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ON CONVERGENCE RATES FOR QUASI-SOLUTIONS OF
ILL-POSED PROBLEMS *

ANDREAS NEUBAUER'AND RONNY RAMLAU *

Abstract. Usually, one needs information about the noise level to fiop@r regularized solutions when solving
ill-posed problems. However, for several inverse probletis riot easy to obtain an accurate estimation of the noise
level. If one has information about bounds of the solutiondme stronger norm, quasi-solutions are an excellent
alternative. Besides existence, stability, and convargessults, it is the major emphasis of this paper to prove
convergence rates for quasi-solutions in Hilbert scales.
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1. Introduction. We consider (nonlinear) ill-posed problems
(1.1) F(z) =y,

whereF : D(F) ¢ X — Y is a linear or nonlinear bounded operator between Hilbert
spaces. Herej, are the exact data, and we assume that there exists a beskiapgte solution

of (1.1). In practice, however, only noisy datd are available, wheré denotes the noise
level, i.e.||y — y°|| <.

Due to the ill-posedness, one has to use regularizationadstio obtain stable approx-
imations of a solution of equatior (I). Almost all regularization methods have in common
that they depend on a so-called regularization parameterominent example is Tikhonov
regularization, where an approximation to a solution isoted as a minimizer of the func-
tional

HF(m)—y‘SH2+aR(:c), a>0.

Here, R(x) denotes the chosen penalty term, and the regularization parameter. Popu-
lar choices for penalty terms can be found, e.g.,llp Wwhere X andY are Hilbert spaces
andR(z) = ||z — .||, orin [12, 13], where a general Banach space setting is considered.
In iterative regularization methods (see, e.5,,13]), the iteration index plays the role of the
regularization parameter.

All convergence and especially convergence rates resultefjularized solutions show
that the choice of this parameter depends on the knowledgettdwever, for several exam-
ples in practice, it is not at all trivial to get precise esttes of the noise level.

In such cases, one often uses so-called heuristic parantete rules. Unfortunately,
it was shown by Bakushinskii (see, e.d., Theorem 3.3]) that such methods can never yield
convergence if one is interested in worst case error eggndh contrast, these parameter
choice rules often display good results in practice. Theards that measured data are
usually not always as bad as in the worst case situation. Lsuahee restrictions on the noise,
one can even prove convergence rates; see, €,41]

For some problems one has additional a priori informaticouéthe solution, e.g., that it
lies in a smoother space and that an upper bound on the nohisisgace is known. It turns
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out that this knowledge can be used instead of the knowletigecprove convergence and
in some cases even rates for so called quasi-solutions.

The concept of quasi-solutions was developed by Ivanov [(3e§ and also [L4]) for
injective completely continuous operatdrs They are solutions of the problem

anf [F@) =]

whereM is a compact subset @(F'). We will generalize this setting to non-compact and
non-injective operatorg’ and allow weakly compact seld .

In the next section, we deal with existence, stability, amavergence of quasi-solutions.
In Section3, we derive convergence rates in Hilbert scales. An anabfsismerical approx-
imations for linear problems as well as a fast algorithm amch@rical results are presented
in the last section.

2. Convergence of quasi-solutionsAs mentioned in the introduction, we assume that
equation {.1) has a least squares solution in a smoother spaceXsay X and that a
norm boundp in X is known. We therefore approximate solutions bflj by the following
guasi-solutions, namely solutions of the problem
1)  inf |[F(z)—4°|, M,={zeDF)NX,:|z—az,<p}.

Here, ||-||, obviously denotes the norm iN,, andp > 0. The element:, € D(F) N X,
is either an initial guess for a solution or, in case of midtipolutions, it plays the role of a
selection criterion (seél] Chapter 10]). IfF' is a linear operator, usually, = 0.

For the following existence and convergence proofs, weire@everal conditions but
not all of them are needed for every result. Neverthelesstate all conditions that may be
needed at once:

(A1) X, C X andY are Hilbert spaces.

(A2) D:=DF)NnX;andF : D C X, — Y is weakly (sequentially) closed, i.e.,
if (x) is a sequence i® such thatr, — xin Xy andF(x;) — yinY, thenz € D
andF(z) = y.

(A3) The equatiorF'(x) = y° has a least squares solutionlify, C D, i.e., € M, exists
with || F(z) — y‘SH = ;2% | F(z) — y‘sH.

(A4) Dis convex and: — || F(z) — y°|| is convex inD.

REMARK 2.1. Let us shortly discuss the meaning of the conditions/@bdirst of
all, (A2) and @4) trivially hold if FF € L(X,,Y), i.e., if F' is a linear bounded operator
from X, — Y.

Note that, in general, for noisy dag4, least squares solutions do not exist and, therefore,
condition A3) will not hold in this case. However, we will assume thaB] holds for exact
data ¢ = 0). Due to the weak lower semi-continuity of the normsXp andY’, it is an
immediate consequence &X) and A2) that then also am,.-minimum norm least squares
solution, also called best-approximate solution, existd/i,. These solutions are denoted
by zt, i.e.,

|" — .||, = min{||Z — 2., : T is a least squares solution B{z) = y} .

For nonlinear operatorg, z is not necessarily unique. However, if conditioh) holds
for § = 0, thenz' will be unique.

Of course, as for least squares solutions, one can alwayssehguasi-solutions that
minimize ||, — x. || among all possible quasi-solutions, calledminimum norm quasi-
solutions.
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PROPOSITION2.2. Let the conditiongAl) and (A2) be satisfied. Then the following

assertions hold:
(i) Problem(2.1) has a solution:’.
(ii) If (A3) holds, then a least squares solution also solves prol{zi). Moreover,
an z,.-minimum norm least squares solutions sq€).

(iii) If (A3) does not hold butA4) holds, thenr? is unique with||z5 — .|| = p.

Proof. Assertion (i) follows immediately fromA1), (A2), and the weak lower semi-
continuity of the norms. Assertion (ii) is obvious.

Let us now assume thaf{) holds and that equatior (1) has no least squares solution
in M,,. Then there exists an element D\ M, such that

(2.2) |F@) - || < ||[F(5) —v°|| -

Let us assume thalz) — z.|| < p, thenxz(t) = tT + (1 — t)z € M, for somet > 0
and @.2) implies that

1F@®) =yl < t|F@) =yl + 0 =) [[F(5) =9’ || < [|F(5) = o]

in contradiction taz$ minimizing the residual oved/,. The uniqueness of?, follows from
the fact that, if there were two quasi-solutions, then anywes combination would be also a
quasi-solution but with a distance 1q less tharp. This proves assertion (iii). O

Assertion (iii) above means that, i8) does not hold, thenA4) guarantees that quasi-
solutions are at the boundary of the 3¢;.

Next, we are interested in stability and convergence ofiggalstions.

PROPOSITION2.3. Let conditiongAl) and(A2) be satisfied and let, — 0 ask — oc.
Then the following assertions hold:

(i) The sequenceik has a weakly convergent subsequence. The limit of everylyweak

convergent subsequence is a quasi-solution. If, in addilzi@ is unique, then

Sk .0
IEp .’Ep.

(ii) If 20 is unique with||z) — z.

= p, then we obtain strong convergence, i.e.,

S

Ok

Zp

0
*)(ﬂp.

Proof. Obviously,||z5s — .|| < p, and||F(z5) — y°¢|| is bounded. ThereforeA()

and A2) imply that a subsequence (again denoted:m and an element € M, exist such
that

=7 and  F(2)f) = F(T).
The weak lower semi-continuity of the norms now yields that
1F(@) = yll < liminf || F(zpe) —y™ || < lim |[F) —y™ || = [|F(z) -yl
00 k—o0

forall z € M,. Thus,T is a quasi-solution. vag is unique, then the weak convergence of

xik follows from a standard subsequence argument with the samte |
If the conditions of (ii) hold, then

o=~ z.ll, < tmint s — .|, < limsup a2 ., <.
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Thus,

Jim |2 — . = p.
Now weak convergence and convergence of the norms implggtonvergence. 0O

Therefore, in general, stability and convergence can orlygbaranteed in the weak
topology. However, note that X, is compactly embedded i, then we get at least conver-
gence in the norm-topology of.

If F(z) = y has a best-approximate solutiaf that is not an element af/, and if
condition A4) holds foro = 0, then Propositior2.2 (iii) and Propositior2.3 (i) imply that
the quasi-solutions:f) converge strongly towards the unique quasi-solubi@n;é zf. This
means it is allowed to overestimate the boyndf the best-approximate solution but not to
underestimate it.

REMARK 2.4. Itis obvious from the proofs that the results of Propass 2.2 and2.3
remain valid if X, andY are reflexive Banach spaces. For the proof of assertionn(ii) i
Proposition2.3 one needs in addition th&, has the Radon-Riesz property, i.e.zjf — «
and||zy||, — ||z[,, thenz; — x in X,. This condition is valid in every Hilbert space, but
also in some Banach spaces, e.g., in the Sobolev spEé&snith 1 < p < oc.

We also want to mention that there are cross-connectionsasfi¢golutions and Tikhonov
regularized solutions: in2], it was shown that the concept of quasi-solutions can be use
to analyze the modulus of continuity to derive error bounaisrégularized solutions. In
case QA4) holds, one can characterize quasi-solutions as minisiiiest Tikhonov functional
with a special regularization parameter (for compact lirggeerators this was already shown
in [14]).

PrROPOSITION2.5. Let the conditiongAl), (A2), and(A4) hold. If (A3) does not hold,
thenz? is the unique minimizery, of the Tikhonov functional

IF@) —°||" + allz — .|

overD, where the regularization parameter> 0 is chosen such that

Proof. Propositior2.2 already implies th%g exists and is either a least squares solution
of F(x) = y° in M, or itis unique with||z), — z. || = p.

It follows from the Karush-Kuhn-Tucker theory (note thaetBlater condition holds,
sincez. € M,) that the solutions:, are characterized as follows: there exists:aa R such
thatz$ minimizes

c 2 2
1P@) ="+ (e = 2.2 - p?)
overD and

2
o ([laf — . - p?) =0.

If (A3) does not hold, then > 0 andz’) is as stated. O
If F e L(X,,Y)andz, =0, then it is well-known that

2), = (F*F +al) ' F#y°
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where F# : Y — X, denotes the adjoint of. (We use the notatio®# instead of F**
since the latter symbol is used as the adjoint between tgeaftispaces, i.e£™ : Y — X.)
Assuming thatA3) does not hold, the problem of calculatingsuch that

(2.3) lzall, =~
can be solved approximately via Newton's method. Let

o A
s =1l = [ g almes

Here{F\} denotes the spectral family ¢fF'#. Since
A 2
"(a) = —2(a, (F*F 4+ al)~'a® :-2/7 F\Qy°
f(a) <:L‘a,< +a) xa>s o (a+)\)3dH /\Qy H <0,
" - A 512
=6 B’ > o

Newton’s method

flow) = p?
f'(eu)

is globally convergent and locally quadratically convergé o« > 0 exists such that(3)
holds and ifog < .

Noting thatf is a monotonically decreasing function with

Q41 = QO —

lim f(a) =0,
a—00

| _ LIl ity € DIE),
Qi f(e) = { 00 ~ otherwise

it is obvious that 2.3) will never have a solution iff Ffy°|| < p. However, in that cases)
is a least squares solution afdy° is the unique minimum norm quasi-solution.

The following modified algorithm will always converge towlarthe unique minimum
norm quasi-solution which is always an element\ofF) .

ALGORITHM 2.6.

(i) Choosex >0, ¢q € (0,1).

(i) Solve the equation§F#F + al)xd = F#y® and(F#F 4 o)z = 29

ar

2 5112
p* = |25 |
Icul =5,
(i) Calculateda 2 (a0, 20 ).
(v) Seta:= Zéa_ . gtﬁgrjvisae’
(v) Goto (ii).

Thus, if||[FTy°|| . < p, then the sequence, obtained by this algorithm will monotoni-
cally decrease towards Otherwise, it will converge from below towards the solato > 0
of equation 2.3). In practice, the algorithm will be stopped whenever tHatiee error of
two consecutiver values is below a certain bound.
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3. Convergence rates.As already mentioned in the last section, usually we can not
expect strong convergence of quasi-solutionXinif § goes to0, but only in the spac&’
if X, is compactly embedded if. If X and X are part of a Hilbert scale, then we can even
prove convergence rates k.

Let L be a densely defined unbounded selfadjoint strictly pasityperator inX.
Then(X;)ser denotes the Hilbert scale induced byf X is the completion of ;- , D(L*)
with respect to the Hilbert space notfa||, := || L®z| . Obviously|z|, = ||z| y; see []
or [1, Section 8.4] for details.

The conditions needed to prove convergence rates aredtifféor linear and nonlinear
operators. We first consider the nonlinear case:

(N1) X = X, and X,, s > 0, are part of a Hilbert scale, and is a Hilbert space.
Moreover, X, is compactly embedded intd; whenever < s.

(N2) F(z) = y has a unique solution’ € M,, i.e., F(z') = y. (Thus, for nonlinear
problems we restrict ourselves to the attainable case.)

(N3) F: D(=D(F)N X,) — Y is Frechet-differentiable ik ;.

(N4) [|[F'(z")z|| = m||z||_, forall z € X, somea > 0 andm > 0.

(N5) There exist > 0, r € [—a,s), B € (0,1], ande > 0 such thatM, N BZ(x")
is convex and|(F'(z) — F'(z1))(z — 21)|| < ¢||F'(27)(z — 21)|| ||z — xT||f for
allz € M, N Br(z1), whereB? (z1) := {z € X, : ||z — x‘LHT <e}

REMARK 3.1. The Fechet-differentiability ofF" in (N3) has to be understood in the
following sense:F' may be extended fror® to an open subséf > D, and this extension is
Frechet-differentiable.

Usually, for the analysis of regularization methods in lditscales, a stronger condition
than (N4) is used, namely (see, e.@3, P])

|F' ()| ~ |l _, forall zeX.

Condition (N5) means that the smoothing propertyfof(x) is similar to that ofF’ (x")
in a neighbourhood off. Such conditions are common for proving convergence rates f
nonlinear regularization in Hilbert scales and for iteratiegularization methods; se® pJ.

To prove convergence rates, we need the so-called int¢igoiaequality that holds in
Hilbert scales (see, e.gl,[Proposition 8.19)), i.e., for some> 0

st att
(3.1) lzll, <cllz||®t lz)let, —a<t<s, zeX;.

THEOREM3.2. Let(A2) and conditiongN1)—(N5) hold. Then
=5 = o'll, = 0 (6%)

forany—a <t < s.

Proof. First of all note that, due to Propositi@n2, x, exists for ally’ € Y andz = «T
is unique due toN2). Thus, Propositio2.3and (1) imply thatz) — =" in X, for ¢ < s.
Therefore, we may assume thiats sufficiently small so thafjz$ — z'|| < ¢ and that we
may apply {5).

Now we prove rates:N2) and ||y — 3°|| < & imply that

6n  |d-al, <.
(3.3) HF(mi) - yH <é+ HF(mi) - y‘SH < 0+ HF(CET) — ySH < 26.
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Using (N2), (N3), and (\5), we obtain that

17/ @) (2, = D] < [|F(x5) = vl

G b [+ e — ) - P g - o) de

c
< |F@p) = ol + g7 1" @D, =D [l = =]

B

-

Sincexf) — 2 in X,., we may as well assume thats so small that

1
BH1\*
o ==l < (557)

This together with §.4) implies that

17/ @) (5, = 2| < 2[F () —wl] -

Now, (N4), (3.2), (3.2), and @.3) yield the assertion. O

For the special case = 0, we obtain the convergence raﬂb(dT) If zf € X,
with u > s, then one could even obtain a better rate with Tikhonov @airation in Hilbert
scales provided thdtis known. However, if the guess efis the best possible, i.e:] ¢ X,
for u > s, then the quasi-solutions converge order optimal withbetknowledge of.

Let us now consider the linear case: an inspection of theffabove shows that the
conditions N1)—(N5) may be relaxed for linear operataFs First of all, we do not need the
compact embedding condition dfi{) since (\5) is trivially satisfied withc = 0. Moreover,
we may restrict ourselves to the unique minimum norm qualsiti®ns (see the end of the
section above) and note that

2 2 2
1Pz = ||” = [[Fe =y’ | + |7 - @)y’["
whereQ is the orthogonal projector af ontoR(F). Thus, a quasi-solution fgy° is also a
quasi-solution foiQy°. Therefore, the proof above remains valid if we replatdy Qy°,
meaning that there is no need to restrict ourselves to thaatile case for linear problems.
These arguments show that for linear operators we need lthesifog conditions:
(L1) X = Xy andXg, s > 0, are part of a Hilbert scale, and is a Hilbert space.
(L2) F € L(X,,Y) andz! = Fty € M,.
(L3) [[Fz|| = m|z|_, forallz € X, somea > 0 andm > 0.
Then we obtain the following result:
THEOREM 3.3. Let the conditiongL1)—(L3) hold and Ietri be minimum norm quasi-
solutions. Then

5= o, = 0 (55)

forany—a <t < s.

If |||, = p, then it follows as in Propositiof.3 (i) that the minimum norm quasi-
solutions will converge strongly towards in X,. Thus,O(-) in Theoren3.3may then even
be replaced by(+).



ETNA
Kent State University
http://etna.math.kent.edu

88 A. NEUBAUER AND R. RAMLAU

We now present two applications of the previous theoremenéinear and a linear one.
ExaMPLE 3.4. In the first example[" is a nonlinear Hammerstein integral operator,
defined as

F:HY0,1] — L*[0,1]
1‘+—>/0 o(x(s))ds.

We assume that is in C*#(I) for all intervals/ c R and some3 € (0,1]. Then one can
show (see]0, Section 4] for details) thak' is weakly closed and Echet-differentiable with

(F(2)h) () = / &' ((3))h(s) ds,
Bfl

(') ) = 57 o at) | ) K

where
B:D(B):={y € H*[0,1] : ¢'(0) = ¢'(1) = 0} — L?[0,1]
VY= By = =" +

note thatB 1! is the adjoint of the embedding operator frdir [0, 1] in L]0, 1].
Let us assume thdt(z') = y with |¢'(2(s))| > v > 0forall s € [0, 1]. Then

R(F'(a")*) = { € H*[0,1] = ¥/(0) = ¢'(1) = 0,9(1) = ¢"(1)}.

If we setX = X, = H'[0,1] (with the usual normjz||, := (||z]|3. + |||/ 72)7), then the
operatorL defined via

D(LY) = {¢ € H°[0,1] : 9'(0) = 9'(1) = 4" (0) = 0,9(1) = 9" (1)},
LY =y — 2" + ),
induces a Hilbert scale such that
Xo =R(F'(z)") and ||F'(al) w||, = ||BF (2F)"w], ~ Jwl] .
Due to [, Corollary 8.22] (comparelD, Remark 2.2]), this is equivalent to
|F'(zNz|| ~ |z,  forall zeX.

Moreover,

[(F" () = F' (")) wl]|, = H(¢’(w(°)) - ¢’($T(°)))/ w(t) dt

0
< el —a'lg
for all 2 € X, with || — 2|, < e. The constant depends on:" ande. Thus,
|(F'(z) = F'(z" )| . = L ((F'(z) = F'(z")h,w) ,
wl| 2=

= sup (h,(F'(z) - F'(a")"w),

llwllp2=1

< sup bl ||(F'(z) — F'(z))*w]],.

llwllp2=1
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Hence,
1(F' () = P o < clImll_ [l — 272

This shows that the condition&2), (N1), (N3)-(N5) hold witha = 2 andr = 0. If we
assume that! satisfies KI2) (for somes > 0), then Theoren3.2is applicable.

ExAaMPLE 3.5. In the second examplé; : L?[0,1] — L?[0,1] is a linear Fredholm
integral operator, defined as

(Fa)(t) = /0 k(s, )2 (s)ds
with kernel

[ s(1—1) s<t,
k(s,t) '_{ t1—s) t<s.

The operato” = F'* is compact and
Fz=y = y e H?[0,1] N H}0,1] and ¢y’ = —2 ae.
If we setX = X, = L?|0, 1], then the operatok defined via
Lz := —2" on D(L?) = H?0,1]N H}[0,1]
induces a Hilbert scale such that
Xo=R(F) and [[Frwl, = [|w] ..

If we assume that the unique solutiai = FTfy exists and is an element afl, (for
somes >0), then the conditiond(1)—(L3) are satisfied. Hence, Theoréh8is applicable.

4. Finite dimensional approximation and numerical results For numerical calcula-
tions, one has to approximate the infinite-dimensional epamnd the operatdr as, e.g.,
in [10, Section 3]. In this section, we restrict ourselves to theeaaf linear compact opera-
tors F'. For our convergence rates analysis we assume that thetiomisdi1)—(L3) hold.

The spacesX; andY are approximated by finite-dimensional subspaf&s,},en
and {Y,, }men. We assume that,, C R(F). This guarantees thad,,y = Q..Qy,
where Q,, is the orthogonal projector df” onto Y, and Q@ is (as above) the orthogonal
projector ofY ontoR(F").

We then look for the unique minimum norm quasi—solutiqj*r‘5 € X,, of the problem

. ) mo,__ .
L [QnFz = Quy | M= {o € Xt 2], < 0}
or, equivalently,
(4.1) Jnf |[|QuE Pz Qmy’|| . M,:={zeX,: ||, <p},

whereP,, is the orthogonal projector of s onto X,,,.

Since we want to prove convergence (rates) as 0 andm — oo, we have to assume
that|(I — P,)z|| — Oforallz € X, and||(I — Qn)y|| — 0forally € R(F). This is,
for instance, guaranteed X,, C X,,,1 and{J X, isdense inXg and if Y,,, C Y11

and{J,,cy Yon is dense iR (F).

meN
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Setting F,,, := Q. F' P, We obtain according to the results above that’ = Ff y°
if | Fy° ||, < pandthate = (FZF,, +al)~ ' Fjiy® with a > 0 such thaf|z°|| = p
i Ffy] > o

The estimates

[Pz = Qull < | Fap® = B || + [|Fnal® = Quy’ || + [|Qmy” — Qv

< |[[Fap® = Fnap || + [ Fna’ = Quy’ || + [|Qmy” — Qul|
1Qmy” — Qul < |@m(y — v*)|| + (I = Qu)Fal|
HF - F7n| XY < ||QmF(I - Pm)‘ XY + ”(I - QWL)F”XSX

imply that

[Fap® = Qyl| < 20 |1QmF(I = Pu)llx, y + 4011 = Qu)Fllx, y +2(|Qm(y =) -

Thus, we obtain the following convergence rates result (zamethe proof of Theored.2).

THEOREM4.1. Let conditiongL1)—(L3) hold. Moreover, lett" be compact and let the
datay’ be such that|Q,.(y — y°)|| < . Then we obtain the following estimate for the
minimum norm quasi-solutiong;"

e =], = © (G +0)7)
forany—a <t < s, where

Ym = Q@ F (I — PM)HXS,Y + I - Qm)FHXS,Y :

Note that the compactness bfimplies thaty,, — 0 asm — oo. There are two in-
teresting special cases: in the first oig, := F#Y,,. ThenQ,,F(I — P,,) = 0 (see,
e.g., [L, (3.49)]), and hencey,, = ||(I — Qm)FHwa. In the second case, we assume

thaty,,, = R(F). ThenQ,, = Q, (I — Qm)F =0, andy,, = [|[F'(I — Pn)] x, y-
As already mentioned above, the correct value sb that||z}°|| = p may be com-

puted approximately via Newton’s method. Assuming that

Y, = Span{wlv e vwd(m)} y
whered(m) is the dimension oY, for the first special case Algorithéh6turns into

ALGORITHM 4.2.
() CalculateM := [( F#uy, F#4;) |, H := [(vi,¢5)], 5 = [(¥°,¢;)]. More-
over, choose an initial value > 0, small numbers;, e, > 0, andg € (0,1).
(i) Solve the equationtM + aH)z =y and(M + aH)z = HzZ.
0> — 7'Mz
22T Mz
(iv) If |da| <eja or a < ey, then stop;
a—da, fda<a-—e,
qo, otherwise

(iii) Calculateda :=

else: sety :=
(v) Goto (ii).

Using the output vectaf of this algorithm, the minimum norm quasi-solution is given
by

d(m)
mT’é = Z fiF#¢i .
=1
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TABLE 4.1
Results of Examplé.3.
m ) err, err *m err ers«m || erns

4| 1.85% 1072 || 0.18444 0.74 0.18953 0.76 0.18116

8 | 4.62 %1073 || 0.04620 0.37 0.07134 0.57 0.03887
16 | 1.16 x 10~3 || 0.02460 0.39 0.03581 0.57 0.03127
32 | 2.89 % 10~ || 0.01370 0.44 0.01772 0.57 0.03124
64 | 7.23 107" || 0.00436 0.28 0.00797 0.51 0.03124
128 | 1.81% 1075 || 0.00184 0.24 0.00354 0.45 0.03124
256 | 4.52 x 107° || 0.00067 0.17 0.00166 0.42 0.03124
512 | 1.13 1075 || 0.00028 0.14 0.00067 0.34 0.03124

We apply this algorithm to the operatérof Example3.5.

ExXAMPLE 4.3. LetF and the Hilbert scale be defined as in Exantple In addition,
we assume that" € X, with ||27[|, = ||(z)”||,, < p, i.e.,s = 2. As finite-dimensional
spacesY,,, we choose linear splines with equidistant knots of mesle &iz= 1/m,
i.e.,d(m) =m + 1. As basis functiong); we use the usual hat functions.

The spacesY,, are chosen ag#Y,,. Noting thatF'# = L=25F*, thats = 2, and
that F = ['* = L2, we obtainf'# = L~% = F? and that

(F#gs, F#; ) = (FP0i, F2;) o
The operato2 is again an integral operator with kernel

1{3(1—t)(2t—t2—s2) s<t,

kQ(S’t):é t(1 —s)(2s — 82 — t2) t<s.

For the right-hand side(t) = (¢ — 2t3 + t*)/12, the exact solution of'z = y is given
by 2T(s) = s — s>. Obviously,z" € X, with ||z'||, = 2. Since for this example we
find ,,, = O(m~2), Theorem4.1yields the convergence rate

m - B
(4.2) ot =&t . =0 ((m=2 +9)) .
Herexg“s are the minimum norm quasi-solutions (¢f.1)) for s = 2. (Note thatX,, is not

only a subspace of; = X, but also a subspace &f,. s = X5 .)
Sincez! € X, for all u < 5/2, the best possible rate with respectstthat is obtain-

able by Tikhonov regularization combined with an a-postéparameter choice i© (45

(see []) if § is known. Thus, the rate imt(2) is not optimal. However, we do not need the
knowledge o !

Finally, we present some numerical results: we have cakdlthe solutions with Al-
gorithm 4.2 (¢, = 107%,e, = 1076, ¢ = 0.1) for m = 4,8, 16,32, 64,128,256, 512.
Uniformly distributed noise was added to the data with thesedevel chosen such that
§m ~ m~2 andd, was equal ta 0% of ||y||. For eachm, 100 different perturbations were
chosen and the worgf’-case was selected: gre sup |27 — 2| ,.

The results fop = 2, 3, 1.5 can be found in Tablé.1: as expected, the error does not go
to 0 in the X,-norm forp = 3 andp = 1.5, however, it does fop = 2; note that|1||, = 2.
The solutions converge ih? for p = 2 andp = 3. Again, as expected, the results are better
for the case = 2. Of course, no convergence is obtainedfet 1.5 sincez’ ¢ M,. In this
casex does not go td asm goes toso.
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