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THE BLOCK PRECONDITIONED STEEPEST DESCENT ITERATION FOR
ELLIPTIC OPERATOR EIGENVALUE PROBLEMS*

KLAUS NEYMEYR' AND MING ZHOU'

Abstract. The block preconditioned steepest descent iteration is an iterative eigensolver for subspace eigenvalue
and eigenvector computations. An important area of application of the method is the approximate solution of mesh
eigenproblems for self-adjoint elliptic partial differential operators. The subspace iteration allows to compute some
of the smallest eigenvalues together with the associated invariant subspaces simultaneously. The building blocks of
the iteration are the computation of the preconditioned residual subspace for the current iteration subspace and the
application of the Rayleigh-Ritz method in order to extract an improved subspace iterate.

The convergence analysis of this iteration provides new sharp estimates for the Ritz values. It is based on
the analysis of the vectorial preconditioned steepest descent iteration which appeared in [SIAM J. Numer. Anal.,
50 (2012), pp. 3188-3207]. Numerical experiments using a finite element discretization of the Laplacian with up
to 5 - 107 degrees of freedom and with multigrid preconditioning demonstrate the near-optimal complexity of the
method.
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1. Introduction. Let Q be a bounded polygonal region in R?, often d = 2 or d = 3,
and let the boundary OS2 be the disjoint union of 9€Q; and 9. We consider the self-adjoint
elliptic eigenvalue problem

=V - (c(x)Vu) + g(z)u = Au  in Q,
(1.1) u=0 on 99,
n-c(x)Vu=0  on 0.

Here c(z) is a symmetric and positive definite matrix valued function, ¢(z) a nonnegative real
function and n denotes the normal vector on the boundary 9€25. The coefficient functions are
assumed piecewise continuous. We are interested in the numerical approximation of some of
the smallest eigenvalues A and the corresponding eigenfunctions u.

The finite element discretization of (1.1) yields the generalized matrix eigenvalue prob-
lem

The discretization matrix A and the mass matrix M are symmetric, positive definite n X n
matrices. Typically, these matrices are very large and sparse.

Our aim is to compute a fixed number of the smallest eigenvalues of (1.2) together with
the associated eigenvectors. The numerical algorithm should exploit the structure of the mesh
eigenproblem, and its computational costs should increase almost linearly in dimension n.
The demand for a near-optimal-complexity method rules out all eigensolvers which are usu-
ally used for small and dense matrices. See [2, 4, 21] for getting an overview on the wide
variety of numerical eigensolvers primarily for small and dense matrices.
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A conceptually easy approach to the desired near-optimal-complexity eigensolvers is
based on gradient iterations for the Rayleigh quotient; cf. Dyakonov’s monograph on opti-
mization for elliptic problems [3] and its Chapter 9 on the Rayleigh-Ritz method for spectral
problems. The starting point is the generalized Rayleigh quotient for (1.2)

(1.3) p(z) = (z, Az) /(z, M z), z #0.

As p(-) attains its minimum A; at an associated eigenvector, the minimization of (1.3) can be
implemented by means of a gradient iteration. The negative gradient of (1.3) reads

—-Vp(z) = -2(Az — p(z)Mz)/(x, M)

and allows us to construct a new iterate z’' = x — wV p(z) with p(z') < p(z), whenever z is
not an eigenvector and w € R is a proper step length. The optimal step length w* minimizes
p(z') with respect to w € R. These optimal ' and p(z') can be computed by applying the
Rayleigh-Ritz procedure to the 2D space spanned by z and Vp(z). The gradient iteration
does not change A and M and does not need these matrices explicitly. It is a so-called
matrix-free method in the sense that its implementation only requires routines z +— Az and
z +— M z. The sparsity of A and M allows us to implement these matrix-vector products with
computational cost which only increases linearly in the number of unknowns.

1.1. Preconditioning of gradient iterations. Gradient iterations for the Rayleigh quo-
tient which use the Euclidean gradient Vp(z) are well known to converge poorly if the con-
dition number of A is large [5, 6, 7, 8, 12, 23, 28]. This is particularly the case for a finite
element discretization of (1.1) since the condition number of A increases as O(h~2) in the
discretization parameter h.

The key ingredient to make a gradient iteration an efficient solver for the operator eigen-
value problem (1.1) is multigrid preconditioning. If a symmetric and positive definite matrix
T is an approximate inverse of A, then T is called a preconditioner for A. The preconditioned
gradient iteration uses —7'Vp(x) as the descent direction for the Rayleigh quotient. The us-
age of the T-gradient can be interpreted as a change of the underlying geometry which makes
ellipsoidal level sets of p(-) more spherical [3, 25]. Proper preconditioning, for instance by
multigrid or multilevel preconditioning, can accelerate the convergence considerably. In the
best case this can result in grid-independent convergence behavior [10, 11].

The T'-gradient steepest descent iteration optimizes the step length w

(1.4) ¥ =z —wIlVp(z) =z — 2wT (Az — p(z)Mz)/(z, M)

in a way that ' attains the smallest possible Rayleigh quotient for all w € R. If T'(Ax —
p(x)Mx) is a Ritz vector, then w may be infinite. Computationally ' is determined by the
Rayleigh-Ritz procedure since ' is a Ritz vector of (A, M) in the two-dimensional subspace
span{z,T(Az — p(x)Mz)} corresponding to the smaller Ritz value. The resulting itera-
tion has some similarities with the Davidson method [20, 24] if the iteration is restarted after
each step so that the dimension of the truncated search subspace always equals 2. Stathopou-
los [27] calls such an iteration with constant memory requirement a generalized Davidson
method.

The eigenpairs of (1.2) are denoted by (A, z;). The enumerationis 0 < A\ < Ay <
... < Ap. We assume simple eigenvalues. The case of multiple eigenvalues can simply be
reduced to that of only simple eigenvalues by a proper projection of the eigenvalue problem.
Alternatively, a continuity argument can be used to show that colliding eigenvalues do not
change the structure of the convergence estimates; cf. [17, Lemma 2.1].
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For the vectorial Preconditioned Steepest Descent (PSD) iteration (1.4) sharp conver-
gence estimates have recently been proved in [17]. The central theorem reads as follows:

THEOREM 1.1. Let x € R™ be such that the Rayleigh quotient p(z) satisfies A; < p(z)
< Aiy1 forsomei € {1,...,n—1}. Let x' be the Ritz vector of (A, M) in span{z, T (Az —
p(x)Mz)} which corresponds to the smaller Ritz value. The Ritz value is p(x'). The precon-
ditioner satisfies

(1.5) (2, T ') < (z,Az) < yo(x, T '2) VzeR"

with constants y1,7v2 > 0. Let v := (y2 — 11) /(72 + 7).
Then either p(z') < X; or p(z') € (Mi, Nit1) is bounded from above as follows

(1.6) 0< Aiin (p()) < (” +7(2 - "ﬂ))z with o — Ai(An — Xig1)

Ajit1(p()) (2—K)+K Ait1(An = X))

Here Ay 4(0) := (0 — Ap) /(Mg — ).

The estimate (1.6) cannot be improved in terms of the eigenvalues A;, Aiy1 and Ay,. The
bound can be attained for X — \; in the three-dimensional invariant subspace &; ;11 n, which
is spanned by the eigenvectors corresponding to A;, Aiy1 and Ay,.

Theorem 1.1 guarantees monotone convergence of the Ritz values p(z') towards an
eigenvalue. If the Rayleigh quotient p(z) has reached the final interval [\, \2), then (1.6)
proves linear convergence of the Ritz values towards the smallest eigenvalue A;.

1.2. Aim of this paper. This paper aims at generalizing the preconditioned gradient
iteration (1.4) to a subspace iteration for the simultaneous computation of the s smallest
eigenvalues of (1.2). New and sharp convergence estimates for the Ritz values of (4, M) in
the iteration subspaces are presented, which generalize Theorem 1.1.

The effectiveness of the method is demonstrated for the Laplacian eigenvalue problem
on the sliced unit circle with mixed homogeneous Dirichlet and Neumann boundary condi-
tions. The operator eigenvalue problem is discretized with linear and quadratic (only for error
estimation) finite elements. Our finite element code AMPE, see Section 4, is demonstrated
to work with up to 5 - 107 degrees of freedom. AMPE uses a multigrid preconditioner with
Jacobi smoothing.

1.3. Notation and overview. Subspaces are denoted by capital calligraphic letters, e.g.,
the column space of a matrix Z is £ = span{Z}. Similarly, span{Z,Y} is the smallest
vector space which contains the column spaces of Z and of Y. All eigenvalues and Ritz
values are enumerated in order of increasing magnitude. Further, &ipgex-ser denotes the invari-
ant subspace of (A, M) which is spanned by the eigenvectors of (4, M) whose indexes are
contained in the index set.

This paper is structured as follows: The preconditioned gradient subspace iteration is
introduced in Section 2. The new convergence estimates are presented in Section 3; The-
orem 3.4 is the central new estimate on the convergence of the Ritz values. In Section 4
numerical experiments illustrate the sharpness of the estimates and the cluster-robustness of
the preconditioned gradient subspace iteration.

2. The block preconditioned iteration with Rayleigh-Ritz projections. The recondi-
tioned subspace/block iteration is a straightforward generalization of vector iteration (1.4).
The iteration (1.4) is just applied to each column of the matrix which columnwise contains
the Ritz vectors of the current subspace. Each subspace correction step is followed by the
Rayleigh-Ritz procedure in order to extract the Ritz approximations.
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The starting point is an s-dimensional subspace V of R™ which is given by the column
space of V' € R™*#. The columns of V" are assumed to be the M -normalized Ritz vectors of
(A, M) in V. Further, © = diag(f1, ..., ;) is the s x s diagonal matrix of the corresponding
Ritz values. The matrix residual

AV — MVO e R™*?

contains columnwise the residuals of the Ritz vectors. Left multiplication with the precon-
ditioner T ~ A~! coincides with the approximate solution of s linear systems in A. This
yields the correction-subspace span{T'(AV — MV ©)} of the preconditioned subspace it-
eration. The Rayleigh-Ritz procedure is used to extract the s smallest Ritz values and the
associated Ritz vectors of (A, M) in span{V, T(AV — MV ©)}; see Algorithm 1.

Algorithm 1 Block preconditioned steepest descent iteration.

Require: Symmetric and positive definite matrices A, M € R™*" a preconditioner 7" sat-
isfying (1.5) and an initial (random) s-dimensional subspace V() with £ M(V(O), E1:5) <
/2 where &1.5 is the invariant subspace of (A, M) associated with the s smallest eigen-
values.

1. Initialization: Apply the Rayleigh-Ritz procedure to V(9. The n x s matrix
VO = [v§0), .. .v§°)] contains the Ritz vectors of (A, M) corresponding to the s
Ritz values 07, .. 0", Let ©© = diag(6\?,...,6") and R©®) = AV —
MV ©eO©),

2. Iteration, i > 0: The Rayleigh-Ritz procedure is applied to span{V® TR®}.
The columns of Vt1) = [vgﬂ_l), . ..U§i+1)] are the Ritz vectors of (A, M)
corresponding to the s smallest Ritz values 0§i+1), e ,0§i+1). Let (1) =
diag(60FY .., and R(HY) = AV G+ — pyHD @G+,

3. Termination: The iteration is stopped if || RV || drops below a specified accu-
racy.

The block steepest descent iteration as given in Algorithm 1 has already been analyzed
for the special case T = A~! (preconditioning with the exact inverse of the discretization
matrix A) in [19]. If in the central convergence estimates of this paper, see Corollary 3.3 and
Theorem 3.4, v = 0 is inserted, then the convergence factor

Mo (An — Akig1)
’\kri-l (/\n - ’\ki)

simplifies to x;/(2 — ;). This bound has been proved in case 1b of [19, Theorem 1.1].

However, the convergence analysis for the block steepest descent iteration with a general
preconditioner does not rest upon the analysis in [19]. In fact, the analysis of the current
paper uses the convergence analysis for the vectorial preconditioned steepest descent iteration
from [17]. By starting with the result from [17] some of the proof techniques from [19] can
be adapted to the block iteration with general preconditioning. One important modification
is that the argument using the subspace dimensions from Theorem 3.2 of [19] cannot be
transferred to the case of general preconditioning. Instead, we use here Sion’s theorem for
the proof of Theorem 3.2. The proof structure of the present paper has also some similarities
with the chain of arguments in [14] wherein a convergence analysis of the subspace variant
of the preconditioned inverse iteration is contained. References to similar results and similar
proof techniques are given prior to Lemma 3.1, Theorem 3.2 and Theorem 3.4.

ki + (2 — K;)

———~  with k; =
(2 — K;) + K4 ¢
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FIG. 3.1. A-orthogonal decomposition in the R"* 3.

3. Convergence analysis. The convergence estimates on the convergence of the Ritz

values 0§-i+1) with j = 1,...,sand ¢ > 0, see Algorithm 1, towards the eigenvalues of
(A, M) are proved in this section. In Theorem 3.2 together with Corollary 3.3 the conver-

gence of the largest of these Ritz values, namely 6/, := 0§i+1), is analyzed. It is shown that the
Ritz value 8/, of (A, M) in span{V,T(AV — MV ©)} is bounded from above by the largest
Ritz value which can be attained by the vector iteration PSD (1.4) if applied elementwise to
the column space of V. Theorem 3.4 proves sharp estimates for the remaining Ritz values by
induction.

In the following analysis we assume that the preconditioner satisfies the inequality ||I —
TA|la < v < 1. This assumption is equivalent to (1.5) with v := (y2 — 1)/(72 + 1) if
the preconditioner is optimally scaled. The PSD iteration implicitly determines this optimal
scaling by the Rayleigh-Ritz procedure.

The next lemma generalizes Lemma 3.1 from [14].

LEMMA 3.1. Let the columns of V. € R™** form a Riiz basis of span{V'}, and let T be
a symmetric and positive definite matrix with ||I — TA||a < v < L.

i) Forany a € R® \ {0} and any ¢ € R? it holds that

(3.1 |[A"'MVOa —Val|a < ||[AT'MVOa - V| 4.

ii) The matrix wVO + (V — T(AV — MV ®)) preserves for all w € R the full rank
s of the matrix V.
iii) Let x be given as in Theorem 1.1, and let T € R™ satisfy

(3.2) A Mz — |4 <A|A Mz —z/p(x)|a.
If
(3.3) ' €arg  min _ p(v),

vEspan{z,T}
then the PSD estimate (1.6) applies to the Ritz vector x' given by (3.3) and its

Rayleigh quotient p(z').
Proof. i) The A-orthogonality, see Fig. 3.1,

(Vz, ATTMVO = V)a)4 = 2TVT(MVO — AV)a = 27(0 —0)a=0 Vze R

shows that Va is the A-orthogonal projection of A~! MV ©a on span{V'}. This guarantees
that

JA*MVOa—Valla <||A 1 MVOa— V| a
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forallc € R°.
ii) Direct computation shows that for a € R® \ {0}

|wVOa+ (V-T(AV — MVO))al|a
=[wVOa+ A 1MVOa+ (I —-TA)(V — A *MVO)al|a
>||wVOa+ A MVOal|s — ||(I -TA(V — A" MVO)al|4
>||AT'MVOa —V (—wBa) ||a — ||[(V — A"*MV®)al|4 > 0.
N—_——

=:C

The last inequality holds with ¢ = —w®a due to (3.1). The fact ||wVOa + (V — T(AV —
MV©))al|a > 0 for all a # 0 proves that the matrix wV0© + (V — T(AV — MV ©)) has
the full rank.

iii) Inequality (3.2) is equivalent to ||p(z) A" Mz — p(2)Z||a < Y|p(z)A" Mz —
x||4. This means that p(x)Z is contained in a ball with the center p(z)A~'Mz and the
radius y||p(z) A~ Mz — z|| 4. The geometry of the fixed-step-length preconditioned gradient
iteration (see [10, 17]) shows that p(x)T is representable by a symmetric and positive definite
T with ||[I — TA||4 < 7 in the form

p(2)% =z — T(Az — p(z)M=z).

The preconditioned steepest descent iteration accelerates the convergence of this fixed-step-
length iteration by applying the Rayleigh-Ritz procedure to

span{z, T(Az — p(z)Mz)} = span{z,7}.

Thus the smallest Ritz value p(z') in this space is bounded from above by the estimate (1.6).
g

The next theorem proves the desired convergence behavior for the largest Ritz value
0. Comparable estimates for the largest Ritz values, but with respect to different spaces,
have been used in [14, Theorem 3.2] for the subspace analysis of the preconditioned inverse
iteration and in [19, Theorem 3.2] for the block steepest descent iteration.

THEOREM 3.2. Let span{V'} contain no eigenvector of A, which otherwise could easily
be split off within the Rayleigh-Ritz procedure. Then the s-th Ritz value 6, of (A, M) in
W := span{V,T(AV — MV ©)}, which is given by

(3.4) 6. = min max _p(z),
ZCW  2¢2\{0}
dim Z=s
satisfies
(3.5) ¢, < max minp(wVOa+ (V—-T(AV — MVO))a) =: 0,.

T acRs\{0} w€R

Proof. Leta* € R® \ {0} and w* € R be given in a way so that the max-min in (3.5) is
attained

(3.6) b = p(w* VO a* + (V-T(AV — MVO)) a*).

vl

e

=:Ws

{3
(

Hence (a*,w*) is a saddle point of the Rayleigh quotient. In a sufficiently small neighborhood
Q@ x Q of (a*,w*) the Rayleigh quotient p(-) is a smooth function which is concave in a and
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convex in w. Sion’s-minimax theorem [22, 26] provides the justification to swap the order of
minimization and maximization, i.e.,

0s = p(w*Wia* + Waa*) = ?eaggclnelgp(wwla + Waa) = min Ianeaécp(wwla + Waa).
Thus p(wWia + Waa) is the Rayleigh quotient of a with respect to the projected matrix-pair
(WTAW, WTMW) with W = wW; + Wa. The local maximum in a € @Q coincides with
the global maximum of p(-) in the column space of W (because the maximum is taken in the
interior of () and because the Hessian of the Rayleigh quotient shows that there is only one
local extremum which is a maximum). We conclude that

LIlelg I;leaé( p(wWia + Waa) = ‘runelg Omax (W1 + Wa).
We denote the minimum point with respect to w € 2 by @ so that 53 = Omax(@W1 + Wa).
Therefore 53 is the largest Ritz value of (A, M) in the column space Zof oWy +Ws € R%5,
Lemma 3.1 guarantees that the dimension of Z equals s. Since Z is a subspace of WV one
gets with (3.4) that 0, < max, .z (g p(2) = 9,. O

COROLLARY 3.3. If the s-th Ritz value 8 of (A, M) in'V is contained in (Ay, Ag41),
q € {1,...,n — 1}, then for the s-th Ritz value 0', of (A, M) in span{V, T(AV — MV ©O)}
it holds that either 8!, < A or

2
Agg+1(85) < (n +7(2 - n)) with r = 2an = Ags1)
Ag,q+1(05) (2—K)+7k Ag+1(An — Ag)

3.7 0<

Proof. If ¢ = n — 1, then the first alternative 6!, < \,_1 applies since the s-th Ritz value
of (A, M) in the at least (s + 1)-dimensional subspace span{V, T(AV — MV ©)} is smaller
than or equal to A,_1 (due to the min-max principles).

Nextlet ¢ < n—1 and assume A\, < 8., for which (3.7) is to be proved. For \; < 6 < A,
the function A, ,.(0) = (68 — A,) /(A — 6) is monotone increasing in #. Theorem 3.2 shows

that 8! < 8, so that

(3.8) Agat1(8) < Aggi1(Bs).

In order to apply Lemma 3.1, Case iii, to z = VOa* and Z = (V —=T(AV — MV O))a*
we show that
|A™' Mz —Z||4 = [|[A'MVOa* — Va* + T(AV — MVO)a*||a
=||(I -TA)(A*MVOa* —Va*)||a
<A|AT'MVOa* —Va*||a
<A™ MVOa* —V 0a*/p(z) |4 = Y[A™ Mz — z/p(z)| 4.
———

The last inequality is proved with (3.1). Thus Case iii in Lemma 3.1 guarantees that the PSD
estimate (1.6) can be applied to the smallest Ritz value of (A, M) in span{z,Z}. By (3.6)
this Ritz vector is w*x + T with the Ritz value 6;. Hence the vectorial PSD estimate (1.6)
results in

(3.9 Aq,q-i-l(as) < (%) Aggt1 (p(x))
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This concludes the proof since p(z), € span{V'}, is bounded by the largest Ritz value 6,
of (A, M) in span{V'},ie.,

(3.10) Agyg+1(p(2)) < Agg1(6s).
The chain of inequalities (3.8)—(3.10) proves the proposition. O
The convergence estimates for the remaining Ritz values 8,7 = 1, ..., s—1, follow from

Corollary 3.3 by induction. Comparable estimates for the remaining s — 1 Ritz values, but
with respect to different spaces, have been used in [ 14, Theorem 3.3] for the subspace analysis
of the preconditioned inverse iteration and in [19, Theorem 3.1] for the block steepest descent
iteration.

THEOREM 3.4. Let V be an s-dimensional subspace of the R". The Ritz vectors of
(A, M) in'V are denoted by vy, ...,vs and let V := [v1,...,vs] € R"**. The associated
Ritz values are 0; = p(v;) with 0y < ... < 0. Indices k; are given so that 0; € (A, , A\k;+1)-

The s smallest Ritz values of (A, M) in span{V,T(AV — MV ©)} are denoted by 6
with 0] < ... <@L Thenforeachi € {1,...,s} it holds that 0 < 0; and either 8 < A, or

Ag; kit1(07) < (”i +7(2 - &)
Ap ki1 (0) = \(2 = ki) + ki

Here Ap 4(0) := (0 — X\p)/(Ag — 6).

The bound (3.11) cannot be improved in terms of the eigenvalues of (A, M) as for each
i the upper bound is attained for 8; — Ay, in the 3D invariant subspace associated with the
eigenvalues \;, Ag;+1 and Ay,

Proof. The proof is given by induction over the subspace dimension s. For a one-
dimensional subspace V = span{z}, Theorem 1.1 proves the Ritz value estimate (3.11)
with p(z') = 6.

For an s-dimensional subspace the Ritz vectors v; of (A, M) are arranged in the columns
of V.= [v1,...,vs] =: [V 0] € R?*5. Let §(V(*~1)) be the s — 1 smallest Ritz values
of (A, M) in

M (A — Apig1)

3.11 0< — -7
G-AD Nt Oon — Aey)

2
) with k; =

span{V~D T(AVE—D — pyE-Det-D)y @6~ .= diag(:,...,05_1),

with @) (V(5=1D) < ... < @._, (V(~1), The induction hypothesis with respect to the (s—1)-
dimensional space reads

Aki,kH—l (0;(‘/(371))) < (’9 + 7(2 - "i) ) 2 with K = )‘ki ()‘n - )‘ki-‘rl)

0< — -t
(2—kK)+K Meir1(An — Ak;)

- A, kiv1(6:)

The Courant-Fischer variational principles show that these s—1 smallest Ritz values 6 (V1)
decrease when span{V(sfl)} is enlarged to V, i.e.,

6/ (vis—b) = min max p(y
il ) L{gspan{V(s_l),T(AV(s_l)—MV(‘_I)G(S_I))} yeU\{0} PLy)
dim(U)=i

! —0.
= Z,{gspan{V,r’Izl(glV_MV@)} yerg%?o} p(y) i
dim(u):i

Finally, A, r;+1(6) is a monotone increasing function in 6 so that

Aki,’i?i-l-l(gg) < Aki,ki-i-l(e;'(v(s_l))) < ("54—7(2_ ’{’))2
Ap kir1(6:) — A, kir1(6:) “\2-Kr)+&/)
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which proves the proposition for the first s — 1 smallest Ritz values. For the Ritz value 6,
Corollary 3.3 completes the proof.

The sharpness of the estimate (3.11) is a consequence of Theorem 1.1 since for 6; €
(Aki> Ak;+1) the columns of V' can be formed by the vector of poorest convergence in £, ;. 1,n
and all other columns are taken as eigenvectors with indexes different form k;, k; + 1 and
n. Then the subspace iteration behaves like the vectorial preconditioned steepest descent
iteration due to stationarity of the iteration in the eigenvectors. d

COROLLARY 3.5. The Ritz value convergence estimate (3.11) cannot be improved in
terms of the eigenvalues \y;, Ap;+1 and Ay and is attainable for 0; — Ap; in Eg; kiv1,n

Proof. For 0; € (Ag;, Ak;+1) let v; be an M -normalized vector in the invariant subspace
Eki ki+1,n, With p(v;) = ;. The remaining columns of V' are filled with pairwise different
eigenvectors of (A, M) which are M-orthogonal to &, k;+1,,- Then a step of the block
steepest descent iteration, Algorithm 1, leaves all the eigenvectors invariant. The convergence
of the ith column v; is exactly that of the vectorial preconditioned steepest descent iteration
as treated in Theorem 1.1 because the iteration is stationary in all eigenvectors. The non-
improvability of the convergence estimate in terms of the eigenvalues has already been treated
in Theorem 1.1. |

Corollary 3.5 shows that the convergence estimate (3.11) cannot be improved in terms
of the eigenvalues without further assumptions on the subspace V. Hence cluster robust con-
vergence estimates, which should depend in some way on the ratio A;/As1, are not provable
in terms of the convergence measure Ay 41 as used in Theorem 3.4. The numerical experi-
ments in Section 4 illustrate that the block preconditioned steepest descent iteration behaves
as a cluster robust iteration. In order to derive cluster robust convergence estimates, additional
assumptions have to be made: For instance the angle between the iteration subspace and the
invariant subspace has to be bounded.

4. Numerical experiments. The block preconditioned steepest descent iteration is ap-
plied to the Laplacian eigenvalue problem

4.1) —Au(z) = (), z € Q:= {(rcos(yp),rsin(y)) : r €[0,1], ¢ € [0, 27}

on the unit circle with a slit along the positive abscissa. Homogeneous Dirichlet boundary
conditions are given on the boundary for » = 1 and on the upper side of the slit {(r, ) :
r € [0,1], ¢ = 0}. Homogeneous Neumann boundary conditions are used on the lower
side of the slit. The numerical approximations of the eigenvalues and eigenfunctions can be
compared with the exact solutions of (4.1). The eigenfunctions are sin (aktp) Jo (Er,i1); see
Fig. 4.1. Here J,, is a Bessel function of first kind of fractional order [1] and oy, := %k + %.
The eigenvalues are the squares of the positive zeros {, ; of Jo, .

The operator eigenvalue problem is discretized by linear finite elements on a triangle
mesh. Our program code AMPE (Adaptive Multigrid Preconditioned Eigensolver) in FOR-
TRAN is an adaptive multigrid finite element code with an edge oriented error estimator
which uses linear and quadratic finite elements. All test computations have been executed on
a personal computer with an Intel Xeon 3.2GHz CPU and with a RAM of 31.4GiB. Our finite
element code on this computer can solve eigenvalue problems that exceed 50 - 10 degrees
of freedom. The program includes multigrid preconditioning with Jacobi smoothing. The
FORTRAN code is embedded in a Matlab GUI which allows easy and convenient usage of
the program and has graphical presentation of its output.

Experiment I. In this first experiment the block preconditioned steepest descent itera-
tion is applied in a 3-dimensional subspace; we refer to this algorithm as PSD(s = 3). Further,
the eigenvalue problem is discretized on a series of uniform triangle meshes to which nested
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FIG. 4.1. Contour lines of the three eigenfunctions of (4.1) corresponding to the three smallest eigenvalues.

iteration is applied. The first grid level comprises 21 nodes from which 15 are located on
the Dirichlet boundary. This gives 6 initial degrees of freedom. On this coarsest level the
eigenvalue problem is solved exactly (aside from rounding errors). Piecewise linear interpo-
lation is used to prolongate the approximate eigenfunctions from one grid level to the next
refined level. The multigrid preconditioner is a V-cycle multigrid solver with damped Jacobi-
smoothing; the damping constant is w = 2/3 and two pre-smoothing and post-smoothing
iterations are applied on each level.

The quality of the preconditioner is controlled by a stopping condition for the linear
system solver. For each Ritz vector the bound ||A(Tr) — r|]2 < 10/n is tested. Here r
denotes the residual of a Ritz vector, T'r is the preconditioned residual and 7 is the dimension
of the discrete problem on the current level. In most cases only one V-cycle is required
to reach this accuracy since the initial solution on a refined grid is the prolongation of the
solution from the coarser grid.

The stopping criterion for PSD(s = 3) is ||r||z = (rTTr)'/? < 10~'° where  runs
through the residuals Av; — p(v;) Mw; for the Ritz vectors v1, v2 and vs. This stopping
criterion is justified by the generalized Temple inequality (see [3, Lemma 3 in Chapter 11]),
which is the first inequality in

o(@)(p(x) — ) (Mign — p(z)
Aidit1

< lFims < 7= Il ifp(a) € [ Al
The second inequality follows with ||I — T'A||4 < 7 < 1. Hence ||7||% is an upper bound for
the product of the relative distances of p(x) to the enclosing eigenvalues A; and \;11.

The nested iteration is stopped on the level [ = 12 with 50348033 nodes and 50319360
degrees of freedom. Figure 4.2 (left) shows that the computational costs increase more or
less linearly in the dimension of the problem which indicates the near optimal complexity of
the PSD(s = 3) solver. Figure 4.2 also shows the errors Hz(k) — A, © = 1,2, 3, for the three
smallest eigenvalues

A =&~ TT33337, A =&, & 1218714, A =&, ~ 17.35078.

The error €§k) — A1 is relatively large since the associated eigenfunction has an unbounded
derivative at the origin. The next experiment shows that the approximation of this eigenfunc-
tion clearly profits from an adaptively generated grid.

Experiment II. Next we show that adaptive mesh generation with a posteriori edge
oriented error estimation similar to that in [15] results in much better approximations. The
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o —

computational costs [sec]

10 0 3 6 9 12

d.o.f. Level index

FI1G. 4.2. PSD(s = 3) nested iteration on uniform triangle meshes. Left: Computational costs until a level is
reached and finished (solid line); computation time on the current level (markers). Center: Error of the eigenvalue
approximations, © = 1 by a line with markers, © = 2 by a broken line and © = 3 by a solid line. Right: The initial
triangulation.

error estimator computes the eigenvector residuals with respect to quadratic finite elements
for Ritz vectors which are represented by linear finite elements. The largest (in modulus)
components of the residual are used to select those edges which belong to triangles that are
to be refined.

Once again, the PSD(s = 3) solver is used. In order to compute a grid which allows an
optimal approximation of the eigenfunction associated with the smallest eigenvalue, the error
estimation and grid refinement aim at an optimal approximation of just this eigenfunction.
Figure 4.3 shows a relatively coarse triangulation of the unit circle and sectional enlargements
of finer triangulations around the origin, where the depth of the triangulations takes its largest
values due to the unbounded derivative (0/0r)J,, around r = 0. The adaptive process
generates highly non-uniform triangulations. Further details of the adaptive process and its
more or less linearly increasing costs (as a function of the d.o.f) are shown in Figure 4.4. The
resulting smallest Ritz values #;, which approximate the smallest eigenvalue Ay ~ 7.733337,
are as follows.

Depth of
triang. 1 30 43 57 68 73
Nodes 21 10709 108693 1185777 10961756 34157092
D.o.f. 6 10409 107630 1182184 10951337 34137627

01 12.95561 7.738704 7.733789 7.733379  7.733341  7.733338

In contrast to this, a uniform refinement yields a final depth 12 with 50348033 nodes only in
a poor approximation §; = 7.772233; a comparable quality of approximation can be gained
by the adaptive process on level 19 with 2377 nodes and 6; = 7.762841.

Finally, the results of the PSD iteration to approximate the 15 smallest eigenvalues in a
20-dimensional subspace are listed in Table 4.1.

Experiment III. Next the case of the poorest convergence of the block preconditioned
steepest descent iteration is explored. Therefore, we use the final grid from Experiment IT with
about 3.41 - 107 d.o.f. and apply the PSD(s = 3) iteration. According to Theorem 1.1, the
poorest convergence of the vectorial iteration PSD(s = 1) is attained in the invariant subspace
&i,i+1,n- The subspace iteration behaves similarly. To show this we consider subspaces which
are spanned by a single nonzero vector from &; ;41,, Whereas all the other basis vectors are
eigenvectors of (A, M) with indexes different from ¢, ¢ + 1 and n. Then block-PSD method
behaves like a vectorial iteration due to the stationarity in the eigenvectors. Theorem 1.1
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n=1716,in[-1,1]? n=>54064,in[-1077,1077]> n=165034,in[—-10712 107 12]2
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FI1G. 4.3. Triangle meshes and enlargements around the origin with 1716, 54064 and 165034 nodes (with
1628, 53387 and 163772 inner nodes). The associated depths of the triangulations are 17, 39 and 46. The positive
axis v > 0 and ¢ = 0 belongs to the boundary.
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FIG. 4.4. Result of PSD(s = 3) adaptive eigensolver. Left: Computational costs: Total computation time until
#d.o.f. has been reached by solid line. Line with markers shows the computation time on the current level. Center:

Errors 05” — A\ for i = 1 by line with markers, © = 2 by broken line and © = 3 by solid line. Right: Estimated
residual norm for 01 by solid line, estimate used for the stopping criterion by broken line and actual residual norm
[|r||Z/||Tr|| o w.rt. linear elements by line with markers.

provides the convergence estimate for the single vector from &; ;41,,. Figure 4.5 shows in
the intervals (A;, Ai11) the upper bounds (x + v(2 — n))z/((2 - K)+ 7&)2 (dashed lines)
and the largest ratios A; ;11(6})/A; ;4+1(6;) for 1000 equispaced normalized test vectors in
&i i+1,n whose Rayleigh quotients equal 8;. All this is done for equidistant 8; € (A;, Aj41).
In each interval [A;, A\;11) the estimate (3.11) is sharp, cf. Theorem 3.4, and can be attained
for 6; — ;.

Experiment IV. In this experiment the sharp single-step estimates (3.11) are compared
with multi-step estimates for the PSD(s = 3) iteration. For each grid level [ with [ > 1 the
initial subspace V(%! which is the prolongation of the final subspace from the level  — 1,
is of sufficient quality so that the three Ritz values of (A;, M;) in V(1) have reached their
“destination interval”, i.e.,

6:vO0) e WAL, i=1,23,
so that the Ritz values ng’l) (k is the iteration index on level I) do not leave this interval. Here,

,\,@ are the eigenvalues of (A4;, M;) with respect to the grid level . Theorem 3.4 guarantees
; (k1) _ (D
thatlimg 00 6,77 = A},
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TABLE 4.1
The 15 smallest eigenvalues Eﬁ 1 of (4.1). Left: Ritz values in a 1047534-dimensional linear finite element
space. Center: Ritz values in a 10052735-dimensional linear finite element space. Right: “Exact” eigenvalues

of (4.1).

K\l 1 2 K\l 1 2 K\l 1 2
0 7.733389  34.88339 0 7.733342  34.88260 0 7.733337  34.88252
1 12.18725 44.25893 1 12.18715  44.25768 1 12.18714  44.25756
2 17.35102 54.36164 2 17.35080 54.35978 2 17.35078  54.35960
3 23.19983  65.17971 3 23.19943  65.17704 3 23.19939  65.17677
4 29.71530 76.70204 4 29.71460  76.69829 4 29.71453  76.69790
5 36.88311 5 36.88199 5 36.88189
6 44.69164 6 44.69009 6 44.68994
7 53.13167 7 53.12939 7 53.12918
8 62.19503 8 62.19189 8 62.19159
9 71.87493 9 71.87073 9 71.87033
Aii+1(6;)
Agiv1(6s)
7933 12187 17.351 23.199 29,715
0;

FIG. 4.5. Poorest convergence of block preconditioned steepest descent iteration. Abscissa: Five smallest
eigenvalues according to Table 4.1. The dashed lines in the intervals (A\;, Ai41) are the upper bounds (n + (2 -

K)) 2/ (2= k) +7K) 2 fory =€ {0,0.1,...0.9}. The curves are the largest ratios A; ;11(0})/Aq i41(8;) over
1000 equispaced test vectors in E; ;1.1,, whose Rayleigh quotients equal §;.

All this allows us to apply the 1-step estimates

4.2)
05’“*1’” ~ /\gl) kD 7 (2 — kD) 2 0§k,l) — ,\z(l) . 0(6(k+1,1)) k=0,1
Agfﬁl - 0§k+17l) > (2 _ :‘i(l)) + fy/q](l) AEQI — 05’9,1) —- i ) =Y, 1,...,

recursively, which yields the multistep estimate

(k1) _ (D) 0) _ DY\ 2k g0 _ O
@3) 0(11) ?’z )] = (K/ - ?ll)(2 . (lg> 0(1” )(\(; DI T(Hz(k,l))v k=1,2,...,
AL — 6" (2-rD) +7k D =6

where £ is given by (3.11) after substitution of A; by )\gl) for the relevant indexes ¢. The
parameter v = ||I — T'A|| 4 for the quality of the preconditioner is approximated on each
grid level by computing the spectral radius of I — T'A with the power method. For this
experiment we use again two steps of pre-/post-smoothing on each level with damped (w =
2/3) Jacobi-smoothing. This results in v = 0.78. The discrete eigenvalues /\51) are estimated
by extrapolation from the computed Ritz values.
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Figure 4.6 shows the multistep bound (4.3) as a bold line, the 1-step bound as a dotted
line and the numerical result as a thin solid line. The 1-step estimate (4.2) is a very good
upper estimate. In all cases the multistep estimate (4.3) is a relatively rough estimate. It
accumulates the over-estimation of the error from step to step and suffers from its inability to
use the current Qz(k’l)
the upper bound.

The A(#)-ratio depends on the discrete eigenvalues A® and decreases monotonically
for the iteration on each grid level; the ratio may increase after prolongation to a refined grid
level. The somewhat oscillating behavior of the A(#)-ratio for A, in contrast to the smoother
behavior for Ay reflects the fact that the error estimation and grid generation is controlled by
error estimates for the first eigenfunction. The second eigenfunction also profits from the grid
refinement (cf. Figure 4.4) but the A(#)-ratio shows a stronger variation for changing level
index [.

on the right-hand side of the estimate in order to improve the quality of

5. Conclusion. This paper concludes our efforts of analyzing preconditioned gradient
iterations and their subspace variants with either fixed step length (case of inverse iteration
and preconditioned inverse iteration) or with optimal step-length (case of steepest descent and
preconditioned steepest descent). Within the hierarchy of preconditioned gradient iterations,
as suggested in [13], these solvers are denoted as INVIT(k,s) and PINVIT(k,s) with k = 1,2
and subspace dimensions s € N.

For all these iterative eigensolvers sharp convergence estimates have been derived which
have the common form

A iri(p(a)) < 0 Agia (p(x))

with A; ;11(8) = (€ — A)/(Aig1 — &) and convergence factors 0. The following sharp
convergence estimates have been gained:

Iterative Eigensolver Convergence factor Ref.
Inverse iteration o= ’\— [16]
Ait1
Preconditioned inverse iteration —y 4 (1=7) X\ [10]
Block preconditioned inverse iteration Ai1 [14]
Ai (A — A
Steepest descent o=5", K= m [18]
Precond. steepest descent o= K tv(2—K) o — Ai (A —Aig1) [17]
Block precond. steepest descent (2—r)+7r? Ai+1(An—Ai) here

Scientific efforts for the future are aimed at a convergence analysis of the important
locally optimal preconditioned conjugate gradient (LOPCG) iteration [9]. As the convergence
behavior of the LOPCG eigensolver has been observed to behave similarly to the conjugate
gradient iteration for linear systems, sharp convergence estimates are highly desired.

Acknowledgement. The authors would like to express their gratitude to the anonymous
referee for his very positive feedback and constructive remarks!
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