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ON CONVERGENCE RATES FOR QUASI-SOLUTIONS OF
ILL-POSED PROBLEMS ∗

ANDREAS NEUBAUER†AND RONNY RAMLAU †

Abstract. Usually, one needs information about the noise level to find proper regularized solutions when solving
ill-posed problems. However, for several inverse problems, it is not easy to obtain an accurate estimation of the noise
level. If one has information about bounds of the solution in some stronger norm, quasi-solutions are an excellent
alternative. Besides existence, stability, and convergence results, it is the major emphasis of this paper to prove
convergence rates for quasi-solutions in Hilbert scales.
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1. Introduction. We consider (nonlinear) ill-posed problems

(1.1) F (x) = y ,

whereF : D(F ) ⊂ X → Y is a linear or nonlinear bounded operator between Hilbert
spaces. Here,y are the exact data, and we assume that there exists a best-approximate solution
of (1.1). In practice, however, only noisy datayδ are available, whereδ denotes the noise
level, i.e.,

∥

∥y − yδ
∥

∥ ≤ δ.
Due to the ill-posedness, one has to use regularization methods to obtain stable approx-

imations of a solution of equation (1.1). Almost all regularization methods have in common
that they depend on a so-called regularization parameter. Aprominent example is Tikhonov
regularization, where an approximation to a solution is obtained as a minimizer of the func-
tional

∥

∥F (x)− yδ
∥

∥

2
+ αR(x) , α > 0 .

Here,R(x) denotes the chosen penalty term, andα is the regularization parameter. Popu-
lar choices for penalty terms can be found, e.g., in [1], whereX andY are Hilbert spaces
andR(x) = ‖x− x∗‖

2, or in [12, 13], where a general Banach space setting is considered.
In iterative regularization methods (see, e.g., [5, 13]), the iteration index plays the role of the
regularization parameter.

All convergence and especially convergence rates results for regularized solutions show
that the choice of this parameter depends on the knowledge ofδ. However, for several exam-
ples in practice, it is not at all trivial to get precise estimates of the noise level.

In such cases, one often uses so-called heuristic parameterchoice rules. Unfortunately,
it was shown by Bakushinskii (see, e.g., [1, Theorem 3.3]) that such methods can never yield
convergence if one is interested in worst case error estimates. In contrast, these parameter
choice rules often display good results in practice. The reason is that measured data are
usually not always as bad as in the worst case situation. Under some restrictions on the noise,
one can even prove convergence rates; see, e.g., [6, 11].

For some problems one has additional a priori information about the solution, e.g., that it
lies in a smoother space and that an upper bound on the norm in this space is known. It turns
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out that this knowledge can be used instead of the knowledge of δ to prove convergence and
in some cases even rates for so called quasi-solutions.

The concept of quasi-solutions was developed by Ivanov (see[3, 4] and also [14]) for
injective completely continuous operatorsF . They are solutions of the problem

inf
x∈M

∥

∥F (x)− yδ
∥

∥ ,

whereM is a compact subset ofD(F ). We will generalize this setting to non-compact and
non-injective operatorsF and allow weakly compact setsM .

In the next section, we deal with existence, stability, and convergence of quasi-solutions.
In Section3, we derive convergence rates in Hilbert scales. An analysisof numerical approx-
imations for linear problems as well as a fast algorithm and numerical results are presented
in the last section.

2. Convergence of quasi-solutions.As mentioned in the introduction, we assume that
equation (1.1) has a least squares solution in a smoother space, sayXs ⊂ X and that a
norm boundρ in Xs is known. We therefore approximate solutions of (1.1) by the following
quasi-solutions, namely solutions of the problem

(2.1) inf
x∈Mρ

∥

∥F (x)− yδ
∥

∥ , Mρ := {x ∈ D(F ) ∩Xs : ‖x− x∗‖s ≤ ρ} .

Here,‖·‖s obviously denotes the norm inXs, andρ > 0. The elementx∗ ∈ D(F ) ∩ Xs

is either an initial guess for a solution or, in case of multiple solutions, it plays the role of a
selection criterion (see [1, Chapter 10]). IfF is a linear operator, usuallyx∗ = 0.

For the following existence and convergence proofs, we require several conditions but
not all of them are needed for every result. Nevertheless, westate all conditions that may be
needed at once:

(A1) Xs ⊂ X andY are Hilbert spaces.
(A2) D := D(F ) ∩ Xs andF : D ⊂ Xs → Y is weakly (sequentially) closed, i.e.,

if (xk) is a sequence inD such thatxk ⇀ x inXs andF (xk)⇀ y in Y , thenx ∈ D
andF (x) = y.

(A3) The equationF (x) = yδ has a least squares solution inMρ ⊂ D, i.e.,x ∈Mρ exists
with

∥

∥F (x)− yδ
∥

∥ = inf
x∈D

∥

∥F (x)− yδ
∥

∥.

(A4) D is convex andx 7→
∥

∥F (x)− yδ
∥

∥ is convex inD.

REMARK 2.1. Let us shortly discuss the meaning of the conditions above: first of
all, (A2) and (A4) trivially hold if F ∈ L(Xs, Y ), i.e., if F is a linear bounded operator
fromXs → Y .

Note that, in general, for noisy datayδ, least squares solutions do not exist and, therefore,
condition (A3) will not hold in this case. However, we will assume that (A3) holds for exact
data (δ = 0). Due to the weak lower semi-continuity of the norms inXs andY , it is an
immediate consequence of (A1) and (A2) that then also anx∗-minimum norm least squares
solution, also called best-approximate solution, exists in Mρ. These solutions are denoted
by x†, i.e.,

∥

∥x† − x∗
∥

∥

s
= min{‖x− x∗‖s : x is a least squares solution ofF (x) = y} .

For nonlinear operatorsF , x† is not necessarily unique. However, if condition (A4) holds
for δ = 0, thenx† will be unique.

Of course, as for least squares solutions, one can always choose quasi-solutions that
minimize

∥

∥xδρ − x∗
∥

∥

s
among all possible quasi-solutions, calledx∗-minimum norm quasi-

solutions.
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PROPOSITION2.2. Let the conditions(A1) and (A2) be satisfied. Then the following
assertions hold:

(i) Problem(2.1) has a solutionxδρ.
(ii) If (A3) holds, then a least squares solution also solves problem(2.1). Moreover,

anx∗-minimum norm least squares solutions solve(2.1).
(iii) If (A3) does not hold but(A4) holds, thenxδρ is unique with

∥

∥xδρ − x∗
∥

∥

s
= ρ.

Proof. Assertion (i) follows immediately from (A1), (A2), and the weak lower semi-
continuity of the norms. Assertion (ii) is obvious.

Let us now assume that (A4) holds and that equation (1.1) has no least squares solution
in Mρ. Then there exists an elementx ∈ D\Mρ such that

(2.2)
∥

∥F (x)− yδ
∥

∥ <
∥

∥F (xδρ)− yδ
∥

∥ .

Let us assume that
∥

∥xδρ − x∗
∥

∥

s
< ρ, thenx(t) = tx + (1 − t)xδρ ∈ Mρ for somet > 0

and (2.2) implies that
∥

∥F (x(t))− yδ
∥

∥ ≤ t
∥

∥F (x)− yδ
∥

∥+ (1− t)
∥

∥F (xδρ)− yδ
∥

∥ <
∥

∥F (xδρ)− yδ
∥

∥

in contradiction toxδρ minimizing the residual overMρ. The uniqueness ofxδρ follows from
the fact that, if there were two quasi-solutions, then any convex combination would be also a
quasi-solution but with a distance tox∗ less thanρ. This proves assertion (iii).

Assertion (iii) above means that, if (A3) does not hold, then (A4) guarantees that quasi-
solutions are at the boundary of the setMρ.

Next, we are interested in stability and convergence of quasi-solutions.
PROPOSITION2.3. Let conditions(A1) and(A2) be satisfied and letδk → 0 ask → ∞.

Then the following assertions hold:
(i) The sequencexδkρ has a weakly convergent subsequence. The limit of every weakly

convergent subsequence is a quasi-solution. If, in addition,x0ρ is unique, then

xδkρ ⇀ x0ρ .

(ii) If x0ρ is unique with
∥

∥x0ρ − x∗
∥

∥

s
= ρ, then we obtain strong convergence, i.e.,

xδkρ → x0ρ .

Proof. Obviously,
∥

∥xδkρ − x∗
∥

∥

s
≤ ρ, and

∥

∥F (xδkρ )− yδk
∥

∥ is bounded. Therefore, (A1)
and (A2) imply that a subsequence (again denoted byxδkρ ) and an elementx ∈Mρ exist such
that

xδkρ ⇀ x and F (xδkρ )⇀ F (x) .

The weak lower semi-continuity of the norms now yields that

‖F (x)− y‖ ≤ lim inf
k→∞

∥

∥F (xδkρ )− yδk
∥

∥ ≤ lim
k→∞

∥

∥F (x)− yδk
∥

∥ = ‖F (x)− y‖

for all x ∈ Mρ. Thus,x is a quasi-solution. Ifx0ρ is unique, then the weak convergence of
xδkρ follows from a standard subsequence argument with the same limit.

If the conditions of (ii) hold, then

ρ =
∥

∥x0ρ − x∗
∥

∥

s
≤ lim inf

k→∞

∥

∥xδkρ − x∗
∥

∥

s
≤ lim sup

k→∞

∥

∥xδkρ − x∗
∥

∥

s
≤ ρ .
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Thus,

lim
k→∞

∥

∥xδkρ − x∗
∥

∥

s
= ρ .

Now weak convergence and convergence of the norms imply strong convergence.
Therefore, in general, stability and convergence can only be guaranteed in the weak

topology. However, note that ifXs is compactly embedded inX, then we get at least conver-
gence in the norm-topology ofX.

If F (x) = y has a best-approximate solutionx† that is not an element ofMρ and if
condition (A4) holds forδ = 0, then Proposition2.2 (iii) and Proposition2.3 (ii) imply that
the quasi-solutionsxδρ converge strongly towards the unique quasi-solutionx0ρ 6= x†. This
means it is allowed to overestimate the boundρ of the best-approximate solution but not to
underestimate it.

REMARK 2.4. It is obvious from the proofs that the results of Propositions2.2 and2.3
remain valid ifXs andY are reflexive Banach spaces. For the proof of assertion (ii) in
Proposition2.3 one needs in addition thatXs has the Radon-Riesz property, i.e., ifxk ⇀ x
and‖xk‖s → ‖x‖s, thenxk → x in Xs. This condition is valid in every Hilbert space, but
also in some Banach spaces, e.g., in the Sobolev spacesW s,p with 1 < p <∞.

We also want to mention that there are cross-connections of quasi-solutions and Tikhonov
regularized solutions: in [2], it was shown that the concept of quasi-solutions can be used
to analyze the modulus of continuity to derive error bounds for regularized solutions. In
case (A4) holds, one can characterize quasi-solutions as minimizers of a Tikhonov functional
with a special regularization parameter (for compact linear operators this was already shown
in [14]).

PROPOSITION2.5. Let the conditions(A1), (A2), and(A4) hold. If (A3) does not hold,
thenxδρ is the unique minimizerxδα of the Tikhonov functional

∥

∥F (x)− yδ
∥

∥

2
+ α ‖x− x∗‖

2
s

overD, where the regularization parameterα > 0 is chosen such that

∥

∥xδα − x∗
∥

∥

s
= ρ .

Proof. Proposition2.2already implies thatxδρ exists and is either a least squares solution
of F (x) = yδ in Mρ or it is unique with

∥

∥xδρ − x∗
∥

∥

s
= ρ.

It follows from the Karush-Kuhn-Tucker theory (note that the Slater condition holds,
sincex∗ ∈Mρ) that the solutionsxδρ are characterized as follows: there exists anα ∈ R such
thatxδρ minimizes

∥

∥F (x)− yδ
∥

∥

2
+ α

(

‖x− x∗‖
2
s − ρ2

)

overD and

α
(

∥

∥xδρ − x∗
∥

∥

2

s
− ρ2

)

= 0 .

If (A3) does not hold, thenα > 0 andxδρ is as stated.
If F ∈ L(Xs, Y ) andx∗ = 0, then it is well-known that

xδα = (F#F + αI)−1F#yδ ,
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whereF# : Y → Xs denotes the adjoint ofF . (We use the notationF# instead ofF ∗

since the latter symbol is used as the adjoint between the original spaces, i.e.,F ∗ : Y → X.)
Assuming that (A3) does not hold, the problem of calculatingα such that

(2.3)
∥

∥xδα
∥

∥

s
= ρ

can be solved approximately via Newton’s method. Let

f(α) :=
∥

∥xδα
∥

∥

2

s
=

∫ ∞

0

λ

(α+ λ)2
d
∥

∥FλQy
δ
∥

∥

2
.

Here{Fλ} denotes the spectral family ofFF#. Since

f ′(α) = −2
〈

xδα, (F
#F + αI)−1xδα

〉

s
= −2

∫ ∞

0

λ

(α+ λ)3
d
∥

∥FλQy
δ
∥

∥

2
< 0 ,

f ′′(α) = 6

∫ ∞

0

λ

(α+ λ)4
d
∥

∥FλQy
δ
∥

∥

2
> 0 ,

Newton’s method

αk+1 = αk −
f(αk)− ρ2

f ′(αk)

is globally convergent and locally quadratically convergent if α > 0 exists such that (2.3)
holds and ifα0 < α.

Noting thatf is a monotonically decreasing function with

lim
α→∞

f(α) = 0 ,

lim
α→0

f(α) =

{
∥

∥F †yδ
∥

∥

s
if yδ ∈ D(F †) ,

∞ otherwise,

it is obvious that (2.3) will never have a solution if
∥

∥F †yδ
∥

∥

s
< ρ. However, in that case,xδρ

is a least squares solution andF †yδ is the unique minimum norm quasi-solution.
The following modified algorithm will always converge towards the unique minimum

norm quasi-solution which is always an element ofN (F )⊥.

ALGORITHM 2.6.
(i) Chooseα > 0, q ∈ (0, 1).

(ii) Solve the equations(F#F + αI)xδα = F#yδ and(F#F + αI)zδα = xδα.

(iii) Calculatedα :=
ρ2 −

∥

∥xδα
∥

∥

2

s

2 〈xδα, z
δ
α 〉s

.

(iv) Setα :=

{

α− dα if dα < α ,
q α otherwise.

(v) Goto (ii).

Thus, if
∥

∥F †yδ
∥

∥

s
≤ ρ, then the sequenceαk obtained by this algorithm will monotoni-

cally decrease towards0. Otherwise, it will converge from below towards the solution α > 0
of equation (2.3). In practice, the algorithm will be stopped whenever the relative error of
two consecutiveα values is below a certain bound.
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3. Convergence rates.As already mentioned in the last section, usually we can not
expect strong convergence of quasi-solutions inXs if δ goes to0, but only in the spaceX
if Xs is compactly embedded inX. If X andXs are part of a Hilbert scale, then we can even
prove convergence rates inX.

Let L be a densely defined unbounded selfadjoint strictly positive operator inX.
Then(Xs)s∈R denotes the Hilbert scale induced byL if Xs is the completion of

⋂∞
k=0D(Lk)

with respect to the Hilbert space norm‖x‖s := ‖Lsx‖X . Obviously‖x‖0 = ‖x‖X ; see [7]
or [1, Section 8.4] for details.

The conditions needed to prove convergence rates are different for linear and nonlinear
operators. We first consider the nonlinear case:

(N1) X = X0 andXs, s > 0, are part of a Hilbert scale, andY is a Hilbert space.
Moreover,Xs is compactly embedded intoXt whenevert < s.

(N2) F (x) = y has a unique solutionx† ∈ Mρ, i.e.,F (x†) = y. (Thus, for nonlinear
problems we restrict ourselves to the attainable case.)

(N3) F : D(= D(F ) ∩Xs) → Y is Fŕechet-differentiable inXs.
(N4)

∥

∥F ′(x†)x
∥

∥ ≥ m ‖x‖−a for all x ∈ X, somea > 0 andm > 0.
(N5) There existc ≥ 0, r ∈ [−a, s), β ∈ (0, 1], andε > 0 such thatMρ ∩ Br

ε(x
†)

is convex and
∥

∥(F ′(x)− F ′(x†))(x− x†)
∥

∥ ≤ c
∥

∥F ′(x†)(x− x†)
∥

∥

∥

∥x− x†
∥

∥

β

r
for

all x ∈Mρ ∩B
r
ε(x

†), whereBr
ε(x

†) := {x ∈ Xr :
∥

∥x− x†
∥

∥

r
≤ ε}.

REMARK 3.1. The Fŕechet-differentiability ofF in (N3) has to be understood in the
following sense:F may be extended fromD to an open subsetU ⊃ D, and this extension is
Fréchet-differentiable.

Usually, for the analysis of regularization methods in Hilbert scales, a stronger condition
than (N4) is used, namely (see, e.g., [8, 9])

∥

∥F ′(x†)x
∥

∥ ∼ ‖x‖−a for all x ∈ X .

Condition (N5) means that the smoothing property ofF ′(x) is similar to that ofF ′(x†)
in a neighbourhood ofx†. Such conditions are common for proving convergence rates for
nonlinear regularization in Hilbert scales and for iterative regularization methods; see [5, 9].

To prove convergence rates, we need the so-called interpolation inequality that holds in
Hilbert scales (see, e.g., [1, Proposition 8.19]), i.e., for somec > 0

(3.1) ‖x‖t ≤ c ‖x‖
s−t
a+s

−a ‖x‖
a+t
a+s
s , −a ≤ t ≤ s , x ∈ Xs .

THEOREM 3.2. Let (A2) and conditions(N1)–(N5) hold. Then

∥

∥xδρ − x†
∥

∥

t
= O

(

δ
s−t
a+s

)

for any−a ≤ t < s.
Proof. First of all note that, due to Proposition2.2, xδρ exists for allyδ ∈ Y andx0ρ = x†

is unique due to (N2). Thus, Proposition2.3 and (N1) imply thatxδρ → x† in Xt for t < s.
Therefore, we may assume thatδ is sufficiently small so that

∥

∥xδρ − x†
∥

∥

r
≤ ε and that we

may apply (N5).
Now we prove rates: (N2) and

∥

∥y − yδ
∥

∥ ≤ δ imply that

∥

∥xδρ − x†
∥

∥

s
≤ 2ρ ,(3.2)

∥

∥F (xδρ)− y
∥

∥ ≤ δ +
∥

∥F (xδρ)− yδ
∥

∥ ≤ δ +
∥

∥F (x†)− yδ
∥

∥ ≤ 2δ .(3.3)
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Using (N2), (N3), and (N5), we obtain that

∥

∥F ′(x†)(xδρ − x†)
∥

∥ ≤
∥

∥F (xδρ)− y
∥

∥

+

∫ 1

0

∥

∥(F ′(x† + ξ(xδρ − x†))− F ′(x†))(xδρ − x†)
∥

∥ dξ

≤
∥

∥F (xδρ)− y
∥

∥+
c

β + 1

∥

∥F ′(x†)(xδρ − x†)
∥

∥

∥

∥xδρ − x†
∥

∥

β

r
.

(3.4)

Sincexδρ → x† in Xr, we may as well assume thatδ is so small that

∥

∥xδρ − x†
∥

∥

r
≤

(

β + 1

2c

)
1
β

.

This together with (3.4) implies that

∥

∥F ′(x†)(xδρ − x†)
∥

∥ ≤ 2
∥

∥F (xδρ)− y
∥

∥ .

Now, (N4), (3.1), (3.2), and (3.3) yield the assertion.
For the special caset = 0, we obtain the convergence rateO

(

δ
s

a+s

)

. If x† ∈ Xu

with u > s, then one could even obtain a better rate with Tikhonov regularization in Hilbert
scales provided thatδ is known. However, if the guess ofs is the best possible, i.e.,x† /∈ Xu

for u > s, then the quasi-solutions converge order optimal without the knowledge ofδ.
Let us now consider the linear case: an inspection of the proof above shows that the

conditions (N1)–(N5) may be relaxed for linear operatorsF . First of all, we do not need the
compact embedding condition of (N1) since (N5) is trivially satisfied withc = 0. Moreover,
we may restrict ourselves to the unique minimum norm quasi-solutions (see the end of the
section above) and note that

∥

∥Fx− yδ
∥

∥

2
=

∥

∥Fx−Qyδ
∥

∥

2
+

∥

∥(I −Q)yδ
∥

∥

2
,

whereQ is the orthogonal projector ofY ontoR(F ). Thus, a quasi-solution foryδ is also a
quasi-solution forQyδ. Therefore, the proof above remains valid if we replaceyδ by Qyδ,
meaning that there is no need to restrict ourselves to the attainable case for linear problems.

These arguments show that for linear operators we need the following conditions:

(L1) X = X0 andXs, s > 0, are part of a Hilbert scale, andY is a Hilbert space.
(L2) F ∈ L(Xs, Y ) andx† = F †y ∈Mρ.
(L3) ‖Fx‖ ≥ m ‖x‖−a for all x ∈ X, somea > 0 andm > 0.

Then we obtain the following result:
THEOREM 3.3. Let the conditions(L1)–(L3) hold and letxδρ be minimum norm quasi-

solutions. Then

∥

∥xδρ − x†
∥

∥

t
= O

(

δ
s−t
a+s

)

for any−a ≤ t < s.
If
∥

∥x†
∥

∥

s
= ρ, then it follows as in Proposition2.3 (ii) that the minimum norm quasi-

solutions will converge strongly towardsx† in Xs. Thus,O(·) in Theorem3.3may then even
be replaced byo(·).
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We now present two applications of the previous theorems, a nonlinear and a linear one.
EXAMPLE 3.4. In the first example,F is a nonlinear Hammerstein integral operator,

defined as

F : H1[0, 1] → L2[0, 1]

x 7→

∫ t

0

φ(x(s)) ds .

We assume thatφ is in C2,β(I) for all intervalsI ⊂ R and someβ ∈ (0, 1]. Then one can
show (see [10, Section 4] for details) thatF is weakly closed and Fréchet-differentiable with

(F ′(x)h)(t) =

∫ t

0

φ′(x(s))h(s) ds ,

(F ′(x)∗w) = B−1

[

φ′(x(•))

∫ 1

•

w(t) dt

]

,

where

B : D(B) := {ψ ∈ H2[0, 1] : ψ′(0) = ψ′(1) = 0} → L2[0, 1]

ψ 7→ Bψ := −ψ′′ + ψ ;

note thatB−1 is the adjoint of the embedding operator fromH1[0, 1] in L2[0, 1].
Let us assume thatF (x†) = y with |φ′(x†(s))| ≥ γ > 0 for all s ∈ [0, 1]. Then

R(F ′(x†)∗) = {ψ ∈ H3[0, 1] : ψ′(0) = ψ′(1) = 0, ψ(1) = ψ′′(1)} .

If we setX = X0 = H1[0, 1] (with the usual norm‖x‖0 := (‖x‖2L2 + ‖x′‖2L2)
1
2 ), then the

operatorL defined via

D(L4) = {ψ ∈ H5[0, 1] : ψ′(0) = ψ′(1) = ψ′′′(0) = 0, ψ(1) = ψ′′(1)} ,

L4ψ := ψ − 2ψ′′ + ψ(iv) ,

induces a Hilbert scale such that

X2 = R(F ′(x†)∗) and
∥

∥F ′(x†)∗w
∥

∥

2
=

∥

∥BF ′(x†)∗w
∥

∥

0
∼ ‖w‖L2 .

Due to [1, Corollary 8.22] (compare [10, Remark 2.2]), this is equivalent to
∥

∥F ′(x†)x
∥

∥ ∼ ‖x‖−2 for all x ∈ X .

Moreover,

∥

∥(F ′(x)− F ′(x†))∗w
∥

∥

2
=

∥

∥

∥

∥

(φ′(x(•))− φ′(x†(•)))

∫ 1

•

w(t) dt

∥

∥

∥

∥

0

≤ c
∥

∥x− x†
∥

∥

β

0
‖w‖L2

for all x ∈ X0 with
∥

∥x− x†
∥

∥

0
≤ ε. The constantc depends onx† andε. Thus,

∥

∥(F ′(x)− F ′(x†))h
∥

∥

L2 = sup
‖w‖L2=1

〈

(F ′(x)− F ′(x†))h,w
〉

L2

= sup
‖w‖L2=1

〈

h, (F ′(x)− F ′(x†))∗w
〉

0

≤ sup
‖w‖L2=1

‖h‖−2

∥

∥(F ′(x)− F ′(x†))∗w
∥

∥

2
.
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Hence,

∥

∥(F ′(x)− F ′(x†))h
∥

∥

L2 ≤ c ‖h‖−2

∥

∥x− x†
∥

∥

β

0
.

This shows that the conditions (A2), (N1), (N3)–(N5) hold with a = 2 andr = 0. If we
assume thatx† satisfies (N2) (for somes > 0), then Theorem3.2 is applicable.

EXAMPLE 3.5. In the second example,F : L2[0, 1] → L2[0, 1] is a linear Fredholm
integral operator, defined as

(Fx)(t) =

∫ 1

0

k(s, t)x(s)ds

with kernel

k(s, t) :=

{

s(1− t) s < t ,
t(1− s) t ≤ s .

The operatorF = F ∗ is compact and

Fx = y ⇐⇒ y ∈ H2[0, 1] ∩H1
0 [0, 1] and y′′ = −x a.e.

If we setX = X0 = L2[0, 1], then the operatorL defined via

L2x := −x′′ on D(L2) = H2[0, 1] ∩H1
0 [0, 1]

induces a Hilbert scale such that

X2 = R(F ∗) and ‖F ∗w‖2 = ‖w‖L2 .

If we assume that the unique solutionx† = F †y exists and is an element ofMρ (for
somes>0), then the conditions (L1)–(L3) are satisfied. Hence, Theorem3.3 is applicable.

4. Finite dimensional approximation and numerical results. For numerical calcula-
tions, one has to approximate the infinite-dimensional spaces and the operatorF as, e.g.,
in [10, Section 3]. In this section, we restrict ourselves to the case of linear compact opera-
torsF . For our convergence rates analysis we assume that the conditions (L1)–(L3) hold.

The spacesXs and Y are approximated by finite-dimensional subspaces{Xm}m∈N

and {Ym}m∈N. We assume thatYm ⊂ R(F ). This guarantees thatQmy = QmQy,
whereQm is the orthogonal projector ofY onto Ym andQ is (as above) the orthogonal
projector ofY ontoR(F ).

We then look for the unique minimum norm quasi-solutionxm,δ
ρ ∈ Xm of the problem

inf
x∈Mm

ρ

∥

∥QmFx−Qmy
δ
∥

∥ , Mm
ρ := {x ∈ Xm : ‖x‖s ≤ ρ}

or, equivalently,

(4.1) inf
x∈Mρ

∥

∥QmFPmx−Qmy
δ
∥

∥ , Mρ := {x ∈ Xs : ‖x‖s ≤ ρ} ,

wherePm is the orthogonal projector ofXs ontoXm.
Since we want to prove convergence (rates) asδ → 0 andm → ∞, we have to assume

that‖(I − Pm)x‖ → 0 for all x ∈ Xs and‖(I −Qm)y‖ → 0 for all y ∈ R(F ). This is,
for instance, guaranteed ifXm ⊂ Xm+1 and

⋃

m∈N
Xm is dense inXs and ifYm ⊂ Ym+1

and
⋃

m∈N
Ym is dense inR(F ).
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SettingFm := QmFPm, we obtain according to the results above thatxm,δ
ρ = F †

my
δ

if
∥

∥F †
my

δ
∥

∥

s
≤ ρ and thatxm,δ

ρ = (F#
mFm+αI)−1F#

my
δ with α > 0 such that

∥

∥xm,δ
ρ

∥

∥

s
= ρ

if
∥

∥F †
my

δ
∥

∥

s
> ρ.

The estimates
∥

∥Fxm,δ
ρ −Qy

∥

∥ ≤
∥

∥Fxm,δ
ρ − Fmx

m,δ
ρ

∥

∥+
∥

∥Fmx
m,δ
ρ −Qmy

δ
∥

∥+
∥

∥Qmy
δ −Qy

∥

∥

≤
∥

∥Fxm,δ
ρ − Fmx

m,δ
ρ

∥

∥+
∥

∥Fmx
† −Qmy

δ
∥

∥+
∥

∥Qmy
δ −Qy

∥

∥ ,
∥

∥Qmy
δ −Qy

∥

∥ ≤
∥

∥Qm(y − yδ)
∥

∥+
∥

∥(I −Qm)Fx†
∥

∥ ,

‖F − Fm‖Xs,Y
≤ ‖QmF (I − Pm)‖Xs,Y

+ ‖(I −Qm)F‖Xs,Y

imply that
∥

∥Fxm,δ
ρ −Qy

∥

∥ ≤ 2ρ ‖QmF (I − Pm)‖Xs,Y
+ 4ρ ‖(I −Qm)F‖Xs,Y

+ 2
∥

∥Qm(y − yδ)
∥

∥ .

Thus, we obtain the following convergence rates result (compare the proof of Theorem3.2).
THEOREM 4.1. Let conditions(L1)–(L3) hold. Moreover, letF be compact and let the

data yδ be such that
∥

∥Qm(y − yδ)
∥

∥ ≤ δ. Then we obtain the following estimate for the
minimum norm quasi-solutionsxm,δ

ρ

∥

∥xm,δ
ρ − x†

∥

∥

t
= O

(

(γm + δ)
s−t
a+s

)

for any−a ≤ t < s, where

γm := ‖QmF (I − Pm)‖Xs,Y
+ ‖(I −Qm)F‖Xs,Y

.

Note that the compactness ofF implies thatγm → 0 asm → ∞. There are two in-
teresting special cases: in the first oneXm := F#Ym. ThenQmF (I − Pm) = 0 (see,
e.g., [1, (3.49)]), and henceγm = ‖(I −Qm)F‖Xs,Y

. In the second case, we assume

thatYm = R(F ). ThenQm = Q, (I −Qm)F = 0, andγm = ‖F (I − Pm)‖Xs,Y
.

As already mentioned above, the correct value ofα so that
∥

∥xm,δ
ρ

∥

∥

s
= ρ may be com-

puted approximately via Newton’s method. Assuming that

Ym = span{ψ1, . . . , ψd(m)} ,

whered(m) is the dimension ofYm, for the first special case Algorithm2.6turns into

ALGORITHM 4.2.
(i) CalculateM :=

[〈

F#ψi, F
#ψj

〉

s

]

, H := [〈ψi, ψj 〉], y :=
[〈

yδ, ψj

〉]

. More-
over, choose an initial valueα > 0, small numbersε1, ε2 > 0, andq ∈ (0, 1).

(ii) Solve the equations(M + αH)x = y and(M + αH)z = Hx.

(iii) Calculatedα :=
ρ2 − xTMx

2xTMz
.

(iv) If |dα| < ε1α or α < ε2 , then stop;

else: setα :=

{

α− dα , if dα < α− ε2 ,
q α , otherwise.

(v) Goto (ii).

Using the output vectorx of this algorithm, the minimum norm quasi-solution is given
by

xm,δ
ρ =

d(m)
∑

i=1

xiF
#ψi .
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TABLE 4.1
Results of Example4.3.

m δ err2 err2 ∗m err3 err3 ∗m err1.5
4 1.85 ∗ 10−2 0.18444 0.74 0.18953 0.76 0.18116

8 4.62 ∗ 10−3 0.04620 0.37 0.07134 0.57 0.03887

16 1.16 ∗ 10−3 0.02460 0.39 0.03581 0.57 0.03127

32 2.89 ∗ 10−4 0.01370 0.44 0.01772 0.57 0.03124

64 7.23 ∗ 10−5 0.00436 0.28 0.00797 0.51 0.03124

128 1.81 ∗ 10−5 0.00184 0.24 0.00354 0.45 0.03124

256 4.52 ∗ 10−6 0.00067 0.17 0.00166 0.42 0.03124

512 1.13 ∗ 10−6 0.00028 0.14 0.00067 0.34 0.03124

We apply this algorithm to the operatorF of Example3.5.
EXAMPLE 4.3. LetF and the Hilbert scale be defined as in Example3.5. In addition,

we assume thatx† ∈ X2 with
∥

∥x†
∥

∥

2
=

∥

∥(x†)′′
∥

∥

L2 ≤ ρ, i.e.,s = 2. As finite-dimensional
spacesYm, we choose linear splines with equidistant knots of mesh size h = 1/m,
i.e.,d(m) = m+ 1. As basis functionsψi we use the usual hat functions.

The spacesXm are chosen asF#Ym. Noting thatF# = L−2sF ∗, that s = 2, and
thatF = F ∗ = L−2, we obtainF# = L−6 = F 3 and that

〈

F#ψi, F
#ψj

〉

s
=

〈

F 2ψi, F
2ψj

〉

L2 .

The operatorF 2 is again an integral operator with kernel

k2(s, t) =
1

6

{

s(1− t)(2t− t2 − s2) s < t ,
t(1− s)(2s− s2 − t2) t ≤ s .

For the right-hand sidey(t) = (t − 2t3 + t4)/12, the exact solution ofFx = y is given
by x†(s) = s − s2. Obviously,x† ∈ X2 with

∥

∥x†
∥

∥

2
= 2. Since for this example we

find γm = O(m−2), Theorem4.1yields the convergence rate

(4.2)
∥

∥xm,δ
ρ − x†

∥

∥

L2
= O

(

(m−2 + δ)
1
2

)

.

Herexm,δ
ρ are the minimum norm quasi-solutions (cf. (4.1)) for s = 2. (Note thatXm is not

only a subspace ofXs = X2 but also a subspace ofXa+2s = X6 .)
Sincex† ∈ Xu for all u < 5/2, the best possible rate with respect toδ that is obtain-

able by Tikhonov regularization combined with an a-posteriori parameter choice isO
(

δ
5
9

)

(see [1]) if δ is known. Thus, the rate in (4.2) is not optimal. However, we do not need the
knowledge ofδ !

Finally, we present some numerical results: we have calculated the solutions with Al-
gorithm 4.2 (ε1 = 10−6, ε2 = 10−16, q = 0.1) for m = 4, 8, 16, 32, 64, 128, 256, 512.
Uniformly distributed noise was added to the data with the noise level chosen such that
δm ∼ m−2 andδ4 was equal to10% of ‖y‖. For eachm, 100 different perturbations were
chosen and the worstL2-case was selected: errρ = sup

∥

∥xm,δ
ρ − x†

∥

∥

L2
.

The results forρ = 2, 3, 1.5 can be found in Table4.1: as expected, the error does not go
to 0 in theX2-norm forρ = 3 andρ = 1.5, however, it does forρ = 2; note that

∥

∥x†
∥

∥

2
= 2.

The solutions converge inL2 for ρ = 2 andρ = 3. Again, as expected, the results are better
for the caseρ = 2. Of course, no convergence is obtained forρ = 1.5 sincex† /∈Mρ. In this
caseα does not go to0 asm goes to∞.
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