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AN EXPONENTIAL INTEGRATOR FOR NON-AUTONOMOUS
PARABOLIC PROBLEMS *

DAVID HIPPf, MARLIS HOCHBRUCK, AND ALEXANDER OSTERMANN!

Abstract. For the time integration of non-autonomous parabolic probjemsw type of exponential integrators
is presented and analyzed. The construction of this integisiclosely related to general construction principles o
the continuous evolution system. The proximity to the cordiraiproblem allows one to obtain a third-order method
that does not suffer from order reduction. The stated ordkatior is rigorously proved in an abstract framework of
analytic semigroups. The numerical behavior of the integiatilustrated with an example that models a diffusion
process on an evolving domain. Comparisons with an implicitgeeiiutta method of order three and a standard
fourth-order Magnus integrator are given.
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1. Introduction. For the numerical integration of linear evolution equasiofithe form
(1.1) u'(t)+A@)u(t) =0,  u(0) = uo,

Magnus integratorsl] 3, 19] are often considered to be the method of choice. This is par-
ticularly true for the linear Schrédinger equation with acsith, time-dependent potential.
Under the assumption that certain derivativeslof) are bounded, higher-order convergence
results are available; se&q]. However, itis also well-known that, in the parabolic cageag-
nus integrators often suffer from order reduction, i.ee dinder of convergence is reduced,;
see p, 27].

In this paper, we follow a different approach in which the stoaction of the integrator
as well as its convergence analysis are closely relatecetadhstruction of the continuous
evolution system ing6]. The theory of p6] is also outlined in the monographg, [Part 2]
and 3, Section 5.6]. This proximity to the continuous problenoai one to obtain a third-
order exponential integrator that does not suffer from ordduction. This integrator was
first proposed in13. Its implementation using preconditioned Krylov subspatethods is
discussed in12). In this paper we concentrate on the error analysis.

There are several other options for solving non-autononpawabolic problems. For
instance, discontinuous Galerkin methods in space and [fifpdinite elements in space
combined with BDF method<[ 25|, Runge-Kutta methods for the time discretizatid,[
21], and linearly implicit methodsZ0, 28]. These methods, however, will not be considered
further in this paper.

Non-autonomous parabolic equations as equatiofy @rise for instance from a spa-
tial discretization of a diffusion equation on an evolvingnahin. Finite element methods
for parabolic differential equations on evolving surfagese considered in5]. Their time
discretization with implicit Runge-Kutta methods was sdpgently studied ind].

The paper is organized as follows: in Secti®mve provide the analytical framework
and present the construction of an approximate evolutistesy for (L.1). For the numer-
ical realization we suggest a new exponential integrateg; @.9). Section3 contains our
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main results on error bounds for the new exponential integréinally, we present numer-
ical experiments for finite element discretizations of pale problems on time-dependent
domains in Sectiod. A comparison of the efficiency of the method using high-perfance
computing is beyond the scope of this paper and might be piedelsewhere.

2. Construction of an approximate evolution system.In this section we present the
construction of an approximate evolution system. We workhi framework of 6] and
consider {.1) as an abstract evolution problem on a Banach spaceMore precisely, we
employ the following assumption:

ASSUMPTION2.1. The linear operatorsi(t) are uniformly sectorial and have a com-
mon (time-invariant) domai (A(t)) = D fort € [0,T].

Each operatorA(t) thus generates an analytic semigroup &n which we denote
by e=s4(1), By a standard scaling argument, we can assumeAt@tis invertible with a
bounded inverse. This implies that for all> 0, there exists a constatt > 0 such that

2.1) HA(t)O‘e’SA(t) <05 s>0,

holds uniformly int € [0, 7.
In addition, we require the Lipschitz conditions

(2.2a) [ (A(s) = A@®)A@Q) | < Clt - 5],
and
(2.2b) [A=1(0) (A(t) — A(s))|| < C |t — 5] .

Let 7 > 0 be a fixed step size ang = nr, n € {0,1,...}. By [26, eq. (1.14)], the
solution of (L.1) at timet,, + 7 can be written as

w(ty +7) = Gty + 7, tn)u(tys),

2.3 T
23 Gty +7,t,) =€~ An —|—/ e_(T_S)A(t"‘+S)R(tn + s,t,)ds,
0

whereA,, = A(t,,). The operator? is defined by the integral equation
(2.4) R(t+ s,t) = Ri(t + s,t) + / Ri(t+ s,t+0)R(t + o,t)do,
0

or, by [26, eq. (1.31)], as

(2.5) R(t+5,8) = Ru(t +5,1) + / R(t+s,t + 0)Ri(t + 0, ) do,
0

where

(2.6) Ri(t,s) = (A(s) — A(t))ef(t’S)A(S),

It was shown in 23, eq. (5.6.23)] that

(2.7) R(t,s) = i Ru(t,s),  |[Rm(t,s)|| <Clt—s™".

m=1

IThroughout the paper, we do not distinguish in notation ketwan operator and its closure.
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To construct a numerical method from the evolution operétd), two approximations are
required. First, we have to truncate the seriz3)( Here, the simplest choice is to truncate
after the first term. In fact we will later see that this is stéfnt to obtain order three, and
thus we do not consider using more terms.

Secondly, we have to discretize the integral 203(. Applying a standard quadrature
formula would give unfortunate error bounds involving gatives of the integrand and thus
powers of the unbounded operatdr Thus we freeze the semigroup appearing in the inte-
gral and approximate onlfg; by a polynomial. This is a particular form of an exponential
quadrature rulel6, 17] using only one evaluation of the semigroup. Numerical itesn-
dicated that using!,, ; leads to a small error constant. However, freezing the semjgat
any time in the intervalt,,, t,,11] gives the same order. Altogether, this yields the following
approximation tau(t,,11):

an+1 = é(tn + 7, tn)ana

(2.8) N T
Gltn +7,t0) =€ 74 + / e~ (T=DAN Ry (1, + 5, 1,) ds,
0

whereug = ug.

Next we replaceR; (¢, + s, t,,) by an interpolation polynomial,, of order two which is
third-order accurate. A natural choice for the interpolatodes is; = 0 (sinceR; (¢,t) =0)
andcs = 1 (because one can then reu$g, ; in the next time step). Choosing some value
0 < ¢ < 1 gives the numerical scheme

(2.93.) Unp, - Tnun Tn =€ n + € ( ) " pn S dS.
+ i

The integral can be expressed explicitly in terms of¢hieinctions defined as

! (1-0) ot
= —E__ 1,2,...}.
on(2) /0 . ke (L)

As an example, we choose = 1/2. Carrying out this integration, we obtain an explicit
representation of the discrete evolution operator

T = e 447 (pa(—7Ans1) = 205(~7An11) ) (An = Apyajp)e” B4

(2.9b)
+ 7 (4pa (T Aui1) = Pa(=TAwi) ) (An = Augr)e 0

This completes the derivation of the numerical method. dtsvergence properties will be
investigated in the following section.

3. Error bounds. Motivated by the derivation above, we split the convergemaef
into two parts. We first prove error bounds for the approxiomaf2.8), and then we consider
the interpolation error to bound the error for the final appration 2.9).



ETNA
Kent State University
http://etna.math.kent.edu

500 D. HIPP, M. HOCHBRUCK, AND A. OSTERMANN

3.1. Error bound for u,,. Let

en = u(ty) — Un

denote the error of the approximatiah &). Subtracting 2.8) from (2.3) and insertingZ.4)
gives the error recursion

-
€nt1 = e TAne, + / e~ (T=9)Altats) p (tn + s, tn)u(ty)ds
Jo

_/ e~ A R (b, + 8,0 )T ds
0

+ / e (T=9)Altn+s) / Ri(tn + 8yt + 0)R(ty, + 0, tn)u(t,) dods.
0 0
With the abbreviations
(318)  Guj1 =01, +0bhy,

(3.1b) 5 = / (e~ (T=9)Aln+s) _ o=(=9)4ni1) R (¢, + 5,1,) ds,
0

(3.1¢) = / e~ (T Altats) / Ry (tn + 8.t + 0)R(t, + 0, t,) do ds,
0 0
the error recursion can be written as

-
gn+1 = e*TAngn + 5n+1u(tn) + / ei(T?S)AnHRl (tn + S, tn) ds gn-
0

Sinceey = 0, we get

(3.2)
n—1 T
En = Z e TA—1 o TA 1 <5j+1u(tj) + / e_(T_s)Aj+1R1 (t]’ + s, tj) ds é}) ,
j=0 0

where we used the notatien ™4~ ...e~74i+1 = J for j = n — 1. A naive bound for3.1)
would give a second-order estimate only. To improve thisrege, we have to employ the
smoothness of the solutiar(t) and the parabolic smoothing property.

We start with the following lemma.

LEMMA 3.1.6,4+, defined in(3.1) satisfies the estimates

(3.3) 001 AZY| < C7% AT 00 AL Y| < Ot
Proof. Letf > 0. The identity
0 OA(t) _ g—0A(s) _ /6 e O=DAW (A(s) — A(t))e"AC) do
0

together with 2.1) and @.2) allows us to prove the bounds

He—OA(t) _ o 0A()

SC’\t—s|,

HA(t)—l(e—QA(t) — e0AG) H <COlt—s|.
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The proof of the first bound is not as obvious as that of therst@me and can be found
in [26, eq. (1.21)]. Moreover, using the definitioh.§) of R, gives

(3.42) |Ri(t,$)A(s) M| < Clt—s|,  [JA®)"Rult,s)| < CJt — 5.
As a consequence? 6), (2.7) provide us with the estimates
(3.4b) |R(t,s)A(s)" | < Clt—s], A R(t,s)|| < Clt—s|.

These estimates prove the first inequality3r8j.
The proof of the second one is obtained from

HA;-51-157[11-]5-1A;1 ‘ < C/ (r—s)?sds < Cr?
0

and, using the estimate3.49 and 3.4b), by

HA(tn +s)7 1o, A

§C//(s—0)adods§C’T4.
o Jo

The claim now follows fromj| 4}, A(t, + s)|| < C and the triangle inequality. O
By (2.7), we also have

(3.5) ‘ <o

/ e*(T*S)A"“Rl(tn + 8,tp)ds
0

In addition to these bounds we will need certain stabilisutes. The key idea to prove
stability is to write

(3.6) A, =G(tn,t;) — e A1 eTTA j<n, Ap,=0

as a telescopic sum; se®]. From [26, eq. (1.77)], we have the local error bound
(3.7) HA—a(t)(G(t,s) - e—<t—8>A<S>)A5(s)H <Clt—s" P, 0<apf<l.
Moreover P6, Theorem 3] shows that

(3.8a) A=)t 5)AP(s)|| < C |t — 5" 77, 0<a<pB<2,
(3.8b) |A*t)G(t, ) AP(s)|| < |t —s|7* 77, 0<a,f <2

LEMMA 3.2.For 0 < j7 < nt < T we have
oo <

whereC' depends off” but is independent af, n, and}.
Proof. We use the telescopic identity to write.©) as

An,j — Z e—'rAnf1 . e—TAri (G(tiutifl) o e—TAi,l)G(tiihtj)
i=j+1
Z (G(tn,ti) — Any) (Gltistizg) — e T4 1) G(tio1,t)).

i=j+1

(3.9)
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The uniform boundedness of the exact propagétdr s) (see 8.89 for « = 5 = 0) yields

n

1An;l <Cr 3" (CH+[Anl) <C+CT Y (1Al
i=j+1 i=j+1

Applying a variant of the discrete Gronwall lemma shows {1}, ;|| < C. This completes
the proof. a

LEMMA 3.3.For 0 < j7 < n7t < T we have
(3.10) (tn —t;) He*TA"*l ~~e*TAJAj|| < C(1+ [logT]),

whereC' depends off” but is independent af, n, andj.

Proof. We insert factors of the fornﬁl,fA,:1 into the telescopic identity3(9). Then @.7),
(3.89, and the triangle inequality immediately give

n—1

1An A5l < CT Y7 ((bn — 1) + [AniAil) + C

i=j+1

A discrete Gronwall lemma then shows tjaX,, ;A,|| < C(1 + [log 7|). The desired bound
thus follows from B.6) by the triangle inequality and(8h). a

Now having all these results at hand, we can bound the emr@2fg).

THEOREM3.4. Let Assumptio2.1and (2.2 be satisfied and assume that the solution
of (1.1) satisfiesu € C*(]0, 7], X). Then the error bound

(3.11) lu(tn) = @l < CT(1 + flog 7])* max [lu'($)]l,
te[0,T]

s

holds for0 < ¢,, = nT < T, whereC'is a constant which is independentoind .
Proof. We start from the error recursiof.g)

lenll < D flem A=t e Ay | | A7 85 AT | 1A u ()]

e_(T_S)Aj+1R1 (tj + S, t]') dS

n—1
+ D [l e &1l
j=0
+ H5nA£i1H [An—1u(tn—1)|-
Using the stability results from Lemma&s2 and3.3and the bounds3(3) and (3.5), we obtain

n—1

14 |logT ~
Il <c§j# Azl +Cr S I + O | An_rulta_o)|
j=0 tn = tj1 j=0
< O73(1 + [log 7])? max | A(t)u(t)]| +CTZ I1&;1l-

Another application of the discrete Gronwall lemma estditals the desired error-boundl
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3.2. Error bound for w,,. It remains to study the quadrature error which arises from

replacing
gn(8) = Ri(tn + s,1,)

in (2.8) by its interpolation polynomig,, leading to the approximatior2(9). The total error
can be decomposed into

€n :U(tn) — Up :é\n“i’grn é\n :an*una
where the quadrature err@y, satisfies the recursion
T
é\nJrl _ eiTA”/é\n +/ e*(T*S)Anﬂ»l (gn(s) *Pn(S))ﬂn ds
0

+/ efﬁ*S)A”“pn(s)é\" ds.
0

Bounding the quadrature error requires the map A(t)A(0)~! to be four times differen-
tiable with bounded derivatives, i.e.,

(3.12) HA(’“)(L‘)A(S)_IH <C,  0<st<T, k=0,1,....4

Note that this condition implie2(29.
Using the abbreviations

(3.133) Xn+1 = é(tn—&-latn) -1, = / e (7o) Ani (gn(s) *pn(s)) ds
0
and
(3.13b) B+t :/ e_(T—S)An+1pn(s) ds,
0

we rewrite the error recursion as

~ T A~ ~ ~
€nt1 =€ "€y + Bnt1€n + Xnt1Un

A

=e 7 né\n + ﬂ71+1€71 - Xn+1gn + Xn+1u(tn)-

Asey = 0, we have

n—1
(3.14) B =y e T e T (B8 — X € + X au(ty)).-
=0

We start with a counterpart of Lemn3al.
LEMMA 3.5. x,, 11 defined in(3.139 satisfies the estimates

(3.15) xnr1 A2 <CT%0 [JAT X A% < Ot
Proof. Note that by definition op,,, we havep,,(0) = ¢,,(0) = 0. We define

gn(s) = Sgn(s)v Pn(8) = spu(s),
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such thap,, is the interpolation polynomial gf,, interpolating in the nodes,™ andcsT. We
will show below that the functiorf,, defined by

S fn(s) = A;ilgn(S)AJQ
satisfiesf,, € C2([0,7]; £(X)). Thus the interpolation error can be estimated by
[ A7 (Gn(s) = Pu(9)) A% < [s = eor|]s — 03T| 7 ghax ||A5i1~${(p)1452l|
(see i, Example 3.1]), so that we obtain the bound

2‘ds

At an?) < [ J4nhe 94 (gu(0) = pale) A7

< (7' U)An+1 ~ _9
=T oder I 04,11 (Gn(0) = Bn(0)) A,

1~ -2
=07 0213%(7|0(0 — e7)(0 — 7)) e [ Ani19n (0) AL

< Ort )
<Cr Oglggrllfn ()l

It remains to show that
(3.16) Lfn (o) = [|Ani19n ()AL < C.

Let A = A®)(t,,). In afirst step we derive a different representatios,of

- 1 s
In(s) = S (An — A(t, + s)) e~ 54n

1 S
:——/ Al(tn + p)dpe=4n

s Jo

1 s 2 P o 2
= —7/ (A;l + pAl + p—Aﬁf) + / MAM) (tn +0) da) dpe=s4n
s Jo 2 0 2
— / f " i (3) —sA,
An+2An—|— GA” + on(s) ) e ,

where

QrL / / — U 4) (tn + 0') do dp

The following derivatives are needed in the forthcomingnestes:
() =7 L 2346 L o (6))e—5An
G(s) = Gnls)An + (A7 + SAD + gl (5) )e™ A,

~ — - 1 ’
—0(5) = Gu(9)AZ + 2, () An + (GAD + gl (5) )em A,

s _ 2
b = 1 [ E5EA0 0+ o) do = Lu(o)
0 2 S

S

() = —2o(s) + * / (s — ) AD (t,, + o) do.
S 0

S
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Now we begin with the proof 0f3.16). The remainder terms can be handled as
|on ()AL < = / / p—o) A(4)(t +o0) ;1H dodp < Cs3,

oA <t [ (* HA(‘” »+ o)A
0

: U onts47)| < 057,

2 S
lorn(s) A7 ]| < gH@’n(s>A;1II+g/O (S*U)HA(‘L)(thrU)A '

We continue by estimating the terms ffi(s) = A, 1,7/ (s)A;;* one after another. For the
first two terms we have by3(12

HAn-‘rlg” )H HAn-‘rl( A(tn + S)>H < C’

40 4 g ) 47

<
3 <G,

~ _ 1~ 1
1475705457 < | ArLiGn(s)] +cH(2A;; +

while the last term is bounded by

<C.

1
41, (a0 + o) 4z

This proves the second estimate &15).

For the first one it suffices to consider the interpolatiomefor only one interpolation
node and thus to bound the first derivativegpfs) A,, 2. Since all these bounds are obtained
completely analogously, this completes the proof. O

THEOREM 3.6. Let Assumptior2.1, (2.2h), and (3.12 be satisfied and let: be the
solution of (1.2). If u € C?([0,T], X), then the error bound

futta) =l < O7(1-+ g7 (mas 011+ s "0

holds for0 < t,, = n7 < T, whereC' is a constant that is independentrofind .
Proof. Inserting the obvious bounds

1Brniall <C7, lxnal < O,

the estimates3(15 and the stability bound3(10) into the error recursior3(14) gives

n—1
Jenll < C7 361+ €, gn Il
J:

24
+ o3 TR gz | 4 07 |42yt
T n J

Using 3.11) and applying a Gronwall argument proves the desired result O

4. Parabolic problems on time-dependent domainsTo illustrate the theoretical re-
sults of this paper, we apply our method to a finite elementrdiiation of a diffusion
equation on an evolving domain (DEED) R?. Our formulation, analysis, and spatial dis-
cretization of DEED is motivated byp], where semi-discretizations of parabolic problems
on evolving surfaces are considered.
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4.1. The diffusion equation on an evolving domain.Consider a scalar quantityde-
fined on the time-space domain

Ne= | {1} x 9.

te[0,T]

where the evolution of); ¢ R? is given by a family of diffeomorphisms(; between a
bounded domaif, and its images$);, t € [0, T]. The material time derivative of a function
v : N — R with respect taX; is given by

Dyo(t, z) = % (v(t, X:(y))

y=X7'a)
see p] for details. With this notation we define the function space
V={v:Nr—R;ot-) e Hj( ), Dw(t,-) € L*(Q)forallt € [0,T]}.

The weak formulation of a diffusion equation on the evolvil@main{2, can be stated as
follows: findu € V such that for alt € (0,7 and allv € V the equality

(4.1) wdr+a | Vu-Voder = / uDyv dz,

dt Jo, I Qs

holds subject to the initial condition(0,-) = u, and to homogeneous Dirichlet boundary
conditionsu(t, z) = 0 for all x € 99Q;. The number > 0 denotes the diffusion constant.

For the spatial discretization of (1), we use linear finite elements. L& be a triangu-
lation of Qy with nodesay, ..., ax and nodal basis functions, ..., ¢x. By h we denote
the maximum diameter of its triangles. Starting frgmwe define an approximate evolving
domainQ!* = X; (), where

K

Xen(y) =D dily)Xe(ar) = Xoly), vy € Q.
i=1

By this construction{2}* gets equipped with a triangulation. The correspondingsbfasic-
tions®; € V are then given by, (¢, z) = qSi(Xt"hl(x)). They satisfy in particulab, ®; = 0,
where the material derivative is taken with respect Xg,. The function spaces
Vi, = spaf®q,..., Pk} and

Uy, = {u : u(t, ) = ZUi(t)q)i(ta '), U, € Cl([O,T],R>}

i=1

fulfill v, C Uj,. Note that the dimension dfj, is independent of by construction. The
semi-discrete solution;, € U;, then solves the variational problem

d
4.2) 7/ up Y dr + « Vup - Vi de = /

Up Dﬂ/}h dr =0
Qh,

h
Qt t

for all o5, € Vj, andt € [0,7]. In [11] it was shown thatu,(t) is at least a first-order
approximation to the solution oft(1) in the L2-norm. The homogeneous Dirichlet boundary
condition can be dealt with by dimension reduction of theundng matrices. Leti(¢) be the
coefficient vector containing the coefficierifs(t) with respect to the basis functiofs (¢, -)
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that correspond to the interior nodes@f. From @.2) we then obtain the stiff system of
ordinary differential equations

d
(4.3) = (Miu(®u®) +Sau®) =0, u(0) = w,
whereM,, (t) andS;, () denote the mass and stiffness matrices, respectively.

In order to rewrite 4.3) in the form (L.1), we apply the transformation

(4.4) y(t) = My(t)u(t)
and obtain
(4.5) Y +8u(0) (M, (8) 'y(t) =0,  y(0) = My(0)up.

Hence, we end up with probler.(l) where the operatad () is represented by the matrix

A(t) = S (t) (M (£) "

Since

(4.6) ln (8)[1 72 0y = w(t) M (t)u(?),

the norm
2 -1 2
Iy, =y" (Ma(®) "y = lunlzzon)

is the appropriate one for the transformed varialylés R?. Our assumptions on the family
{Xt}iejo,r) imply that ||-[[, , is uniformly equivalent td|-[|, , for all t € [0,77. We thus
write ||-|| = ||-[[, ;, for simplicity.

If the exponential integrator is implemented with a polyi@nor rational Krylov sub-
space method, it should be written in the form

= -1
Yn+1/2 = €Xp (_% n Sn) Up,
. —1
Ynt+1 = €Xp (—TM,L S,L)un7
~ _1 ~
Up41 = Mn+1M7ly71,+17

En+1/2 = M;jq (SnynJrl/Q - Sn+1/2M;j_1/2Mnyn+l/2)v
Zni1 =M, 1, (SnynJrl - Sn+1ﬁn+1>7
Up41 = ﬁn+1 + @1 (—TM;JlrISnJrl) (4Tzn+1/2) + (I>2 (_TM;JlrISTH*l) (T§n+1),

whereM,, =M, (t,,), Si, =Sh(tn), P1(2) =p2(2) — 2¢3(2), andPs(z) =4p3(2) — w2(2).

This reformulation requires only one expensive Krylov apgmation, namely the approxi-
mations ofy,, ;1 andy,, . /2, which can be computed in the same Krylov subspace. All other
matrix approximations or solutions of linear systems areaghbecause they use a small
right-hand side vector of siz@(7) or a good starting vector is available. In both cases, the
conjugate gradient method converges in only few steps evimout preconditioning ifr is

not too large. For more details, we refer i@].

It would be rather tedious and technical to rigorously wetife assumptions of Theo-
rem 3.6 for the discretized problem. Therefore, we restrict omeseko an illustration of the
results by numerical experiments for a donut-shaped damaim a different example we
refer to [L3].
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FIG. 4.1. Snapshots of the solution on a triangulation with842 nodes. Fort = 0 andt¢ = 0.3 the plots are
layered with a much coarser mesh to illustrate the evolutibthe domain.

4.2. Example. We consider the circular domain with a circular hole given by
Qo = int (B1(0) \ B1/4(0)), whereB,(z) denotes the ball with centerand radius-. To
simplify the presentation, we identifig? and C and do not distinguish between a vector
z € R? and the complex number= z; + iz, € C. The diffeomorphism¥;, is constructed
from the conformal mappind.(z, z0) = (= — 20)/(1 — 2Zo). For|zo| < 1, A(-, z0) maps
the complex unit ball onto itself. In order to construct anleing domain we move the cen-
ter zo of the hole along the curve— 2, (t) = /t/2 %" describing a spiral. This gives the
transformation

Xi(z) = (Rew, Imw), w = A(zy + 12, 20(1)).

The initial valueuy is given by

% (1 — ||x||) (4 x| — 1) (1 — 8dist(:1:,$)), dist(z, S) < %,
ug(r) = .
0, otherwise,
for S = {sel*"/*; s €[0,1],k =0,...,7}. Some snapshots of the solution of are shown in

Figure4.1 A movie can be fountiere and, with a typical triangulatiornere.

4.3. Numerical comparison. We now compare the convergence behavior of our new
exponential integrator Explnt with that of an implicit Rueatlutta method of classical order
three (the 2-stage Radau IIA method; s&@ [Sec. IV.5]), and with a Magnus integratdi [
of classical order four. We only show the results for the Magmtegrator based on the

2Url: htt p: // et na. mat h. kent . edu/ vol . 41. 2014/ pp497- 511. di r/ Di f f usDonut . avi
3Url: htt p: // et na. mat h. kent . edu/ vol . 41. 2014/ pp497- 511. di r/ Di f f usDonut _mesh. avi


http://etna.math.kent.edu/vol.41.2014/pp497-511.dir/DiffusDonut.avi
http://etna.math.kent.edu/vol.41.2014/pp497-511.dir/DiffusDonut_mesh.avi
http://etna.math.kent.edu/vol.41.2014/pp497-511.dir/DiffusDonut.avi
http://etna.math.kent.edu/vol.41.2014/pp497-511.dir/DiffusDonut_mesh.avi
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FiG. 4.2. Left: Error versus step size for the mesh corresponding tellg (2052 DOFs) att = 0.5 for
a = 0.01. Right: Errors of the exponential integrator for meshes efirement leve (2052 DOFs), levelt
(8040 DOFs), and leve) (31824 DOFs) at = 0.5 for « = 0.01. In both graphs, the red dashed line indicates
convergence of order three.

Simpson rule ], eq. (256)]. Computationally, this method is more efficigran the Magnus
method based on Gauss—Legendre quadrafyreq. (254)], and both give more or less the
same results. For a comparison of the efficiency of thesgraters, careful implementations
of the involved linear algebra issues are indispensablalfanethods. Hence we omit such
comparisons here.

For Radau IIA methods, the error analysis 80, Theorem 3.2] applies, which shows
that the method with two stages converges with order threxe bhat implicit Runge-Kutta
methods can be applied td.8) directly while the Magnus integrator and the exponential
integrator require the explicit formulatiod.6). From the analysis presented i&7], it is
known that Magnus methods can suffer from strong order témuarhen applied to parabolic
problems.

In order to be able to compute problems on very fine grids, veel tise GMRES meth-
od [24] to solve the linear systems arising in the Runge-Kutta s@he For the Magnus
method and the exponential integrator, we used a polyndfnyabv subspace method based
on the symmetric Lanczos process for the approximations@fproducts of matrix func-
tions with vectors, seelfl] for an analysis of the convergence properties. It is imgrarto
use the correct inner product for the orthogonalizatiorcpss. Note that by means of the
transformation4.4) we can write

o(—mSKM; )y = Mup(—TM; 'Sy )u.

(We omit the argumerttfor the moment.) We then compute an approximation in thed<ryl
subspace with respect to the maﬂlsiI(,jISh and the vecton. The Lanczos basis is orthonor-
mal with respect to the norn#(6) induced by the inner produ¢u|v) = u"M,v. The
detailed algorithm for the approximation of the expondiitiaction involving a mass matrix
can be found in1§].

The error is determined with the help of a reference solutmmputed with the 3-stage
Radau IIA method of classical order five using a small time ste- 0.005.

In the left graph of Figurd.2we plotted the error of the approximationtat 0.5 versus
the time step size on the mesh level three (2052 DOFs). As expected, the Rumnga-K
method and the exponential integrator show order three effaet of the logarithmic term in
the error bound of Theoref6is negligible. The numerically observed order of the Magnus
integrator is approximately two, i.e., it suffers from eostg order reduction.
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The right graph of Figurd.2 shows errors of the exponential integrator appliedté)(

att = 0.5 for different meshes. Clearly, the error is independenhefdpatial mesh width.
The same is true for the Runge-Kutta code although we haveclated these results in the
picture for the sake of presentation.
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