exhibit robustness
and scalability of the solver with respect to the mesh sieeahstrating that the proposed
method can be used for the accurate simulation of non-régethBingham fluids. A com-
plete convergence analysis of AMLI-preconditioned ABFasly complex (stemming from
the fact that this is an indefinite saddle-point problem) enkft to future work. For the
symmetric positive definite case, several analyses artabligicf., e.g., 26, 42].

The paper is organized as follows. In Sectibthe problem setting is given including
the linearization and discretization. The first part of 88tT8 introduces the preconditioner
based on the regularized Bingham problem. In the secondygadescribe the multilevel al-
gorithm which is used to solve the regularized problem. Nuraéresults on two benchmark
problems in two and three dimensions for several valuesaofrtesh size as well as a test case
on a more complex geometry are presented in Sedti@onclusions are drawn in Sectién

2. Problem setting. We denote by °(2) the Sobolev space of functions wigtdistri-
butional derivatives with summable squarég! (denotes the set dfi ! functions with null
trace on the boundary). In additiod?(0,7; H*) denotes the vector space of functions
whoseH*® norm for the spatial dependence is square summable in theeititerval (0, 7).
We useH} for vector functions with components i} and £? for tensor functions with
components ir.2. If we assume for simplicity that the boundary conditionssaribeu = 0
on 99 (for t > 0), the weak regularized ABF problem reads: foe L2(0,T, L?(12)),
findu € L2(0,T; HY(Q)), p € L*(0,T; L3(Q)), andW € L?(0,T; £>(92)) such that

p 8—uv—|—p/(u-Vu)v+u/DuDv—/pV-v—!—Ts/V-W'u:/f'u
o Ot Q Q Q Q Q
—/qV~u:0
Q

/Z:Vuf/\DukW:Z:O,
Q Q

with u(x,0) = ug(x) a given initial condition inL?(Q), for all v € H{(2), ¢ € LE(Q),
andZ € £?(Q). We placed the pressure in the null-average square-suranfiaittion
spacelL3 ().

For the sake of a numerical solution, we need to discretieg@tbblem. As for the time-
discretization, we rely on a classical backward Euler mgthdhe reason for this choice
is to address a simple time-advancing method with good|&tyaproperties (stability may
be significantly affected by a completely explicit schemBjfferent, more accurate (either
implicit or semi-implicit) time-advancing schemes may lmmsidered as well with similar
procedures.
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For the space discretization, we resort to finite elementgai different discretiza-
tion techniques may be considered such as finite differenbenses on staggered grids
[24, 31] and finite volume discretization8}]. Hereafter, we denote by, Q;,, Z;, the finite-
dimensional subspaces selecteddop, andW, respectively. In3J] it has been proven that
for e > 0, noinf-supconstraint needs to be fulfilled in the selection of a finit@ehsional
space ofiV for the well-posedness of the discrete problem. In otherdgoif velocity and
pressure are discretizedimf-supcompatible spaces, the non-singularity of the discretb-pro
lem is guaranteed and is not affected by the choice of theatization space of/.

When using a Picard linearization for both the convectivextand the nonlinearity in-
duced by the rheology at Picard step 1, the discrete problem reads: for=0,1, ..., N
findu) ™' € Vy,, pi™ € Q, and tensordV;' ! € 2, such that

) )

1 . .
—p/ up Ty, p/ (TR ) oy, o [ Dt v,
At" Jq Q Q

. 1
—/ pZH’kV SV + T W,?H’k Vo, =—p [ ujv —|—/ "y,
Q Q At™ Jq Q

—/ QILV'UZH’k +0‘/ P g, =0
Q Q
/VuZH’k:Zh—/ |Duy W Z, =0
Q Q

forall v, € Vy,q, € Qn, andZ, € Z,. Heren, n + 1 refer to the time stepAt is
the time step size, ankl k£ — 1 refer to the Picard iteration. The indéxindicates the size
of the space discretization mesh. The mass conservatiatiegueatures a mass-pressure
stabilizing term that determines implicitly a value for theessure. The parameterwill
be taken as small a~'° (as done, for instance, ir2§]). Other methods can be pursued
similarly to manage the rank deficiency of fully Dirichletgimems.

The matrix formulation of the problem readsw = b (we drop the time index for the
ease of notation) with

A(u(k—l)) BT CT
A (uF=1) = B —aQ 0 ,
C 0 —N.(ulkD)
(2.1)
u®) f4+ Mu"
W = W(k‘) = p(k) R b = 0 s
W) 0
fork=1,2,....

We denote by;, ¢;, andZ; the generic test basis functions for the three unknowns. We
have

M;; = L/ v,v;, Aij (V) = My +P/(u271 - V)viv, +M/ Dv;Vvj,
At Q 0 Q

B;; E/V'Uiq]‘, QijE/quj7
Q Q

Cij = / Zi : V'Uj, N&ij(u(k_l)) E/ |Du2_1\EZi : Z]‘.
Q Q

Notice that the matrixV, (u(*~1)) is symmetric positive definite far > 0 (and semidefinite
for e = 0). The matrix/V, is written componentwise (3 blocks in the 2D case and 6 blotks
the 3D case since the tensor is symmetric).
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This system features a twofold saddle-point structureefftsient solution with realistic
geometries and a large number of degrees of freedom is m@ltrit can be obtained by
an approximate factorization od. by splitting or segregating the computation of velocity,
pressure, and the tenstdr. Another line of investigation is to design an efficient aath
preconditioner by taking advantage of the structure of théim

This can be done in several ways. As a matter of fact, theréwaralifferent ways to
recognize the saddle-point structure ®flj. Letting

B= [g} and N, = {—(0)462 NE<(L,€1)}

gives a saddle-point problem of the form

A BT
=[5 ]

with a positive definite (1,1)-block, which is also symmeitn the case of the Stokes type
problem.
On the other hand, one may define

T
S:[A B

B QQ} and C=[C 0].

In this case, the problem becomes

o xw)

and the (1,1)-block of the saddle-point problem is indedigihd represents in turn itself a
saddle-point problem. Many preconditioners have beenesigd for saddle-point problems
either when the matrix (1,1)-block of the system is s.p.anisetric positive definite) or its
symmetric part is s.p.d. A broad spectrum of preconditismelies on inexact factorizations
of the system and approximations of the Schur complemerit aadhe least square com-
mutator preconditioner or the pressure convection diffugireconditionerql, 22]. Other
preconditioning techniques for saddle-point problemduitle augmented Lagrangian pre-
conditioners 7, 8] or preconditioners based on a dimensional splittHdg].

Here, we do not follow these strategies based on the algestraicture of the problem,
but we rely upon a model-based approach. As pointed out inntineduction, we target
preconditioning the non-regularized matydly by using the regularized matrit. so that the
role ofe turns from controlling the accuracy of the solution to dnyithe effectiveness of the
preconditioner. The final solution will correspond to thensregularized problem, and this
guarantees that the accuracy is affected only by the nuaieligcretization. The regularized
problem needs in turn to be solved effectively. Here, we ugeametric multigrid method.
In the following sections we provide an accurate descniptibthe method and its numerical
assessment. A brief comparison with a simple, block dialgorgconditioner is provided in
Section4.4. Other methods for ABF may be pursued and will be investiyatsewhere.

3. The multilevel regularization-based preconditioner.

3.1. Spectral investigation of the regularized versus thean-regularized problem.
To support the idea of using the regularized Bingham probiemrecondition the non-
regularized one, a preliminary spectral analysis on a sgiedl problem is performed. In
Figure3.1 (left) we report the eigenvalues of the non-regularizecgBam matrixA4, for the
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FiG. 3.1.Left: absolute values of the eigenvalues of the discretalized Bingham matrix (blue) and eigen-
values otz ! A (red) in the analytical test case, wherk is the regularized Bingham matrix with= 10~2. The
clustering of the eigenvalues of the preconditioned matraxind 1 indicates that—even with a relatively large value
of the regularizing parameter—the regularized problenesfithe potential for preconditioning the non-regularized
one. Right: spectral radius dV. — N for several values of (logarithmic scale). The reference dash-dotted line
has slope 2.

case of the steady Stokes type equations computed for theoflomeen parallel plates (see
Section4.3) with » = 1/16 on a 2D unit square. This size allows to perform this analysis
Matlab. In the same panel we also display the eigenvalueswhen preconditioned by the
regularized problen., i.e., the eigenvalues o= !4, with ¢ = 10~2. Clustering of the
eigenvalues aroundl = 1 is evident, and this suggests that the matrix corresponditige
regularized problem may actually be a good preconditiooetife non-regularized one.

For assessing the impact of the regularization paramettireonon-regularized problem,
we consider the following factorization od. with ¢ > 0 (we omit the dependence of the
matrix N. on the velocity field for the sake of readability)

L[s emy_s 0 I sl
= lc -N.| T |c -N.—cs7eT| 0 T |

From this factorization it follows thatl. (and in particulard,) is nonsingular if and only
if N. +CS~1CT (N +CS~1CT) is nonsingular.
In addition, we investigate the matriX. — Ny, whose entries reaf}, g(¢)Z; : Z; with

2
€
e)=+vVDu? +e2 —|Du| = )
9() Dul = = 1 [Du)

By direct inspection, it is readily seen thgt) > 0 for anye > 0, g(0) =0 and%(o) =0
for |Du| # 0, while in the rigid regiorg(e) = ¢. We conclude therefore tha&l. — Ny is
s.p.d. fore > 0, and fore — 0 the spectral radius a¥. — N, vanishes withe? in absence of
rigid regions and witlr when rigid regions are present.

PROPOSITION3.1. For e — 0, the eigenvalues of the preconditioned matAx .4,
cluster around 1. In absence of rigid regionDfu| # 0), the distance of the eigenvalues
from 1 scales witlz?. When rigid regions are present, the distance scales svith

Proof. For, = N, + CS~'C”, notice that

g1 =TT s 0
= 0 I woles—t -yt

€
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and by a direct computation we get

1 - I s-ic” 1—2;120
(31) 'As -AO ~ o 2(:5120 )
SinceS represents the (Newtonian) Stokes (or linearized Navieke3) part of the linear
system, the invers&~—! is well-defined provided eithes andp are discretized innf-sup
compatible spaces ar > 0 (even though the matrix is indefinite). We can see fr8m)(that
the eigenvalues of the preconditioned matdg®.A, cluster around one for; '3, — I.
More precisely, sincéV, is s.p.d.,

S8 = (N +¢87'¢") 7 (N + ¢s7'cT)
= (N.+CS7'¢) (N +CS'C" + Ny — N.)
—T— (N.+CS™'CT) ™ (V. — Ny)..

Let us denote by the eigenvalues of N, + CS—lcT)_1 (N. — Np), i.e.,

(N.+CS'C") ™ (N. — No) z = .
The deviation of the eigenvalues df ' A, from 1 is given by\. Then, we have
(1= A)Nex = (No+XCS7'CT) .

Since Ny + CS~!CT is nonsingular)\ # 1. In addition, we notice that if: is a generic
eigenvalue of

(No+C€S71CT) ™" (N2 = No),

thenpy = A/(1 — X). From the preliminary analysis of the matriX. — Ny, we notice
that i scales withe? for |[Du| # 0 and withe when|Dwu| = 0. SinceX = u/(1 + u), the
eigenvalue\ scales in the same way and the proposition is proved. O

From the previous proposition it is promptly verified that fosmall enough, the eigen-
values of the symmetric part of- A, approaches 1, so they are positive. Fr@h Propo-
sition 4.3], the GMRES method converges, the convergenice faster where tends to 0.

In Figure3.1(right), the spectral radius d¥. — IV, is displayed for several values ©fn the
case of a flow between two parallel plates. For the same tsst E&gure3.2 shows the resid-
ual for the first 30 iterations of GMRES when solving the pratiboned system for different
values ofs. To provide this proof of concept, the inverse4f is computed by the backslash
Matlab command. As expected, the smaliethe faster the GMRES iterations reach any
given tolerance. The combination of regularized and nguiegized models presented here
specifically for the solution of Bingham fluids is a novel adlmition of the present paper.
It is worth mentioning that, however, the adoption of regaked problems to precondition
Stokes-like systems was advocated by O. Axelsghn [

For small problems, when the matri4. is easily solved and its spectral properties do
not affect the overall performances of the preconditionsdes, small values of the param-
eter guarantee faster convergence. Unfortunately, inagalications, we need to resort to
different solvers for the preconditioner.
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FiG. 3.2. Residual of GMRES for the first 30 iterations when solvingritie-regularized problem precondi-
tioned by the regularized one with different values .of

3.2. Geometric multigrid approximation of the regularized problem. Even though
the preconditioned solver converges, the solution of tiyelegized preconditioner may be
expensive especially for really large problems. For thasom, we need now to devise an
efficient solver for the regularized Bingham problem. Intjgaitar, we propose here to resort
to a geometrical multigrid technique As a matter of fact, multigrid (MG) methods have
experienced an increasing popularity for a large range ablpms due to their potential for
optimality [42] including the solution of indefinite problems; see, e.86, 4] in the context
of constrained optimization problems and fluid-structumteriaction, respectively.

To define our approximate solver, we first introduce sometimotaConsider a sequence
of L regular finite element mesh@g with £ = 1,2, ..., L, such that7;, is the finest grid,
where we solve the problem. Each finer mesh at I&vslassumed to be a refinement of the
coarser levek — 1. Correspondingly, we associate the matrigeg, obtained by discretizing
the regularized ABF problem (either steady or unsteady)thénsequel, when there is no
ambiguity, we drop the indexfor notational convenience. Throughout this section werref
to the regularized Bingham problem.

Let further{l‘Ik}ﬁgl1 be the natural prolongation (by interpolation) matricdatreg the
system matrix4y, to its coarser counterpast;, | = HkT,Aka, and lety be a generic input
vector,x the corresponding output vector, amdv, ¢, andtol be given parameters, whefe
represents the current level afud the given tolerance.

In Algorithm 1, we introduce our recursive solver of the regularized AB&bem. The
method “MLPrecond” recursively calls itseiftimes as a preconditioner inside an FGMRES
scheme 34]. For o = 2, this method provides a variant of the classical W-cycletiguid.
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Level 4~

pre-smoothing post-smoothing

1 FGMRES iteration 2" FGMRES iteration
+ pre-smoothing + pre-smoothing

Level 3

post-smoothing

1%t FGMRE iteration
+ pre-smodthing

2" FGMRES iteration
+ pre-smoothing

2" FGMRES iteration

+ pre-smgothing + pre-smoothing

Level 2

post-smpothing post-smoothing

Level 1

direct solve direct solve direct solve direct solve

FiG. 3.3. Visualization of Algorithni on four levels withr = 2. Each visit to a multigrid level is displayed
together with the action that is performed on that level.

Algorithm 1: MLPrecond.
Data: X, Y, {Ax }xs {Uk}x, o, v, £, tol
Result x = procedure solution tgl,x =y
begin
for i <~ 1tov do
| smooth ond,xx =y

/I Restriction of the residual
r=10_, (y — Ax) ;

if £—1=1then
| X.=(Ag—1) \r; /lcoarsest level: Matlab notation for a direct method
else
Xe = 0,

/I Recursive call of the procedure
Precond=MLPrecona(, r, { A, }\ =}, {II; }i24, o, v, € — 1, tol);
FGMRESWU,_1, X, I, tol, o, Precond);

X =X+ 1I,_1X.; [lupdate;
for 1+ 1tordo
| smooth on4d,x =y

end

Figure 3.3 visualizes this algorithm for the special case of four nguitl levels andr = 2.
The figure displays how the different levels are visited arfdctv action (pre-smoothing,
post-smoothing, or a call to FGMRES) is performed. This pcare was motivated by the
nonlinear AMLI preconditioning techniques introduced 412 Section 5.6 ].

In the following subsections, we describe in detail the gnglation and restriction oper-
ators as well as the smoother selected for our solver.
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3.2.1. Interpolation and restriction. Starting with a mesh that is sufficiently coarse
to allow a fast solution of the discrete system (e.g., by edlisolver that we have denoted
with “\”), we refine the mesh uniformly. times. With each mesh, we associate a corre-
sponding triple of finite element spacé$;, i, Qn k, Zrnix, k = 1,..., L. By construction,
the coarse level spaces are subspaces of the next fine lageksT his defines natural embed-
dings{II¢}£_,, {117 }£_ | and{II}" }£_, which transfer (interpolate) the degrees of freedom
of u, p, andW, respectively, from the coarse mesh (lekel 1) to the fine mesh (levet).
The (monolithic) interpolation operator is given by

m o0 0
m,=|0 I o0
0 0 my

As previously pointed out, the matri{;, is assembled on the finest mesh, and the coarse
ones are obtained via the Galerkin conditidp_; = HfAka fork=1,..., L.

3.2.2. Smoothing.Several types of smoothers may be considered. In the cagenef s
metric positive definite problems, stationary iteratiorss tgpically the method of choice. If
the problem is symmetric indefinite, a feasible approach igerform a few iterations of a
preconditioned Krylov subspace method with a simple (famegle Jacobi or Gauss-Seidel)
preconditioner. Since2(1) is indefinite, we use the additive Schwarz method as a precon
ditioner in a GMRES solver. We have to use GMRES since the Schwreconditioner is
generally also indefinite. Using the variational iteratiwethod as a smoother in a MG cycle,
strictly speaking, leads to a (mildly) non-linear mappirighe overall MG cycle. For the sake
of simplicity, we will omit the indext indicating the level of discretization for the remainder
of this section. Given the discretized dom&iron any given level, we subdivide the domain
into m overlapping subset§;}™,. Then we set up linear mapping$*}™,, {I’}™,,
and {1V}, restricting the degrees of freedom @f p, andW, respectively, to the local

1=

domaing?;. Theith subdomain local matrix is then given by

I 0 0
A; = LAY with =0 I' 0|,
0o o 1

and the inverse of the global matrix is approximated by ttditae Schwarz preconditioner
defined by the formula

./471 ~ ZLTA:lL
i=1

The size of the subdomains should be chosen sufficientlyl sm#tat the inverse of the local
matricesA; can be easily computed.

This smoothing technique can be viewed as an additive arten$the Vanka-smooth-
er [39, 41] based on a block Gauss-Seidel iteration where each blad&igified by the patch
of each element8, 37]. The latter has been specifically proposed for the finitéetéhce
solution of the incompressible (Newtonian) Navier-Stokgsations.

4. Numerical results.

4.1. Implementation details. Numerical tests presented hereafter have been obtained
with the finite element librarFEM[30]. In particular, we usé?? /P! finite elements for
velocity and pressure, respectively, while the auxiliaayiable 1V is discretized withP!
finite elements.
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As a solver on the coarsest grid we use a direct solver withe € library
SUI TESPARSE. More precisely, when solving the Stokes type equations,regert to
an LDLT-type factorization using theDL package described irl}§]; see B0. For the
Navier-Stokes problem, theU factorization is computed by tHdVFPACK package 13, 14,
17, 18]). Before computing all factorizations, we apply a fill-ieducing reordering provided
by AMD[1, 2, 16].

To set up the smoother on each level (except for the coarsestirst generate an ad-
jacency matrixS = [s;;] (with s;; = 1 if element: andj share a common face in three
dimensions or a common edge in two dimensions gnd= 0 otherwise). We then apply a
graph partitioner ilVETI S[29] on S. This procedure results in a partitioning of the mesh in
which the overlap consists of one layer of elements at thexfexte. Extra layers of overlap
may be included as well. The solves on each subdomain are dgaé by the direct solvers
provided inSUl TESPARSE. Table4.1 shows the different meshes we use for our experi-
ments and the number of multigrid levels used for each mekk.nlimbers of subdomains
and of overlapping nodes are shown as well. In particula,nihmber of subdomains on
each level has a strong influence on the performance of ouopdiioner. The trade-off is
between the size of the local system (not too large) and theabthefficacy of the smoother.
This is achieved by increasing the number of subdomains bgtarfof 4 in 2D and a factor
of 6 in 3D for each additional multigrid level as shown in tlable. The size of the discrete
system for tests running on a unit square and on a unit cubsashown.

Initialization of the Picard iteration is set to he= u°, p = 0, W = 0, whereu? is
the solution of-pAu® = f solved with preconditioned CG iterations. Then, we corgithe
nonlinear iterations until

[r[|2 9
<
llroll2 —

)

wherer (ry) is the current (initial) residual. The absolute toleraiscget to5 - 1076, In this
way the linear solver is accurate enough to guarantee reatliconvergence in all our test
cases. Since the initial guess already yields a relativelglisinitial residual, this stopping
criterion is sufficient to achieve a good approximation afgplnd fluid regions as we will
see later. The linear system is solved by FGMRES with our g#gnonlinear AMLI
multigrid preconditioner. The solution is considered cenged if the quotient of current
and initial residual drops below0—% in the L? -norm. All tables display the number of
linear iterations needed for the convergence of the firslimear iteration. To summarize, the
overall procedure is presented in Algoritiim

4.2. Choosing the regularization parameter.In Section3.1we stated that the perfor-
mance of the preconditione4. improves as decreases provided that the inverdg’ is
computed exactly. However, the reduction of the reguléibngparameter in general deteri-
orates the conditioning properties of the matrix, and thég/impair the quality and effec-
tiveness of the preconditioner in presence of plug regibmghis respect, finding the optimal
value ofe involves finding the right trade-off between conditioningttee regularized prob-
lem (which improves wheais large so that the regularization is stronger) and its isterscy
as preconditioner of the non-regularized one (improveswehie small). In our experiments
we empirically found that the optimal choiceds= 1072,

It is worth noticing that the domain decomposition used im experiments is based
solely on the mesh and not on the solution. If a subdomaintiseyncontained in a plug
region, we may experience some performance degradationa. atter of fact, some of the
(local) linear systems representing a subdomain are egtyaiaconditioned for small values
of £, and the local (direct) solves on these subdomains may benacgurate resulting in a
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Algorithm 2: Sketch of the preconditioned scheme.
begin

pre-processing (mesh generation, etc.) ;

solve—pAu® =f; ;

x = [u; 0, 0]; // initial guess computation

while relative residuat> 102 do
/IPicard outer loop;
assemble matri¥d; and right-hand side with the current guess

while relative residuat> 10~% do
/llinear inner loop;
FGMRESMA, X, 1, ..., MLPrecond)

post-processing ;
end

TABLE 4.1
Number of multigrid levels, number of subdomains, size cii eabdomain, size of overlap, and the size of the
linear system to be solved in two and three dimensions.

Experiments on unit square

mesh #levels #subd. #overlap. nod. size overl. sizelin. syst.
h=1/8 2 3 34-40 27 902
h=1/16 3 9 42-50 126 3,334
h=1/32 4 27 56-72 498 12,806
h=1/64 5 81 68-85 1,839 50,182
h=1/128 6 243 89-110 6,751 198,662
h =1/256 7 729 114-143 24,343 790,534

Experiments on unit cube

mesh #levels # subd. size subd. size overl. size lin. syst.
h=1/4 2 12 24-31 97 3,062
h=1/8 3 72 27-49 669 19,842
h=1/16 4 432 34-55 4,697 142,202
h=1/32 5 2,392 41-70 34,925 1,075,434

failure of the smoother. Larger valuesayield an improved conditioning of the systems on
these subdomains. A future development of the method wawldde an adaptive domain
decomposition approach to avoid these troublesome sinsti

We also noticed that the condition number of the regulartzedk N. in (2.1) grows
mildly ase — 0 except when betweetD—2 and10~2 where the increase is more evident;
see Figuret.l This effect is independent of the mesh size and it provideadalitionala
posteriorimotivation of our choice.

4.3. Flow between two parallel plates.This test case is one of the few examples in
which the analytical solution is known for the steady (Nayv&tokes type Bingham problem.
The domain is a unit square where the coarsest mesh adosteddsh sizé. = 1/4. In 3D
extensions of this case, running on a unit cube, the codesesdtfeatures: = 1/2. The test
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FiG. 4.1.Condition number of the blocK. for different values of (on the horizontal axis) and.

case describes a flow between two parallel plates and iti@wois given by

l-2r)?+(1-2r,—2y)? fo<y<i-n,
(4.1) up = 4 (1 -27,)% if i -7 <y<i+m,
%[(1_27—5)2_(2?4_27'5_1)2] if %"’Ts <y<1,

with uy = uz = 0 andp = —z. The strain rate vanishes in the plug region

1 1
{(x,y,z)|§—rs Syg §+TS}'

In our experiment we impose Dirichlet boundary conditiomstbe unit square and cube
according to4.1) with 7, = 0.3 andu = 1.

To precondition the flexible GMRES iterations, we use theodlgm from Section3
with two smoothing steps/(= 2) in 2D and four smoothings/(= 4) in 3D as well as two
iterations of FGMRES on each multigrid levet = 2). Table4.2 displays the number of
flexible GMRES iterations needed for convergence for thé Firsard step, the total number
of nonlinear iterations needed for convergence, as welh@<fU time needed for solving
the linearized system. In the three-dimensional case thebeuof linear iterations slightly
increases with the size of the mesh. However, the paramitetbe preconditioner were
chosen to minimize the CPU time as opposed to the iteratiantcdy properly tuning the
number of smoothings or the number of subdomains, we get en more evident mesh
independence.
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TABLE 4.2
The flow between two parallel plates, an analytical test gas®vo and three dimensions: number of linear
iterations, CPU time for solving the linear system, setugd apdating time for the preconditioner (all in seconds),
and the total number of nonlinear (Picard) iterations. Thetwf time is second.

Two dimensional experiments

mesh #lin.its CPUtime setup updating # nonlin. its.
h=1/8 10 0.01 0.01 0.01 6
h=1/16 13 0.08 0.02 0.03 6
h=1/32 14 0.50 0.05 0.09 6
h=1/64 14 219 0.18 0.40 6
h=1/128 14 9.60 0.86 1.72 7
h =1/256 12 37.93 544 7.25 7
Three dimensional experiments
mesh #lin.its CPUtime setup wupdating # nonlin. its.
h=1/4 6 0.08 0.01 0.07 4
h=1/8 8 151 0.17 0.75 5
h=1/16 16 27.89 181 6.74 6
h=1/32 11 258.53 25.53 90.46 6

Note that for the Stokes type problem, only the mafkix needs to be updated before
each nonlinear iteration. In this respect, the timings jaled in Table4.2 for setting up the
preconditioner are divided into initial setup time (thiglides setting up the interpolations
between the different levels, determining the subdivigibthe domains, and setting up the
restriction operators for each subdomain) and updating (this includes the updating of.
in the preconditioner, computing a factorization of thedlamatrices on each subdomain, and
computing a factorization for the direct solver on the cearsevel). All experiments are
performed with a serial code. Timings for the Stokes typegBam problem are obtained
on a personal laptop with an Intel Core i7 processor, 2.6 Gid,8 GB of memory. Due
to a higher memory requirement, experiments involving ttavibr-Stokes type Bingham
problems are run on a Sun Microsystems SunFire X4600 with D Apteron(tm) cores
and 32 GB of memory.

In Table4.3, we examine the effect of the regularization parametan the performance
of the preconditioner. The table displays the number ofliiiterations needed for solving the
two-dimensional Bingham problem for different mesh sizeg different values foe (used
as a parameter in the preconditioner). It emphasizes tHeuynd influence of the choice of
this parameter: while = 10~2 yields mesh independent convergence, for other choices of
the parameter, the number of iterations increases—at tilgagisantly—as the mesh size
decreases. Choosing= 10~2 was the optimal value in all our experiments, however, the
effect was the strongest in this test case.

Figure4.2 shows plug and fluid regions as well as the streamlines farfibwv in two
dimensions for different values af. The colors in the figure represent values Bfu| so
that the plug regions are approximately the parts of the domavhich | Du| is small.

4.4, The lid-driven cavity. This is a standard benchmark problem for CFD codes. The
lid is moved at a velocity of magnitude 1 in thedirection, i.e.,

1
u= (0 if y=1,
0
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TABLE 4.3
Number of linear iterations needed for solving the flow betweparallel plates when preconditioning the
problem with different values efand for different mesh sizes.

e=10"1 =102 =103 c=10"% =105 =0
h=1/8 25 10 9 9 9 9
h=1/16 26 13 13 13 13 13
h=1/32 27 14 15 15 15 15
h=1/64 23 14 16 17 18 18
h=1/128 19 14 21 24 24 24
h=1/256 17 12 29 58 59 50

FIG. 4.2.Plug regions (blue) and streamlines for the flow between Ipelalates for differentrs = 0.1 (left),
7s = 0.3 (center), andrs = 0.4 (right). Regions in red indicate higher values|@iu|.

and we impose homogeneous Dirichlet boundary conditisendiere. Again we set = 2
andp = 1. For preconditioning we use the multilevel algorithm wittotsmoothings in 2D
and four smoothings in 3D as well as two inner GMRES iteration each level. Tablé.4
shows the numerical results for this experiment. Note th&hé case, = 10, we use four
smoothings in both 2D and 3D in order to maintain mesh indéeenconvergence. Plug and
fluid regions for this flow are shown in Figu¥e3. We simulated the same case considered
in [24]. Visual comparison of our results with the one in theté, [Figure 5.4] confirms again
what was already found irg], i.e., that ABF is able of correctly detecting the plug @ts.

For the sake of comparison, we provide some numerical sefultthis problem if a
different, simpler preconditioner is used. One may use eqguditioner of the form

A0 0
P=l0 Q@ o],
0 0 N

whereA, @, andN, are as in2.1). This preconditioner is symmetric positive definite. Henc
we may use MINRES iterations as the outer Krylov solver. phéconditioner was tested on
the two-dimensional problem. Table5 shows the number of iterations required for solving
the linear systems. Solutions of systems involviig! are computed exactly by a direct
solver on a mesh up to size= 1/64. The numerical results in the table demonstrate that even
though this preconditioner may be very easy to apply, theadveumber of iterations needed

to reach the given tolerance is very high, and the numbeendtibns increases significantly
with the mesh size so that mesh independent convergencg.is lo

4.5. The steady Navier-Stokes type problemWe now apply the lid-driven cavity test
case to the steady Navier-Stokes type problem. Here allfgfaions are the same as in the
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TABLE 4.4
The lid-driven cavity flow withrs = 2, 7 = 5, and7s = 10 in two and three dimensions (Stokes): number
of linear iterations, CPU time for solving the linear systesetup and updating time for the preconditioner (all in
seconds), and the total number of nonlinear (Picard) itenas. An asterisk indicates that four smoothings were
used in this experiment. The unit of time is second.

Two dimensional experiments
Ts = 2 | mesh #lin.its CPUtime setup updating # nonlin. its.
h=1/8 8 0.01 0.01 0.01 4
h=1/16 11 0.07 0.01 0.02 5
h=1/32 12 0.42 0.04 0.10 5
h=1/64 12 1.87 0.17 0.40 5
h=1/128 12 8.22 0.80 1.71 5
h =1/256 11 3491 544 7.29 4
Three dimensional experiments
mesh #lin.its CPUtime setup updating # nonlin. its.
h=1/4 3 0.04 0.01 0.06 3
h=1/8 5 0.94 0.17 0.74 4
h=1/16 8 1394 1.80 6.63 5
h=1/32 5 167.21 25.48 89.12 5
Two dimensional experiments
Ts =5 | mesh #lin.its CPUtime setup updating # nonlin. its.
h=1/8 9 0.01 0.01 0.02 5
h=1/16 12 0.10 0.01 0.02 6
h=1/32 14 0.53 0.05 0.10 6
h=1/64 15 245 0.18 0.42 6
h=1/128 16 11.26 0.84 1.84 6
h =1/256 15 47.17 5.40 7.96 6
Three dimensional experiments
mesh #lin.its CPUtime setup updating # nonlin. its.
h=1/4 3 0.04 0.01 0.06 3
h=1/8 5 0.95 0.15 0.76 4
h=1/16 9 1587 1.80 6.82 5
h=1/32 5 161.23 2551 88.15 5
Two dimensional experiments
7s = 10 | mesh #lin. its* CPUtime setup updating # nonlin. its.
h=1/8 5 0.02 0.01 0.01 6
h=1/16 9 0.12 0.01 0.02 7
h=1/32 10 0.64 0.03 0.10 7
h=1/64 11 3.19 0.18 0.43 7
h=1/128 11 14.06 0.84 1.85 7
h =1/256 10 56.96 4.42 7.98 7
Three dimensional experiments
mesh #lin.its CPUtime setup updating # nonlin. its.
h=1/4 4 0.05 0.01 0.06 4
h=1/8 5 0.95 0.16 0.76 5
h=1/16 12 21.07 179 6.66 6
h=1/32 6 185.29 25.56 96.59 6
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FiG. 4.3.Plug regions (blue) and streamlines in two dimensions feri-driven cavity problem withs = 2
(left), s = 5 (center) andrs = 10 (right). Green and red areas represent the fluid region.

TABLE 4.5
Number of iterations needed for linear convergence in the-dimensional lid-driven cavity when using a
block diagonal preconditioner.

mesh | h=1/8 | h=1/16 | h=1/32 | h=1/64
#iterations| 482 | 584 | 660 | 748

previous subsection except that we now solvé)(with %—;‘ =0, p =1, and we impose

corresponding to a Reynolds numbes = 50. We now tighten the nonlinear tolerance
to 10~* to ensure accurate solutions. Numerical results are shoWwakle4.6. Note the drop

in the nonlinear iteration count fér = 1/32 in the three-dimensional case. This is due to the
higher Reynolds number in this test case; the relatively lnigmber of nonlinear iterations
for the coarser meshes are due to convective instabilifiesdid not see this effect for lower
Reynolds numberSe ~ 10); the effect was even more evident if we increased the Regnol
number (to approximateliRe = 80).

4.6. The unsteady Navier-Stokes type problem on a non-trigi geometry. This ex-
periment is performed on a cylindrical domain with a sphdtached to it. It is meant as
an idealized geometry that approximates a blood vesselamithneurysm. This experiment
serves as a first step in understanding the relevance of 8indhuids in problems occur-
ring in hemodynamics; se@3, 33]. We discretize the domain with curvilinear isoparametric
(second order) finite elements; see, e.g7].[ Using elements of higher order has the effect
that the “curved” shape of the domain is captured well duthegrefinement process of the
geometric multigrid. See Figurk4 for the shape of the geometry on each multigrid level.

We use multigrid preconditioning on three levels in this exment with four smooth-
ings and two inner FGMRES iterations. In the Bingham fluid atgpns, we take: = 1
andt, = 1. We prescribe parabolic boundary conditions at the inflowpaslip condition
at the walls, and homogeneous Neumann boundary conditiaihe @utflow. Time is dis-
cretized on the interval from = 0 to ¢t = 1.5 with a time step ofA¢ = 0.1. Table4.7
shows more specifications on the preconditioner as well@suimerical results for this ex-
periment. Figurel.5shows the streamlines and pressure of this flow after a steathy has
been reached.
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TABLE 4.6
The lid-driven cavity flow for the Navier-Stokes type prasl@umber of linear iterations, CPU time for solving

the linear system, setup and updating time for the precamit (all in seconds), and the total number of Picard
iterations. The unit of time is second.

Two dimensional experiments

mesh #lin.its CPUtime setup updating # nonlin. its.
h=1/8 7 0.03 0.01 0.04 9
h=1/16 10 041 0.01 0.19 8
h=1/32 12 250 0.04 0.77 7
h=1/64 12 11.74 0.23 3.27 6
h=1/128 12 54.00 1.44 13.39 5
h =1/256 11 232.63 11.87 53.32 4

Three dimensional experiments

mesh #lin.its CPUtime setup updating # nonlin. its.
h=1/4 6 0.59 0.02 0.61 12
h=1/8 6 9.28 0.12 7.33 17
h=1/16 8 101.76  1.77 58.29 15
h=1/32 7 747.84 47.53 440.48 4

FIG. 4.4. Idealized blood vessel with aneurysm on three geometritigridllevels. Left: The coarsest level
(280 elements), center: one level of refinement (2,240 elesneight: two levels of refinement (17,920 elements).

5. Conclusion. Inthis paper we have introduced a new way of solving the lisgstems
obtained by linearizing and discretizing the non-regatkedi Bingham fluid flow equations in
the augmented formulation. This formulation has been waidy proposed inJ] together
with its linearization. Here, we have focused on the effectiolution of the associated linear
system for real problems featuring large size. The firstistépuse the regularized Bingham
problem as preconditioner for the non-regularized one ke talvantage of the better prop-
erties of the system without affecting the accuracy of tHatem. We have proved that the
regularized ABF provides a convergent preconditioner értbn-regularized one. Then, we
have considered the effective solution of each precondtiateration. We resort to a linear
solver based on a flexible Krylov subspace method. Conveegenfthis iterative method
is accelerated by a nonlinear geometric AMLI multigrid aigfom. In using the regularized
problem in this way, the regularization parametetrives the performance of the precondi-
tioner rather than the accuracy of the solver. Upon a proglecson of this parameter, our
numerical experiments indicate mesh independent cormeega a low number of iterations;
a rigorous proof of this is left for future research. Timireye obtained here on serial ma-
chines but may be significantly improved on a parallel aetitre. The application of our
method to large-scale problems on parallel architecturéssparticular reference to problems
in computational hemodynamics is a natural follow up of thespnt research.
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TABLE 4.7
Numerical results and specifications of the preconditidoethe unsteady Navier-Stokes experiment.

General information

| fine level | intermediate level # Picard its (per time st.) 5

# subd.: 72 12 CPU (s) (pert.s.): 53.41
size subd.:| 100-140 74-98 setup (s): 0.80
size overl.: 2,791 342 updating: 72.36
# linear its: 6

velocity Magn
29.29978

20
Ho

0.006234

FiG. 4.5. Streamlines and pressure field of the unsteady Navier-Styke problem in a cylindrical domain
with an attached sphere.
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