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a-FRACTAL RATIONAL SPLINES FOR CONSTRAINED INTERPOLATION  *

PUTHAN VEEDU VISWANATHANT AND ARYA KUMAR BEDABRATA CHAND f

Abstract. This article is devoted to the development of a constructiyer@ach to constrained interpolation
problems from a fractal perspective. A general construaf@ma-fractal functions® € CP, the space of ajp-times
continuously differentiable functions, by a fractal pebation of a traditional functios € CP using a finite sequence
of base functions is introduced. The construction of smaesfractal functions described here allows us to embed
shape parameters within the structure of differentiabletéfafunctions. As a consequence, it provides a unified
approach to the fractal generalization of various tradiionon-recursive rational splines studied in the field of
shape preserving interpolation. In particular, we intrcela class ofv-fractal rational cubic splines® € C! and
investigate its shape preserving aspects. It is showrsthabnverges to the original functich € C2 with respect
to theC'-norm provided that a suitable mild condition is imposed ondteding vectok. Besides adding a layer
of flexibility, the constructed smooth-fractal rational spline outperforms its classical nondrstve counterpart in
approximating functions with derivatives of varying irréggity. Numerical examples are presented to demonstrate
the practical importance of the shape preservifigactal rational cubic splines.

Key words. iterated function systeny-fractal function, rational cubic spline, convergencenaxity, mono-
tonicity, positivity
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1. Introduction. Fractal interpolation, a subject championed by Barnslgyi$ a new
technique which has proven to be advantageous over traditinterpolation methods. The
traditional interpolants such as polynomial, rationagdanometric, and spline functions are
always smooth or piecewise smooth. Fractal Interpolationckons (FIFs) defined via a
suitable Iterated Function System (IFS) possess the yovkfiroviding one of the very few
methods that produce non-differentiable interpolantsn-§imooth FIFs are well suited for
deterministic representations of complex real-world mmeena such as economic time se-
ries, weather data, bioelectric recordings, etc. BarrshelyHarrington?] observed that FIFs
are closed under the operation of integration and subs#gusveloped the calculus of frac-
tal functions. Thus, these authors have initiated the cactsbn of smooth FIFs and unfolded
a striking relationship between the theory of fractal fumes and splines. Overall, a FIF of-
fers the flexibility of choosing either a smooth or a non-sthapproximant. Smooth FIFs
can be utilized to generalize the classical interpolatiod approximation techniques; see,
for instance, 4, 5, 6, 8, 25, 26, 27, 28]. Furthermore, if experimental data are approximated
by aCP-FIF f, then the fractal dimension of the graph8f) can be aptly used as an index
for analyzing the underlying physical process.

Consequently, traditional interpolation theory and faattieory together yield many pos-
sible approaches for interpolating given data by means obsimfunctions. Unfortunately,
there is no consensus on a “best” interpolant from the wedlttarious possibilities. How-
ever, there are several desirable properties such as snesstrapproximation order, locality,
fairness, and preservation of the inherent shape that e expected from interpolants. By
focusing on these properties and trade-offs between thenmay narrow down our search
for a good interpolant. The problem of reproducing the datie properties inherent in
the data not only eliminates some interpolants from comatd® but also provides a real-
istic model for the intended physical situation. The subfif interpolation/approximation
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wherein one deals with the problem of finding an interpolafior which s(*) is nonneg-
ative for somek € N U {0}, wheneverf(*) is nonnegative for the data generating func-
tion f, is generally referred to ashape preserving interpolatioor isogeometric interpola-
tion. Fork = 0, 1, and2, the problem reduces to preserving nonnegativity, monocitgnand
convexity, respectively.

Due to the everlasting demands from engineering, indlisarad scientific problems,
the construction of shape preserving smooth interpolant®é of the major research areas
of approximation theory and of computer aided design. Tieeelarge body of literature
devoted to shape preserving interpolation with traditiomen-recursive interpolants; see, for
instance, 3, 9, 10, 18, 30] and the references therein. Among various non-recursiepes
preserving interpolants, the rational splines with shapemsion parameters are extensively
used due to their simplicity and flexibilityL[L, 12, 19, 20]. However, many of these traditional
shape preserving interpolation methods require the date tgenerated from a continuous
function which has derivatives of all orders except perta@sfinite number of points in the
interpolating interval. Consequently, these methods ess $atisfactory for preserving the
shape of given Hermite data wherein the variables reprieggtite derivatives are modeled
using functions of varying irregularity (from smooth to nesve differentiable). Such data
arise naturally and abundantly in nonlinear control systéeng., a pendulum-cart system)
and in some fluid dynamics problems (e.g., the motion of afaiphere in a non-Newtonian
fluid) [21, 32). Recursive subdivision schemes can produce shape piegenmterpolants
with fractality in the derivative of the interpolant. Howay a quantification of the fractality
of the derivative in terms of the parameters involved in ttteesne is unavailable.

From an application’s point of view, the development of shapeservingC?-FIFs is
beneficial due to the following reasons: (i) they can recapthe traditional non-recursive
shape preserving interpolants for suitable values of tBepirameters, (i) they provide shape
properties of the interpolant and fractality of the deiiies, and (iii) the fractality can be
controlled through the free parameters (scaling factorsh® IFS and can be quantified in
terms of the fractal dimension allowing to compare and disiciate the experimental pro-
cesses. On the other hand, the theoretical importance efaj#ug shape preserving fractal
functions lies in the fact that shape preserving interpateand fractal interpolation are two
methodologies that are evolving independently and in fEyand hence there is a need to
bridge this gap for one to benefit from the other. At the outaet admit that due to the
implicit and recursive nature of the fractal function, depéng shape preserving polynomial
FIFs will be more challenging than that of their classicalm@rparts. For an initial easy and
elegant exposition of fractal interpolation techniqueshape preservation theory, rational
FIFs with shape parameters act as a suitable vehicle.

For constructing smooth FIFs, we need to find an IFS satigfyire hypotheses of
the Barnsley and Harrington theore].[ This may be difficult in some cases, especially
when some specific boundary conditions are required. Basédeoconstruction of°-FIFs
through a “base function] and the Barnsley and Harrington theorem, Navascand Se-
bastan [28] described a method for the constructiorC8fFIFs, specifically polynomial FIFs.
However, this single base function method is not suitable¢tfe development of smooth ra-
tional FIFs with shape parameters. In Sectiohy we generalize the construction@f-FIFs
using ana-fractal function technique with the help of a finite sequen€ “base functions”
in contrast to a single base function adoptedLlir?B]. Our present approach to the construc-
tion settles the issue of incorporating shape parameterghe structure of a fractal spline.
Consequently, the construction 6f-continuousa-fractal splines enunciated in this article
heralds a unified approach to the definition of fractal gdisai@ons of various non-recursive
shape preserving rational splines; see, for instaiée 1P, 29, 31, 33]. Recently, the authors
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have investigated fractal versions of some of these rdtgplmes using a constructive ap-
proach, thereby initiating the study of shape preserviagtél interpolationT, 34, 35]. Note
that the present approach is more general providing a commexium for these rational
fractal splines and many more.

In Section3.2, we particularize our construction to obtain atfractal functions® € C!
corresponding to the traditional rational cubic splirgudied in detail in31]. Our predilec-
tion to the choice of rational splines with linear denomamats an illustration for the process
of generalizing the traditional shape preserving rati@péihes is attributed to the reasons of
computational economy. Further, from the point of view @& thagnitude of the optimal error
coefficient, the spline with linear denominator can betfraximate the function being in-
terpolated than the rational interpolation with quadraticubic denominatorly]. A detailed
study of the approximation property of the construateftactal rational cubic spline when
applied to the approximation of a function in cl@$sis broached in Sectiof In Sections. 1,
the constructed-fractal rational cubic spline is further investigated auitable conditions
on the parameters are developed to preserve the convegipenty of the given data. It is
observed that, in general, it may not be possible to get a taedractal curve using the
developedr-fractal rational cubic spline interpolation scheme usldse derivative param-
eters are chosen to satisfy some suitable conditions irtiaddd the necessary monotone
conditions. Whence, our approach generalizes and corfextadnotonicity result quoted in
[31]. Section6 provides test examples where we compare the plots obtaintehproposed
a-fractal rational cubic spline and its classical counterpae result is encouraging for the
fractal spline class treated herein. We conclude the pafierssme remarks and possible
extensions in Section.

2. FIFs and a-fractal functions. In this section, we recall the concepts of a FIF and
a-fractal functions, which are needed in the sequel. For apbet® and rigorous treatment,
we may refer the reader t4,[2].

Let A := {x1,29,...,2y} be a partition of the real compact intenBl= [z, zx]
satisfyingr; < xo < --- < zy. Let a set of data points

{(xn,yn) €I xR: n=1,2,...,N}

be given. Fon € J ={1,2,...,N — 1}, setl,, = [x,,, x,11], and letL,, : I — I,, be affine
maps defined by

(2.1) Ly(x) =anz+cny, Lp(z1) =an, Lp(tn) = Tni1.

Let D be a large enough compact subseRofForn € J, let -1 < «,, < 1, and define
N — 1 continuous mapping8), : I x D — D such that

(22) |Fn(xay)7Fn(I7y*)‘ S |an|‘y*y*‘7 Fn(xlyyl):yn; Fn(IvaN):yn-'rl'

Define functionsu,, : Ix D — I'x D suchthatw, (z,y) = (Ln(z), Fu(z,y)),foralln € J.

THEOREM 2.1 (Theorem 1, Barnsleyl]). The lterated Function System (IFS)
Z ={I x D,w, : n € J} defined above admits a unique attractGr Furthermore,G
is the graph of a continuous functigh: I — R which obeys (z,,) = y,,n=1,2,..., N.

The previous function is called a FIF corresponding to th& IE Let the set
G :={f € C(I)| f(x1) = y1andf(zny) = yn} be endowed with the uniform metric
d(f,g) = max{|f(x) — g(x)| : « € I'}. The IFSZ induces an operator such tat G — G,
Tf(z) = F,(L; (z), foL,*(x)), z € I,,n € J. Note thatl" is a contraction on the com-
plete metric spacég, d). Consequently]’ possesses a unique fixed point@ni.e., there
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exists a unique’ € G such thatl'f(z) = f(x) for all z € I. The functionf turns out to be
the FIF corresponding t6 and it satisfies the functional equation

flz) = Fn(Lgl(x), fo L;l(ac))7 Vr € I,.
The FIFs that received extensive attention in the liteeatiem from the following IFS

wp(z,y) = (Ln(x), Fn(:c,y)), L,(z) =apz +cn, Fo(z,y) = any+ qn(z),

whereg,,, n € J, are suitably chosen continuous functions, commonly patyiats, that sat-
isfy (2.2). The constanty,, is called a scaling factor of the transformatian,, and
a = (ag,as,...,an—1) is the scale vector of the IFS. Givene C(I), Barnsley [] has
constructed a functiog, (r) = s o L,(x) — a,b(z), wheres # b € C(I) and whereh

satisfied(x1) = s(x1) andb(xzn) = s(xn). The corresponding FIF* obeys

s%(x) = () + an(s® —b)o L (z), Vacl,.

The graph G(s*) of the function s* is a union of transformed copies of itself,
ie., G(s*) = U wn(G(s*)), and may have noninteger Hausdorff and Minkowski dimen-
J

ne
sions. Therefore, the functior® can be treated as a “fractal perturbation’safbtained via a
base functiorb.

3. A general method for the construction ofC?-continuous a-fractal functions. As
mentioned in the introductory section, we observe thatHerdonstruction of smooth FIFs
in the field of shape preserving interpolation, it is advgetaus to define an-fractal func-
tion s by perturbing a given continuous functierwith the help of a finite sequence of base
functions

B ={b, € C(I) | bp(z1) = s(x1),bp(zN) = s(xN), by Z s,n € J}
instead of a single base functibnThat is, in the first place, we consider
gn(z) = s0 Ly(z) — anby (),
and the IFS
L,(z) =apz+cn, Fo(z,y) =any+soly(z)—ayb,(z), xze€l nel
The corresponding-fractal functions} 5 = s satisfies the functional equation
(3.2) 5(z) = s(z) + an(s* —by) o L (z), Vael,.

Now we make the following definition which is reminiscent betdefinition ofa-fractal
functions generated via a single base function; 88¢46].

DEFINITION 3.1.LetA := {x1, 22, ...,2x} be a partition of the interval = [z, z ]
such thatr; < 2o < --- < xxy anda € (—1,1)V~! be a scale vector. The continuous
functions} = s* defined in(3.1) is called ana-fractal function associated with with
respect to the partitiord\ and the family.

3.1. Smootha-fractal functions. Here we look for conditions to be satisfied by the
functions inB and the scale vectar such that thex-fractal functions® associated with
preserves th@-smoothness of. To this end, at first we recall the following theorem that
establishes the existence of differentiable FIFs (frasqpéihes).
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THEOREM 3.2 (Theorem 2, Barnsley and HarringtoRl)l Let I = [z1,2n] and
1 < x9 < .-+ < xy be a partition ofl. LetL,(z) = anx + ¢, n € J, be affine

maps satisfying2.1), and letF, (z,y) = o,y + qu(z), n € J, satisfy(2.2). Suppose that
for some integep > 0, we have thafo,,| < ka?, where0 < x < 1 andg, € CP(I), for
alln e J. Let

any + a4 (2) ¢ (1) an 1 (@)

_ 11 _
Fn,T(I7y) = r y Yl = 1 s YN =
a, a; — o1

r _ )
aAn_1 — GN-1

If Fromy (N, ynr) = Fop(z1,y1,.)for n=2,3,...,N—1land r =1,2,...,p, thenthe
IFS {I xR, (L,,(z), F,,(z,y)) : n € J} determines a FIFf € C?(I), and f(") is the FIF
determined by{I x R, (L,,(z), F,, r(z,y)) :n€ J}forr=1,2,...,p.

Lets € CP(I). In view of the previous theorem, we assupng| < kaf foralln € J
and for some) < x < 1. Our strategy is to impose conditions on the family of fuocs
B = {b, : n € J} suchthatthe maps, (z,y) = any+q,(z) = apy+soL,(x)—a,b,(z),

n € J, satisfy the hypotheses of this theorem. The argument isrpad after the method of
smooth FIFs developed i2§]. However, we work with a more general setting in the sense
that the equality assumption on the scaling factors are s@d,uand a family of base func-
tions B is employed instead of a single functibnAs mentioned in the introductory section,
the advantage gained by this slight modification is thatdidition to the polynomial splines,
several standard rational splines that are extensively ustne field of shape preserving in-
terpolation and approximation can also be generalizedatdt functions. This allows the
intersection of two fields, the theory of fractal splines am@pe preserving interpolation,
which culminate with shape preserving fractal interpolatchemes.

Let us start with the decisive condition prescribed in thenBkey-Harrington theorem,
namely

(32) Fn—l,r(xvaN,r) = Fn,T(xhyl,r)a n = 2537~--7N_ la r= 1a2a'~-ap7

(r) .
enyta, (%) For our choice ofj,, we have

n

whereF,, ,.(z,y) =

qr(zr)(x) = a:LS(T)(Ln(.’E)) - anbg:)(x)v fOf r= 07 ]-7 27 2

so that

T Oy — T T T
aly_ Foo1p(an,yny) = [GNAS( Nan) - aN—lbg\I)—l(xN)}
aN—1~ ON-1

ol 157 () — a1 (xn),

Qp r (r r
S Jals) (@) = aad” (a1)
a; — g

+ a;s(r) (xn) — anbg) (z1).

(3.3)

a:LFn,r(xla yl,r) —

In view of (3.3), the following conditions on the family3 = {b, : n € J} suffice to
verify (3.2):

(3.4) b (x1) = s (x1), b (xn) =T (xy), forr=0,1,...,p,n € J.

Thus, if we have a family of functionB = {b,, € CP(I) : n € J} such that the derivatives
up to p-th order of each of its members match with thatsoE C?(I) at the end points
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of the interval, then the corresponding FF is in C?(I) and satisfies®(z,,) = s(zp).
Furthermore, for = 1,2,...,p, (s*)(") is the FIF corresponding to the IFS

any +al s (Ln(z)) — anb” (2)

Ln($) = Apx + Cp, Fn,r(xay) = ;
ap

Consequently(s®)(") satisfies the functional equation

an (s — bn)(r) o L’El(x)
ar '

(3.5) (s7) (@) = s (2) +

The above equation stipulates that théh derivative of then-fractal functionsX 5 corre-

sponding tos with respect to the scale vectar= (o, as,...,ay_1), the partitiénA, and

the family of base function® = {b,, : n € J} coincides with the fractal function of(")

with respect to the scale vectar = (-, 22,..., S¥=1), the partitionA, and the family
1 2 N-—-1

B, = {b) : n € J}, respectively, i.e.(sq )" = (s')X p,. Using @.5 and the con-
ditions in (3.4) imposed on the familyB, it can be verified thats®)") (z,,) = s (z,)

forn =1,2,..., N. That is, ther-th derivative ofs® agrees with the-th derivative ofs at

the knot points.

THEOREM3.3. Suppose that for some integer 0, we havgw,| < ka?, foralln € J
and0 < k < 1. Let|a|ew = max{|ay| : n € J}, s € CP, and the familyB = {b,, : n € J}
obey the conditions prescribed {8.4). Thea-fractal functions® € C?(I) of s with respect
to the partitionA and the familyB satisfies

5% = slo0 < 1|_a||(;o|max{|s —bnlleo :n € J},
1(5%)™) — s < %max{”s(r) b in ey, r=1,2,...,p.

Proof. We have the functional equation
5 (x) = s(2) + an(s* —by) o L, (), Vawel,.
Consequently, for alt € 1,,,
[s%(x) = s(2)] < [an]l[s* = bnlloo,
from which it follows that
[s* = s[loc < |atfoc max {||s* = by oo :n € J}.
According to the previous inequality,
5% = sllo < laloo (IIs™ = slloc + max{]ls — balloc : n € J}),
and thus

a
s = s]loo < 1|_|;O|max{||s — bl s € J}.
o0

From 3.5), forr =1,2,...,p, we have

(s (2) = s (2) + L (s* = bp) " o L (2), V€L,
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Inasmuch a8 < a,, = “22="* < 1, we haved}, < aj,, forr =1,2,...,p. Hence,

|(5™) 7 (2) = 5T (@)] < 8| (s* = b2) (L (2))|, V€L
Calculations similar to that in the first part yield the segt@ssertion. 0
Let s € C(I). Assume that the base functiobs, n € J, in the family B depend
linearly ons. For instance, leb,, n € J, be given byb, = U,s, where the operators
U, : C(I) — C(I) are linear, bounded (with respect to the uniform norn¢¢h)) and satisfy
Uns(z1) = s(x1), Ups(zn) = s(xn). Following 25, 27], we define thex-fractal operator
Fe=FRpas

Foe(I) = C(I), Fos) = s

DEFINITION 3.4. Letz; < 25 < --- < xy be fixed knots in the intervdl = [z, zy].
A linear operatorT’ : C(I) — C(I) is said to be of interpolation type if for anfye C(I), we
haveT f(x,) = f(x,),foralln =1,2,... N.

Next we study certain properties of thefractal operatofF*.

THEOREM 3.5.

(i) The fractal operatorF* : C(I) — C(I) is linear and bounded with respect to the
uniform norm.

(ii) For a suitable value of the scale vectas, the operatorF“ is a simultaneous ap-
proximation and interpolation type operator.

(iii) If a =0, thenF? is norm-preserving. In fact, it holds th&® = 1.

(iv) For |ale < |U|7Y, where|U| = max{||U,| : n € J} and|U,|| is the opera-
tor norm ||Uy|| = sup{||U,(f)|lec : f € C(I),||fllc < 1}, F is an injective,
bounded, linear, and non-compact operator.

Proof Leta € (—1,1)V~L Lets;,sy € C(I) and\, u € R. From @.1), we have for

all z € I,, that

57 (2) = s1(2) + an(s§ — Uns1) o L, ' (z),
55 (x) = s9(x) + an(sy — Upsy) o L ().

Therefore, from the linearity df’,,, we have
(As§ + ps3) (@) = (Asy + 12)(x) + an (As§ + pis§ — Un(Asy + pisz)) o Ly, (x).

From this equation we find that the functios{ + psg is the fixed point of the Read-
BajraktarevE operatofl'f (z) := (As1 + ps2) () + an (f — Un(As1 + ps2)) o L (x). The
uniqueness of the fixed point shows th@ts; + ps2)® = Asy + ws§. That is,
F¥(As1 + pus2) = AF*(s1) + pF*(s2) establishing the linearity aF©.

From Theoren8.3we find that|| F*(s) — s||s < 1'_‘75"00 max{||s — Up$||ec : 1 € J}.

Let|U| := max{||U,|| : n € J}. Using the boundedness&f,, the former inequality implies

1+ |al|U]
1 — ol

17 ($)lloe < ( MIslloe

1+ |alw|U|
1—lafe
Lets € C(I), 21 < mg < --- < zy be distinct points il = [z1,2zy], ande > 0.
In view of the conditions imposed on the famiy = {U,s : n € J}, it follows that

which affirms thatF* is bounded and the operator norm is boundedBy|| <
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Fes(xy) = s%(xn) = s(xy,), forn = 1,2,...,N. That is, the operataF is of interpo-
lation type. Leta € (—1,1)N~! be such thata|,, < TTsT=ap- 'hen it follows
from Theorem3.3 that || F*(s) — s|l« < €. ConsequentlyF* is of approximation type.
If « =0 € RV~ !is chosen, then from equatioB.{), s* = s, forallz € I. SoF° = I.

Let |a|« < |U|7}. Linearity and boundedness of the mag follow from assertion (i).
From TheorenB.3we have||s* — s||oc < |a|oo max{]|s* — Ups|le : n € J}. After some

routine calculations, this equation may be recast intomm% Is]lce < |F*(S)]00-

This shows thafF* is bounded from below. Consequently* is injective and the inverse
mapping(F*) "' : Fo(C(I)) — C(I) is bounded. From the injectivity of the linear majs,

it follows that {1, 2%, (2)®, ...} is a linearly independent subset &f*(C(I)). The non-
compactness of the operatsf* can now be deduced using a result from basic operator theory
that reads as follow: lek andY be normed linear spaces add: X — Y be an injective
compact operator. TheA~! : A(X) — X is bounded if and only if rankl < oco. a

REMARK 3.6. We can also consider the function spéeg/ ) endowed with th€?-norm
p
[ fllercry == S [If ]l and the operatoP® : CP(I) — CP(I) defined byD*(s) = s°.
r=0
Along the lines of TheorerB.5, it can be proved thab® is a bounded linear map.

3.2. Construction of a-fractal rational cubic splines with shape parameters.Here,
using the procedure developed in Sectibh we introduce a new class offractal rational
cubic spliness® € C! corresponding to the rational cubic splines C! studied in [L4, 31].
The method of construction given in this section can be nkadco obtain fractal general-
izations of various rational cubic splines studied in thilfad shape preserving interpolation.

Let a data sef(zn, yn,dn) : n=1,2,..., N}, wherez; < 25 < --- < zx, be given.
Herey, andd,,, respectively, are the function value and the value of tre¢ @lerivative at
the knotx,,. If the derivatives at the knots are not given, we can eséntam by various
approximation methods; see, for instanded][ A rational cubic splines € C*(1) is defined
in a piecewise manner as follows; séd,[31] for details. Ford := =21 x € ],

TN—T1’

(1 — 0)31"”3/” + 9(1 - 9)2Vn + 02(1 - Q)Wn + 03t71y71+1
3.6 Lo(z)) = :
(36)  s(Ln(x) (1— 0)ry + 0t

where
‘/n = (2Tn + tn)yn + rnhndna Wn - (Tn + 2tn)yn+1 - tnh7ldn+1; hn = Tp+1 — Tp-

The free parameters, andt,, are selected to be strictly positive to ensure a strictlytpes
denominator, which in turn avoids a singularity of the ratibexpression occurring ir3(6).
The parameters,, andt,, can be varied to alter the shape of the interpolant and henece a
called the shape parameters.

We note that the expression fecan be rewritten in the following form:

S(Ln(l‘)) = w1 (9, T'n, tn)yn + w2(9§ Tn, tn)yn+l

3.7
( ) +w3(0;rnatn)dn + w4(6;rn7tn)dn+17
where
, (1= 0)%r + 01— 0)%(2r, + 1) . _ 00 —=0)rahn
Al = g e, SO = G e,
201 _ 3 2(1 —
w2(9;rn,tn) = o (1 6)(7'71 + 2tn) 0 fn W4(9;Tn,tn) = f (1 G)tnh”

(1—08)r, +6t, ’ (1= 0)r, + 6t
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are the rational cubic Hermite basis functions. The ratiottarpolants satisfies the Hermite
interpolation conditions(z,,) = 3, ands(!) (x,,) = d,,, forn =1,2,...,N.

To develop thex-fractal rational cubic spline correspondingst¢cf. equation 8.6)), we
set|a,| < ka,,0 < k < 1, and select a family3 = {b,, € C'(I) : n € J} satisfying the
conditionsb,, (z1) = y1,bn(zn) = yn, be (z1) = dy, andb'V (zy) = dy; cf. Section3.1
There is a variety of choices fdB. To define one such family, we talkeg to be a rational
function of similar structure as that of the classical ipt#dants. Our choice may be justified
by the simplicity it offers for the final expression of the tted rational cubic spline FIE®.
To be precise, for € T = [x1,zy] andd := -Z=2L our specific choice fob,, is

rN—x1’

_ B1,(1—0)% 4+ By,0(1 — 0)* + B3,0%(1 — ) + By,,0°
N (1—6)r, + 0t, ’

(3.8) by ()
where the coefficient®,,,, B2y, Bsn, andBy,, are determined by the conditiobs(z1) =1,
bn(zN) = YN, bﬁf)(xl) =dy, b,(})(xN) = dy. Elementary computations yield

Bin = r0y1, By, = (2rn + tn)yl + rpdy (~73N - 1‘1),
B3y = (rp 4+ 2t,)yn — thdn(xn — 21),  Ban = thyn-
We note thab,, can be reformulated as

(39) b”(ﬂi) = I (07 Tn, tn)yl + F2(0§ T, tn)yN + Dl(a; Tny tn)dl + D2(0§ Tn, tn)dNa

where
Fl(o;rnvtn) - W1(9, Tn;t’n)a F2(07Tn7tn) - w2(9a T'n,tn),
1-0)2 — 2(1 — 0ty _
D1 (057, tn) = 61 = 0) rnlen — 1) Dy (0;7p,t,) = A= O)tn(zn — 1)

(1—0)r,+0t, (1 —60)r, + 01,

Consider thex-fractal rational cubic spline correspondingsto
$*(Ln(2)) = cns®(@) + s(Ln(2)) — anby ().

In view of (3.6) and @3.8), we have

(3.10) s (Ln(2)) = ans®(z) + gz(é)),
where
P, (z)

= {yn - anyl} rn(l - 9)3 + {yn+1 - OényN} tn93
+ {(QTn + tn)yn + rphnd, — oy [(2rn + tn)yl + Tn(xN - xl)dl]} 9(1 - 9)2
+ {(rn + 2tn)yn+1 - tnhndn+1 — Qp [(rn + 2tn)yN - tn(mN - ml)dN]} 92(1 - 9)7

Qu(z) = (1= Oy +0t,, neld f=——"1

TN — T

REMARK 3.7. Assumingd; anddy to be exact first derivatives of at the extreme
knotsz, andx, we define

bn(‘r) = Uns(-T) = (05 T, tn)s(xl) + F2(0§ Tnatn)s(xN)
+ Dy (0;7, tn)s(l)(xl) + Do (051, tn)s(l)(xN).
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Forr, andt, independent of the dat#,, defines a linear operator ¢i (7). Furthermorel/,,
is bounded with respect to tite -norm onC*(7) and

[Uall < sup [Z (1B @) + DE”(%)I)] :

xzel, j=0,1 i—1

)

REMARK 3.8. Ifr,, = t,, for all n € J, then then-fractal rational cubic spline reduces
to theC'-cubic Hermite FIF. For a detailed discussion of the Herrsjtiine FIFs of arbitrary
degree and their convergence analysis, we refeflto ffor o, = 0 andr,, = t,, for all
n € J, thea-fractal rational cubic spline recovers the classical cidgrmite interpolant.

REMARK 3.9. Consider a linear operat®t : C(I) — C(I) which is of interpolation
type. Now, if f € C(I) is, for example, monotone (or convex) énit is easy to see that
because of the interpolation conditions, in genéfgl,cannot be monotone (or convex) 6n
Hences* = F%(s) is not, in general, monotone (or convex), eveRr i§ so. However, it is
a natural question whether parameters involved in the esgliructure can be determined so

thats® is monotone or convex. We address this issue in the subsesgions.
REMARK 3.10. Let us definé\,, = 1’“7_” for n € J. Assuming twice differentia-

bility of the a-fractal splines®, the followmg are the functional equations corresponding
the first and second derivatives:

(Sa)(l) (Ln(x)) _ %(Sa)(l) (x)

n

(3.11) M1 0)° 4 Mouf(1 = 6)° + Mn6*(1 — 6) + Mi°
[P (1= 0) + t,0]°

9

where
Mln = 7’72,, |:dn - %dl(l’N - 1‘1):| ’
2 [ Qp, | 2 Qp,
My, = (2r; + drat,) | Ay — h—(yN —y)| — {dn — h—dl(x]v — xl)}
Qo
— 2rpty |:dn+1 - FdN(xN - 961)} )
5 [ Qi 1 Qi
Ms,, = (2t7 + 4rpty) | A, — W —(yn — yl) — 2rptn | dy — h—dl(xN — 1)

an
—12 |:dn+1 - FdN(xN - I1)] )

n

(672
My, =12 |:dn+1 - FndN(xN - 331)} ;

and

Qp

() (La(a)) = 23 (") *) )

(812 L Cin(1 = 0)° + C300(1 = 6)° + C6°(1 = 6) + Cn6?
(1= 0) + t,6]° hy,

)
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where
3 2 Qi Qp
Ci, = (27“n + 27“ntn) {An — F(yN — yl) |:dn h—dl(xN — 33‘1):| }

Oy (7%
- 27°72Ltn {dn+1 - FdN(xN — 1) — I:An - —(yn — y1)] } )

n

Qp Qp
Oy, = 6121, {An - hf(yN —y1) — |:dn - h*dl(ffN - 561)] } ,

Qi
CSn = 67"nt?1 {d71+1 - 7dN(xN - 561) - |:An - 7(yN - yl):| } ’

hr,

Oy Qpy
C4n - (Qti + 27‘nt31) {dn-i-l - FdN(xN - 3)1) - |:An - F(yN - y1):| }

o, Oy
—2rtp S Ap — (ynv — 1) — |dn — 7odi(ay — @) | ¢
b, hy
These expressions will be used later in Sectibris5.2 for studying the shape preserving
aspects of the-fractal rational cubic spline®.

4. Convergence oh-fractal rational cubic splines. In this section, we establish that
the a-fractal rational splines® converges to the original functiofi € C? with respect to
theC'-norm. We shall uncover this in a series of propositions edtems.

PROPOSITION4.1 (Theorem 1, Duan et all4]). Given a functionf € C?(I) and a
data set{(x,,y,) : n = 1,2,...,N}, y, = f(z,). Lets be the corresponding rational
cubic spline defined iB.6). Then, forz € [z, T,41],

|f(z) = s(x)| < haeall £,
wherec,, = Orélggclﬁ(ﬁ;rmtn),

0%(1 —0)2(rp, + tn)?

20:7n,tn) = [Fn + (F + t0)0][ + 2tn — (rm + £0)0]

and||.|| is the uniform norm off,,, z,,+1]. Furthermore, for any given positive valuesrgf
andt,,, the error constant,, satisfiess < ¢, < 2311,

Using Proposition8.3and4.1we have the following theorem.

THEOREM 4.2. Given a functionf € C?(I) and a partitionA = {z1,22,...,2n}
of I satisfyingz; < x2 < --- < zy, let s be thea-fractal rational cubic spline that
interpolates the values of the functigrat the points of the partitiod\. Then

1f =5 < h?c ”f(Q)”oo
|04|<>o

.

1
{Iyleo + max{lyn ], lyl} + 7 (hldl + 1] max{ld], ldw]})}.

where|y|oo = max{|y,| : 1 < n < N}, |dloo = max{|d,| : 1 <n < N}, |I| =y — a1,
h = max{h, : n € J}, andc = max{c, : n € J}.

Proof. Let s be the classical rational cubic spline astdbe the corresponding-fractal
function interpolatingf at the pointsey, xs, ...,y € A. We have the triangle inequality,

(4.1) 1f = 8%Mloo < [If = slloo + lls = % [|oo-
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By Theorem3.3

|| oo
4.2 Y5 € ——— 0 +m bnlloc :m € J}).
@2 I3 = sl < 72— (sl + max(ul s € 7})

Next we establish upper bounds fpi|.. and||b,, || that depend only on the function values
and the values of the derivatives at the knot points.aFer(z,,, ,,+1], * = L, («’), consider
the classical rational cubic splingcf. equation 8.7))

S(.’L‘) = w1 (97 Tn,y tn)?/n + WQ(H; Tn, tn)ynJrl + wS(G; Tn, tn)dn + W4(€; Tn, tn)dn+17

whered = £ =% \\e note thatv; (0;r,,t,) > 0, fori = 1,2,3, andw,(0;7,,t,) < 0.

TN—T1 "

Furthermore,

w1 (0;7n,tn) +wa(0;rn,t,) =1 and w3(8;r,,tn) — wa(0;7,,t,) = h,0(1 — 0).

Thus,
I
|5(2)] < max{[ynl, lyn+1[} + -~ max{|dnl, |dnt1]}-
Hence,
h
(4.3) ”S”oo < |y|oo + Z|d‘00~

Similarly, from the expression fdr, (cf. equation 8.9)), we obtain

1
(4.4) onlloo < max{ly], [yn[} + 7 [/] max{ldi], |dn]}.

Substituting bounds foffs||o, andmax{||b,|l«. : 7 € J} obtained from 4.3) and ¢.4)
in (4.2), we find that

(4.5) 5% sl < 1

1
< T (o tmaxtlon |, byl )+ (bldloc 11 masx ], Jn ) }.

From Propositiont. 1it follows that

|f(x) = s(@)] < eahi I FP],
implying
(4.6) If = slloe < € B2[1f® .

The inequality 4.1) coupled with ¢.5) and @.6) proves the theorem. O

PROPOSITION4.3 (Theorem 1, Duan et al1§]). Let f € C?(I) be the function gen-
erating the data{(x,,,y,) : n = 1,2,..., N} ands be the corresponding classical rational
cubic spline. Then, ofx,,, z,,+1], the error for the derivative functiog(V) satisfies

[f (@) = s (@)] < hacy || FP],
wherec}, = max{x(6;7y,t,) : 0 <6 < 1} with
X1 (e;rnatn)v if 0 < 0 < 9* = 37‘77/;(“1“%:?)7‘71%7
. _ . " Ary —tn—+/t2 +8rpty,
X(earnatn) XQ(O;Tnytn)7 if 9* < 0 < 9* = 7o ,
x3(0;7n,t), if 0% <60<1,
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X107, ) =0 { [0(1 — 20 4 202)12 + 2(1 — 0)*rt,, + 2(1 — 6)%2]

+[201 = 0)2rt, +0(1 — 29)53]2}

% {(1 —0) [(1 = 0)ry + 0ta)7 [(1 — 0)r2 + 2r,t,, + 012] }71

0(1 —0)[(1 - 0)3r2 + 63t2]
[(1—0)r, + 0t,]? ’

Xo(0: 7, 1) =(1 — 6) { [(1=0)(1 — 20 + 20%)r2 + 20%r,t,, + 20°12]

+

+ [20%7,t, + (1 - 0)(20 — 1)r§]2}
X {9 [(1 = 0)ry + 0t,)2 [(1 = 0)r2 + 2r,t,, + 0£2)] }_1
+0 { [0(1 — 20+ 20%)£2 + 2(1 — 0)*rpt, + 2(1 — 0)r2]
+[201 = 0)2rt, +0(1 — 29)ti]2}

X {(1 —0) [(1 = 0)r + 01,]2 [(1 = 0)r2 + 20ty + 0£2] }71 7

X307 t) =(1 — 0) { [(1=0)(1 — 20 + 20%)r2 + 20%r,t,, + 20°42]°
+ 207t + (1-0)20 — 1)r2]"}
x {9 [(1 = 0)rn + 0t,]% [(1 = )12 + 2rnt,, + 0£2)] }_1

0(1 —0)[(1 - 0)3r2 + 63t2]
[(1—=8)r, +0t,]?

THEOREMA4.4.1f f € C%(I) ands® is thea-fractal rational cubic spline corresponding
to the data{ (x,,,y,) : n=1,2,..., N}, y, = f(z,), then

2
W _ (D < ot £2) K 1) ol 3lyn — w1l
£ = (") lloe < he™If 7 lloe + 77 H{HS lloo + 7 [ max{|dy|, [dn]} + o] }},

wherey = max{rn, t,}, d = min{r,,t,}, andc* = max{c};, : n € J}.
neJ neJ

Proof. By the triangle inequality,
4.7 1D = () D loo < 15D = 5Dllog + 15D = () D oc.
From Propositionrt.3we have
(4.8) IF = 5D oo < he*[[fP oo

By simple calculations it follows that
=2
0 <l{ §|yN—y1|}
max b0 oo < 5 § max{ld, ldx[} + 57—

Using the above estimate and Theorgrg we obtain that
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K 3 —

@49) s — () oo < T {1Vl + g [max{leh]. [dn[} + W] 2
Substituting 4.8) and @.9) in (4.7) completes the proof. 0O

The following theorem is a direct consequence of Theoréragnd4.4. It is worth to
mention here that the derivative parameters are boundexdibet: € C?(I), and we assume
that¥, ¢, andc* are fixed.

THEOREM 4.5. Let f € C?(I) be the original data generating function and let the
scaling factors satisfyov, | < ka,, foralln € J,0 < k < "’T‘ Thens® converges tgf with

respect to the?*-norm as the mesh size approaches zero.

REMARK 4.6. In fact, we have the following more general result. Ifa@@sider scaling
factorsa,, such thafa,,| < ﬁag, for all n € J, then as a consequence of Theor&/®) we
obtain convergence of the-fractal functions® to the original functionf € C? with respect
to theCP-norm provided that does so.

5. Constrained interpolation with a-fractal rational splines. In this section, we em-
brace the task of deriving conditions on the spline pararaete that thex-fractal rational
cubic splines® is: (i) convex, (ii) convex and monotone. Some remarks oritigesin-
terpolation withs® are given at the end of this section to cover all major aspafcshape
preservation.

5.1. Convex interpolation. Consider a data s¢{xz,,y,) : n =1,2,..., N}. Suppose
that the data set is convex, thatds, < Ay < -+ < A1 <A, < Apgpr < - < Apn_y,
whereA,, := g:iijg” forn € J, as before. We identify suitable values for the parameters
so that the correspondingfractal rational cubic spline® remains convex for a given set of
convex data. A similar approach applies to a concave settaf da

THEOREM5.1. For a given set of datd (z,,, y,) : n = 1,2,..., N} with derivatives

(given or estimated) at the knot points satisfying the cioowli
di <A1 < <dp <A, <dpy1 < <Apny-1 <dp,

a convexa-fractal rational splines® involving shape parameters, andt,, exists provided
the following conditions are satisfied.

hn(An - dn) hn(dn,+1 - An) aQ }
ynv =1 —di(zy —x1) dn(zny —21) — (yv — 1) "))

Ogan<min{

o dnt1 — $2dn (N —21) = [An — 32 (yn — y1)] cJ
oo , ne.d.
128 An - %:(y]\f - yl) - [dn - %:dl(xN - SL’])]

Proof. Let us begin by recalling that, for the convexity pfe Cl[xy,zy], it is suf-
ficient to prove thatf(® (z*) or f(?)(z~) exist and are nonnegative (possibiyc) for all
x € (z1,xn); See R4]. Informally, we have (see equatioB.(2)

O () )

N Cin(1=0)2 + Cop0(1 — 0)? + C3,0%(1 — 0) + Cy,, 03
[rn(1=0)+t,0]3h, ’

Qn

(5") 2 (Ln(2))

For the sake of convenience, let

ey Cin(1—0)? 4+ Co,0(1 — 0)? + C3,0%(1 — 0) + Cyy60?
Bn(2) = B (0) = rn (L= 0) + 020 |
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Using the fact that fon € J, the mapsL,, : [x1,2n] = [Xn, Tnr1] SAtSTY L, (21) = x4,
L,(xn) = zp4+1, We Obtain

o C -1 o _ Cyn— aN-—17-1
()P = =517 (MO = g -
(5.1) i ay N—1tN-1 aN_1
Qo Cl’n

(s) P (@) =

()@ (i) +

. n=2.3,...,N—1.
a’n

r3hy’
Let0 < a, < ka?. Then from 6.1) it follows that if Cyy_1; > 0 andCy,, > 0, for
n € J, then the second derivatives (from the right) at the kngtsor n € .J, and the second
derivatives (from the left) at ;y are nonnegative. For the knet,, m € J, we have

(5.2) s (Ln(zm)+) = %5(2) (fﬂﬁ) + Ry (2m).

2
Am

AssumingCi,, > 0, for all n € J, (5.2) suggests that® (L, (z,)") > 0 is satisfied,
provided thatR,,(z,,) > 0. Also R, (z,,) > 0 is satisfied ifC;,, > 0, for j = 1,2, 3,4.
By the three chord lemma for convex functions, a strictiywesndata set necessarily satisfies
dy < yg:zll < dy. The selection of the free parametersso that they satisfy

x

(yv —y1) — di(zn — 1)

hn(dnJrl - An)
dy(zn — 1) — (yv — 1)’

(5.3) a, < and  «a, <

for all n € J, ensures the nonnegativity 6f,,, and Cs,,, respectively. In view of .12
and 6.3), by some algebraic manipulations, it is easy to see@hat> 0 andCy,, > 0is
satisfied if

rn o — 3rdy(en — 1) — [An — 52 (yy — 1)

tn B An_%:(yN_yl)_[dn_%dl(xN_xl)]

Thus, the conditions on the scaling factors and the shapersers prescribed in the theorem
guarantee tha€;,, > 0, for j = 1,2,3,4,n € J. Since(s*)? (2*), (s*)?) (™) are
determined iteratively(s®)(® (L, (z,,)*) > 0 holds for the mapd.,,, n € J, and at the
knotsz,,,m € J, ands®(xy) > 0 assures thats®)® (z+) > 0 or (s*))(z~) > 0, for
allz € (1, zN). d

REMARK 5.2. By takinga,, = 0, for all n € J, the convexity theorem for the classical
rational cubic spline interpolanB8(6) [31, Theorem 3.2] follows as a straightforward conse-
guence of the convexity theorem for thefractal cubic spline stated above. Had we imposed
the conditiont,, > r, > 0 on the shape parameters as#i][ then the obtained convexity
condition for the classical rational cubic spline, namgly: %, might not have been
consistent with the additional conditian > r,. It seems that this issue is not addressed
in [31].

5.2. Convex and monotone interpolation.Reviving the spirit of the previous subsec-
tion, now we illustrate that the convexity preserving schataveloped therein is suitable for
solving the convex and monotone interpolation problem.

THEOREM5.3. For a given sef (z,,,y,) : n = 1,2,..., N} of monotonically increas-
ing convex data with the values of the derivatives at thesksatisfying the conditions

(5.4) 0<di <A1 < <dp <Ay <dpy1 <+ <An_1 <dp,
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the following conditions on the scaling and the shape patamsesnsure that the correspond-
ing a-fractal rational cubic spline is monotonically increagimnd convex:

hn (An - dn) hn (dn+1 - An) CL2}
yv —y1 —di(ry —21) dy(en —21) = (yv — 1) ")

Ogan<min{

Tn dn-‘rl - %:dN(xN - 371) - [A" - %Z(yN - yl)]

tn  Ap—2(yn — 1) = [dn — §2di(zn — 1))

Proof. In Theorem5.1 we have already proved that for scaling factors and the shape
parameters as in this theoresft, is convex. Since the fractal functiga®)(!) is constructed
iteratively, in order to proves®))(z) > 0, for all 2 € I, it is enough to prove that
(s*)P(L,(.)) > 0, for all n € J, whenever(s*)(!)(.) > 0. The stated assumptions o
imply

(5.5) d,, — %dl(m\; —x1) <A, — %(yzv —y1) <dp+1 — %dN(a:N —x1)

and

hn n
U < G, dn > 0,0 = apdy < ——dy = dy, — ~2dy(xn — 71) > dn — dy.
N — X1 hn
Sinced; < d,, we haved,, — $=di(zn — 21) > 0. Whence, §.5) yields the inequalities
A, — f;—:(yN —y1) > 0andd, 11 — %:dN(:cN —x1) > 0. From (3.11) we obtain

Qp

(s) D (La(x)) = —(s*) D (2)

Gnp
" Mln(]- — 9)3 + M2n9(1 — 0)2 + M3n02(1 — 0) + M47193
[rn(1—0)+t,0)? ’

Now dn — %Zdl(l‘]v — 1‘1) >0 anddn+1 — %:dN(l‘N — 1‘1) >0 Imply M, andM4n > 0.
From some simple calculations, we infer thidt,, and M3,, are nonnegative if

Tn {An - %:(yN —y1) — |:dn - %:dl(xN - 561)} }

>ty {dn+1 - %dN(xN —x1) — |:An - %(yN - y1)] } :
Therefore, the conditions on the shape parameters statied theorem ensure that,,, > 0
andMs,, > 0. This demonstrates the monotonicity of the rational cupime FIFs®. 0
REMARK 5.4. A moment of reflection on the proof of the foregoing ttesorshows
that for given data satisfying only the monotonicity comatitd,, > 0,n = 1,2,..., N, the
following conditions on the scaling factors and the shapapaters are sufficient to ensure
the monotonicity of thev-fractal rational cubic spline:

hndn hndn+l hnAn a }
di(zny —21) dy(an —21) yn —y )

Ogan<min{

68 ro{an Pl ) - g~ $2aitay -]}

>ty {dn—H — My (en — @) — {An — 2y — yl)] } :

ha, hn
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However, in general, there may not exist nonnegative shapameters satisfying the above
inequality, for instance, consider the case where

70 (67%%
Ap = =(yn —y1) = [dn — 7=di(ey —21)] <0 and

n

Oy Qi
dnt1 — —dn(xy —21) — [Ay — h—(yN —y1)] >0,

h n n

and hence we may not get a monoten&actal rational cubic spline. However, if the deriva-
tive parameters are selected so as to satisf),(d; < 2~ < d, and the additional con-

IN—T1
hn (A, —dy,) hn(dny1—An)
dition cv, < min{j —"= P Ty B e erperery w ey )} is imposed, then we can select
d71+1 - 7dN(IN - Il) [An an (yN - yl)]

r, andt,, satisfying 6.6) by taking 7> >

Ay, — }Ln = (yn —y1) — [dn — ?Tnd (xN - z1)]
to solve the monotonicity |nterpolat|on.

Analogously, for the monotonicity of, the conditionr,,(A,, — d,,) > t,(dpt1 — Ay)
is sufficient. As in the fractal case, there may not exist egativer,, andt, satisfying
the above mentioned inequality. However, if the givenfeated derivative values satisfy
the condition prescribed irb(4), which is stronger than the necessary monotonicity condi-
tiond,, > 0, then we can seleet, > 0 and¢,, > 0 satisfyingr,, (A, —d,,) > t,(dnt1 —Ay)
by demanding tha’g > Lf” This observation corrects the sufficient condition for the
monotonicity ofs (cf equation 3 6)) studied in B1].

5.3. Positive interpolation. Given a data s€t(x,, y») : n = 1,2,..., N} withy,, > 0,
it is of interest to know whether the parameters involvedha d&-fractal rational cubic
splines® can be chosen such thet(xz) > 0 forall z € T = [z, zx]. ASSumen,, > 0, for
alln € J. Then from 8.10 and the iterative nature of the fractal interpolant, itdals that
for s*(z) > 0, for all x € I, itis sufficient to haveP, (z) > 0 forall z € I, n € J. Now the
conditionP,,(z) > 0 holds if

Yn — Qpy1 > 0,

Yn+1 — On1yn > 0,

(2rn 4 tn)yn + rphnd, — an [(2rn + tn)yr + o (zy — 21)d1] > 0,

(rr 4+ 2t0)Ynt1 — tnhndni1 — an [(rn + 2t,)yn — to(zn — x1)dN] > 0.

(5.7)

For the first two inequalities to hold, it suffices to takg < min{g—"l', % . Thus, our

search reduces to that of findimg > 0 andt,, > 0 such that third and fourth inequalities
in (5.7) hold. Itis not hard to verify that this is true if

tn(yn - anyl) + 7'nhn (dn - %dl(xN - xl)) > 07
(5.8) "

%dN(.I?N — £E1)> > 0.

rn(yn+1 - OlnyN) - tnhn <dn+1 - h

Now to find a solution to these inequalities satisfying> 0,¢,, > 0, we impose an additional
condition on the derivatives, namefy, > 0 foralln = 1,2,..., N. Assumingd; anddy to
be non-zero,¥.8) can be satisfied by taking

hndy, Ry i1 } T Pnldnpr — 52 (zy — 21)dN]
) '

an, <min{ , n
di(xny —x1) dy(zn — 21

tn Ynt1l — QYN
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One may be interested in solving the inequalitiesSr8)in the absence of the additional
condition on the derivative values, and we can heuristicalue that there may not exist
valuesr,, > 0, t,, > 0 satisfying £.8). Thus, maintaining positivity without the additional
assumption on the derivatives values is doubtful. In caichy given a positive data set,
where the derivative values satisty > 0, n = 1,2,..., N, a positive/nonnegative rational
cubic spline FIF can be constructed by choosing the parasstieh that

Tl > hn[dnJrl - z" (CE’N - $1)d1\/']

n

9

29 Yn4+1 — QYN
hnd h,d
0<a, <min{an,y—n,yn“7 non , nZntl }, n € J.
yi’ yv di(eny —z1) dy(zn — x1)

The above discussion reveals the following facts abouthiape preserving properties of the
a-fractal rational cubic spline introduced in this papeyit(is well suited for preserving con-
vexity of the given data, (ii) given monotonically increagdata{ (x,,, y,) : n=1,2,..., N},
which satisfy the necessary conditidp > 0, suitable choices of the scaling factors and the
shape parameters produce monotarkeactal rational cubic splines provided the derivative
parameters satisfy the additional condition

di <A1 < <dp <A, <dpyr < <Apny_1 <dp,

(iii) given positive data{(z,,y,) : » = 1,2,..., N}, the suitable choices of the parame-
ters generate positive-fractal rational cubic splines® provided the derivative parameters
satisfyd,, > 0. Without these additional conditions on the derivativeapagters, it is not
certain whether or not the proposeefractal rational cubic spline® with linear denomina-
tor satisfactorily solves the monotonicity and positiityeservation problems. However, as
mentioned elsewhere, our approach can be used to obtaictal fyaneralization of the tradi-
tional rational cubic splines that solves all the three amédntal shape preserving problems;
see, for instance?p).

6. Numerical examples.The aim of this section is to illustrate the rational cubitrep
fractal interpolation scheme and its shape features by sa@mples. We want to notice
that in all the examples, the free shape paramétgra € J, are taken to be unity. Since
the rational IFS scheme requires the derivative parameteigput, we shall describe an
approximation method for their estimation.

Let a data se{(z,,y,) : n = 1,2,..., N} be given. To estimate the values of the
derivatives at the knot points, the three point differenppraximation for the arithmetic
mean method (amm) can be used, which is expressed by theifedj@quations:

o hnAnfl + hnflAn

dy, , =23,...,N—1,
hn—l + hn "
with end conditions
h h -
dy = (1 + J)A1 - 71A3,17 Asq = u,
hg hg T3 — T
hn_ hn_ — Yn—
dy = (1 + X 1)AN71 - 1AN,J\uz, AN N—2 = IN ZUN=2
hN_2 hN_2 TN —TN-2

The nonlinear approximation by the geometric mean methoar(pis given by

hn hpn—1

dp = Ap_1 T Aot =23, N—1,
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with end conditions

h —h hAn—1 —hn_1
14 1 1+
dy = Ay Jrh"‘)Am o dy = AN—1( hN_2)AN,N—2 "oz

The gmm works well for monotonically increasing data but metessarily for general data.
On the contrary, the amm can be applied to general data ansl dut to be well suited for
convex data.

To illustrate convex interpolation wits®* € C' and to study the effects of perturbation of
the scaling factors in the resulting convexractal rational cubic spline, we consider simple
convex datd; = {(1,1),(1.5,0.7),(3,1.7)}. The derivative parameters are estimated using
the amm. To obtain a convex-fractal rational cubic spline®, we take the scaling factors
asa; = 0.06 andas = 0.39; see Theorendb.l. The constrained shape parameters
n = 1, 2, are calculated with the help of Theoréni, and the corresponding convexfractal
rational splines® € C' and its first derivativgs®)(") are displayed in Figuré.1a Due to the
implicit and recursive nature of the-fractal function, each curve segment between two knot
points will have global properties inherited from the emtet of interpolating points. Thus,
theoretically, a perturbation in a scaling factor or shapemeter pertaining to a particular
subinterval may influence the shape of the entire curve. Gayghis in practice, we modify
some specific scaling factors in Figugelawhilst maintaining the convexity condition.

Firstly, we changev; to 0.01 keeping the other scaling factors as in FigGréa The
constrained shape parametefsare calculated using Theore®l, and the corresponding
convexa-fractal rational cubic spline® and its first derivative are displayed in Figuie.h
It can be observed that in comparison with Figérég s in Figure6.1bchanges only in the
first subinterval. Next, we modifyt; = 0.03 keeping all other scaling factors and shape pa-
rameters as in Figut@1a The constrained shape parameters are calculated, aresthigng
spline is shown in Figuré.1c In this case, as far as thefractal functions® is concerned,
apparent changes occur only in the second subinterval., Titms a theoretical standpoint,

a perturbation of a particular component of a scale vectanay ripple through the entire
interpolating interval, but practically, it has prominenfluence only in the corresponding
subinterval. To be precise, since the completely local epity preserving classical rational
cubic scheme emerges as a special case when the scaling factataken to be zero, the
proposed fractal scheme is locally or globally dependinghenvalues of the scaling factors.
With a null scaling vector, the shape parametgrs: = 1, 2, are calculated according to The-
orem5.1 This retrieves a convexity preserving classical ratianddic spline interpolant
displayed in Figures.1d Thus, the scaling factors not only provide a layer of fldikipin
adjusting the shape of the interpolant but also control thetdlity of the derivative of the
interpolant. Furthermore, one would like to quantify thegularity, for which the fractal di-
mension can be employed. As, | is increased from zero, the dimension of the graph of the
fractal function increased]. The fractal dimension of the derivative of the smoatifractal
functions constitutes a numerical characterization ofjaai Recall that if a real function is
smooth, the fractal dimension of its graph is one. In thigc#ss parameter cannot be used
as a quantifying parameter for the complexity of a signale Buthe presence of varying ir-
regularities in the first derivatives, the proposeftactal rational cubic splines have potential
applications in areas wherein the data set has convexiteimieasured variable and fractal-
ity in the variable representing the derivative, for ins@rfor data arising in connection with
nonlinear motions occurring in electro-mechanical systgr|.

To illustrate Theorenb.3, we consider the convex and monotonically increasing data
Dy = {(—2,0.25),(—1,1),(-0.3,11.11), (—0.2,25) }. The derivative values are estimated
using gmm to satisfy the necessary condition. Taking= 0.01, ay = 0.15, andas = 0.003,
the constrained shape parametersare calculated by the formulas in Theorén3. With
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these values of the parameters, the corresponding IFS sitdedted to generate Figude2g
which represents a convex and monotone fractal curve.

For simplicity of presentation, we have considered a datavbech is convex on the
entire interpolation interval. However, with a simple niogition, the present interpolation
scheme can be adapted for generating a fractal curve thatgeroex with the given data.
Let us illustrate this with an example. Consider the data set

D3 = {(lnvynadn) s n= 172,...78}
_ {(0, 0,5), (1,3,1.342), (2,3.6,0.346), (3, 3.8,0.1058),

(4,4.1,0.6408), (5,5.5,1.54), (6,7.2,1.74), (7,9, 1.854)}.

We divide the interpolation intervdl = [0, 7] into two subintervals, namelf = [0, 3] and
I, = [3,7] such that the data have the same type of convexity (convexmmave) throughout
that subinterval. The concavity preserving algorithm whith scale vector! = (a1, ad, ad),
whereal = 0.1, ol = 0.06, o} = 0.01, produce a concave-fractal rational cubic spline
s®* onI;. In a similar manner, the convexity preserving algorithnthwthe scale vector
a? = (a2,03,03,a3) with a? = 0.04, o3 = 0.06, a3 = o = 0.01 produces a convex-
fractal functions®” on I,. Define a FIFs® by s%|;, = s® fori = 1, 2. Note that the Hermite
interpolation conditions or®', i = 1,2, provideC'-smoothness fos~. The fractal function
s% given in Figure6.2bis co-convex with the given data set and has a point of inflacti
atxz = 3. We would like to remark that in case of too few data points:p&ivailable in a
subinterval for the iteration of the IFS scheme, we insedenpoints such that the inserted
node is consistent with the desired shape.

7. Concluding remarks and possible extensionsSmooth FIFs provide an advance in
the technique of approximation since various classicdtdata interpolation problems can
be generalized by means of these maps. However, methodsristracting smooth frac-
tal interpolants available in the fractal-related literatare not satisfactory for generalizing
the traditional non-recursive rational spline interptgawith shape parameters that are used
for shape preserving interpolation. By a modification of pnecedure in ], 28], a general
method is proposed in the present work for the constructi@i? econtinuousx-fractal func-
tions. The construction of smoothitfractal functions given in this paper provides a unified
approach for the generalization of various traditional-necursive shape preserving rational
spline interpolants.

Utilizing our procedure, we have constructeetractal rational cubic splines with two
families of shape parameters. With a mild condition on thalisg factors, the present
a-fractal rational cubic spline possesses convergenceegiep analogous to its classical
counterpart. The created fractal function is investigdtedise in convexity preserving in-
terpolation. Our convexity preservingfractal function scheme generalizes the convexity
preserving classical interpolation developed3d][ For a restricted class of data, the devel-
opeda-fractal rational cubic spline can produce monotone andtigesnterpolants as well.

It is noted that the shape preserving classical interpmiagchemes remain suitable only for
interpolating data generated from functions with smookeépt possibly at a finite number
of points) first or second derivatives, whereas the propérsethl generalization works well
for functions with smooth or non-smooth derivatives. Treefal dimension of the derivative
may be used as a quantifying parameter to study the complebdt signal and to make com-
parisons. Thus, the present method supersedes its classicgerpart and finds practical
utility in areas such as geometric modeling, curve desigd,reonlinear phenomena.
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FIG. 6.1.Convexity preserving-fractal rational cubic splines and their first derivatives

Challenges that remain to be addressed are the followingddgipition, oura-fractal
rational cubic spline is in the clags. Following the procedure described i8l,[the conti-
nuity of ana-fractal spline can be enhancedd® by finding the derivative parameters via
the solution of a suitable linear system of equations. Harehe convexity problem was
solved with then-fractal C*-rational cubic spline. It is natural to query on the posgibof
constructing a2-continuous convex-fractal rational cubic spline. A close observation of
our discussion will imply that the aforementioned probleasibally leads to the problem of
solving a constrained nonlinear system of equations.

Though the presence of the parameters yield much flexibgitytimes there may be
a curse of choice, and the user may encounter problems daftisglehe “optimal” ones.
A couple of strategies that are likely to be useful to settle issue of optimality are as
follows. It is common to select a preferable shape presgriiterpolant by minimizing a
choice functional subject to the constraints arising frdma shape requirement. A widely
used one is the Holladay functional or an approximationetberFrom the point of view of
fractal approximation theory, this is an “inverse problewtiich reads as: given a function
(or set of sampled values), recover the IFS parameters ggamgthis function. Levkovich’s
work [22], in which contraction affine mappings generating a giverction is obtained based
on the connection between the maxima skeleton of the watvaletform of the function and
positions of the fixed points of the mappings in question, prayide basic tools for settling
this issue. However, for adapting this, in the first place, rirethod has to be modified and
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25 9

e "Data"
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(a) Convex monotonically increasing-fractal (b) A fractal ogee with point
rational cubic spline. of inflection atr = 3.

FIG. 6.2.Convexity preserving-fractal cubic splines.

extended to cover the non-affine setting. Alternativelifpfeing Lutton et al. R3], it should
be possible to use genetic algorithms for solving thesestgp@verse problems.
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