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CONDITIONAL SPACE-TIME STABILITY OF COLLOCATION RUNGE-KUT  TA
FOR PARABOLIC EVOLUTION EQUATIONS *

ROMAN ANDREEV' AND JULIA SCHWEITZER!

Abstract. We formulate collocation Runge—Kutta time-stepping scherpp$ea to linear parabolic evolution
equations as space-time Petrov—Galerkin discretizatiang,investigate their a priori stability for the parabolic
space-time norms, that is the operator norm of the discretdi@olmapping. The focus is on A-stable Gaul3—
Legendre and L-stable right-Radau nodes, addressing fitydar the implicit midpoint rule, the backward Euler,
and the three stage Radau5 time-stepping schemes. Collocatibobatto nodes is analyzed as a by-product. We
find through explicit estimates that the operator norm is radied in terms of the parabolic CFL number together
with a measure of self-duality of the spatial discretizatidmmerical observations motivate and illustrate the results
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1. Introduction.

1.1. Introduction and model problem. The aim of this paper is to identify condi-
tions on the discretization parameters under which callooaRunge—Kutta time-stepping
schemes for linear parabolic evolution equations are aipstable as space-time Petrov—
Galerkin methods. Space-time stability is of central ies¢r for instance, in space-time si-
multaneous solution and preconditioning of the parabaladigion equation, in the analysis
of semilinear parabolic evolution equations, and in residiased a posteriori error estima-
tion. To clarify this statement, we begin by introducing tleeessary notation and the linear
parabolic evolution equation that we are going to study.

Let V be a real separable Hilbert space continuously and densddgaded in another,
V < H. The Hilbert spaceT is identified with its dual space via the Riesz isomorphism,
which results in the Gelfand triple — H = H’ — V’. An example will be provided by
Sobolev spaces or closed subspaces thereol/'Bye will denote the dual o that collects
all bounded linear functionals ovi. We write || - ||y, for the norm inV, etc. The scalar
product onH, as well as the duality pairing betwe&handV”’, will be denoted by, -). Let
A :V — V' be a bounded linear operator satisfying the coercivity i@

(1.1) (Ax,x) = 2lIxIIy = lxllz, Yx eV,

for some fixedr > 0 and > 0. Let.J = (0,7 be a nonempty bounded interval. Consider
the spaces

X :=HY; V)N L*(J;V) and Y :=H x L*(J;V),
equipped with the norms given by

1.2) w5 = ||3tw||2L2(J;V/) + ||w||%2(J;V) + lw(D), we X,

(1.3) WIS = llvolls + lvillZ2 sy, v = (vo,01) €Y.
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Here,L?(J; V) is the Bochner space f-valued measurable functions dnandH(J; V')
the subspace of.?(.J; V') with distributional derivative inL?(J;V’). Omitting the last
term w(T) of || - ||x yields an equivalent norm, albeit not uniformly in the lemgif .J,
by continuity of the embedding’ — C°(J; H); see [L0, Chapter 1]. The present choice,
however, simplifies some estimates such as the result of lzegatn In the following we
identify Y with H x L?(J; V') and, where convenient, ald¢(J; V) = L*(J) ® V, and
HY(J;V) = HY(J) ® V isometrically, similarly for other Hilbert spaces. The dyoh®
denotes the tensor product of Hilbert spaces or of linearatpes.

Fundamental to the present paper is the fiek:linear parabolic evolution equation

(1.4) (O + Au(t) = f(t) e V', (ae)te, u(0) =g € H,

defines an isomorphism betwe&nhand Y. In other words, the mapping — Y’, v —
(g, f), is bounded and linear, with a bounded inverse. This is intfae even ifA is allowed
to depend (weak-star) measurably towith uniform continuity and coercivity bounds (see
for instance 10, Chapter 3, Section 4.7]), but for our purposes it will s&ffic assume that

is constant in the time variabte We moreover assume thatis self-adjoint and thay = 0

in (1.1, that is

(1.5) (Ax,X) = (x,AX) and (Ax,x) > ?|x|l}, Vx,X € V.

Given a source ternfi € L2(.J; V') and an initial datuny € H, the parabolic evolution
equation can be equivalently formulated as the linear d¢peeauation

(1.6) find we X st B(u,v)=F({), Yvey,

where the bilinear fornB : X x Y — R and the linear functional’ € Y’, given by
A7) Bw.w) = [ (@4 w i+ @0 w), (w.0) € X xY,

J
(L.8) F(o) = [ (Fo)it+ gw), 0= (o) €Y,

J

are both well-defined and bounded. Thus, the temporal ewalig enforced in 1.6) by
testing with functions;, € L?(J; V'), while the initial condition is enforced by testing with
vy € H.

We occasionally omit the specification of the norm if cleanfrthe context, for instance
the norm ofB is denoted by| B||. Generally, we omit the-dependence of the integrands in
the notation.

1.2. Space-time stability. Runge—Kutta time-stepping schemes are among the classical
numerical solution methods for evolution equations suclila®. In this paper we focus
on the subclass of collocation Runge—Kutta time-steppigmes because these are, in the
sense specified below, equivalent to piecewise polynomiagime Petrov—Galerkin meth-
ods for the space-time variational formulatioh@). For (nonlinear) ordinary differential
equations this equivalence was observed for instancé]inBroadly speaking, a colloca-
tion Runge—Kutta time-stepping scheme with a possible sksgretization ofi” applied to
the parabolic evolution equatiofi.@) coincides with the solution to the conforming Petrov—
Galerkin space-time variational formulation

(19) find up € Xp S.L B(uh,vh) = F(Uh), Yoy, € Yy,
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for certain closed subspac&s C X andY; C Y containing piecewise polynomial functions
on the temporal interval with values in (a closed subspace &f) Herein, the subscript
h > 0 encodes the discretization parameters such as the tempesdl, the polynomial
degrees involved, etc., and we presuppose that the spla)y of X, is dense inX. This
interpretation raises the usual questiostaility of Petrov—Galerkin discretizations, namely
whether the continuous dependence on the data of the exatioeds also true for the
discrete solution: does there exist a constant> 0 such that for any' € Y’ the solution
of (1.9 satisfies

(1.10) Junllx < CullF'[|y

and how doeg’;, depend on the discretization paramei€r This question reduces to the
study of the discrete inf-sup constant

B
(1.11) Vh = inf sup M,
wn€Xn\{0} v, evy\{0} lWnllx|lvnlly

because the estimatg, < fy}jl holds for the constant irL(10). We shall speak agpace-time
stability if uniform stability

(1.12) }1Lr>1f0 Y >0

occurs.

As alluded to at the beginning of this section, our aim is #niify conditions on the
discretization parameters under which collocation RuKgkta time-stepping schemes for
the linear parabolic evolution equatiofi.{) are space-time stable in the sense DfLD.
Thus we are interested in an a priori analysis and, in cantoathe typical convergence
analysis for Runge—Kutta time-stepping schemes, we dossoinae any additional temporal
smoothness of the exact solution or the residual, or reigytzrthe initial datum. The a priori
convergence analysis usually proceeds via the quasi-alitynestimate

1B
g/

u—un|x < it lu—whllx,
which is valid for conforming Petrov—Galerkin discretipats [L2], and highlights the impor-
tance of the discrete inf-sup constahti(l).

For collocation Runge—Kutta time-stepping based on Gaafehdre nodes, our find-
ings are in essence similar to the those of Badauand Janik ing], although based on a
slightly different space-time variational formulationsgumptions of%, Theorem 3.4.1] on
the relative size of the temporal elements and on the digtoib of the polynomial degrees
are unnecessary here, probably due to our formulating thétsein terms of the local CFL
number instead of the number of temporal elements. Moreaedo not rely on the eigen-
basis representation of the operator and give explicittemnts. We find an additional bound
which is active for large CFL numbers and is independent efditails of the temporal dis-
cretization. When this uniform bound is not active, the sgawe stability constant in1(.10
is essentially proportional to the CFL number.

The second contribution of this work is a similar analysisdollocation Runge—Kutta
time-stepping based on right-Radau nodes, whose mostlaotgivesentative is the backward
Euler time-stepping scheme, as well as Lobatto nodes. Wedinishstance that for right-
Radau nodes the space-time stability constarit.itdj is in general proportional to the square
root of the CFL number, except in certain important situagiovhere it is indeed of order
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one. Moreover, our estimates and numerical examples itedibat Lobatto nodes is the least
space-time stable choice among the three.

We remark that it may be possible, via the identification stdintinuous Galerkin and
right-Radau collocation Runge—Kutta time-stepping satfi, to relate our results tdlfl].
There, space-time stability in mesh-dependent norms odeespime discontinuous Galerkin
discretization of the heat equation was obtained, int@Erglst assuming that the CFL number
is not too small. Our results may also be seen as an extenkibie semidiscrete analysis
of [6] to fully discrete time-stepping schemes.

In Section2 we describe collocation Runge—Kutta time-stepping sclseraed recall
their classicalA- and L-stability properties. We introduce the adjoint of the puadynial
interpolation operator.

In Section3 the adjoint of the polynomial interpolation operator is dise formulate
collocation Runge—Kutta time-stepping schemes equitigles a conforming space-time
Petrov—Galerkin method for the space-time variationainidation (L.9), which is satisfied
by the exact solution to the parabolic evolution equatiod)( Subsequently, we mainly focus
on Gaul3—Legendre and right-Radau collocation, and olegainlts on Lobatto collocation as
a by-product. We estimate the discrete inf-sup consthaiitl) in terms of the discretization
parameters such as the time step size and the polynomiaetedogether with a measure of
self-duality of the discretization df. Here the parabolic CFL number appears naturally in
the estimates. Finally, we conclude in Sectibn

1.3. lllustration. We illustrate the kind of behaviour of the stability congtaf) that we
wish to exhibit and explain in this paper, for the implicitdpbint rule and the backward Euler
time-stepping schemes. These are exampled-sfable andL-stable collocation Runge—
Kutta time-stepping schemes, respectively; see Se2ti@n the temporal nodes the implicit
midpoint rule solution coincides with that produced by theutk—Nicolson time-stepping
scheme or implicit trapezoidal rule in the present case d@fieal evolution equation. We
consider the heat equation as a model parabolic evolutioate (L.4). More precisely, the
operatorA is taken as the minus Laplacian on a bounded spatial dom&ndhidean space
with homogeneous Dirichlet boundary conditions. The gpatbmain and the spatial semi-
discretization by finite elements are fixed to be those franSections 2-8], the details are
immaterial for us and can be found there. The computations @ene using the methods
of [4], the main difference being in the choice of the norm.Xn We setl" = 20 for the
end time. For both time-stepping schemes we perfarmquidistant time steps. The results
are summarized in Figuré.l. For comparison, also the stability constant for the Radau5
time-stepping scheme (collocation Runge—Kutta based agh8Radau nodes) is shown.

We observe, and prove in Secti@rbelow, the following. The space-time stability con-
stantC}, decreases with the number of time stésand, whenV is large enough, approaches
one(implicit midpoint rule) andwo (backward Euler), respectively. This happens when the
parabolic CFL number (that can be thought of as time stepdiizded by the square of
spatial mesh width, se& (L2 for the definition) is of order one. On the other hand, when
the number of time steps is small, and the CFL number is coatipaly large, the implicit
midpoint rule and the backward Euler time-stepping scheembgbit qualitatively different
behaviour: in the first casé;;, stagnates, and then decays proportionally to the CFL num-
ber; in the second cas€), decays proportionally to the square root of the CFL numbmnfr
the onset on. From this perspective, backward Euler is tekegable time-stepping scheme
among the two, at least on an equidistant temporal mesh. &al® time-stepping scheme
behaves essentially like the backward Euler one. The sjiaeestability constant, which in
this toy example barely spans one order of magnitude, canuwmh rarger for finer spatial
finite element discretizations containing local refinenserd/or for larger temporal intervals.
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FIGURE 1.1. Space-time stability constant for implicit midpoint ruleackward Euler and Radau5 time-
stepping schemes as a function of the nuneaf equidistant time steps; see Sectio@for details.

Our task is to explain the behaviour observed in Figufifor a certain class of colloca-
tion Runge—Kutta time-stepping schemes. These are inteatiim the next section.

2. Collocation Runge—Kutta time-stepping schemes.

2.1. Construction. A finite set of temporal nodes of the forfh = {0 = t; < ¢; <
... <ty =T} is called atemporal mesh. The intervéls_;,t¢,),n =1,..., N, are called
temporal elements of . Given7 with N temporal elements, for any vector of polynomial
degreep = (p,)Y_; € N} let S%P(T) denote the space of left-continuous functiens
[0,7] — R for which s|,_, ;] is a polynomial of degree at mogf, for each element
numbern = 1,..., N. We further define the space of continuous piecewise polyalem
SLP(T) := ([0, T]) N SOP(T).

LetV;, C V be a finite-dimensional subspa@ea temporal mesh, anal € N2’ a vector
of polynomial degrees. Recall thét — H and that(-,-) denotes the scalar product .
A collocation Runge—Kutta time-stepping scheme for thebpalic evolution equationl(4)
can now be described as the process of construeting [0,7] — V}, as follows: 1) Fix
up (0) requiring(upy (0), xn) = (g, xn) forall x;, € V3. 2) Foreachn = 1,..., N, pick a set
of p,, distinct collocation noded/,, C [t,,—1,t,], and require that th&},-valued polynomial
un|t,_, +,) Of degreep,, of which the valueu (t,—1) is already known by continuity afj,,
satisfies the,, collocation conditions

(2.1) (0 + Aun(r) = f(7),xn) =0 VT € No  Yxn € V.

If a node of 7 was chosen for collocation then the temporal derivativenidenstood as the
one-sided derivative from within the current temporal edeitt,, 1, t,,).

By constructiony, is in the spaceX;, :== S*P(T) ® V}, of continuousV,-valued piece-
wise polynomial functions off), T']. As in [1, Equation (2.17)], we can replace the colloca-
tion conditions 2.1) by

(Opup, + Iy, (Aun, — f),xn) =0 on [t,_1,t,] Yxn € Vi,

where I, denotes the polynomial interpolation operator on the callion nodesV,, by
a polynomial of degreép,, — 1). Let Iy denote the compound interpolation operator that



ETNA
Kent State University
http://etna.math.kent.edu

ON COLLOCATION RUNGE-KUTTA 67

produces a piecewise polynomial $:P~1(7). SetY} := Vj, x [S*P~Y(T) ® V},]. Then
the whole process can be formulated as:

(2.2) find wup € X;, st Bu(up,vn) = Far(vg) Yo, €Yy,

where By, is defined as inX.7) with Au replaced byl yr Au, and Fyr is defined as in1(.8)
with f replaced byl y/ f.

The latter space-time variational formulatichZ) suffers from the drawback that the
sourcef € L?(J; V') needs to have some more regularity farf to be well-defined. We
shall instead show that there are subspagefor which the same,, is obtained from the
discrete variational formulatiori(9) with the original definitions of the bilinear for® and
the functionalF” wheneverf is a piecewise polynomial if%P(7) @ V.

Before doing so, let us recall the classical notions of $itgbhere only for collocation
Runge—Kutta time-stepping schemes of the above type.

2.2. Classical stability properties. For any set of distinct collocation nodaé C R let
IT)r denote the polynomidlly. : ¢ — [] .\ (t — 7), with the conventionl := 1. Let N C
[0,1] be a set of distinct collocation nodes, and= C. Define the collocation polynomial
y : R — C of degree# N by y(0) = 1 and the collocation conditiong (7) = zy(r) for
7 € N. SetRy(z) := y(1), which is called the stability function of/. Then\ is called
A-stable if|[Ry(z)] < 1forall z € Cwith Rez < 0, and it is calledZ-stable if in addition
Rpr(—00) :=lim,_,o, Rar(—%) = 0. We do not consider more refined notions of stability of
time-stepping schemes; see for instar;ejection V.9]. By B, Theorem 3.10], the stability
function is the rational functiody () = Q1(2)/Qo(z) with Q¢(z) := > .5, Hﬁ\]/) (t)z=.
This representation implies thaf can only belL-stable ifl € V. B

Let P; denote the space of polynomials of degree at mbstf d < 0 thenP; :=
{0}. Foreachd € N, letGg, c (0,1), R4 C (0,1], andL,4 C [0, 1] denote thel Gaul3—
Legendre, the right-Radau, and the Lobatto nodes for tieeviat]0, 1], respectively. These
are characterized’[ Theorem 1.4.5] by requiring € R441 and{0,1} C Lo for all
d >0, andfo1 Iy (t)p(t)dt = 0forallp € Py_1, N € {Gag, Ra+1,Las2}, d > 1. The
implicit midpoint rule is the collocation Runge—Kutta tirsgepping scheme based &,
while backward Euler with piecewise linear reconstructiorresponds t@& ;.

The unique rational function of numerator degkeand denominator degreethat ap-
proximates the exact solutign: z +— e* up to an error ofD(z/***1) asz — 0, is called
(k, j)-Pack approximation§, Theorem 3.11]. It follows thaRg, = R.,., is the(d,d)-
Pact approximation and®r, is the(d — 1, d)-Pac approximation, and each isstable B,
Theorem 4.12]. However, only the right-Radau nodes/astable,R% ,(—oo) = 0, because
the denominator has higher polynomial degree than the ratorerThis is the fundamental
difference between the implicit midpoint rule and the baakshEuler time-stepping schemes.

Please note that even if the stability functions of two sétsotiocation nodes coincide
(for instance, for the Gau3—Legendyg and the Lobatta,;, 1 nodes), the respective col-
location polynomials, which have different polynomial degs, differ in general; see also
Section3.3.

2.3. The adjoint of the interpolation operator. For any polynomialr, its span is de-
noted byR7. Recall the notatiodly : ¢ — [[ .\ (t — 7) with I := 1. For any set
N C [0, 1] of d distinct collocation nodes ldty be the polynomial interpolation operator on
N. We define the operatdy, by

(q, HN)L?((),1)

2.3 Ix Py = Py, qg—q— Lyg,
(@3) N ! (La, TIx) £2(0,1)
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whereL, is the Legendre polynomial of degré@n [0, 1], which is orthogonal to all polyno-
mials of lower degree i.?(0,1). Throughout, the Legendre polynomials are normalized to
unit norm inL2. Many useful properties of orthogonal polynomials can léved from their
recurrence formulae; se&,[Section 1.3.2]. For instance, for future purposes we riudé t
Lq(1) = v/2d + 1. Sincelly has degred, the denominator in2.3) is nonzero. Obviously,
the inverse off}, is given byp +— p — (p, La)2(0,1)La, Which is a contraction oln?(0,1).
The reason for the notation is the following observation.

LEMMA 2.1.The mappindy, : Pq_1 — P4 defined by2.3) is linear and injective, and

(2.4) (NP, @)z20,1) = (0, IND) L2001) V(P q) € Pg x Pg_y.

Proof. Linearity is clear, and injectivity is due tb; ¢ P,;_1. To verify (2.4) we check
it for p € Py andp = Il separately, sinc; | ® RIIy = Py. First, if p € Py then
Inp = p, andq — Iy,q < L is indeed orthogonal tp. Second, ifp = I thenlyp = 0,
but also(I1yr, I} q) vanishes after simplification. O

For any sef\' C [0, 1] of d distinct collocation nodes, we define the polynomial space

(25) Qun = IX/Pd—l C Py.

LEMMA 2.2.Let N C [0, 1] be a set ofl distinct nodes ang € ;. Thenp vanishes at
Nifand only if (p, q) 20,1y = O forall ¢ € Q.

Proof. By Lemma?2.1 and the definition.5), the operatody, : P;_; — Qu is an
isomorphism. Now, the polynomial € P; vanishes atV' if and only if its interpolant/-p is
identically zero, that i® = (Ixp, (Ij*\/)—lq)Lz(Oﬁl) = (p,q)2(0,1) forall g € Qur. 0

We say that the node§” C [0, 1] are exact o, if the interpolatory quadrature @fon
[0, 1] based on the node¥ coincides withfo1 pdt for all p € P,. We will repeatedly use the
fact [7, Section 1.4] that the Gaul3—Legendre nodgsre exact oy, 1, the right-Radau
nodesR ; are exact oPy,_», and the Lobatto nodes,; are exact oriPy;_5.

The following result characterizes the polynomial sp@ggin (2.5) for these particular
cases. We writd/° := A" N (0, 1).

PROPOSITION2.3. The space€dy = Iy P;_; for the GauR-Legendre, right-Radau
and Lobatto nodes are explicitly given iy, = Py-1, Qr, = Pi—2 & RHR3+1’ and
Qc, =Pig3 ®RLg—1 ® Rllg, .

Proof. In each case, the spaces have the correct dimension, aatealibspaces of
P4. By (2.4), we only need to check that any polynomiafrom the characterizing space
is orthogonal tdll, for the set of nodedV in question. ConsideN = L4, as the other
cases are similar. First, if € Py_3 then(Ilz,,q)r20,1) = 0 because the Lobatto nodes
L, are exact oPyy_3 andlIl,,q € Pog_3 vanishes aty. Second{Ilx, La—1)r2(0,1) = 0
because the polynomials have opposite parity around thpainitiof the interval. Finally,
(Tpr, HL2+2)L2(071) = (0 because’ ;5 are exact oPy,. O

For nodesN other than the GauR-Legendre nodes, there is a “degree gaplise
Qn # P41 is d-dimensional. For instancé)r, is the span ofil;; /3, : t — t —1/3,
since thed = 2 right-Radau nodes on the unit interval &g = {1/3,1}. For the Lobatto
nodes, Lemma&.2 holds also withQ,, := Py_3 © RIlz, ,\ 0y ® RIIz, ,\ {13, Whichis a
subspace oP 1.

The reason that the polynomElRiHl appears in Propositioh 3is the property

T Z 20,1y
———22p(1) V P here II := IlRo
(1) p(l) VpelPy, w R

d+1°

(H,p)L2(0,1) =
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That is, testing a polynomial with II yields a multiple of the value gf at¢ = 1. Indeed,
the right-Radau nodeR ;; being exact oii?,,, the left-hand side yields a multiple pf1).
The factor is determined by settipg= II.

Since the right-Radau nod@y; are exact oy, o, the polynomially,, is linear com-
bination of the Legendre polynomials;_; andL,. Recallingllx,(1) = 0 we find

(2.6) Hgr, o< La-1(1)Lg — La(1)La-1.

Proposition2.3 implies thatIR Lg_1 x HRo becaust L4 is orthogonal tdPy_o.
The definition .3) of I} and Q 6) show the relatlon

La(1)
Lq1(1)
For the Lobatto nodes, the polynomial-, can also be guessed, as it must be a linear

combination ofLy4, Ly_1 and L, _». But L;_; does not appear due to opposite parities of
II;, andL,_; around the midpoint. The conditid.,(0) = 0 = II., (1) is ensured if

2.7) Tge

d+1

O(I;Zde_l ZLd_l + Ld.

(2.8) Hg, o< La—o(1)La — La(1)La—2.

With the definition £.3) of I3, we find that/; L, 1 = Ls—1. Taking €.8) and Proposi-
tion 2.3into account we obtain

La(1)
Lq—»(1)

In our numerical experiments, we used the above relatidn &nd @.9) to set up the
test space®\r as suggested by PropositiarB.

The following is a consequence of Lemr&.

PROPOSITION2.4. Let V}, C V be finite-dimensional. Let/ C [0, 1] be a set ofd
distinct nodes. Let;, € Py ® V;,. Assume thaf € P; ® V'. Then, withQx as in(2.5), the
collocation condition

(29) H['fz X Izde o=Lg_9+ L.

+2

(O + A)wn(r) = f(7),xn) =0 VT €N Vxn €V

is synonymous with the variational statement

1
/ ((Or + A)wp, — fyop)dt =0 Yo, € Qur @ V.
0

Proof. The functionp : ¢t — ((0; + A)wn(t) — f(t), xn) is a polynomial inP, for any
fixed x;, € V},. The claim therefore follows from Lemnia2 0

3. Space-time stability of collocation Runge—Kutta time-®pping schemes.Given a
set ofp,, distinct collocation nodes/,, in the intervallt,,_1, t,,] of then-th step of the Runge—
Kutta time-stepping schemeé.(), we can defindy, on|t,_1,t,] analogously toZ.3), and
Qn = I}, P,,—1 analogously toZ.5). DefineX;, := S'P(T) @ Vj, andY}, := V), x V!
with ;! := {s € SP(T) : s/, ,.t,) € Qu} ® Vi Using Propositior?.4 transported to
each of the intervalf,,_1,t,] we conclude that the collocation Runge—Kutta time-stegppin
scheme Z.1) is equivalent to the space-time variational formulati@rg), with the present
choice of trial X;, and tesfy;, spaces, whenevei € S%P(T) @ V' in the definition (.8) of
the functionalF'. Let us now address the question of space-time stability?( of these trial
and test spaces.
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A crucial ingredient in the proof of the subsequent theorélibe the following lemma.
Herein,p’ denotes the derivative @f
LEMMA 3.1.For the GaulR—Legendre nodes one has

(3.1) (', Ig.p)r20,1) = (0, P) 20,1y VP € Pa,

while for the right-Radau nodes,

1
(3.2) (', IryP) 20,1 = (0" P) 12(0,1) + §|(P — Iz,p)(0)]> Vp€Py.

Proof. Let N € {G4,R4}. Take anyp € P; and writep = Il + p for somec € R
and some polynomial € P;_1. Thenp — Ixp = cll. Observing thail s is orthogonal to
Py 5 in L?(0,1), one has

2
C
(0, Inp — P)r2(0,1) = — (M, TN ) r2(0.1) = 5 (TIAr(0)]* = [ar (1)) -

The right-hand side vanishes in the case of GauR—Legendesry (anti-)symmetry. This
establishes3 1), while ITxs(1) = 0 in the case of right-Radau nodes yiel@s2. ]

Due to this lemma, in the remainder of this section we shallia® that eaclV,, are
either the Gaul3—Legendre nodes, or the right-Radau ndaes,stated otherwise.

In connection with this lemma we will further require theléling observation: for any
polynomialp € Py

(> —Ivp)O)* _ [Mn(0)* _ J2d+1, N =Ga,
(3.3) 3 = 5 = B

lp — INp”Lz(()J) ”H/\/”L2(0,1) 4d —1/d, N =Ra.
This can be verified recalling that the orthonormalized Inefye polynomialZ, satisfies
|L;(0)| = v2k + 1, and using the expressio.¢) for Il ,.

We definel : SOP(T) — SOP=1(T)andI* : SOP~1(T) — SOP(T) element-wise
in the obvious way and l&p c S%P(T) denote the image af*. We write ]~ := (1*)~!.
LetTr := {t,—1 € T : N, are right-Radau nod¢<ollect the left endpoints of the temporal
intervals which host right-Radau nodes. Writihg, w € X3, andI ~*vy, v; € Y}, etc., the
interpolation operator is understood to act on the tempmalponent, in the same way that
Aw sometimes meandd ® A)w. Note thaty;, = V,, x I*IX},, which could also serve as
the definition of the discrete test space.

3.1. Stability in node-dependent norms.This subsection contains the centerpiece of
our analysis, which is Theoref3. In it, we show space-time stability with a constant that
is uniform in temporal discretization parameters but in-noiform space-time norms. Our
strategy for further analysis is to relate these discrétingparameter dependent norms to the
original parabolic space-time norms. This is done in subsetisubsections.

On X, we define the norm

34wl = 110swl 2 v + w72y + lwMF + D ll(w = Tw) ()13,
teTr

for all w € Xj. The last sum collects contributions of temporal elememas$ host right-
Radau nodes, and- means the limit from the right; the sum is void if GauR—Legembdes
are used on each temporal element. The definition is motivagets role in Theoren3.3
below, but also by the following observation.

LEMMA 3.2. ||w(7)||g < |Jwl|+ holds for allw € X}, and all temporal nodes € 7.
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Proof. Starting with||w(7)||% — ||lw(T)[|%3 = -2 fTT(atw,w)dt, apply Lemma3.1
on each temporal element, then the inequaliti@sw, Tw)| < ||Oww||v-|[Tw|y and2ab <
a® + b2 0

Recall symmetry and positivity afl from (1.5). It is now convenient to introduce an
inner product ort;, =V, x [Q ® V;] by

(35) ('U,F’l;)* = /(I_*A'Ul,_[_*:ljl)dt + (1}(),”[70), 'U,F’l; €Y.
J

Let| - ||« denote the induced norm.

Both, thef- andx-norms, undo the introduction of the adjoint interpolataperator/*
in the sense that the subsequent theorem could be equlydiemhulated for the bilinear
form By in (2.2). An immediate consequence of Lem@2& is that the bilinear forms3
in (1.9 and By in (2.2) are continuous oX;, x Y}, equipped with these norms.

As a final preparation for the subsequent theorem set

J;(z,01)dt

(3.6) K = inf sup .
2€0: X, \{0} vevi\ {0} [[2llL2(rvr) vl

This quantity is essentially a measure of “self-duality’Vaf, see Sectio3.2.1
THEOREM 3.3. With the definitions and assumptions of this section,

B(w,v)

(3.7) i up
weXn\{0} yev;,\{0} Jwlltllofl«

> Yo = min{Kj, o, 1}.
Proof. Define the linear map : X;, — Y} by
(3.8) (Tw,v)y = B(w,v) VY(w,v) € Xp x Y.

For arbitrary and nonzere € X, we show that|Twl, > .| w|+, which implies the
claimed estimate3(7) using

B I

= = [Twllx > v« lw]+-
vEY,\{0} llv]l« veY,\{0} v« ) )

To that end, we set,, := (w(0), [*Iw) € Y}, write [|[Tw||, as
(3.9) ITw]? = IITw = vu 12 + 2(Tw, vi)» = llvwllZ,

and estimate the individual terms. For the first term3dr8), definition (L.7) of the bilinear
form B, definition 3.5 of the inner product-, - )., and definition 8.6) of K, yield

Tw — ) 9
HFUJ - Uw”* = sup w
veYp\{0} ||UH*
= sup B(w7v) — (Uu”v)*
veYp\{0} ||UH*
Oyw, vy)dt
— sw 50w, v1)

veY,\{0} llv]l«

> K| Owwllrz(r,v7)-
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For the second term oB3(9), we insertv,, in the definition 8.8) of I', apply Lemma2.1,
followed by Lemma3.1, and evaluatg, (0,w, w)dt:

(Tw, v)s = /(atw+Aw,I*Iw)dt+ 1w(0)]%
J
_ / (Opw, Tw)dt + / (ATw, Tw)dt + [[w(0) %
J J

— [ @uwwde+ ol + 5 3 Nw = Tw)e )y
7 teTr

5 (0T = O)) + oul + 5 3w = Fu)eOl
teTr

Inserting these in3.9), combining and estimating further, we obtdifiw||, > .| w|; as
announced. a

We remark that this result remains valid for trial and tesicgs with temporally vari-
able spatial discretization constructed as followsVJf ¢ V, n = 0,1,..., N, are finite-
dimensional subspaces, set the discrete trial siacas the collection of ally € S1P(T) ®
V satisfyingw(t) € V;"~! 4+ V;» on each temporal elemeft,_1,t,), andw(t,) € V;* on
each temporal node. Takg := V,? x I*I X}, as the definition for the discrete test space. The
crucial part is to generalize Lemn3al to vector valued functions of this type, for instance
by splittingw into threeH -orthogonal parts ithﬁfl, Vir andV,f*1 NV, on each temporal
element.

3.2. Stability in original norms. Let us suppos&; andY; are families of subspaces

parameterized by > 0 of the form introduced at the beginning of this section wittand
p dependent ork. To obtain space-time stabilityl (L2) from the estimate3.7) of Theo-
rem @3.3), it suffices to verify

1. K, > Ky >0,

2. |- v < Ci| - [l ON Y,

3. I lx < Cill - I+ on X,
with constantg’; > 0, C,, > 0, andK, > 0 independent of the discretization parameters.
Indeed, space-time stabilityf,~o v, > 7o > 0 would follow in (1.12) with

Yo = C;lel min{ Ky, a, 1}.

We therefore investigate conditions on the spatial diszagon V},, the temporal meshes
T, and the polynomial degregs (where7 andp may depend ork) that allow suchh-
independent constants.

3.2.1. Approximate self-duality of the spatial discretizéion. The quantityK;, de-
fined in 3.6) only depends on the chosen finite-dimensional subsp@ace- V' and the
operatorA. Let us identifyv; # 0in (3.6) with Z := I~*vy € Z; := 0;X,. Then
12112250y = IAI7H(0,01)13. It suffices to take the supremum ovér v;) in (3.6), hence
it becomes

z,Z)dt

Ky > ||A|~Y?  inf s Js( ) .
2€Z\{0} ze z,\ {0} 2llL2(rv |2l L2 (v

Please note thatandz are measured in different norms. Expandingnd Z with respect to

an L?(J) orthonormal basis allows one to verify thj, > || A||~/2k;,, where

(3.10) Kkp:= inf sup (Xain >0
xeVi\{0} xevi\go3 IIxIlve[IXIlv
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is a measure of self-duality df,. One can show tha{g1 is the norm of the/{ -orthogonal
projection ontoV}, viewed as an endomorphism én, and therefores;, is bounded form
below for some commonly used finite element spaBesémma 6.2]. The boundedness of
the spatialL? projection inH! has appeared in the context of parabolic partial diffesdnti
equations of second order i§,[6].

We show thatK;, cannot be removed fronB(7) in Theorem3.3 because that would
imply C, ~ 1 for the operator norm of the discrete solution mappinglii@ when the
temporal discretization is sufficiently accurate, thawben the CFL number is small; see
below. For simplicity assume additionally thdtis an isometry, and that,,,, m € N, are
H-orthonormal eigenfunctions of with Ay,,, = m?¢,,. Thenm~'¢p,, andmy,,, m € N,
are orthonormal i/ andV”’, respectively. Defingy; := Zﬁf:l m~ Y., andV;, as the
span of the single ;. Observe thaty, := || xas||% and||xas ||y > 1 saturate ag/ — oo,
while ||xas|ly = VM. ThereforeK, > x; ~ 1/v/M for large M. It remains to verify
that with this spatial discretization, the stability cargtC), in (1.10 is not of order one but
indeed scales with/AM. Takef := 0 andg := xy/ in the discrete space-time variational
formulation (L.9), with X, := H(J) ® V}, andY}, := Vj, x [L?(J) ® V},]. Itis solved by
t s up(t) = e M/ Sy which has|ua || x ~ /M for large M. But||F||y+ ~ 1, hence
Cy ~ v/M in (1.10 for large M, as claimed.

3.2.2. Norm comparison on the test spaceln this subsection we address the norm
comparisor]| - ||y < C4|l - || onY},. We estimate as follows,

oIy = 11T w122 oy + llvollZ
< NP0l vy + lleollE

< max{|[°1 /a2, 1} (211 vt [Fe vy + ol ) < 2o,

for anyv = (vg,v1) € Y3 with the constant, := max{||I*||/a, 1}, using positivity (.5
of A. Thus it remains to estimatd™*||.

As noted following 2.3), the operator norm dff;;)~*, induced by theZ?(0, 1) norm, is
bounded by one irrespectively of the choicedddistinct nodesV C [0, 1]. Let us comment
on the norm off 3., which, in view of @.4), is the same as that @f, and is invariant under
rescaling of the interval.

1. If N C (0,1) are the Gaul3-Legendre nodes ttignis the identity, hence of unit
norm.

2. Let N/ C (0,1] be thed right-Radau nodes for the intervg, 1]. Sincellg, is a
multiple of L4(1)L4—1 — La—1(1) L4, See R.6), one can compute

Lg(1
I8 = Wi oy = 1+ | 25
Thus,||I3/|| < 2 for Radau noded/ of any order.
3. Similarly, || I [|* = 14 (2d+1)/(2d—3) holds for the Lobatto nodes. In particular,
the estimaté{Z; || < v/6 holds uniformly in the number of Lobatto nodés> 2.
4. For generall nodes one can sholN /|| = ||Zx/]| <1+ (2d)!/(d!)* <1+ 4<.

Now recall that we have assumed the test spacéo be based on Gaul3—Legendre or
right-Radau nodes. Thefly || < 2 as discussed above, and we obtain the desired norm
comparison uniformly in the discretization parameterspamticular in the polynomial de-
grees. More precisely,/*|| < 1 if only Gaul3—Legendre nodes are used, aft| < 2 if
also right-Radau nodes are admitted. These are respofwilitee asymptotic behaviour of
the space-time stability constant observed in Figuie

2 2d + 1

DY P
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3.2.3. Norm comparison on the trial space.In this subsection we obtain the norm
comparisorj| - || x < Cx||-||+ onX}. The constant’;, however, depends on the discretization
parameters, and the goal of this subsection is to investitjd dependence. To that end we
introduce the CFL number. We abbreviate

(3.11) Ap = sup IPxllv
XEVi\{0} HXHH

and on each temporal element we define the local CFL number

(312) CFL, = |t'rb - tn—1| A%p n=1,...,N.

One can see from the parabolic evolution equatibd) (that the CFL number is dimension-
free. Moreover,A;, is the same if the paifV, H) is replaced by(H,V’) in (3.11). The
(global) CFL number is the maximum of all local on€&'L := max,—; .~ CFL,. We
remark that, in the following, the local CFL number alwaypears in conjunction with the
local polynomial degree, but we chose not to include thesledrdefinition 8.12).

For convenience, we recall here the two northg)(and 3.4) defined for allw € X, as

lwll% = 10wlliz( vy + IwllLe vy + o (T)1F,

[wlfF = 10wl 72 s + 1wl Z2 ) + 07 + D 1w = Tw) ()17,
teTr

where 7z are the left endpoints of the temporal elements with rigati& nodes, and~
means the limit from the right.

To obtain the desired norm comparispr| x < Ci||-||+, we need to estimataw|| .2 s.v)
in terms of||w/|; or, if more convenient{w — Tw|| 2, in terms of the same, since for all
e > 0 there holds

(3.13) ||w‘|%2(.1;v) <@+ 6_2)||-TU’||2L2(J;V) +(1+ 52)”“’ - Iw||%2(,1;v)~
If only GauR3—Legendre nodes are present, the sharper orhbty relation
(3.14) ||1UH%2(J;V) = ||Iw||2L2(J;V) + [lw — Iw|\2L2(J;V)

is at our disposal.
We look at estimates that are valid on each interval. Thegespond to the three types
of behaviour observed in Figufielin the introduction.
1. For the temporal elements that host right-Radau nodessun in the| - ||;-norm,
see B.4), is useful for the norm comparison. Lé}, := (¢,-1,t,) be such a
temporal element witlp,, right-Radau nodesV,, C (t,—1,¢,]. OnJ, we have
w— Tw =1y, ® x, with somey,, € V},, and therefore

I, Nl 2 (1,0)
3.15 ~eleean =g T
(3.15) lw = Twlz2(g,;v) Ty, (tn—1)]

Using @3.3) for 11y, and the definition of the local CFL numbe&.{2) we find (note
the squares)

[(w = Tw)(t, 1) llv-

CFL )

816) Pl < gl = P ()
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If only right-Radau nodes are present we obtain the norm esisqm || - ||x <
Cy|l - |5 from (3.13 with a constant

(3.17) C? < inf max{1 + €2 (14 ¢)CFL/3} =1+ CFL/3.

This is sharp for the backward Euler cade< 1). For Radau5d = 3), the estimate
improves toOT2 <1+ CFL /(11%). This explains the preasymptotic behaviour of
the stability constantl(10 for the backward Euler and the Radau5 time-stepping
schemes in Figuré.l A competing estimate for right-Radau nodes is derived in
Section3.4below.

. On the temporal intervals that host Gau3—Legendre noéelsawe no control on
point values explicitly in the nornjj - ||+, but Lemma3.2 gives a hint. Consider a
set of GauB—Legendre nod&s = G, of arbitrary order on the unit intervdl, 1).
Using 3.3) and an argument similar t& (L3, we obtain

(2d + 1)llp — Inpl3201) = |0 — Inp) (0)]?
< (1+ € ) Inp(0)2 + (1 + €2)[p(0)[2
<1+ 672)d2|uj\/p||%2(0,1) + (L+€*)[p(0)]*.

The last inequality is seen by expandihgp into the Legendre polynomials, evalu-
ating at zero, estimating with Cauchy—Schwartz, and coing@i;é(% +1) =
d*. For a set ofp,, GauR-Legendre nodég, onJ,, = (t,_1,t,) and any vector-
valued polynomiaty € P, ® V}, we obtain

[|w — IwH2L2(Jn;V) <

|tn - tn—1|
1wl Ze s, 0y + A+ ) — [wta-1) I}

2pn +1
CFL,
3

2
< (1 -2 Pn
@18) =05 T

—2\Pn
<+ )Gl L0 + 1+ €) w3,
where in the second inequality we uspd(7)||z < ||w||; from Lemma3.2and the
definition 3.12) of the local CFL number.
Note thatZiLV:1 CFL,, = TA?. Thus, if only GauR-Legendre nodes are present,
we sum up over all temporal elements and W&é4) to find the norm comparison
lwllx < Cyllwlls with

-2 2
(3.19) C? < inf {1 1 Pl + 1J;)ETA,%},
where we have taken the samfor each temporal element and estimapgdoy the
maximal occurring polynomial degrép|... This explains the initial stagnation of
the stability constantl(10 for the implicit midpoint rule time-stepping scheme in
Figure1.L In the case of a single temporal elemeéft\} = CFL, and the bounds
in (3.17) and B.19 are very close. This is confirmed by Figure.
. When the CFL number is small, another type of inequalitybes relevant. Again,
we first consider the reference unit interval. INétC [0, 1] be a set of distinct collo-
cation nodes. Take any polynomjak P, of degreal > 1. Thenp = Iy + Ixp,
where the coefficient of the leading monomial was assumed tmb without loss of
generality. Its derivative i’ = IT), 4+ (Ixrp)’. The polynomialZxp)’, if nonzero,
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is of lower degree thafl,, which implies||p’|| z2(0,1) > [(IT)r, La—1)r2(0,1)]- We
arrive at

HHN||L2(0,1)
|(IMr, La—1) 220,y

[P = Inpllz20,1) < OnllP L2 0,1),  Chr =

For Gaul3—Legendre and right-Radau nodes the denominai@isddy- (1) Ly—1(1)—
ITxr(0)L4—1(0)|, as can be seen after integration by parts. With this, anexpees-
sion .6) for Iz,

, 1 2

Ch =———" and Clf, = ——u—
9e " oA — 1 Re T a—17d

The boundCy < 2C;, < 1/4/3 is again uniform in the polynomial degrek
For a set oﬁpn GauB—Legendre or right-Radau nod€s on the temporal element
Jn = (tn—-1,t,) and any vector-valued polynomial € P, ® V}, we obtain

Clgd S 20&1'

(320) Hw - IUJHLQ(J V) < Cj\/’n CFLn ||at'UJ||L2(JH;V/)’

ns

WhereCN is eitherC; or C%  with d = p,,. ThereforeCFL < 1 entailsC; ~ 1
in the norm comparisofj - ||X < Cill - -
When only Gaul’3—Legendre nodes are present, the orthogooglitv and (w —
Iw) (3.14 allows one to choosé'f < 1+ CFL?/12. Thus the behaviour of the
implicit midpoint rule time-stepping scheme in Figutel is explained also in the
regime of moderate CFL numbers.

In summary we have found for Gaul3—Legendre and right-Raddasthe norm com-

parison of the form

I lx <Gl [l with  Ct == Cmin{|p|oc + VTAy, 1+ CFL},
and if only right-Radau nodes are present the improved agtim
II - ||X < CTH . ||1L with C; =1+ CVCFL.

The constan€ > 0 can be chosen independently of all parameters, in partioolaincreas-
ing with the polynomial degrees.

3.2.4. Numerical evaluation of the bounds.We return to the example discussed in
Sectionl.3and compare the measured stability constgnin (1.10 with the bounds derived
in this section. The bound;, < ~, ' is composed as followsy, := CJr_lc’;1 min{ K}, o, 1},
wherea = 1 in this example, and we replac€é by the estimate derived in Secti@r2.2and
C; by the estimates derived in SectiBr2.3 We computedy;, ~ 0.9528 andA;, ~ 4.0942.
Figure 3.1 shows validity of the estimates and good agreement with thasored stability
constant.

We remark that our bounds on the various quantities may bactie simultaneously,
which leads to overestimation of the stability const@ptin certain cases. Specifically, for
the backward Euler time-stepping scheme (and similarlyfferRadau5 case), see the center
(and right) graph of Figur&.1, the bound orC; and the bound ofj*|| together yield an
overestimate by a factet 2 when the CFL number is large. Indeed, we observe numerically
that in the case of a single temporal element the optimizaig (w,v) € X; x Y}, in the
discrete inf-sup constan8(7) may have the property thdff —*v;[| .2 s,y is much smaller
than ||vg|| &, and therefore estimating||y < ||I*]|||v]|+ as we did in Sectio3.2.2is too
pessimistic by a factor of approximatd|y*|| = 2.
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FIGURE 3.1. Space-time stability constant for implicit midpoint ruleff), backward Euler (center), and
Radau5 (right) time-stepping schemes as a function of timebea N of equidistant time steps; see Sectib8,
together with the analytical bounds discussed in Se@&ién

3.3. Analysis of the Lobatto nodes.Recall that Lemm&.1 on Gaul3—Legendre and
right-Radau nodes was used in the proof of TheoBeBand was crucial for the aforegoing
analysis. We have no similar result for the Lobatto nodestelnd, in this section we will show
and use the fact that the Lobatto collocation polynomiabd@fied in Sectio2.2) of degree
(d + 1), interpolated on the correspondif@+ 1) Lobatto nodes, coincides with the Gaul3—
Legendre collocation polynomial of degréeFord = 1, this is readily seen as follows. The
stability functions of the implicit midpoint rule with nod€, and the implicit trapezoidal rule
with nodesl, are the same, so the collocation polynomials have the salmesvat the nodes
{0,1}. Therefore, linear interpolation on the Lobatto nodes= {0,1} of the quadratic
implicit trapezoidal rule collocation polynomial is preely the linear implicit midpoint rule
collocation polynomial.

Using this observation we will estimate the stability camst(l.10) for Lobatto nodes in
terms of that for Gau3—Legendre nodes. To start with, censite relation

(3.21) (0 @)r201) = ((U£ap0) s @) 22(0,1)5 V(p,q) € Pay1 x Py,

for the (d + 1) Lobatto nodesd € N. Integration by parts shows that this is equivalent to
(p = Iy, 1, d ) 20,1y = 0 for the samep andg. This in turn is true because the integrand
is a polynomial of degregd — 1 vanishing at the Lobatto node%;, which are exact on
Pog_1.

Let the discrete trial spack;, := S'P(T) @ Vj, be the space of the same form as in
the beginning of this section, and let the discrete testespade based on Gau3-Legendre
nodes. We increase the polynomial degrees by one to oitgin= S1'PT1(7T) ® V},, and let
Yy = Vi x }7,} denote the corresponding discrete test space that is badesbatto nodes.
The compound interpolation operators are denoted acagydby / and 1. Assume that
f e S%(T)®V’'andg € H. Letuy, (anduy,) denote the solution to the discrete space-time
variational formulation1.9) with X, x Y;, (replaced byX), x ¥},). We now estimat@uy, || x
from above in terms ofuy, || x .

Let us writelU;, := fﬂh for discrete solution based on the Lobatto nodes, intetpdlan
these nodes. From the identity of the stability functidhys ,, = Rg, stated in Sectio@.?2, it
is clear thatJ;, anduy, coincide on the mesh nodes= 7, in particularUy, (0) = u,(0). We
claim that in factU;, = uy,. To prove this we verify that/;,, € X, satisfies the discrete space-
time variational formulation(.9) that characterizes;,. Therefore we use the aforegoing
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relation 3.21), exactness of on SYP(T), andl*v; € )Afhl for anyv; € Y;!, to compute
/(&Uh + AUy — fovn) dt = /(f(atah + ATy, — f),v1) dt
J J
= /(&tﬂh -+ Aﬁh — f, IA*vl) dt = 0.
J

As noted, the initial values coincid&, (0) = u(0), and thudJ;, = uy,.
These ingredients allow one to estimate

[a@n % < 10cnllzz( v + 2llan = TanlZa sy + 2lunlie gy + lun()| -

We employ the Poincarlike estimate|i;, — 11| < CFL /v/10(|8,1y]| as in @.20), for the
second term on the right, and collect itAvvith the first ternseiringd, u;, = —Auy, + I f and
estimating further we arrive iy, || x < Cy||F||y-, with

Ch < 2(1+2CFL? /10) (| A]* + 1)CF + 1),

whereC), is the stability constant fou, from (1.10. Thus, as forC),, we expect a three-
phase behaviour fof’;: as the number of temporal intervals increases, the conistéinst
proportional to the CFL number, then to the square of the Qlrhlver, and is eventually of
order one. The estimate is pessimistic roughly by a factéowffor large CFL numbers. We
indeed observe this in our numerical experiments for thepoiot Lobatto collocation in the
set-up of Section.3; see Figure3.2, where also the derived bound is shown.

3.4. Temporal mesh with geometric warm up.Using the relation%.15 and continu-
ity of the discrete solutiom, one can estimate the defect— /w on the temporal element
Jn+1 = (tn, tn41) in terms of the quantities available jiw||; if the preceding temporal el-
ementJ,, = (t,—1,t,) hosts right-Radau nodes. In this situation, observe khédt’¢,) =
w(7t,) = w(tf ), because,, is a collocation point inV,,, on the temporal element,,
where ~¢,, denotes the limit from the left. Thus we can estimpte — Iw)(t5 )|y <
| Tw(~t) v + |[Tw(ts)]v in (3.19. For the sake of clarity, let us again assume that all
temporal intervals host right-Radau nodes. We wjtitg for the length of the temporal ele-
ment.J,,. Similarly to (3.16 and 3.18 we find

In+1l
w — Tw||? . :|n—+ w — Tw)(t5)||?
o= Pl g0y = o Tl = T ()
2
Jnt1l | Dn Dn+1
(3.22) g‘ + Tw|| 27 vy + ——= | Tw|| 2. .-
3 m” ||L (Jn;V) |Jn+1‘ H ||L (Jng1:V)

2 |Jn+1‘
< §|P|Zo ( 7] HIwH%z(Jn;V) + ”I'LUHZL?(JnJrl;V) .
Seto := maxy,  n—_1]|Jn+1l/|Jn| fOr the maximal ratio of the lengths of neighbouring
temporal elements. Collecting all defects and usbd® on the first temporal element, we
obtain the norm comparisdh- || x < Ci|| - ||+ with

1 2
C]? < iggmax{S(l +€?)CFLy, (14 ¢ 2) + 5(1 + ?)|p|* (o + 1)}

Note that only the local CFL number of the first temporal eletrenters the estimate.
This suggests a “geometric warm up” strategy for positigrtime temporal nodes in order
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FIGURE 3.2. Space-time stability constant for implicit midpoint ruteackward Euler, and Radau5 time-
stepping schemes as a function of the nuni¥eaf temporal elements. Left: comparison with the two poiridito
collocation Runge—Kutta time-stepping scheme (with emé ' = 20); see Sectior8.3. Right: the effect of the
“geometric warm up” (with end tim&" = 1000); see Sectior3.4.

to improve the space-time stability constant. To illugrttis we revisit the example from
Section1.3. For each uniform temporal mesh we subdivide the first teaipglement/;
using geometric refinement towards the origin by appendieqibdes —*|.J1|, £ = 1,2,.. .,
for which a*£|J1|A,QL > 1, wheres := 2. To render the stabilizing effect more visible
we setT" = 1000 for the end time. The results in FiguBe2 show that for the backward
Euler time-stepping scheme (unlike for the implicit midpaiule) the “geometric warm up”
strategy renders the space-time stability constant ofrande, uniformly in the initial number
of temporal elements, at the expense of only a few additimmaporal elements.

The local CFL number of the first temporal element appearbénabove estimate be-
cause we assumegl € H for the initial datum in {.8), but it can be dropped if is
more regular, say € V. From the discrete space-time variational formulatidrd)(it is
clear thatw(0) is the H-orthogonal projection of onto V;,. From Sectior3.2.1we have
|w(0)|lv < &, |lgllv, wheres, is the measure of self-dualitg. (L0 of V;,. With this in
mind let us revisit the estimat&.@2 on the first temporal element:

2 _ 2
lw = Twlegy) < SRl + SPITwl a0 0

As noted in Sectior8.2.1, one can bound;, from below for some common finite element
spaced/,, thus we may assume thal |«;, %||g||?- is bounded above by a certajrdependent
constant multiple of F||2.,. Using this estimate instead &.(.6) on the first temporal element
leads to a space-time stability constart in (1.10 that depends on the operatdr the
initial datumg, the lower bound om:;,, the end timel’, the polynomial degrees, and the
interelement ratier (or upper bounds offi, p, ands), but not on the CFL number.

4. Conclusions. We have shown that collocation Runge—Kutta time-steppagsmes
applied to a spatially semi-discretized linear parabolm@ion equation produce a solution
that a priori depends continuously on the input data in algdi@space-time norm, but its
operator norm may be large, unless the parabolic CFL nunsbef order one. If one is
interested in a moderate operator norm of the discreteisnlumapping, for instance for
space-time simultaneous solution and preconditioninghefgarabolic evolution equation,
this entails restrictions on the time step size even if tlsebemes ard- or L-stable.

To arrive at this conclusion, we have formulated collocattunge—Kutta time-stepping
schemes as Petrov—Galerkin methods for a space-timeigagaformulation of an abstract
linear parabolic evolution equation. The main ingrediarthie construction of the appropriate
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discrete test spaces is the adjoint of the interpolatiomaipe For collocation Runge—Kutta
time-stepping schemes based on Gaul3—Legendre, rightiRaxblLobatto nodes, we have
analyzed the a priori stability of the resulting Petrov-&kin method, and we have shown
that the stability constant is linked to the parabolic CFiminer. We stress that this a priori
analysis does not assume any additional smoothness of #eé {ution, the initial datum,
or the residual; we plan to comment on the implications ofstimeess and the relation to the
classical convergence analysis elsewhere.

Our numerical experiments for the heat equation indicaa¢ ttte bounds are, up to a
small constant, sharp. In fact, it is possible to construabgles which verify that the scaling
of the stability constant with respect to the CFL number carive improved in general.
These functions are highly oscillatory in time in the cas&atiR—Legendre nodes such that
Tw is small in @.18, and functions supported on the first temporal element énctéise of
right-Radau nodes for whiclB(16) is the only available estimate. On the other hand, in
the case of right-Radau nodes the restriction on the time s can be circumvented by
applying a “geometric warm up” strategy on the first tempetament tailored to the spatial
discretization, or by assuming a sufficiently regular atidatum.
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