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REVISITING THE INVERSE FIELD OF VALUES PROBLEM *
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Abstract. The field of values of a linear operator is the convex set ircthraplex plane comprising all Rayleigh
guotients. For a given complex matrix, Uhlig proposed therswdield of values problem: given a point inside the
field of values, determine a unit vector for which this pointhe corresponding Rayleigh quotient. In the present
note we propose an alternative method of solution to thosénthwe appeared in the literature. Our approach is based
on the fact that the field of values can be seen as a union psedliunder a compression to the two-dimensional
case, in which case the problem has an exact solution. Rgfmmndea of Marcus and Pesce, we provide alternative
algorithms to plot the field of values of a general complex matvixich perform faster and more accurately than the
existing ones.
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1. Introduction. Let (#, (-,-)) be a Hilbert space ani(*) denote the set of bounded
linear operator§{ — H. Thefield of valuegalso known as theaumerical rangg of a linear
operatorT’ : H — H is the set of complex numbers

) - {

(w, w)
Thus, the field of values is the set of all Rayleigh quotierit§’oThe numerical range is a
useful tool in the study of matrices and operators (see, ag7] and references therein),
which has applications in the stability analysis of dynahgystems and the convergence
theory of matrix iterations, among others.

The field of values is a convex and compact set. The compactaksws readily from
the fact thatF’(T) is the image of the compact unit sphereinunder the continuous map-
pingz — (Tz, x). The convexity ofF' (1) was pointed out by ToeplitZ[l] and Hausdorff ]
in the first decades of the last century.

Given a pointz € F(T), theinverse field of values problei® to determine a unit vec-
torw, € H such that: = (Tw,,w,), in which case: is referred to as Ritz value Such a
vectorw, is called agenerating vectofor z. The inverse field of values problem was firstly
proposed by Uhlig in13], motivated by the importance of the conditiobne F(T') for the
stability of continuous or discrete systems= T« or x11 = Txy. The problem is to find
the solutionw,, € H of the two coupled-equations

cweH, (w,w};«éO}.

* _ * _
wTw, =z, wiw,=1.

Hence, this is an algebraic problem consisting of a systemmEomplex quadratic equations
in the complex components af,. Computing an algebraic solution can be performed by
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computer algebra systems such as Mathematica, but thiswati for moderate dimensions.
Also an analytic approach using the Lagrange multipliersmdism makes sense, however,
this is only feasible for low dimensions. We are interestefiriding solution vectors in cases
of dimensions larger than those where algebraic or anatytithods can provide one, such
asn being of the order of hundreds or thousands.

Following Uhlig, we shall use the acronym “FOV” for “field ofalues”. The inverse
FOV (iFOV) problem attracted the attention of several atghe.g., of Carder2] and Meu-
rant [L0], and different methods of solution have been proposed.wAmethod that is simpler
and faster than the existing ones has been present8l] anfl it provides accurate numerical
results where the previous ones often fail, namely for [goiety close to the boundary of the
field of values. In these algorithms, most of the computingetis spent computing eigenval-
ues and eigenvectors of the Hermitian part of the matrix.2)r8] the minimum number of
eigenvectors and eigenvalues analysed is two.

This paper has two main goals. The first one is to provide @fguos to plot quickly and
accurately the field of values. The second goal is to reVisiiFOV problem and to propose
an alternative and simpler approach. Our method is conabytstraightforward since it is
essentially based on the reduction to 2he 2 case. It requires a small number of eigenvector
computations, sometimes only one, and compares well irugeectime and in error with the
existing ones in the literature.

This paper is organized as follows. In Secti®nthe main ideas used in our method
are presented. In Sectidh two alternative algorithms for plotting the field of valueka
general complex matrix are proposed. We emphasize that thigsrithms play a crucial
role in the solution of the iIFOV problem and remarkably immrdhe approximation of the
FOV'’s boundary. Sectiod provides an overview of the approaches to the iFOV problem.
In Sectionb, this problem is solved for a matrix of arbitrary size by auetibn to the two-
dimensional case. In Secti@hsome numerical examples that illustrate the theory arengiv
and the different approaches are compared. The figurededlare numerically computed
by using MATLAB 7.8.0.347 (R2009a).

2. General properties of F'. From now on we shall considé{ = C". Let M,, be the
algebra ofn x n complex matrices. Writing th€artesian decompositioof 7' € M,,, that
is,T=H(T)+iK(T), where

T+T* T-T*
_ o and K(T)= %
7

H(T)

are Hermitian matrices, we can easily conclude gt (7)) is the orthogonal projection
of F(T') onto the real axis and’(K (7)) is the orthogonal projection of'(7") onto the
imaginary axis.

We recall that asupporting lineof a convex setS C C is a line containing a bound-
ary point of S and defining two half planes such that one of them does notaroist
For 6 € [0,27), if we consider a supporting line of (T") perpendicular to the direction
of slopef, the orthogonal projection of the numerical range onto thiection is given
by F(H(e=%T)).

The following well-known properties of' are directly related to the subject of this note.
For their proofs we refer the interested reader7o [

1. o(T) C F(T), whereo(T') denotes the spectrum (set of eigenvalued).of
2. For any unitary matrit/, F(U*TU) = F(T).

3. For any complex number, F(T + zI) = F(T) + z.

4. F(T)is areal line segment if and onlyTf is Hermitian.
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5. If T is normal, thenF(T) = Co{o(T)}, whereCo{-} denotes the convex hull
of {.}.

6. Letxzy be a unit eigenvector associated with the largest or thelsshtaigenvalue
of H(e=T). Then,zyp = x;Txy € OF(T), the boundary of’(T). Furthermore, it
holds thatzy € Ly N F(T) whereLy is the tangent line aty.

7. The boundary of'(T) is a piecewise algebraic curve, and each of its non-differen
tiable boundary points is an eigenvalu€elaf

2.1. F as the union of elliptical discs. For P being a two-dimensional orthogonal pro-
jection, the restriction of?T P to the range ofP is called a two-dimensionalompression
of T'. For completeness, we recall the following important residually known as thellip-
tical Range Theorertfor a proof see, e.g.7] or [14]).

THEOREM 2.1. LetT € M,. ThenF (T) is a (possibly degenerate) closed elliptical
disc whose foci are the eigenvalues/gfA; and \,. The Cartesian equation of the boundary
of this elliptical disk is

X% v? o1

— 4 —= = ,

M2 N2 4
where

X = (x — Re(c)) cos v + (y — Im(c)) sin ~,
Y = (z — Re(c)) sin v + (y — Im(c)) cos 7,

¢ = (A1 + A2) /2 is the center of the ellipse, angis the slope of the line segment with
endpoints\; and A.. The lengths of the major and minor axis of the ellipse are

M =\/Tr (T°T) = 2Re (MAo), N = /Tx (T°7) — M — ol

respectively.
The following result is fundamental in our approach to th@VHproblem.
THEOREM2.2. (Marcus and Pesced]) Forany T' € M,,,

F(T) = F(Tw),

where

@ o= o)

with & and v varying over all pairs of real orthonormal vectors.

The Marcus-Pesce Theorem is applicable to the problem a$idgvan effective proce-
dure for constructing the field of values of an arbitraryx n complex matrix. The idea is to
generate a reasonable complete set of orthonormaljpdirsot necessarily real, and actually
compute the union of the elliptical disé¥(7%;). This is the so-callethside-outapproach,
an alternative to theutside-inapproach (see, e.g8]), which consists of determining the
smallest and the largest eigenvaluediofe~“T') for various values of < [0, 27). These
eigenvalues provide sharp approximations to the projeatiothe field of values onto the
directiond. The collection of these sharp bounds gives an outer poblgaoproximation
to F(T'), whose sides are tangent&#'(T") (see property in Section2). This procedure
may be extended to the infinite-dimensional setting as vedibdinear unbounded operators.
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3. Algorithms for plotting F' for a general complex matrix. The main purpose of
this section is to provide two alternative algorithms fommrically determining?(7") within
some prescribed tolerangel. These algorithms are used in our solution method for the
iFOV problem. In P], a MS-BASIC program for plottingF'(7") was presented based on
formula .1) in the casé’ being a real matrix. Our algorithms improve the Marcus-Bede
gorithm as they work efficiently for complex matrices andjadimensions. Instead of using
randomly generated vectorsandv, we make use of suitably chosen vecterandv which
generate boundary points of the numerical range. Througheudenote bypan{u, v} the
subspace generated by the linearly independent veatarsand by, o, two orthonormal
vectors inspan{u, v}.!

Algorithm A
I. Check ifT is Hermitian. If so, compute its smallest and largest eigkras, and the
line joining them isF'(T"). If not, proceed to the next step.

[I. CheckT for normality ("1™ = T*T). If T is normal, compute its eigenvalues, and

their convex hull isF'(T'). If T'is not normal, continue.

. Set6y = (k—1)n/m, k=1,..., mfor some positive integern > 3.

IV. Starting withk = 1, up tok = m, take the following steps:

i. Compute eigenvectors, andvy associated, respectively, with the largest and
smallest eigenvalue of the Hermitian matkixe~*+T).
ii. Compute the compression @fto span{us, vk}, T, o), -
iii. Compute the boundar¥y/;, of F'(T4, 5, )-
iv. If k& < m, take the next value and return to i.
V. Plot the convex-hull of the collection of curvds,...,I',, as an approximation
to F(T).

Algorithm A may not be efficient in the casg is unitarily similar to a direct sum of
matrices because in this case the field of values of the cas@dematrices may degenerate
into line segments. In this event, the next modified algarjttvhich essentially differs in the
choice of generating vectors for boundary points, is more/enient.

Algorithm B
Steps |, Il, and Il are as in AlgorithrA.
IV. Compute the eigenvectors andv,; associated with the largest and smallest eigen-
value ofH (e 71 T).
V. Starting withk = 2, up tok = m, take the following steps:
i. Compute the eigenvectors, andv, associated with the largest and smallest
eigenvalue off (e == T'), respectively.
ii. ComputeTy, a, , andTy, 5, ., the compressions @f to span{ug, ux—1 } and
to span{vy, vi_1 }, respectively.
iii. Compute and dral';, andAy, the boundaries aF (7%, 4,_,) andF (T35, ),
respectively.
iv. If k& < m, take the next value and return to i. Otherwise, continue.
VI. Take the following steps.
i. ComputeTy, s, andTs,4,., the compressions df' to span{u;,v,,} and
to span{vy, un, }, respectively.
ii. Computel’; andA,, the boundaries of (75,4, ) andF (T3, 5., ), respectively.
VIl. Take the convex hull of the collection of curvés, ..., I',,,A1,...,A,, as an ap-
proximation toF(T).

1The respective MATLAB programs are available at the website: //www.mat.uc.pt/ ~ bebiano.
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TABLE 3.1
Performance of Johnson'’s algorithm, Algorittinand AlgorithmB for the 500 x 500 matrix of Example3. L

area acc. digits| seconds

7 | 8.6260 x 10? 0 5.082322

14 | 9.0890 x 10° 1 7.229055

Johnson'’s algorithm 28 | 9.2140 x 10 2 14.252341
56 | 9.2439 x 10° 2 24.169221

112 | 9.2513 x 10 3 47.456900

7 1 9.1064 x 10° 1 3.363152

14 | 9.2060 x 10° 2 6.152282

Algorithm A 28 | 9.2383 x 10? 2 11.847686
56 | 9.2487 x 10° 2 23.233351

112 | 9.2514 x 10° 3 46.187566

7 | 9.2406 x 10° 2 3.424524

14 | 9.2509 x 10° 3 6.330416

Algorithm B 28 | 9.2528 x 10? 3 12.108766
56 | 9.2533 x 10° 4 23.853617

112 | 9.2534 x 10° 4 47.086406

3.1. Accuracy and examples.Algorithm B provides a much better accuracy in the
approximation ofF'(T") than AlgorithmA. Both algorithms behave especially well when
compared with the “outside-in” approach, which merely [leg a polygonal approximation
of F(T) and hence requires a much finer mesh to reach a conveniemtegcThe effort
necessary to plok'(7") to a desired accuracy in these algorithms depends essentiahe
shape. For a fixed shape, the effort is of the same order asfisativing the Hermitian
eigenvalue-eigenvector problem necessary to generateiredany point, thus of the order
of O(n?).

The same arguments as B] puggest that the accuracy of Algorithinincreases withn
asm?. Since in AlgorithmB, the boundary of is approximated by arcs of ellipses which
are tangent to the boundary at two of its points consecytilelermined, one expects that the
respective accuracy increases wittasm*. In Johnson’s method the boundary is piecewisely
approximated by line segments, which depend linearly onesoomvenient coordinate, so
the error involved is of the order df/m?. In Algorithm B, the boundary is piecewisely
approximated by arcs which have well defined slopes at thepeimtts. These arcs must
be at least cubic curves, so the error involved is of the oodiér/m?. Since the boundary
points produced by a given mesh distribute themselves obndbedary with a density which
is inversely proportional to the local radius of curvatuféh® boundary, it follows that the
local accuracy is also inversely proportional to the radiusurvature. This is consistent with
the observation that, with respect to computational eftbit most convenient interpolation
between two successively computed points on the boundaFy{ B is by the unique cubic
which has the correct slopes at the interpolated points.

In arecent paper, Uhliglp] addresses the accurate computation of the boundaryb§
by a method which is similar to AlgorithrB. His careful numerical analysis supports the
expected fast convergence of this algorithm.

ExampLE 3.1. For the plots in Figurg.1, the500 x 500 complex matrixA4 in [3, p. 202]
is considered. This matrix is constructed from the completrin B = F + M, whereF
is the Fiedler matrix® = (|i — j|) and M is the Moler matrix M = UTU with the
upper triangular matrixt’ with «; ; = —1 for j > 4. By adding3 + 5i multiplied by
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(a) Johnson'’s algorithm withh = 7, n = 500 (b) Johnson’s algorithm withn = 21, n = 500

Imaginary Axis
Imaginary Axis

4 -2 [ 2 4 6 8

Real Axis x10°

(c) AlgorithmA with m = 7, n = 500 (d) Algorithm B with m = 7, n = 500
FIGURE 3.1. Comparing the performance of Johnson’s algorithm, Aldort®, and AlgorithmB.

the 500 x 500 matrix whose entries are ones, we obtain the matrign MATLAB nota-
tion A = B + (—3 + 57)oneg500)). The execution time of the different algorithms for this
matrix is compared in Tabl@.1 The subroutine fv.m of the MATLAB "Matrix Computation
Toolbox” has been used to implement Johnson'’s algorithm.

We note that the accuracy of AlgorithmsandB may be improved by choosing a finer
mesh.

4. The iFOV problem: the state of the art. Uhlig [13] provided a complicated solution
to the inverse field of values problem that initially genesgpoints which surround the given
pointz by using the fact that points on the boundan/4f") and their generating vectors can
be computed by Johnson’s meth@}l [Uhlig’'s method proceeds with a randomized approach
to surround: tighter and tighter by successive attempts and iteratinafipes the generating
vector approximation.

In continuation, Carder?] pointed out the connection between the iFOV problem and
iterative eigensolvers and presented a simpler method lofieo based on the following
procedure:

1. The solution of the x 2 case by reduction to a form that is useful for proving the
FQOV convexity.

2. Using propertys, the given point: is surrounded by points on the FOV boundary
and associated generating vectors are determined.

3. From the triangle defined by three points on the FOV bounttaat surround:
and by convexity, generating vectors for the endpoints aha ¢tontainingz are
determined. By compression to the subspace spanned by \begss, iFOV is
solved by reduction to th2 x 2 case.
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A more efficient method for the iIFOV problem than either thimsf2, 13] was presented
in [3] along the following lines:
1. Adirect solution of the x 2 case.
2. The generation of points on the FOV boundary accordingdpgrty6. The valuez
is surrounded by ellipses determined by compressions defigethe generating
vectors of all possible pairs of vertices of the inner appr@tion. For each ellipse,
its intersection with the real axis is determined. If in afijpse there are points
on both sides of, then the corresponding generating vectors are used tceddu
the2 x 2 case and to solve the iFOV problem.
3. Bisection on the angles is used to refine the inner appiiom in the direction
of z.
A relevant aspect of7, 3] is the surrounding of the desired point by four points on
the FOV boundary determined by considering the largest hadsinallest eigenvalues of

the Hermitian matrice$l (e‘w'T) andH e‘i‘)"T> for " — ¢’ = x/2. In our approach,

boundary points are considered that are similarly detexthinowever, they may not surround
the desired point. It is only being required that these gor@long to one of the elliptical
discs. Moreover, we find it advantageous to relax the regmé”’ — 6’ = 7/2.

4.1. Analytic solution of the iFOV problem in the 2 x 2 case. Following Carden?],
givenT € M, andz € C, we exactly determine a unit vector, € C? such that = w}Tw..
Without loss of generality, we may assume that the trac&' @ zero. (If the trace was
nonzero, we would subtra@t (7'/2) from T" and fromz.) Under this assumption, the eigen-
values sum up to zero and may be denoted and—\. Let us assume that the eigenvalues
of T" are nonzero. Furthermore, we may assume that the eigeavailiéare real. (To ac-
complish this, we need to multiply boffiandz by e=*¥ where\ = ae’, a > 0.) A unitary
matrix U can be found such that is transformed into Schur form

U'TU =T = [“ C},
0 —a
wherec is real. Since the field of values is invariant under unitanyilarity transforma-
tions, the value: does not have to be altered. Having in mind that 2ny 2 matrix can be
shifted, scaled, and unitarily transformed into this fome, solve the inverse problem far.

Letz = oz + iy € F(T). Without loss of generality, we may consider the unit vec-

torw, € C? in the formw, = (cosu, *® sinu)”. We find

w:Twz = a cos 2u + g sin 2u cos ¢ + zg sin 2u sin @,

which easily gives

dar £ /c* + 4a2c® — 4c2a? — (4c2 + 16a2)y?

(4.1) cos 2u = 171 2

This relation determines, and the relation

2y
csin 2u

(4.2) sin ¢ =
determiness. Hence, given: € F(T), the values: and ¢ that specify the generating vec-
tor w, must satisfy the above relations, and in terms of the m&trithe generating vector
isUw,.
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If * 4 4a%c?® —4c22? — (4¢® +16a?)y? > 0 (this inequality corresponds to+ iy being
inside the ellipse), itis always possible to determinesuch thatr+iy = wiTw, /wiw, and
conversely. The sought after solution is not necessariilgue[2] because for: + iy in the
interior of F'(T), there exist two linearly independent vectors determined bypdu — 7 /4,
foru # w/4. If w = 7/4, thenw, is a point on the boundary, and the generating vector is
unique provided that the ellipse is nondegenerate. #f 0, then F'(T) is the line segment
defined by the two eigenvalues, and the solution is uniqug fonithe end points. If" = 0,
thenF(T) is a singleton, and any unit vector@? is a generating vector.

The above ideas are now used to develop an algorithm to soév@&OV problem in
the2 x 2 case, which will be crucial for solving the general case. &.&t be two orthonor-
mal vectors belonging tepan{u,v}. Given the two-dimensional compressi@h; of T’
to span{u, v} (cf. (2.1)) and forz € F(T4;), take the following steps

1. Determine the eigenvalues ©f;, A1, \o. Construct a unitary matriXJ which

takesT;; into Schur form

)\1 emd
0 X

2. Letzg = ()\1 + )\2)/2 anda = |)\1 — )\2|/2 Thus,

Ta'aZUTé%)U*:U{ } U*, d>0, 6=arg(\ — \2).

d i
T = [8 —a} = e (1) — % 1),
andwy = e~ (z — z9) € F(TL2).
3. Agenerating vectof©® = (¢, ¢{2)7T of w, is easily found using4.1) and @.2).
Hence( = ((1,¢)" = U¢¥) is a generating vector af

5. Algorithms for the inverse FOV problem. Given ann x n complex matrixT
andz = z + iy € C, and lete > 0 denote some prescribed tolerance (e.g-,10~||T'|| for
a double precision computation). Our approach to the iF@blem is based on the Marcus-
Pesce Theorem having in mind that we can exactly generatea@nyin the interior of the
ellipses as well as on its boundary as described in Seétibn

Algorithm A’
I. Discretization of the intervgD, 7r]. For some positive integen > 2, choose amn-
meshd, = w(k — 1)/m,fork =1,...,m.
Il. Fork e {1,...,m} starting withk = 1, take the following sub-steps.

i. Construct the matrig), = H (e*“’k T) , and compute its largest and smallest
eigenvalues. Determine a pair of associated eigenvegjoedv,. In each
step this is a well defined Hermitian eigenvalue-eigenveatoblem.

i 1 [ Amin(Tk) — Mmax(Tk)| < €, thenF (T) is approximately a line segment so
thatT is approximately either Hermitian or skew-Hermitian (ooaplex shift
of one of these). If the line segment degenerates to a pben/7t is a scalar
matrix. In either of these cases, it can be easily decided#longs toF' (T)
and if so, a generating vector may be determined. Otherais#inue.

iii. Check whether the given point = = + iy belongs to the intersection of the
following half-planes

xcos O + ysin 0 < Amax(Tk)
xcos O + ysin O > Apin (Tk)-

If z is notinside the above half-planes intersection, thenF'(T"). Otherwise,
continue.
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iv. Take the compressidh,, ., of the matrixZ”to span{u, v }. If 2 € F(Ty,0, ),
let Ty = To,v,, @and continue to Ill. Otherwise, take the next valué: aind go
toi.

Ill. The generating vector of € F(T) is given byw, = a¢; + 92, wherea, v are
orthonormal vectors such tha2.() holds, and(;, (, are defined as in iter8 in
Sectiond. 1.

Next we introduce a slight modification to Algorith&l changing the form of how the
compressions are generated. This modification allows #dartrent of some deficiencies of
Algorithm A’ involving the degeneracy of the elliptical discs into lirgments.

Algorithm B’

I. The same as step | of Algorithi'.
II. The same as sub-steps i, ii, and iii of step Il of Algoritéthwith & = 1.
Ill. Fork € {2,...,m}, starting withk = 2, take the sub-steps i, ii, and iii of step Il of

Algorithm A’.
iv. Take the compressidl,, , ., Of T tospan{ug_1,us}. If 2 € F(Tu, ;)
let Tqs = Tu,_,a, and continue to IV. Otherwise, take the compression

Ty 1w, Of T to span{vi_1,vi}. If 2 € F(Ty,_, ), l€tTas = Th,_, o,
and continue to IV. Otherwise andkf< m, take the next value df and go to
i of this step.
IV. Compute Tj,5, and T;,;,., the compressions of" to span{ui,v,} and
to span{vy, u,, }, respectively.
V. As Step IIl of AlgorithmA’.

Algorithms A’ and AlgorithmB’ may be refined by replacing the intenjal 7] by a
smaller one around the perpendicular direction of the stfpthe boundary at the closest
point to the point under investigation and by choosing a fieshmin that interval.

6. Discussion and examplesWe observe that Algorithmgé’ and B’ are particular
forms of a super-algorithm in which the compressiofi’ab the space spanned by eigenvec-
tors associated with the largest and smallest eigenvaftiles blermitian matricesl (e—i"kT)
andH (e~*(®»=*)T) are considered for some convenientn AlgorithmsA’, we havey =
and in  Algorithm B/, «@ = 02, as the largest eigenvalue
of H (e7"T) is the smallest eigenvalue &f (e=*®~™T) and ;1 = 0 + 0. How-
ever, other values af may be more appropriate according to the particular casntadto
consideration.

Our algorithms are deterministic in the sense that theyrohéte a solution provided the
considered discretization of the intery@] 7] is fine enough. A lack of determinism occurs if
the boundary of'(7T") contains line segments (also calft portiong, which happens when
the extreme eigenvalues Hie "%+ T') for a certairk have multiplicities greater than one. For
a given point inF'(T'), the algorithms will always determine a generating vectbictv may
only depend on the chosen mesh.

ExXAMPLE 6.1. Our first example featuresl@ x 10 matrix generated by the MATLAB
command7’ = randr(10) + (3 + 3i)oneg10). The obtained results are summarized in
Table 6.1 and in Figure6.1 illustrating the advantage of Algorithi@’, which requires a
smaller value ofn to solve the problem than Algorith#’ does without an implementation
of the refinement procedure.

EXAMPLE 6.2. The45 x 45 complex matrix whose field of values is depicted in Fig-
ure6.2is defined asd = B + (—3 + 5i)oneg45), whereB = F + iM (cf. Example3.1).
Our results for the test point = —200 + 500 are summarized in Table2 and compared
with those for the algorithms of[ 3]. In Figure6.2, the advantage of Algorithm&” andB’,
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FIGURE6.1. Solution of the iFOV problem for the matrik = randn(10)+-(3434¢)ones(10) of Example5.1
using AlgorithmsA” and B’ with 1« = 23.5 4 204 being the point indicated.

TABLE 6.1
Performance of Algorithm&/, B’, andi nvnr p from [3] for Example6.1
algorithm | m | seconds| eigenanalyse$ error
1= 23.5 + i20
invnrp  from [3] | — | 0.027332 11 3.5527x1071°
Algorithm A’ 41 | 0.043476 33 7.9441x10715
Algorithm B’ 2 | 0.036121 2 1.4648 x 10714
= 23.74120
invnrp  from [3] | — | 0.026650 12 3.5527x 10715
Algorithm A’ 41 | 0.042243 33 1.0658 x 10~ 14
Algorithm B’ 5 | 0.050956 5 5.0243x 10715
w=23.7289639701427 + 20
invnrp  from [3] | — | 0.026945 12 7.1054x 10715
Algorithm A’ 41 | 0.043584 33 7.1054x 10715
Algorithm B’ 5 | 0.050975 5 3.5527x 10715

which solve the problem with a smaller number of eigenvectord eigenvalues analysed
than compared to the approachesand], is illustrated.

We have also replaced the interv@l =] of step | in AlgorithmB’ by [a, « 4 =] for
a = +w /4, +£7/2, £37 /4. We found that the performance of the algorithm is only gligh
affected by this replacement confirming that the good qualfithe performance is not acci-
dental.

EXAMPLE 6.3. In our last example, th&’88 x 188 Jordan blockJ for the eigen-
valuel + 3i (with all co-diagonals equal tb) and the test point = 1.707 + 43.707, which
lies inside F'(J) within a distance ofl0~> to the boundary, is considered. As it is well
known, in this cas&’(.J) is a circular disc centered at+ 3i. Since the fields of values of
the two-dimensional compressions of this high dimensidoadlan block are elliptical discs
with a huge eccentricity, the solution of the iFOV problemuiees a very careful considera-
tion of the relevant range @, in order to find an elliptical disc which contains the pagint
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FIGURE 6.2. Solution of the iFOV problem for the matrix = (B + (—3 + 5i)oneg45)) and the point
u = (—200 + 5004) considered in Examplé.2 using AlgorithmsA’ andB’.

TABLE 6.2
Performance of Algorithma&’, B, i nver sef ov [2], andi nvnr p [3], for Example6.2
algorithm | m | seconds| eigenanalyses error
inversefov  from[2] | — | 0.204922 3 2.2737x 10713
invnrp  from [3] — | 0.028962 3 1.6078x 1013
Algorithm A’ 2 | 0.028287 1 1.1369x 10713
Algorithm B’ 2 | 0.037529 2 3.4224x 10713
TABLE 6.3
Performance of Algorithma/,B’, i nver sef ov [2], andi nvnr p [3] for Example6.3.
algorithm | m | seconds| eigenanalyses$ error
inversefov  from[2] | — | 0.478268 3 2.0948 x 10715
invnrp  from [3] — | 0.261283 3 4.9651 x 10716
Algorithm A’ 2 | 0.276974 1 1.6012x1071°
Algorithm B’ 3 | 0.395581 2 2.2204x 10716

We have considered the refinement of Algorith&iswith m = 2 andB’ with m = 3 and
the interval [arctan(3'707*3 3.707-3) 4 0.0577} . The results are summarized in Ta-

Cror—1)> arctan(yro—y

ble 6.3. The performance of Algorithm&’ andB’ compares very well with the ones of the
approaches inZ 3].

Our codes have been tested on a PC with an Intel Core 2 Duo TSR GHz) proces-
sor and3 GB random-access memory (RAM).
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