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A DEFLATED BLOCK FLEXIBLE GMRES-DR METHOD FOR LINEAR
SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES *

JING MENG, PEI-YONG ZHUf, HOU-BIAO LI, AND XIAN-MING GU f

Abstract. This study is mainly focused on the iterative solution of nuidilinear systems with several right-
hand sides. To solve such systems efficiently, we first presdleiible version of block GMRES with deflation
of eigenvalues according to [R. B. Morgan, Restarted bIGSKRES with deflation of eigenvalues, Appl. Numer.
Math., 54 (2005), pp. 222—-236] and then apply a modified blogiohli vector deflation technique to accelerate the
convergence of this new flexible version. Incorporating théflation technique, the new algorithm can address the
possible linear dependence at each iteration during thek#onoldi procedure and reduce computational expense.
Moreover, by analyzing its main mathematical properties, veevghat the vector deflation procedure arises from the
non-increasing behavior of the singular values of the blesiidual. In addition, the new approach also inherits the
property of deflating small eigenvalues to mitigate convetgeshowdown. Finally, the effectiveness of the proposed
method is illustrated by some numerical experiments.
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1. Introduction. Consider the linear system withright-hand sides
(1.2) AX =B,

whereA € C"*" is a large nonsingular matri¥3 € C"*? has full rank, andX € C"*?,
where(p < n). Linear systems with multiple right-hand sides arise in ynapplications,
e.g., electromagnetic scattering4], model reduction in circuit simulationlB], Quantum
Chromo Dynamics QCDZ 3, 4, 31], and dynamics of structure§]| etc.

At present, there has been substantial interest in devejdpiock Krylov solvers for
the solution of the probleml(1). This is due to the fact that block Krylov subspaces can
enlarge the search space, which makes all Krylov subspasesiated with each right-hand
side contained. Moreover, the ability of using level-3 BLASerations also makes block
solvers much more competitive than non-block methods framnaputational point of view.
Methods based on the Lanczos process have been developelyeqlsl) such as block
CG [29], block QMR [14], block BiCGstab 11], block LSQR [L8], and a recently proposed
block IDR(s) method 1I0]. In addition, methods based on the Arnoldi process3[]], e.g.,
block restarted GMRES (BGMRE®()) and its variantsq, 7, 9, 16, 19, 22, 25, 29, 33], were
also proposed. Nevertheless, due to restarting, the agewee of a block method based
on the Arnoldi process may stagnate and becomes slow. Tm fti& convergence rate,
block GMRES with deflation of eigenvalues (BGMRES-DR}]was recently proposed by
Morgan. This method exploits a deflation technique to renfoveleflate) small eigenvalues
at each restart to improve convergence. For convenientetdthnique is referred to as
'eigenvalue deflation’ throughout this paper.

The BGMRES-DR method2f] is a well-established block Krylov subspace method
for linear systems with multiple right-hand sides. In thappr, we extend the BGMRES-
DR method to the case of variable preconditioning, whichved! different preconditioning
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(possibly nonlinear) operators at each step of the algarith particular, an inexact solution
of the preconditioned systems is considered as well as #hefusn (inner) iterative method
as a preconditioner. The resulting method is called blocitfle GMRES with deflation of
eigenvalues (BFGMRES-DR).

When block Krylov solvers are used in practice, it is commoodme across a possible
linear dependence of some columns of the block residualsatfkactive idea should be a
combination of BFGMRES-DR with a skill to address such a deljeace during the block
iterative procedure. A simple technique is to delete liyear almost linearly dependent
vectors from the subspace explicitly. It is also called diffa[16]. To distinguish from
eigenvalue deflation, we will refer to this technique asteedeflation’. Nevertheless, vector
deflation may also lead to a loss of information that slows e convergencelp]. To
remedy this situation, Rol@band Sadkane kept the almost linearly dependent vectors and
reintroduced them in the next iterations if necessary dutire block Arnoldi procedure;
for more details, see2p]. We call this technique modified block Arnoldi vector deifhat
throughout this paper.

Modified block Arnoldi vector deflation technique has showeag potential to improve
the convergence and reduce computational costs for blogkKsubspace solver§[16, 29|
in many cases without dramatically increasing the memoguirements. Therefore, if we
can combine BFGMRES-DR with this modified vector deflatiochtgque, we will have an
effective method which not only allows eigenvalue deflatéord variable preconditioning
but also addresses the possible linear dependence in ttle IKiglov subspace. This new
approach is referred to as deflated BFGMRES-DR (DBFGMRE$-DR

The main contributions of this paper can be summarized dswsl First we derive
the DBFGMRES-DR method by exploiting modified block Arnoleictor deflation technol-
ogy. Second, we analyze its main mathematical propertidstan show that the deflation
procedure is mainly based on a non-increasing behavioreositigular values of the block
residual.

The structure of the paper is as follows. In Secttpmwe recall some fundamental prop-
erties of block Krylov subspaces fromf, 17]. A flexible version of the BGMRES-DR
algorithm is presented in Secti@ We describe in detail the DBFGMRES-DR method by
exploiting modified block Arnoldi vector deflation techngipin Section4. In Section5, we
demonstrate the effectiveness of the proposed methodllyFic@nclusions are summarized
in Section6.

2. Block Krylov subspace. In this section, we first introduce some notation and def-
initions used in the remainder of this paper and then recatlesfundamental properties of
block Krylov subspaces fronip, 17].

2.1. Notations and definitions. Throughout this papet.||, and||.|| . denote the Eu-
clidean norm and Frobenius norm, respectively. We-{is® refer to the conjugate transpose
operation of a vector or matrix, the identity matrix of ordes designated ag, € C***, and
0;x; is defined as the zero rectangular matrix witows and;j columns.R(-) andtol denote
the range of the matrix and the convergence threshold, casely. If C € C**! is a rectan-
gular matrix ¢ > 1), we denote by> = ULW ¥ the singular value decomposition (SVD) of
C,wherel € C**!, W ¢ C*! are unitary, and = diag(o1(C), 02(C), ...,0(C)) € C*!
is diagonal witho; (C') > 02(C) > ... > 0,(C). In addition, MATLAB notation is used, for
exampleU (1 : 4,1 : j) denotes the submatrix of the firstows and the firsj columns ofU,
U(:, ) refers to itsj-th column, andJ (4, j) corresponds to th&; ; entry of the matrixJ.
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DEFINITION 2.1 (Harmonic Ritz pair15]). Consider a subspac& of C". Given
BeC"" § e C,andy € U. Then @,y) is a harmonic Ritz pair oB with respect td/ if
and only if

By — 0y L BU,
or, equivalently for the canonical scalar product,
Vw € range(BU), w" (By — 0y) = 0.
We cally a harmonic Ritz vector associated with the harmonic Ritaeal

2.2. Block Krylov subspace. Let X, € C"*P be the initial block guess
and Ry = B — AX, be the corresponding initial block residual. The block Krylkub-
space generated by from Ry is defined as follows

K:m(A7 Ro) = Spar{Ro, ARy, AQR(), ey Am_lRo}.

As mentioned in 16], the definition of ‘block span’ does not mean a linear comakiom of
the block matrices, i.e.ZZ':_O1 A’ Rya; for some scalarsy;'s € C. Instead, it is a linear
combination of all then x p columns in{Rq, ARy, A%Ry, ..., A" 1 Ry}. To clarify this
point, we give the following definition

i=0

m—1
K (A, Ry) = {Z A"Ryvi, Yy € CP*P 0 <i<m — 1} c Ccrep,
Then the approximate solutioki,,, € C"*P generated by a block iterative method satisfies

m—1
X — Xo € {Z A'Ryy;, Vv € CPXPL 0 < i <m — 1} c Crxp,
=0

Note that each column of,,, satisfies

whereK,,, (A, Ro(:,j)) = spad Ro(:,j), ARo(:, ), ..., A" 1 Ry(:,5)}. Unlike the stan-
dard Krylov solvers, the search space of block Krylov meghfmt each right-hand side is
much larger, i.e., approximate solutionX,,(:,¢) are sought in the subspace
1 Km (A, Ro(:, 4)) rather than inkC,,, (A, Ro(:, j)), which hopefully leads to a reduction
in terms of iteration count. This is the main reason for ugitogk solvers.
Similarly to the standard Krylov subspace, a generalimatibthe block grade for the

block Krylov space was discussed ih/].

3. Block flexible GMRES-DR. In this section, we propose a flexible version of
BGMRES-DR (BFGMRES-DR) that combines the numerical fezdwf BGMRES-DR and
the flexibility property of FGMRES-DR15].

We first recall the block flexible Arnoldi procesg japplied to the matrix4 and starting
with then x p orthonormal matri¥/;. Let us denote by the preconditioning operator used
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at thej-th iteration. The block flexible Arnoldi algorithn?] recursively constructs the block
matricesVy, Va, ..., V,, such thafV;, V4, ..., V,,} is an orthonormal basis of the subspace
{Vi,AZy,...,AZ, 1}, whereZ; = Mjflvj represents the preconditioning operation at
iterationj (1 < j < m). At the end of then-th iteration, a typical relation (block flexible
Arnoldi relation) is obtained, that is,

(31) AZm = m+1ﬂm7

WhereZm = [Ml_lvh .. 7M777,1V’m} € Cnme, Vm+1 = [‘/h ‘/27 sy Vm+1] S C71,><(7n,+1)107
and#,, € Ctm+hpxmp has the following form

B = [HW?EE] '
Note that
Hi, Hyo ... ...  Hy,]
Hyq Hip :
Hp = Hso e Cmpxmp
_ Hyrn Hon)

is supposed to be nonsingular with ghep smaller matrixi7; ; andEy, = [0¢mm—1)pxp )"
For simplicity of discussion, each pass through the blockoidi iteration between restarts
is referred to as one “cycle”.

Suppose that the block flexible Arnoldi relatidh J) holds. In the following, we will de-
flate eigenvalues of smallest magnitude over the subsRédez,,,) to improve convergence.
This technique is similar to the one used in the BGMRES-DRoef25] (or the FGMRES-
DR method [9]), which retains an approximate invariant subspace betwgeles. In partic-
ular, it focuses on removing (or deflating) the eigenvaldesmallest magnitude by recycling
an approximate invariant subspace associated with thgeeglues. This approximate in-
variant subspace is constructed by harmonic Ritz vectord ocbmputed at the end of the
previous cycle. Unlike the case of a fixed preconditioner,dlyenvalue deflation procedure
for the flexible setting relies on harmonic Ritz vectorsotXV,, with respect taR (V).
The following theorem presents the harmonic Ritz formolatised in the BFGMRES-DR
method.

THEOREM 3.1. Block flexible GMRES-DR relies on the computatiok bfirmonic Ritz
vectorsY;, = V,,Gi With V,,, € C"™*™ and G, = [91,...,9x] € C™>*k where each
harmonic Ritz pair4;, g;) satisfies

(3.2) (Mo + HYL ) Hipt m My En B gi = 059:, 1 < i < k.

Y corresponds to harmonic Ritz vectors 4E,, V! with respect toR(V,,), and the har-
monic residual vectorsiZ,, VIV, g; — 0:V,,9; € R(Vmy1) are orthogonal to anmp-
dimensional subspace spanned by the columns®)y,.

Proof. The proof follows straightforwardly fromlp, Proposition 1]. |

Let Ry be the block residual from the previous cycle or, equivdyetite initial block
residual for the new cycle, which can be statedas= V,.;1 R.., WhereR,, denotes the rep-
resentation of the block residual in thg, | ; basis. Observe that the block residiiglresides
in the subspac®(V,,,+1) and is also orthogonal to the subspdted Z,,,). So the harmonic
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residuals and the block residual are in the sarsémensional spacR (AZ,,)"NR (Vi i1),
and the harmonic residuals are all linear combinations @ttiiumns of the block residual.
We next characterize the relationship between the harnresiduals and the block residual
by the following formulae

AZmGk = Vm+1 |:|: Gk :| Rm:| |:dlag(917 ey 0k):| 7

Opxk Apxk

where each column of the matrix satisfiesAZ,,q; — 6;Vng; = Z?:l Ro(:,5)a(j,1),
1 <4 < k. Since BFGMRES-DR is a natural extension of the FGMRES-DREhoe[15],
a block flexible Arnoldi-like relation can be derived anabog to that in 15, Section 3.1.2].
Therefore, we compute the reduced QR factorizatiot'pf= P,I';, and then orthonormal-

ize the block matrix?,, against the columns OE P

} to obtain the orthonormal matrix
0p><k:

[Dht1s Pht2s - - - » Php] € CMTUXP satisfying

diag(Ags o A)]
(3.3) AZy Py = Viny1 Per1li [ iag(M k)} r;!

Apxk

with Py = HOP k

pxk
Thus, by 8.1) and P | Py1 = Ij,1,, We obtain

I
} Dht1s Pht2s - Pkﬂi andl'yq, = HO kk} upxk:|-
px

diag(Aq, ..

(3.4) H} ml[ -

.7)\k:>:| F;l _ P]ﬂ.lﬂm,Pka

whereH " is a(k+p) x k rectangular matrix. LeZ;*" = Z,,, Py, ande”j;” = Vim+1Prt1-
Combining the conditions3(3) and (.4) yields

(3.5) AVpew = yrew e,
new H y rnew
Vk+p Vk+p = Ik+p7

R([Yk, Rol) = R(V}')-

We can consequently see that the block Arnoldi-like recwaegformulae §.5) can be recov-
ered without involving any matrix-vector product withwhen restarting with some harmonic
Ritz vectors.

Assuming thatt is divisible byp, then we carry outn — % steps of the block flexible

Arnoldi process with the starting block matif’c’(:, k + 1 : k + p) to eventually obtain

AZm — m+1ﬂm7
VnL-{-lHVm-‘rl - I(m+1)p7

wherez,, = [Z1,Za, ..., Zy| With Z; = ZPV(:, (i — )p+ 1 :dp), for 1 < i < g and
Z; = MV, for g +1 < i < my Vrr = Vi, Ve, .., Vinya] with
Vv, = Vkﬁf;;’(:,(z' —Dp+1:idp),forl < i < % + 1 and#,,, now is an upper block
Hessenberg matrix, except for a full leadihg- p by & portion. At the end of the cycle the
approximate solutioX,,, = Xo + 2,,Y,, € C"*? is found by minimizing the residual norm
IRy — AZ,,Y| ., whereY,, is the solution of the following least-squares problem aési
(m+ 1)p x mp,

Y,, = argmin |Ry — AZ,,Y || = argmin
YeCm YeCm

’AO 7ﬂmYHF’
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Algorithm 1 BFGMRES-DR.
Input: A € C"*", B € C"*P. Choose an initial guesk, andtol > 0.
Output: X, € C™*P with X,,, ~ A~'B.
1: Compute the block residudl, = B — AX,. Compute the reduced QR decomposition of

Ry = ViR. Generate/,,,1; andH,, = Hon | with the block Arnoldi process.
H’m-‘rl mE

m

SetAo = [R¥,0,...,0]".
2: Solvemin HAO —ﬂmYH for Y;,. SetX,, = Xo + VY, R = B — AX,,. Check
residual norms for convergence and proceed if not satisfied.

3: Compute the: smallest eigenpairg{, g;) of (H, + Ht 1y Hiny1,mHy ' En EL).
4: Orthonormalize the vectorg by first separating them into real and |mag|nary parts if
they are complex to form the columns Bf € R™7**_ (It may be necessary to adjust

to include both the real and imaginary parts of complex eigetors.)
5. Extend the vectors, . .., pi to lengthmp+ p with zero entries, then orthonormalize the

columns ofR,, = Ay — H,, Y, against the columns oﬁ;’“} to form pry1, ..., Prtp-

P
SetP = Ok Dk+1 - pk+p:|'

6: SetZ;" = 2, P, Vs = Vmt1Prta andH}cv = k+17—[ Py. Applym — £ steps
of the block flexible Arnoldi process to extet}“*, Vs andH v to Z,,, Vm+1 and
H,,

7. LetAg = VI | R,, andX, = X,,,. Go to step 2.

whereA, = VH | Ry. Details of the BFGMRES-DR method are given in Algoritiim

As mentioned above, the BFGMRES-DR method exploits thenesae deflation tech-
nigue to mitigate convergence slowdown. In the next secti@will adopt another deflation
technique to address the possible linear dependence marurithe block Krylov space.

4. Deflated BFGMRES-DR. When block Krylov solvers are used in practice, the trou-
ble comes from the possible linear dependence of some calofrthe block residuals. Such
a dependence implies that the maff, A7, ..., AZ,,_1] is almost rank deficient. In such
a situation, the block Arnoldi procedure does not continsi@sual, and the computational
cost will be expensive. To remedy this situation, Relalmd Sadkane2P] kept these almost
linearly dependent vectors and reintroduced them in theitezation if necessary rather than
deleting them explicitly. To distinguish from eigenvaluefldtion, we refer to this technique
as modified block Arnoldi vector deflation throughout thipea while the block flexible
Arnoldi process with this deflation strategy is defined asatied block flexible Arnoldi pro-
cedure P9. In addition, they proposed two criteria either based arthmerical rank of the
block Krylov basis (W-criterion) or on the numerical ranktbé block residual (R-criterion),
to detect dependence. The R-criterion is used to judicyodstompose the block residual
into two parts. One part stores vectors ensuring conveegehe other keeps the deflated
vectors. Recently, Calandra et &l pxtended this concept by performing an additional de-
composition at the beginning of each cycle. Inspired bydhdsas in ¢, 29], we next apply
the modified block Arnoldi vector deflation strategy to the@WRES-DR method.

4.1. Deflated block flexible Arnoldi procedure. Thej-th iteration of the deflated block
flexible Arnoldi procedured] is briefly reviewed as follows. Assume that an orthonormal
matrix K € C"*P contains all the Krylov directions after iteratioj — 1. However, all the
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p Krylov directions in the subspaces Rf(/’) may not be needed for ensuring convergence
along the iterative procedure. In order to reduce unnecgssanputational cost, the R-
criterion is considered to judiciously decompdgéK) into two parts:

R(K) =R(V;) ® R(P;), with [V}, P;]7 [V}, Pj] = I,

whereV; € C"*%i, P; € C"*% with k; + d; = p. Thenk; Krylov directions ensuring
convergence (stored ivi;) will be effectively considered at iteratiohand multiplied byA,
while d; directions (stored inP;) do not participate in the matrix-vector product process.
Langou [L9] showed that deleting the deflated spa@éP;) is not recommended since it
may lead to a loss of information that slows down the converge So the deflated part is
not deleted but left aside at the same iteration and thetroelinced in the next iteration if
necessary. In additiomdV; is orthogonal to all the previous Krylov directiof$(1 < i < j)
andP;. The algorithmic details of the deflated block flexible Amfiggrocedure are described
in Algorithm 2.

Algorithm 2 Deflated block flexible Arnoldi procedures]f computation off/jﬂ with

Vi, PV Pl = Ly,

Input: [V, P;] € C*(a-1+p) with V; = [Vi,Vs,...,V;], V; € C"*k such that
V}H‘/j = ij, Pj S (Cnde, andkj + dj =p.

Output: V4, € C"**s orthonormal cqumns{HHj } € Clsitp)xk;
1.
with AZJ = [Vj,Pj,‘A/vj+1] |: Hj :|
o Hjiy;
: Defines;_1 = Z{;%l k; with sg = 0.
: ComputeZ; = M; V.
: ComputelV = AZ;.
fori=1,...,5do
Hyj = VHW
W =W — ViH;;
end for
H, = PI'W
W =W - P;H,

©e N ONR

Hy

10: Hj € Cli14P)xks asH; =
JiJ

H,

p
11: Compute the reduced QR decompositiondf as W = QR, Q € C™*% and

R € Chixks,
12: Set‘7j+1 =Q, Hj-&-l,j = R.
13: Defines; ass; = s;_1 + kj.

14: Define V; € C"™% as V;=[Vi,Va,...,V;] and V;1; € CX6itp) as
. . . H.
Vj+1 = [Vj7Pj,ij+1] such thatAZj = [V]‘,Pj,‘/j+1} |:H J :| .
J+1J

The deflated orthogonalization procedure leads to theviitig relation, forl < j < m,

. H.
4.1 AZ; =V il
(4.1) A [HHLJ]
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Assume that the deflated block flexible Arnoldi relation tscddithe beginning of thgth
iteration

4.2) AZ; = [Vj,Pj]ﬂj,1
with [V;, PJ7 [V, Pj] = I, ,1p) andH; ; € Cli-1FP)xs-1 We can rewrite 4.1)
together with 4.2) as a deflated block flexible Arnoldi-like relation,

_ Ty P T Hi | H;
(4.3) [AZJ—laAZJ]*[VmPJaVJ+1] Ok‘]‘XS]‘_1 ‘ Hj+1,j

AZ; =ViaH,.

Next, the R-criterion29] is considered to decompose the subspgR¢EP;, Vj 1)) into
two parts[V;.1, Pj+1]. Suppose that the subspace decomposition can be stated as

(4.4) [Vis1, Pya] = [Py, Vi) Fyia,

whereF; ., € CP*? is a unitary matrix. We can rewrité (3) together with 4.4) as a deflated
block flexible Arnoldi relation

AZ; =V, Py Vi Fpn Fla iy = Vi, Pl

ISJ' OSj Xp

whereF;, = {O ] . So, the deflated block flexible Arnoldi procedure can con-

X8 j+1
tinue as usual. Tﬁe \J/vay tjo choose the maffjx; will be considered in Sectiof.2.

In the following, we present a framework for the new methodned deflated
BFGMRES-DR (DBFGMRES-DR) based on the deflated block flexitnoldi relation,
which allows eigenvalue deflation, vector deflation, anda@e preconditioning simultane-
ously. Since the eigenvalue deflation technique is not pad at the first cycle, the new
method carries outn steps of the deflated block flexible Arnoldi process startiniy the
initial block residual. After the first cycle, we carry ouept(3.2) to compute thé: harmonic
Ritz vectors and then construct a new block flexible Arndildé-recurrenced.5). Note that
the harmonic Ritz vectors added to the next subspace arpendent. Therefore, the algo-
rithm only runsm — % steps of the deflated block flexible Arnoldi process with ttagtsg
block matrikaﬁf;jJ(:, k 4+ 1 : p). Consequently, it only requires a total of, — k (Or s,
for the first cycle) matrix-vector products with to construct a new orthogonal basis for the
deflated block Krylov subspace of dimensionsgf+ d.,, (< mp), includingk harmonic Ritz
vectors. The details of the DBFGMRES-DR approach are daesgin Algorithm3.

REMARK 4.1. If we replaceV/; with I,,, i.e., without using a preconditioner, the above
algorithm reduces to the deflated BGMRES-DR method (refetbeas DBGMRES-DR),
which relies on the deflated block Arnoldi relation. The nuiced behavior concerning
DBGMRES-DR is presented in Sectién

4.2. Details of the modified block Arnoldi vector deflation. In this section, we briefly
introduce Robb and Sadkane’s R-criterior29] that is used to detect dependencies and
identify the linearly independent vectors ensuring cogeace in the deflated block flexi-
ble Arnoldi procedure.

Let X; € C**? be an approximation generated by DFBGMRES-DR at itergtiohhe
corresponding residual is given by

Rj = B—AX; = Ry — AZ;Yj = Ro = V11, = Ro — [V, P, Vi [H;Y;
=V, P, Vil (A = 3;Y5) = [V;, Py, Vil Ry,
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Algorithm 3 Deflated BFGMRES-DR algorithm.

Input: A € C"*", B € C"*P. Choose an initial guesk, andtol > 0.
Output: X, € C"*P with X,,, ~ A~'B.
1: ComputerRy = B — AX,.
2: Compute the QR decomposition & asRy = V1A, such thatpy = rank(Vy) with

V) € C*Po andA, € CPo*P; Setsy = 0, j = 1.

3: for eycle =1,...do

4:

10:

11:

12:

13:

14:
15:

16:

17:
18:

19:
20:
21:

22:
23:
24:

Use Algorithm 4 to determine deflation unitary mati andk;, d; such thatk; +
dj:p. Set31:kliszlorsj:k;iszg—&—l.
Define [V;, P;] = V;F;, with V; € €% (P; € C™%) as the firsts; (lastd;)
columns ofV/; F;.
DefineV; = V;, H; = FHH, andA; = FHA;_; with A; € Cles—aFp)xp,
while j < m, do . R

Apply Algorithm 2 to getV; € C"*/, V. € C*(5FP) H . € ClFP) %S5 such

thatAZj = f/jJrlﬁj with ]A}j+1 = [Vh Vo,..., ‘/j, Pj, f/]]

SetA; € Cts+P)*P agh; = [ Ag }

ij Xp
ComputeY; = arg miny s x»

ComputeR; = A; — H,Y;.
SetX; = Xo +V,Y;, R; = B — AXj. Check residual norms for convergence, and
proceed if not satisfied.
Determine deflation unitary matrig; ., € C+P)>*(i+P) andk; 1, d;1 such
thatkj_;,_l + dj+1 = p.
Setst =355+ ijrl.
Define [Vj+1,Pj+1] = f/j+1fj+1, with Vj.;_l S Cn*ki+1  and
Vjy1 € Cvxsiti(pP; € Cnxdi+1) as the firsts; 1 (last d;j+1) columns of
Vit1Fjt1.
Define #;, = FH,#H; and Aj.1 =FH A; with 2, € ClE+P>s and
Aji1 € C(sj+p)xp,
end while
Let H,, € CP*» be the submatrix of{,, with rows froms,, + 1 to s,, + p. Let
F=H, 2HE with H,, = H,,(1: sm,:).
Compute theé: smallest eigenpaird/(, g;) of H,,, + F H,,.
Orthonormalize the vectokgs to form the columns aP;, € C»**,
Extend the columns aP; to lengths,,, + p with zero entries, then orthonormalize the

A; _ﬂjYHF'

o . P

columns ofR;, 1, against the columns c{f k } toformpyt1, Pr+2, - - - Ditp
05 +p) xk

Py,

0 Pk+1 --- DPk+p|-

(sm+p)xk

SetzZp = Z,, Py andVi{) = Vi Py

Setj =L+ 1,7, = P M, P andV; = Vpse (o k+1: k +p).
LetA,_; = [REP,,, 01 andX, = X,,.

Seth+p =

25: end for
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whereR; = A; — #,Y; is the j-th block quasi-residual. Consider the SVD of the block
quasi-residual; = USW!, wherelU € C(5i+P)*» W ¢ CP*? have orthonormal columns

andX € CP*? is diagonal. By ¥, 29|, we can determine a subset of singular valueﬁ?pf
satisfying the following condition:

O'g(Rj) > gqtol, V£ suchthatl < ¢ < py (pq < p),

wheree, is a real positive parameter smaller than one. This allowwecompose the
matrix X as follows,

N Xy Opax (p—pa)
O(p—pa) xpa 2

)

with X, = X(1 : pg,1: pg) andX_ = X(pg + 1 : p,pqg + 1 : p). Thus, the block residual
can be written as

Rj = [V}, P, Vi (U S WH + U5 WH),
Since[V;, P;, V;11] is an orthogonal matrix, it is straightforward to obtain
H[vj,Pj, 17j+1]U+2+WfH2 > eqtol,
while
H[Vj,Pj,x“/jH]U_E_VVf’H2 < eqtol.

We setk; 1 = pqg anddj;1 = p — pq. If pg < p, then there exisi;; linearly or almost
linearly dependent vectors in the generated block Krylaacep In this case, the subspace
decomposition will be performed to select the linearly ipeledent vectors (stored 1)
and leave aside the linearly dependent vectors (storétlin).

From a practical point of view, the search sp&t@/;;1) spanned by the linearly inde-
pendent vectors should satisR(V; 1) € R([V}, P}, V;+1]Uy). Moreover, the orthonormal
relationV;,, L V; is required. This can be expressed as

R(Vi1) = R((I = VYWV, Py, VialUs) = R([Onxs, Py, Vis1| R W)

(4.5) N R, N

= R([Onxs,, Py, V1] {R,:] Wy) = R([P;, Vit RyWS).
Similarly,
(4.6) R(Pj11) = R([P;, Vit | R,W-).

We can rewrite4.5) together with 4.6) as the following relation
4.7) R([Vjt1, Pit1]) = R((P}, Vi1l ByW) = R([P}, V| Fja T),

whereF} 1, is ap x p unitary factor of the QR factorization d%pW. In view of (4.7), we
can keep the first;, ; columns of P;, V1] Fj 1 asVj1, while the nexid; ; columns are
stored inP;,,. For more details, see Algorithrh

Note that determining;; is rather inexpensive in terms of computational operations
sincep < n. Moreover, we conclude that the singular values of the bteskdual generated
by the DBFGMRES-DR are monotonically decreasing.
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Algorithm 4 Determination of; 1, d;41 and of 7, [6].

1: Choose a deflation threshatgl.

2: Compute the SVD of?; asR; = USWH. with U € Cl+P)>xr) 53 ¢ CP*P and
W e Crxp,
Selectp, singular values of2 ; such thaw; (R ;) > gtol for all  such thatl <1 < p,.
SetijA = Pd anddeA =p - kj+1.
DefineR, € CP*P asR, = Rj(sz +1:s5+p,1 i p).
Compute the QR factorizationR,W asR,W = F; T with F;;; € CP*P and

Fi \Fj =1,

o g hw

7: DefineFj 41 € CloitP)x(si+p) as{ L, %j”’].
PXs; Jj+1

THEOREM4.2. Let R; , be the block residual at thg-th iteration of the/-th cycle of
DFBGMRES-DR. Then the singular valug$R; ;) satisfy the inequality

oi(Rje) <0oi(Rj_14), 1 <0 <p.

Proof. The relationR;, = (I — V]-Vj{)Rj,l,g holds. Therefore the proof follows
straightforwardly from §, Proposition 3]. a

Sincek; . is directly determined by the singular valuesi®f,, i.e.,kj+1 = pq. From
Theorem#.2, we deduce that the sequence of each cyglg > 1, is progressively decreas-
ing, which may yield a significant reduction in terms of metvector products and then,
hopefully, lead to a reduction in terms of computationalragens.

REMARK 4.3. In addition, it is worth mentioning that one difficultyises whenk;
reaches the value, and the block solver with vector deflation technique hassasisfied
the stopping criterion. In this case, the deflated block lfllexiArnoldi procedure cannot
continue sincek; = 0. Therefore, we investigate a combination of DBFGMRES-DR an
BGMRESD(n) as Calandra et al. did if6]. Whenk; reaches the valug the DBFGMRES-
DR approach is replaced with BFGMRE®) at the next restart in order to achieve a con-
vergence criterion. We refer to this combination as Conmtiime0). Experiments show that
Combined(n, 0) works well and faster convergence behavior is retaines Ssetiorb.

4.3. Computational cost for the modified block Arnoldi vecta deflation. Compared
with BFGMRES-DR, additional operations concerning the patation of [V} 11, Pjy1],
Fii1, Aj, andﬂj are needed in DBFGMRES-DR. We summarize the additional cemp
tational cost for every iteration of DBFGMRES-DR in Tallé.

TABLE 4.1
Computational cost for the modified block Arnoldi vector atash.

Operation | Cost
H 7, 3

iy ”,

Fj+1Aj 2p

[P}, Vi1l Fjga, (G #0) | 2np?
Computation off; 4 4s;p* + 14p3

Table4.1shows that the computation §if; 1, P;41] is the most expensive one in prac-
tice, while the computation af;;;, A; and; is rather inexpensive since these matrices do
not depend om, requiringd_"" | (4s;p” + 18p°) 4 14p* (or 3°7" & | | (4s,;p> +18p°)+14p?)
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operations. Moreover, the cost for each cycle is monotdlgidacreasing as the method con-
verges since the sequenkg(j > 1) is non-increasing. In addition, jf* is larger than the
problem sizen, we can naturally split the right-hand sides into small $otks and solve the
successive subsystems block by block.

Even though DBFGMRES-DR requires more computational casttd the modified
block Arnoldi vector deflation, this can be balanced with taster convergence speed as
shown in Sectiorb.

5. Numerical experiments. In this section, we present some numerical experiments to
illustrate the potential of the new algorithm, with or witkigoreconditioning, for the solution
of the linear systemi(1).

In the following subsections, we mainly evaluate and comphe performance of the
new method against the GMRES-DR approa2] and other popular block iterative algo-
rithms for solving linear systems with multiple right-hasiles. The first block solver is
BGMRES-DR P5] with no deflation strategy. The second method is BGMRES 8D
based deflation (BGMRESDY()) [7]. The third approach is modified block GMRES with de-
flation at each iteration (BGMRES-&]) [6]. Meanwhile, we also investigate the numerical
behavior of Combinedy, 0).

Here,m andk denote the number of iterations for each restart and the auwofthar-
monic Ritz vectors, respectively. If the harmonic Ritz westare added to the subspace, the
algorithm only runsm — [%11 steps of the deflated block flexible Arnoldi process to limit
the dimension of the space. To limited storage or significathiogonalization cost, the max-
imum of the dimension of the subspace is set@0. In all of our runs we us&y = 0%,
as our initial guess. The block right-hand siBBéhasp columns generated randomly from a
normal distribution. The deflation threshold is considexed; = 0.1. We make comparisons
in three aspects: the number of matrix-vector productsiithéme in seconds (referred to as

CPU), and final true relative residuitnorm defined a% (referred to as res.norm).

As stopping criterion we used either the conditi‘gwmi’““ < 10~ for all the solvers or
that the matrix-vector products exceed the maximal madgiotor product number (referred
toasM AXIT). We considei AX IT = 2n except for the last two cases where we choose
MAXIT = 2000. All the numerical experiments were performed in MATLAB 2@lon a
PC-Pentium(R), CPU 2.00 GHz, 8.00 GB of RAM.

ExamMpPLE 5.1. The purpose of this example is to illustrate the nunaébehavior of
BGMRES-DR, DBGMRES-DR, and the GMRES-DR approach wheniegpb the solution
of thep linear systems in sequence. Followid], the test matrix is a tridiagonal matrix with
entries 0.1, 0.2, 0.3, 0.4, 0.5, 6,.7, , 1000 on the main diagonal, sub-diagonal entries all 1,
and super-diagonal entries all 1. The right-hand sidestawsen to be random vectors with
p = 5 or 10. For fair comparison, GMRES-DR will build a Krylov subspamiedimension
m x p. The numerical computations are carried out with= 10, £ = 10. The convergence
curves are plotted in Figuia L

From Table5.1 and Figures.1, we can see that the block solvers require fewer matrix-
vector products than GMRES-DR applied to the sequence eétisystems. In addition,
when the number of right-hand sides increases, the averagker of matrix-vector products
for DBGMRES-DR is non-increasing. The above results shaw bfock iterations have the
potential to speed up the convergence, compared with thdata Krylov method.

ExXAMPLE 5.2. In the second part, we test three matrices from Matrikdtg5]. These
cases are summarized in Tallle€, which shows the names of the matrices, the size, the

1[z] rounds the elements afto the nearest integers greater than or equal to
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TABLE 5.1
Results of tridiagonal matrix.

| p=5m=10 p=10,m =10
| mvps  CPU| mvps CPU
BGMRES-DR(n) 665 0.420, 990 0.499

DBGMRES-DR(n) 517 0.385| 777 0.467
GMRES-DR(np) | 1050 1.569| 1900 3.398

o
x A + —4— BGMRES-DR L 4 n 5 " 4 —4A— BGMRES-DR
\ \ DBGMRES-DR 107t \ \ \ DBGMRES-DR||
\ \ \ —+— GMRES-DR \ \ \ \ \" | |=——OMRES-DR

L T IS g \ \ \ \ \ T 1
S N N\ EI \ \ \ \ \ \

\\ 1 \* 1 1 0 25 TR TS S Y A S N R

\ \ \ \ [T I N | Vo

\ \ \ \ | | | | | | |

10° |

w0 |

Relative residual norm
Relative residual norm

. \
10°F |

10

10°
o 200 400 600 800 1000 1200 0 500 1000 1500 2000
mvps mvps

F

G. 5.1.The convergence curves of different iterative methodsidiafonal matrix. Left: p = 5. Right: p = 10.

density of nonzero elements, and the type. We evaluate ttierpence of the five block
solvers on the first two test matrices without preconditignivhile for the last ones@y| r 4)
we use ILU preconditioningZ0]. As block right-hand side we chood®é = rand(n,p)
(RHSs1) orB = (random rank-six matrix}- 10~* x rand(n, p) with p = 10 (RHSs2). The
parameters are setto = 10 andk = 10.

Figures5.2 5.3 and5.4 show the convergence histories for all block solvers for BRHS
(left) and RHSs2 (right). The corresponding matrix-vegiarducts, CPU, and residual norms
are reported in Tabl®.3. Block methods allowing eigenvalue and vector deflatioa,, i.
DBGMRES-DR and Combinedt, 0), are found to be efficient. They enjoy a significantly
faster decrease in the number of matrix-vector products ttlaer block solvers. Moreover,
their convergence curves clearly highlight the interegieaforming modified block Arnoldi
vector deflation, compared with the BGMRES-DR algorithm.atidition, we also remark
that the convergence curves of DBGMRES-DR and Combined) are different at the end
for RHSs2 since DBGMRES-DR does not satisfy the stoppirtgrioin due tat; = 0. Even
though Combinedf, 0) requires slightly more runtime than DBGMRES-DR, it is albde
satisfy the stopping criterion. Therefore, Combined() can be considered a slight modi-
fication of the DBGMRES-DR algorithm. On the whole, the twdlaked solvers are more
competitive for tough problems with small eigenvalues.

In addition, we also show the behaviourigfwhile performing modified block Arnoldi
vector deflation.  Figure$.5 5.6, and5.7 depict the evolution of;, which is consid-
ered as the effective Krylov directions at iteratipnfor two deflated block space solvers
(DBGMRES-DR and BGMRES-&()). Itis observed that both of them have a non-increasing
behavior fork;. However, the evolution of; for DBGMRES-DR enjoys a significant de-
crease due to eigenvalue deflation that exploits some gpatisrmation, which could lead
to less computing cost than for BGMRE Sr%)(
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TABLE 5.2
Summary of cases are used to study DBGMRES-DR.

Problem | nnz | Density | Type

3784 | 0.0031

n | | Application area

1104

1 sherman4 real unsymmetric| Oil reservoir modeling

2 ttocean 4629 | 32,063 | 0.0015 | real unsymmetric| Ocean circulation problem
3 saylr4 3564 | 22,316 | 0.0018 | real unsymmetric| Oil reservoir modeling
TABLE 5.3
Performance comparisons for different block iterative moels.
problem method RHSs1 RHSs2
mvps | CPU res.norm \ mvps\ CPU res.norm

BFGMRES-DR 820 | 3.090e-01 | 9.607e-07 520 | 2.083e-01 | 8.101e-07
BFGMRES-S{n) 2288 | 1.328e+00| 9.997e-07 1361 | 9.429e-01 | 3.208e-07

sher man4 | BFGMRESD(¢n) 2170 | 6.790e-01 | 9.974e-07 1140 | 3.568e-01 | 5.339e-07
DBFGMRES-DR 595 | 2.607e-01 | 9.877e-07 322 | 1.643e-01 | 1.827e-06
Combinedtn, 0) 595 | 2.650e-01 | 9.877e-07 420 | 2.102e-01 | 1.447e-07
BFGMRES-DR 14,270 | 1.108e+01| 9.878e-07| 15,550 | 1.169e+01| 9.885e-07
BFGMRES-Stn) | 18,516 | 1.742e+01| 4.419e-01| 18,517 | 2.218e+01| 1.425e-02

ocean BFGMRESD(n) 18,517 | 1.342e+01| 4.401e-01| 18,517 | 1.510e+01| 1.259e-02
DBFGMRES-DR 7758 | 7.208e+00| 9.990e-07 5287 | 6.117e+00| 1.455e-06
Combinedtn, 0) 7758 | 7.192e+00| 9.990e-07| 5487 | 6.224e+00| 9.419e-07
BFGMRES-DR 270 | 2.532e-01 | 8.443e-07 280 | 2.561e-01 | 8.211e-07
BFGMRES-S{n) 744 | 1.311e+00| 9.995e-07 1077 | 2.990e+00| 9.378e-09

saylr4 BFGMRESD(n) 610 | 5.225e-01 | 7.794e-07 600 | 5.391e-01 | 9.074e-07
DBFGMRES-DR 189 | 1.981e-01 | 8.792e-07 143 | 1.711e-01 | 1.398e-06
Combinedtn, 0) 189 | 1.922e-01 | 8.792e-07 243 | 2.373e-01 | 2.587e-08

Relative residual norm

—&— BGMRES-DR

~ — — BGMRES-S(m)
— — BGMRESD(m) |
—&— DBGMRES-DR
Combined(m.0) ||

Relative residual norm
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—+— BGMRES-S(m)
< BGMRESD(m) |
—&— DBGMRES-DR
Combined(m.0) ||
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o

v
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1200

1400

FiG. 5.2. The convergence curves of different block iterative mettedmatrixsher man4. Left: RHSs1.
Right: RHSs2.

EXAMPLE 5.3. This test case evaluates the performance of blockrsadymplied to two-
dimensional Helmholtz problems with flexible preconditian We consider the problem on
the domaird < x < 1,0 < y < 1 with the following Robin boundary conditions:

—Au— B*u=f,
u(0,y) = g(y),
u(z,0) = p(y),
uz(1,y) = pu(l,y) + a(y),
uy(z,1) = qu(z,1) + c(x),
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Right: RHSs2.
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FiG. 5.4. The convergence curves of different block iterative methmd matrixsayl r 4. Left: RHSs1.
Right: RHSs2.
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Fic. 5.5. Evolution ofk; versus iterations different block iterative methods onrirather man4. Left:
RHSs1. Right: RHSs2.

whereg, p, andq are constants. We specify the following conditions:
. . X
g(y) =0, p(z) =0, p=-3, ¢ =2, a(y) = 3sinmy, and ¢(z) = —7 sin -
We use the classical five-points difference scheme to digerthe Helmholtz equation.

We conside” x 27 and2® x 22 grids for the discretization of the Helmholtz equation, g¥hi
lead to nonsymmetrit6384 x 16384 and65536 x 65536 matrices, respectively. Different
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Fic. 5.7.Evolution ofk; versus iterations different block iterative methods onrinatay| r 4. Left: RHSs1.
Right: RHSs2.

grid resolutions are used to solve the problem with waverarsyh = =. The flexible pre-
conditioning is governed by a few steps of block full GMRESré| we consider 10 steps
of block full GMRES. As block right-hand side we chooBe= rand(n, p) with p = 10 or
p = 20 and considek = 10, m = 10 or m = 5. The results are shown in the Talilel

We can see from Tablg.4, Figures5.8, and5.9 that BGMRESD{») and BGMRES-
S(m) can not solve all the problems within the given steps withialde preconditioning.
However, one should note that DBFGMRES-DR and Combimed] enjoy a significant
decrease in the number of matrix-vector products. Moreaweterms of CPU time, the
two deflated solvers are faster than the BFGMRES-DR methadost cases. In addition,
since DBFGMRES-DR converges to the stopping criterion teeffp reaches the value 0, the
convergence curves of DBFGMRES-DR are the same as thosendbi@ed(r, 0).

6. Conclusions and future work. We have derived a new DBFGMRES-DR method for
linear systems with multiple right-hand sides. The new algm can address the possible
linear dependence at each iteration during the block Aimprlastedure and reduce computa-
tional expense. It is observed by experiments that DBFGMBESsignificantly reduces the
number of matrix-vector products. In addition, numericedmaples also show that it enjoys
faster convergence than some other block solvers on tounfiigmns with small eigenval-
ues. In future work, we will combine the modified block Arnol@ctor deflation technique
with the block GCROTi(z, k) method R3]. The corresponding result24] are also being
considered.
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TABLE 5.4
Results of Example Helmholtz.
n=16384 n=65536
P m | method
mvps | CPU res.norm | mvps | CPU res.norm
BFGMRES-DR 330 | 5.556e+00| 5.165e-07| 710 | 4.795e+01| 9.312e-07
BFGMRES-Stn) 817 | 1.296e+01| 9.693e-07| 2001 | 1.182e+02| 6.152e-02
10 | 10 | BFGMRESD(n) 1000 | 1.383e+01| 8.704e-07| 2000 | 1.053e+02| 3.489e-02
DBFGMRES-DR 200 | 3.369e+00| 9.263-07 424 | 2.867e+01| 9.736e-07
Combinedfn, 0) 200 | 3.368e+00| 9.263e-07| 424 | 2.865e+01| 9.736e-07
BFGMRES-DR 820 | 1.530e+01| 7.096e-07| 2020 | 1.579e+02| 8.172e-01
BFGMRES-Sfn) | 2002 | 4.261e+01| 1.960e-03| 2001 | 1.498e+02| 7.363e-01
20 | 5 BFGMRESD{n) | 2000 | 3.378e+01| 2.142e-03| 2000 | 1.378e+02| 7.546e-01
DBFGMRES-DR 356 | 6.821e+00| 8.580e-07| 1076 | 9.133e+01| 9.647e-07
Combinedfn, 0) 356 | 6.822e+00| 8.580e-07| 1076 | 9.111e+01| 9.647e-07

Convergence behavior for different block flexible methods Convergence behavior for different block flexible methods
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FIG. 5.8. The convergence curves for different block flexible metloodsielmholtz problem witlh = 10.

Left: n = 16384. Right: n = 65536.
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FiG. 5.9. The convergence curves for different block flexible metloodslelmholtz problem witlp = 20.
Left: n = 16384. Right: n = 65536.
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