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INVERSION OF CENTROSYMMETRIC
TOEPLITZ-PLUS-HANKEL BEZOUTIANS *
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Abstract. In this paper we discuss how to compute the inverse of a nomisingentrosymmetric Toeplitz-plus-
Hankel BezoutiarB of ordern and how to find a representation Bf- ! as a sum of a Toeplitz and a Hankel matrix.
Besides the known splitting property & as a sum of two split-Bezoutians, the connection of therlattéiankel
Bezoutians of about half size is used. The fast inversioh@fHankel Bezoutians together with an inversion formula,
which was the subject of a previous paper, leads us to arsioveformula forB—! as a Toeplitz-plus-Hankel matrix.

It also enables us to design &{n?) inversion algorithm.

Key words. Bezoutian matrix, Toeplitz matrix, Hankel matrix, Toeplitip-Hankel matrix, matrix inversion

AMS subject classifications.15A09, 15B05, 65F05

1. Introduction. The present paper can be considered a continuatiod] ahgd [4]. In
particular, in B] we discussed how to invert a Hankel Bezoutian, and we ptedemcorre-
sponding fast algorithm. Here, we will use these resultffeinversion of a centrosymmetric
Toeplitz-plus-Hankel Bezoutian (shortly, + H Bezoutian). A motivation to deal with the
inversion of Bezoutians was recently given byther and Halwass; seg][

Historically, Bezoutians were introduced in connectiothvelimination theory; seelp).
Much later, their importance for the inversion of Hankel dioeplitz matrices was discovered
by Lander [L4]. In particular, he observed that the inverse of a nonsengdbhnkel (Toeplitz)
matrix is a Hankel (Toeplitz) Bezoutian and vice versa. Ayéaamount of literature devoted
to the inversion of Toeplitz and Hankel matrices has appkarEhe starting points were
the papers of TrenchLB] and Gohberg and Semencd][ Later, in [9], it was discovered
that the inverse of a nonsingular matrix which is the sum obeplitz and a Hankel matrix
(briefly T+ H matrix) possesses a generalized Bezoutian structure.iddsitwith such a
Bezoutian structure are referred tolas- H Bezoutians. There is a number of papers dealing
with the inversion ofl’ + H matrices; see, e.g5[11, 12, 15, 16] and references therein.

The converse problem—the inversion of Bezoutians—has bem ghort shrift up to
now. In [8, Part I, Subsection 3.8], the inverse of a Hankel Bezoutias eomputed but
only in the strongly nonsingular case. The motivation theas that such a procedure is of
importance for solving matrix equations of Lyapunov-type[7] (see also 13]), a formula
for the inverse of a Hankel or a Toeplitz Bezoutian was preskim the language of matrices
generated by rational functions. A general approach torthersion problem for Hankel or
Toeplitz Bezoutians was given id][

As far as we are aware of, the question of how to obtain fagiréion algorithms or
representations for inverses ©f+ H Bezoutians is discussed here for the first time. We
assume that the matrices under considerations possesslitiored symmetry. The reason
behind this is that on the one hand such additional symnsetfistructured matrices are not
unusual, but on the other hand this symmetry allows a sgiittihe aim for the future is the
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fast inversion of generdl' + H Bezoutians, but this requires new ideas and seems to be a big
challenge.

We consider the setting where the entries of the matricegadsan from an arbitrary
field F of characteristic different from two.

Let us now sketch the main ideas of the papErt+ H Bezoutians are matrices of the
form B = [b;; ]Zj_:lo for which there exist eight polynomiags, f; (1 < i < 4) such that in
polynomial language

n—1 4
(t—1s)(1—ts) Z bijt's! = Zgl(t)fl(s)
§,j=0 i=1

As already indicated abové&; + H Bezoutians arise as the inverses of nonsingtilar H
matrices, i.e., matrices of the forfm;,_; + siﬂ]ﬁio. Conversely, the inverses of nhonsingu-
lar T'+ H Bezoutians ard” + H matrices 9.

In the present paper, we restrict ourselves to centrosyrioet+ H Bezoutians whose
inverses are centrosymmetfic+ H matrices. Recall that a matri® is called centrosym-
metric if B = J,, BJ,,, whereJ, is the flip matrix

0 1
(1.1) Ip =
1 0

Thus, given a nonsingular, centrosymmeffie- H BezoutianB, our aim is to compute the
Toeplitz and Hankel parametefs; } and{s;} of its inverse, & + H matrix represented by

n—1

B*l = [a’i—j —+ Si+j ]i,j:(] .

This task is accomplished in several steps. Our startingt ®the fact that the centrosymme-
try of B leads to a splitting of the forl® = B, + B__, whereB, , are special’ + H Be-
zoutians, which are called split-Bezoutians(ef) type. This splitting was discovered in
[10, Section 8] (see alsd.P]) and arises from the property that both the space of all sgthm
ric vectors & = J,,x) and the space of all skewsymmetric vectots{ —J,,x) are invariant
subspaces of the centrosymmetric mafix

The second step consists in relatiBg . andB__ to Hankel Bezoutians. In the case the
matrix B being of odd order, say = 2¢ — 1, we use a result ofl] to transformB_ ; into a
nonsingular Hankel Bezoutian of ordérSimilarly, the matrixB__ can be transformed into
a Hankel Bezoutian of sizé— 1. In summary, we arrive at a representation of the form

By 0

B=W
BY

WT

whereW is a certain explicit transformation (involving triangulaatrices) andBS), Bg)
are the mentioned Hankel Bezoutians. A similar represienté derived in the case of even
matrix order,n = 2¢, with both Hankel Bezoutians of siZe

Now we are in a position to use the formulas and algorithnebdished in §i] to compute
the inverse of the Hankel Bezoutians, which are Hankel ewegriConsequently, the following
structure of the inverse of tHE + H BezoutianB is obtained,

H, 0

-1 _ T
e

A
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where H,, H, are Hankel matrices, the parameters of which are given bydhgion of
corresponding Bezout equations; ség [It remains to discover the Toeplitz-plus-Hankel
structure behind this representation. In other words, wet Wwafind a Toeplitz matrix” and

a Hankel matrixd such that

B '=T+H.

This goal can be achieved utilizing finite versions of resgitzen in [L]. These results are
formulas between Hankel matrices and four kinds of pamricsymmetricl’ + H matrices. It

is perhaps interesting to note that these four types of oestiare related to the above Hankel
matricesH; and H,, where one has to distinguish between the case of even anordeid

The paper is organized as follows. Starting with some piigknies in Sectior?, in
Section3, basic observations ofi + H matrices are made, which are useful to understand
the final result and the structure of the formulas encoudtefghe issue that the symbols
of 7"+ H matrices are not uniquely determined (since there are momaatrices which are
both Toeplitz and Hankel) is also discussed.

In Section4, known, but for us important, results on Toeplitz-, HankehdT + H Be-
zoutian are recalled. In particular, an answer is given ®stjans such as how to determine
whether a matrix is & + H Bezoutian and what is specific if this matrix is centrosymmet
ric. Here also the structure of the splitting matrideés.. is investigated. In Sectiof, we
explicitly compute the inverses of certain triangular rneats which occur in our formulas.
Section6 highlights the connection between split-Bezoutians-ef type (of odd order) and
Hankel Bezoutians. Inversion formulas for centrosymroefri+- H Bezoutian of odd and
even order are proved in Sectigrand Sectior8, respectively.

In Section9, we reinterpret the representations given for the invensdke previous
sections as a sum of a Toeplitz and a Hankel matrix and didtoxssthe corresponding
parameters defining these matrices can be computed. Heresthles of [] are used.

Section10is not only meant as a summary but even more. Here we desigga@itiam
for the computation of the inverse of a centrosymmefrie- H BezoutianB of ordern.
The parameters in th€ + H matrix which occur in the representation Bf ! obtained in
the previous section can be computed witn?) operations (additions and multiplications).
Note that, as pointed out in Secti@nthese parameters are not unique.

In Sectionl1we present alternative representation®of' as al'+ H matrix. These rep-
resentation are slightly more complicated, however, theaof nonuniqueness is resolved.
For matrix-vector multiplications they are equally suleaand have the advantage that the
parameters are unique.

Besides the inversion of centrosymmetfic+ H Bezoutians, there is the related inter-
esting problem of the inversion of centroskewsymmeéitie H Bezoutians. Though similar,
it is not completely analogous to the centrosymmetric caslendll be the subject of a forth-
coming paper.

2. Preliminaries. Throughout this paper, we consider vectors or matricesettiges
of which are taken from a fiel@ with a characteristic not equal & By F"™ we denote the
linear space of all vectors of length by F*" the linear space of ath x n matrices, and,,
denotes the identity matrix if™ =",

We will often use polynomial language. We denote ¥{¢] the linear space of all
polynomials int of degree less than, the coefficients of which are ifi. To each vec-
torx = (xj)?;ol € F", we associate the polynomial

n—1
x(t) =1, () 'x = Z z;t! € F™[t],
j=0
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where
2.1) L(t) = (1,2, m )"

Moreover, we associate to a matux= [ a;; ">, the bivariate polynomial

170

At,s) =1, ()T AL, ( Z aijt's’

1,j=0

and call it thegenerating polynomial ofd.
For a vectox € F™, we write

= JInX,
where.J,, is introduced in {.1). In polynomial language this means
x7(t) = x(t~Hm .

With this notation, a vectox € F” is said to besymmetridf x = x/ andskewsymmetric
if x = —x’. The matrices

Py = 3(I,+ J,)

1
2

are the projections frof™ onto the subspacé®} consisting of all symmetric, respectively
skewsymmetric vectors, i.e.,

g"[::{XEIF : xJzix}.

An n x n matrix A is calledcentrosymmetriif A = J, AJ,. Itis easy to see that a cen-
trosymmetric matrix4d mapsF’} toF%,i.e., AP, = Py AP,.

The various spaceB; for n even or odd are related to each other. This can be most
easily expressed in polynomial language. In fact, we have

F0t) = { (t+1)x(t) : x(t) eFY ] },
(2.2) F20) = { (¢ — 1)x(t) = x(t) e FA[1] },
F*H ] = { (2 - 1)x(t) : x(t) e FA 1] }.

These basic observations, which will be of importance in ten.7, Theorem7.1, and
Theorem8.1, can be seen as follows. Let. € F%. Then in case: is even, we have
x_(1) =x4(—=1) = 0, while in caser is odd, we havex_ (1) = x_(—1) = 0.

3. Basics on Toeplitz-plus-Hankel matrices.Let us first introduce Toeplitz matrices
and Hankel matrices. To a given vector= (a;)7~", ., € F?"~! we associate the x n
Toeplitz matrix

To(a) = lai—j1i520
and to a vectos = (s;)?";? € F2"~! we associate the x n Hankel matrix
—1
Hp(s) = [sit]; =0 -

The vectorsa ands are called thesymbolof T;,(a) and H,,(s), respectively. For the symbol
of the Hankel matrices, occasionally a different indexintj ke useful. Note that a Hankel
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matrix multiplied (from the left or from the right) by the flipatrix .J,, introduced in {.1) is
a Toeplitz matrix.

A matrix which is the sum of a Toeplitz and a Hankel matrix ifdezh Toeplitz-plus-
Hankel matrix shortly7+ H matrix. For such matrices it is convenient to adopt the foiimy
notation. Fom = 2¢ — 1 we write

£—1

(3.1) Tw(a) + Hn(s) = [ai—; + Si+j}i,j:7€+1 J
while for n = 2¢ we write
(32) Tn(a) + Hn(S) = [ai,j —+ 8i+j+1]f;i_£ .
Alternatively, we could also write (in both cases)

n—1

Tn(a) + H’ﬂ(s) = [ai*j + SiJrj*nJrl]i’j:O .

Therein, we ses = (s;)!_",, ., € F?"~1 in slight contrast to the above definition.

REMARK 3.1. Hankel matricedi,,(s) are symmetric, and Toeplitz matric&s(a) are
persymmetric, i.eT,, (a)” = J,, T, (a)J,. Thus, a Toeplitz matrix is symmetric if and only if
it is centrosymmetric, while a Hankel matrix is persymneetiiand only if it centrosymmet-
ric. Consequently, & + H matrix is symmetric if and only if its Toeplitz part is symmiet
A T + H matrix is persymmetric if and only if its Hankel part is pemayetric.

A centrosymmetrid’ + H matrix is always symmetric and persymmetric. Indeed, the
centrosymmetry of, (a) + H,(s) implies

T.(a) + Hy(s) = Tn(a‘]) + Hn(sJ).
Taking the transpose yields
Tn(aJ) + Hn(s) = Tn(a) + Hn(sJ)'

Adding and subtracting these two equations and dividin@ byplies 7},(a) = T, (a”)
andH,,(s) = H,(s”). From here the symmetry and persymmetryipta) and H,,(s) and
thus of the sum follows.

Let us continue with a few basic observations aliowtH matrices, which are motivated
by our aim to construct’'+ H matrices as inverses 6+ H Bezoutians. As we will see soon,
aT+ H matrix given by 8.1) or (3.2) does not uniquely determine its symbalands. Since
this nonuniqueness issue will naturally reoccur in our tmiesion, it is convenient to clarify
the relationship between symbols and the matrix now. Wedanssider the general case, then
the centrosymmetric case, and finally more specific casésvithalso be encountered.

A generalT' + H matrix of sizen involves4n — 2 parameters. However, matrices of
“checkerboard pattern” are both Hankel and Toeplitz. Hettue vectorsa,s € F2"~! are
not uniquely determined in the matr, (a) + H,(s). In fact, the linear space of &l + H
matrices of sizex has dimensiodn — 4.

For centrosymmetri€), (a)+ H,, (s), the considerations in RemadkLimply thata = a”’
ands = s”’. In other wordsa,s € Fi"‘l, and this is also sufficient for centrosymmetry.
Thus,2n parameters are involved. However, for the same reason &s abe linear space of
all centrosymmetrid’ + H matrices of sizex has dimension — 2.

We continue with a simple general observation; see[lemma 5.1].

REMARK 3.2. Each centrosymmetric matrix can be uniquely written as the sum of
two (centrosymmetric) matrice$ = A + A_ which possess the additional symmetries

(3.3) A PL =P Ay =+A,.
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In fact, we can putd. := APL = PLA. In other words, all rows and columns df, are
symmetric vectors whereas all rows and columnd ofare skewsymmetric vectors. Further-
more,

rank A = rank A, +rank A_ .

Applying the previous remark to a centrosymmeffie- H matrix A, it follows that A
andA_ are (centrosymmetrid) + H matrices as well. WhaB(3) means fofl’+ H matrices
in terms of the symbol is stated next. We use the notdtionto distinguish the two cases.

PROPOSITION3.3. Let AL € F"*" be aT + H matrix satisfying(3.3). Then there
exists a vectoa®) € F3"~" such that

(3.4) Ay =T, (a®) + H,(a™®).

Proof Let Ay = T),(a) + H,(s) witha,s € F3""'. ThenA, = +A, Py implies that
Ay ==+i(T.(ats)+ Hy(ats)).

Puta® := +1(a+s) e F3* ', and 8.4 follows. 0

As mentioned above, the Toeplitz and Hankel symbolsfa matrix are not uniquely
determined. Notice that the proposition does not claim ¢vaty representation of L as a
sum of a Toeplitz and Hankel matrix is of the forf4). In fact, this is easily seen to be false
in general.

Moreover, even if we restrict ourselves to representai{@m, the vectora(®) need not
be unique. In fact, assung,(a®)) + H,,(a®)) = 0 with a®) € F3*~', and introduce

enp = (o,0,q,... ,ﬁ,a)T c Fi"_l,
Then

alh) — 0 if n odd, alc) — ey Iif nodd
€eqs_o Iifneven, €q,o If neven.

For the dimension" of the linear space of all' + H matrices of orden satisfying 8.3),
we obtain that/;” = n for n odd andd;; = n — 2 for n odd, whiled- = n — 1 for n even.
Notice thatd," + d;, = 2n — 2 as observed earlier.

4. Bezoutians.

4.1. Displacement transformations.In order to define Hankel and Toeplitz Bezou-
tians, we use transformatioRg; andV, which transform a matrixB = [b;;]7- %, € F"*"

i,5=0
into a matrix of F(»+1)*(»+1) gccording to the rule
Vu(B) = [bi—1; = bij-1]; ;-0 »
VT(B) = [b” — bifl,jfl]zjzo .

Here we pub,; = 0if i or j is notin the se{0, 1, ...,n— 1}. In polynomial language, these
transformations are given by

(Vu(B)) (t,s) = (t —s)B(t,s),
(Vo(B)) (t,8) = (1 — ts)B(t, ).



ETNA
Kent State University
http://etna.math.kent.edu

112 T. EHRHARDT AND K. ROST

For the definition of Toeplitz-plus-Hankel Bezoutians, veed the transformation

Vrpn : FPX? — Ft2)x(n+2)

n—1

which sends a matri = [b;;], ;_ into

n+1
i,j=0 °

Vorya(B) =[bi1j+bi—1j-2—bij1—bi2; 1]
Again, we puth;; = 0if ¢ or j is notin the se{0,1,...,n — 1}. Notice that
(Ve (B)) (t,5) = (t — s)(1 — ts)B(t, )
in polynomial language. Moreover,
Vriu(B)=Vr(Vu(B)) = Vu(Vr(B)).

4.2. H Bezoutians andT Bezoutians. The Hankel Bezoutiarfbriefly H Bezoutian)
of two vectorsu, v € F"*! is, by definition, then x n matrix B = Bezy (u, v) with the
generating polynomial

B, ) = M0V = V().

Clearly, in caser andv are linearly dependeni3 is the zero matrix.
PROPOSITION4.1. A nonzero matrixB € F"*™ is an H Bezoutian if and only iB is
symmetric and

rank Vi (B) = 2.

In this case there exists a rank decomposition of the form

Vi) =l ] | v —u v,

with linearly independent vectors v € F* ™! and B = Bezy (u, v).
REMARK 4.2. Different pairs of (linearly independent) vectors nmgduce the same
nonzeroH Bezoutian. In fact,

Bezp(u,v) = Bez g (4, V)

if and only if there is & x 2 matrixp such thafa V] = [u v] ¢ with det p = 1.

REMARK 4.3. It is well-known (see, e.g.8]) that Bez g (u, v) is nonsingular if and
only if u(t) andv(t) aregeneralized coprimevhich means thati(¢) andv(t) are coprime
in the usual sense and thite u(t) = n ordegv(t) = n.

The following connection between Hankel matrices &hBezoutians is a classical result
discovered by Lander in 19744].

THEOREM 4.4. A nonsingular matrix is arf{ Bezoutian if and only if its inverse is a
Hankel matrix.

The following question arises: given thé BezoutianB of the generalized coprime
polynomialsu(t), v(t), how can we compute the symbwbf its inverse, a Hankel matrix
with H,,(s) = B~1? The answer is given inf].
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THEOREM 4.5. Assumeu(t),v(t) € F"*[t] to be generalized coprime, and let
B = Bezg(u,v). Then the Bezout equations

(4.1) u(t)a(t) +v()B(t) = 1

(4.2) w ()7 (1) + v/ (1) (t) = 1

have unique solutions(t), B(t),~(t), d(t) € F"[t], and
B! = H,(s),

with s = (s;)7", % € F2"~! given by
s7(t) = —a(t)d(t) + Bt)(1).

Further possibilities for the computation sfare discussed in4]. For instance, it is
found that it suffices to solve only one of the Bezout equati@til) or (4.2).

Analogous results can be obtained Tareplitz Bezoutiafbriefly T Bezoutians), which
are defined as matricds$ = Bezr(u, v) of ordern with the generating polynomial

u(t)v’/(s) — v(t)u’(s) .

Bt,s) = 1—ts

Here,u,v € F**'. A nonzero matrixB € F"*" is aT Bezoutian if and only ifB is
persymmetric and

rank VB = 2.
There is a simple relation betweéh andT’ Bezoutians,
Bezp(u,v) = —Bezy(u,v)J, .
Thus, to all results aboutl Bezoutians, there are corresponding resultgf@ezoutians.

4.3. T + H Bezoutians. A matrix B € F"*" is called aToeplitz-plus-Hankel Be-
zoutian(briefly T' + H Bezoutian) if

rank Vryg(B) < 4.

This condition is equivalent to the existence of eight polymals (vectors)g;(t),
£;(t) (i =1,2,3,4) in F**2[t] such that

4
(t—s)(1—ts)B(t,s) = > _gi(t)fi(s).
i=1

The vectorg,, f; (i = 1,2,3,4) are not uniquely determined by. However, two different
choices are related to each other by a simple transformasézn]L 7].

Clearly, T Bezoutians as well a§ Bezoutians are alsb + H Bezoutians. But the sum
of aT- and aH Bezoutian is, in general, nota+ H Bezoutian.

The following important relationship was proved Bj.[

THEOREM 4.6. A nonsingular matrixB is aT + H Bezoutian if and only if its in-
verseB~! is a sum of a Toeplitz and a Hankel matrix.

If B is a matrix of ordem > 2 andrank V., (B) < 4, then the first and the last
column or the first and the last row @ are linearly dependent. Hence, for+ H Be-
zoutian(n > 2) to be nonsingular, it is necessary thatk V. (B) = 4; see P].

A simple criterion for the nonsingularity of & + H Bezoutian in terms of the eight
vectorsg;, f; (i = 1,2, 3,4) has not yet been discovered.
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4.4. CentrosymmetricT + H Bezoutians. Let us now specialize t6+ H Bezoutians
B which are centrosymmetric, i.el, B.J,, = B. The following decomposition result, proved
in [12], characterizesonsingular centrosymmetrid’ + H Bezoutians. The nonsingularity
criterion is related to the greatest common divisors of twtypomials, henceforth denoted
by ng('v )

Hereafter, the subscripts or — of a vector designate the symmetry or skewsymmetry of
this vector.

LEMMA 4.7.Ann x n matrix B is a nonsingular, centrosymmetric+ H Bezoutian if
and only if V4 y (B) admits a representation

(4.3) Vrin(B) =uivi —viul +u vl —v_u’,

whereuy, v € F*? such that

1 if n odd

(4.4) ged(uy (1), v (1) = {t+ 1 if n even

andu_,v_ € F"*2 such that

t? —1 ifnodd
t—1 ifneven

(4.5) ged(u_ (1), v_ (1) = {

Notice that ifu;, v, € F:2 with n even, thert + 1 is a common divisor ofy; (t)
andv (t) due to @.2). Similar statements hold also far- andv_. Thus, it is justified to
call the greatest common divisarinimalin the above casegl ) and @.5). Obviously, in
view of the symmetriespy, vy € F’i”, if bothdeguy (¢t) < nanddeg vy (t) < n are true,
then zero is a common root af. (¢) andv (¢). As a consequence, #(4) or (4.5 hold, then

max{deg(u(t)),deg(vy(t))} =n+1,

respectively.

On the other hand, every matrix satisfying @.3) with uy, vy € IFZE+2 is a centrosym-
metricT + H Bezoutian even if the greatest common divisors are not na@him

Moreover, since

(Vo (B)(t,s) = =(Vriem(B))(s: 1),

any nonsingular, centrosymmetfic+ H Bezoutian is a symmetric matrix. This follows, of
course, also from Theorem6and Remarld.1 Notice that the assumption of nonsingularity
is essential. For instance, eaBhc 33 satisfying.Js B = B.J; = B is of the form

b
B = d
b

ISECIIS]
ISEQIIES]

Such matrices are singular, centrosymmettig- H Bezoutians, which are symmetric only
if b=c.

An immediate consequence of Lemrd is the following theorem. In fact, for its proof,
it suffices to write down4.3) in polynomial language.
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THEOREM4.8. A nonsingular, centrosymmetric + H BezoutianB of ordern allows
the following (unique) splitting
(4.6) B=B, +B__,
whereB, . = P, BandB__ = P_B are special centrosymmetric + H Bezoutians,

uy (t)ve(s) — vi(t)us(s)

Bealts) = =0 50 —ts)

and whereuy, vy € ;2 satisfy(4.4) and (4.5).
We call B, ; or B__ split-Bezoutian of+) or of (—) typeand write

(47) Byt = Bezsp(uivvi)'

The matricesB, ; andB__, besides being centrosymmetric, have the following aolat
symmetries,

(4.8) By P, =P By =4+Byy.

Thus, the splitting4.6) is just that of Remarld.2. This means that, as already stated there,
all rows and columns aB  are symmetric vectors, whereas all rows and column3_af

are skewsymmetric vectors. Additionally,. , andB__ are symmetric matrices. Hence, all
entries of each of these matrices are determined by theeentrithe highlighted triangle—
which is about the eighth part of the matrix—in the followiniggiram.

Clearly, the entries of this triangle are given by the fjfst + 1 entries ofu, v, in the(+)
case and by the firgt; | entries ofu_, v_ in the(—) case. Here - | denotes the entire part.

For the split-Bezoutians, the following statement is agales to Remark.2. Different
pairs of (linearly independent) vectors may produce theesaomzero split-Bezoutian. In
fact,

(4.9) Bezgp(ug,ve) = Bezg, (Ga, V1)

if and only if there is & x 2 matrix oy suchthaftiy V.| =[uy vi ]y withdet oy = 1.

REMARK 4.9. A centrosymmetri@’ + H BezoutianB which admits the splitting4.6)
hasF’; andF” as invariant subspaces with, | [F”} and B__|F” being the corresponding
restrictions. Thereforel3 is similar to the direct sum oB, | [F"} and B__|F” and thus is
nonsingular if and only if bot3, | |F? and B__|F" are invertible. The inverses can be
identified withT + H matricesA, and A_ which are of the form3.4). This is due to the
symmetries §.3) and ¢.8). In fact, as will be shown in more detail latd?, > = A, + A_.

REMARK 4.10. Given a centrosymmetric matrix of ordern, one can ask how to
decide whetheB is a nonsingulail’+ H Bezoutian and how to determine vectars andv 4
occurring in ¢.6) and @.7). This can be done by the following procedure.



116

ETNA
Kent State University
http://etna.math.kent.edu

T. EHRHARDT AND K. ROST

. ComputeB, ; := P.BandB__ := P_B.
. Verify whetherank Vo g (B11) = rank Vg (B__) = 2.

(If this is not fulfilled, stop:B is not al'+ H Bezoutian o1B is a singular Bezoutian.)

. Determine basefu., v} in the image oN .y (Byy).

(Due to the assumption of centrosymmetry, we hayev.. € IFZE”.)

. Verify whether the greatest common divisors {i. (t), v (¢)} are minimal,

cf. (4.4), (4.5).
(If this is not fulfilled, stop:B is singular.)

. Using the vectorsi. and¥ . (chosen in Step 3), compute the unique vectors

andiy such that
Vrsn(Bis) =usvi —vial.

In fact, itis easy to see that, = A\, v, anduy = A;lﬁi with someAy € F\ {0}
so that we finally obtain

VT+H(Bii) = uivi — viui.

(To determine\ . it remains to compare a nonzero entry\of- i (B1+) with the
corresponding entry aiifri —v4ul)

. Now,B = B, + B__ isanonsingulaf’ + H Bezoutian with

Byt = Bezgy(uy,vy),

where the two pairgu, v, ) and(u_,u_) are unique up to transformations dis-
cussed in4.9).

5. Inversion of certain matrices. In the following sections, certain upper triangular
matrices and their inverses will occur, which are imporfanapplying our algorithm to the
inversion of7"+ H Bezoutians in Sectioh0. As a preparation, we are now going to introduce
these matrices and compute their inverses. One of the msiis¢hel x ¢ matrix

(5.1)

@ 5
0
L 0 (%)
_ . 7)) if j >iandj —iis even
= id lf.l with i = (J2 !
Qo= laulij=o & 0 otherwise.



Upon defining the followind x ¢ upper-triangular Toeplitz band matrices,

(5.2) T,:=

0

TOEPLITZ-PLUS-HANKEL BEZOUTIANS

we also introduce the following thréex ¢ matrices

(5.3)

Ry :=1T,Qq

1 =1
1
T =
L 0
RF =T;Q.

Note that the entries adRy = [y, ]Z;io are given by

and that the entries dtj" = [r

The inverses of)y, Ry, ande,,t can be described in terms of the matrix

Noting that(~’;") = (=1)*(“t*), whence

)-c(

U := [uij ]

’I’ij—

+
T

<v2.
1
0

(—1

4,J=

j—i)
2

J

(o

i

if j =1,
otherwise

, are given by

if 7 > ¢andi — jis even

= i(ngfl) if j > iandi — jis odd

£—1
1,§=0,

—1—1

j—i

we observe that this matrix reads as

Uy =

[ (

if i > 7.

—i—1

Kent State University
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+1

) ifj>iandj—iiseven

i) ifj>iandj—ieven
2

0

otherwise
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LEMMA 5.1. We han]ngQg = 1Iy.
Proof. As usual, we let(¢) = 2@kt gor o — 0,1,..., and (%) = 0,
fork =—1,-2,.... The(i, k)-entry of U,T,Q), is given by

-1 . .
—i—1 —i—1 k

(g — wij—2)aje = Y {( joi ) - (H B 1)} <k—j)>
=0 FEI(i,k) 2 2 2

wherel(i, k) denotes the index set of &ll< j < ¢ — 1 for whichj — i as well ask — j are
nonnegative and even. This index set is nonempty onty-ifi is nonnegative and even. In
this case, using the familiar identity

2 0)E-00)

we conclude that the above term equals

k—i—1 k—i—1 1 if k=i,
kei )T\ ki ) T i ~
2 D) 0 ifk 7& 2.
Thus, we have shown th&l,7,Q), is the identity matrix. 0
As a consequence, we obtain the explicit form of the inveo$éy;, Ry, ande}. Notice

that?, = T, T, =T, T, .
PrROPOSITION5S.2. We have

(5.4) Q' =Ud,,  R/'=U, (RF)'=UT/].

6. Connections betweerd Bezoutians and split-Bezoutians of ) type of odd or-
der. We are first going to show that a split-Bezoutian(ef) type and of odd order is con-
nected with anid Bezoutian of about half the size. This will be a main key for further
considerations.

Introduce a matrixS, of size(2¢ — 1) x ¢ as the isomorphism defined by

Se:F = P2 (Sex) (t) = x(t+t7 )t x € F

The nonzero entries of the matri are binomial coefficients arranged in the following
triangular-type structure,

6.1) so=| G 0 ()




ETNA
Kent State University
http://etna.math.kent.edu

TOEPLITZ-PLUS-HANKEL BEZOUTIANS 119

Notice that the matrix), defined in 6.1) is (roughly) the lower half of,. For later use, we
observe that

(6.2) Se=Z;Qu,

whereZ, is the following matrix of siz2¢ — 1) x ¢,

o .
1
ZF=11 0 :
1
0
L 0 L]

; + 20—2 0—1
i.e., 2, = [z;];iZy" j=o With

1 j= ‘f -1- Z|7
Zij = .
0 otherwise

Note that the first rows of this matrix are equal to the flip matrik introduced in {.1) and
the last/ rows are equal to the identitly.

The main result of this section is the following.

THEOREM 6.1. [17] Letu,,vy € F"% n = 2/ — 1, and letu,v € F**! be such
thatll+ = Serlll, Vi = S@+1V. Then

(6.3) Bezgp(ug,vy) = —SeBezy(u,v) sT.
Proof. Recall the definition of,,(¢) in (2.1) and observe that
St lae—a(t) =To(t+ ¢t
Now we only need to consider

uy (1) v (s) — vy (t)uy(s)
(t—s)(1—ts)

7l2[_1(t)T Bezsp (U+, V+) lgg_l(s) = —

and
loy_q (t)TSg BezH(u, V) Sglgg_l (S)
=1t +t HTt" 1 Bezy(u,v)s" (s +s71)

_ Bt v(s 5T vt Duls+s7h) 4y
(t+t71) = (s+s7)

to observe equality ing(.3). 0
REMARK 6.2. Letu,v € F*! andu; = S;y1u, v, = Se1v. Then the pain(t)
andv(t) is generalized coprime if and only if the pair, (¢) andv (¢) is coprime. Hence,
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in view of Remarkd4.3and ©.3), it can be easily seen thBez, (u, v ) restricted tdF?f‘l
is invertible if and only ifu (¢) andv.(¢) are coprime.

REMARK 6.3. SinceS,. is an isomorphism fronr**! to F?f“, there is a one-to-one
correspondence betwearandu_ in Theoren6.1(and similarly betweesrr andv ). In fact,
the equation1, = Syy;u can be solved by using the inverse@jf,,; see Propositio’.2
If uy = (u)f__, € F3*M! then

(2

u=Qu} (uf)ico = Urp1 Topa (uf )iz -

7. Inversion of centrosymmetricT 4+ H Bezoutians of odd order. In order to con-
tinue the discussion, let us come back to the splittih@)(for a nonsingular, centrosymmet-
ric T+ H BezoutianB = B, + B__ of ordern.

If » is odd, we have just seen how to reduce its first t&#m. = Bezg,(uy,vy) to
an H Bezoutian. We will now do the same for the second té&tm_ by first reducing it to a
split-Bezoutian of +) type with odd order — 2. The resulting term can then be reduced to
an H Bezoutian in the same way &k . .

Thus, letB__ = Bezg,(u_,v_) withu_,v_ € F"*? be given. In view of Lemma.7
(see alsod.2)), we can defina’y , v’} € F} by

u_(t) = (£ — 1) u’ (), v_(t) =: (= 1)VL(b).
Here and in what follows, the superscript of a vector denitédength. We obtain

u’} (v (s) — v (t)ult(s)
(t—s)(1—1ts)

= (t2 — 1)Bezg, (u’y, v (2, s)(52 - 1.

Bezgp(u_,v_)(t,s) = (* — 1)

In matrix language, this reads as
Bezg,(u_,v_) = M,_Bezg,(u’t,v') M,

whereM,, _ is then x (n — 2) matrix

- .
0 -1
(7.1) M, ,=| 0
1 -1
0
L 0 T

Since M,,_» is the matrix of the operator of multiplication By — 1 in the corresponding
polynomial spaces (with respect to the canonical bases)saa isomorphism frorﬂFi‘Q
to F, whereas the transpogé! , is an isomorphism fronf” to IFTQ, the split-Bezouti-
an Bezg,(u_,v_) restricted toF” is invertible if and only if Bezg,(u’;, v’) restricted
toF~ 2 is invertible.



ETNA
Kent State University
http://etna.math.kent.edu

TOEPLITZ-PLUS-HANKEL BEZOUTIANS 121
Combining all this, we arrive at the following result. Thierewe rewriteu, =: uTZ

_. o yn+2
andv =: v,

THEOREM7.1.[12] Letn be odd. TherB € F"*™ is a nonsingular, centrosymmetric
T + H Bezoutian if and only if it can be represented in the form
(7.2) B = Bezsp(uTrQ7 VTF2) + Mn_gBezsp(uﬁi,vﬁ)MT

n—2»

with u’; 7% (¢), v/ (¢) € F7*[t] being coprime foi = 0, 1.

Letn = 2¢ — 1. Taking into account Theoret1and Remarl6.2, we conclude that the
split-Bezoutians occurring irv(2) can be represented as

2 2% l+i b+i\ oT .
BeZSp(ui+ Z7vi+ Z) = _Sé‘H*lBeZH (u +L7v +1) SE+’£715 L= 07 1)
with
(7.3) ut = S uttt v = g v

and the pairgu’*i(¢), vi*(t)) being generalized coprime. It follows that

B Bez g (v uftl) 0 T
(74) B = Wn 0 BezH(ve, uf) Wn )
where
(75) Wy, = [ Se ‘ My 2501 ] .

Notice that the minus sign disappeared since we intercltbnge andv’*?.

Due to (7.3), the vectorsu’*?, v/ (i = 0,1) can be computed as indicated in Re-
mark6.3. We will come back to this in SectidlD, where also another possibility is discussed;
see Remark0.1

For the sake of simplicity, hereafter we wrifefor the matrix (L.1) of the corresponding
order. Assuming3 to be nonsingular and thysi“+*(¢), v/**(t)) to be generalized coprime
polynomials, the Bezout equations

(D (t) + VDB, (1) = 1

.6 . )
(70 (Fu) (8) () () + (%) (6) (J8.) (1) = 1

have unique solutiony;, 3;,7,,d; € F**i=1 (i = 0,1). Defining vectors*—2 ands?‘~!
by

(7.7) (82079 (1) = @u(®)8:(1) = B (1),
we know from Theoremd.5that the inverse oBez i (vi+, u*?) is the Hankel matrix
Hyriq (SQ(ZH)%)) = (BezH (v”i, u“i))71 , 1=0,1.

Taking into accountq.4), we obtain the following representation Bf !.
THEOREM7.2. Letn = 2¢ — 1, and letB € F"*" be a nonsingular, centrosymmetric
T + H Bezoutian. Then, with the notation introduced above,

et | He(s*7h) 0
(7.8) B~ =W [ 0 Hy_1(s2°9)

n

Wt
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As we will see, the matriXV,, is indeed invertible. For the purpose of representing its
inverse, introduce the followin@¢ — 1) x (¢ — 1) matrix

[0 -1
0
-1
Zy | = 0
1
0
L 0 L]

Recall 6.3) and 6.2), in particular,R, 1 = T, 1Q,_1. A simple but crucial computation
yields

My _2Se 1 =Z,_Ry_1.
This together with§.2) and (7.5 implies

(7.9) Wo=12/Qu| Z_\Re-r 1= 2] | Z;, ] { o R?,l } '

Therefore JV,, has the following structure,

JQi —JRy,
Wn = E?Qf 02—1 5
Qe Ry

Where@ is the matrix@, with the first row deleteds; is the first unit vector, an@,_; is the
row zero vector of appropriate length. The structuréi6f is displayed schematically in the
following diagram.

JQy —JRy_4

Qy Ry_y
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In view of (7.9), we see thalV, is invertible since so are the triangular matricgs
andR,_1, and the matrix

[0 1o -1
0 S0
1 —1 :
Zn =125 12, 1=1]1 0 210
R I |
0 0
L 0 1[0 1
In fact,
Zgl—é[Dg_l 121}25,
where
(7.10) Dy := diag(3,1,...,1).
Hence,

Q;'DY(ZHT
R (2, )T

—1p—-1
D 0
Wnll[Qe e 0 :|Z;1;1
0 R 2

N

As a consequence, the structurel®f, * is (up to a diagonal matrix) as indicated in the
following diagram.

0
0
0
1 ' 1
—RJ | R
0

Collecting all results, we obtain the following reformutat of (7.8).
THEOREM 7.3. Letn = 2¢ — 1, and letB € F"*" be a nonsingular, centrosymmetric
T + H Bezoutian. Then, with the notation introduced above,
A9 o
o AW,

T
n

B l=1z,

1
4

(7.11) =177 AP (ZHT + Lz, AP (277,
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where
A(O) D Q TH/( 20— I)Q_lDé_l,
AP, = Ry He 1 (s* )R

Let us remark that the matrices
(7.12) A9 =1z A0 ZHT and A° =1z AW (Z; )T

are precisely the inverses &f, | andB__, restricted tdF”} andF”, respectively; see Re-
mark 4.9. As we know from Propositior8.3, these are special centrosymmetfic+ H
matrices 8.4) with symbols which we are going to compute in Sect®oihere we also iden-
tify the matricesA@O) and Aél_)l as special symmetric (but in general not centrosymmetric)
T + H matrices.

8. Inversion of centrosymmetricT + H Bezoutians of even order.We start again
with the splitting formula 4.6) for B nonsingular, centrosymmetric but now of even or-
dern = 2¢. Remembering Lemmé& 7 and @.2), we observe that there are vectors

71+1 71+1 n+1 n+1 c F71+1

uy Y4
such that
uy (t) = (t+ D), vi(t) = (t+ 1)V,
u_ () =: (t =Dy} (t), vo(t) = (t— Dz} (1)
We obtain

By, = MtlBezSp (Ui+17vi+1) (M:erl)T’

n

B__ =M, |Bezg, (yi™, 2""") (M, _,

where the matrices

[+l 0 -~ 0
1 +1
(8.1) My =1 1 .0
KRS
L0 0 1

are of sizen x (n — 1). We arrive at a similar assertion as in Theorér
THEOREM8.1.[12] Letn be even. The® € F"*™ is a nonsingular, centrosymmetric

T + H Bezoutian if and only if it can be represented in the form

(8.2) B = M, Bezg, (0 vt (M )T + M, Bezg, (y ™, 21M) (M,

T
n—l)

)

with (W} (), v (1), (v (¢), 27 (¢)) being pairs of coprime polynomials & [¢].

Since the four vectors appearing i&.2) belong toFi“, the split-Bezoutians are of
(+) type and odd ordet — 1 = 2¢ — 1. Taking into accountd.3), we obtain

Bezap (i, vi*h) = SiBezy (v, u)ST

Bez, (v, 2" = SiBezy(z,y)S]
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with uT‘l =: 541, vff_'H =:Sp1v, yff_“ =: Spy, zT'l =: Sy412. Hence,

= | Bezg(v,u) 0 =~
B=Wn [ 0 Bezp(z,y) } W s

with
Wn = [M;[_ng | M;_lsg} .
Again a basic but crucial computation yields

+
]V[niﬂsé = [ iJZRE } )

Ry
with RF introduced in §.3). Therefore,

= | Jo = Rzr 0
mln LS A

We obtain

-1 1
W, =3

(RHY™ 0 ][Je 1¢]7

0 (R;f1 —J¢ Iy

Where(RZi)_1 is given in Propositiors.2.

The vectorsu, v, y, andz can be computed as indicated in Remé&rR This and
alternative ways are outlined in Sectibé.

In order to describe the inversesi®éz i (v, u) andBez i (z,y), which are Hankel ma-
trices, we consider the Bezout equations

ut)as(t) +v()B(t) = 1
and
(8.4) y(t)as(t) +z(t)By(t) =

y! ()] (t) + 27 (1)63 (1) =
These equations have unique solutiens/3;,~,,d; € F* (i = 1,2) since(u(t), v(t)) and
(y(t),z(t)) are pairs of generalized coprime polynomials. Finally,ried?’~* ands2‘~" by
(8.5) (Js?H(1) = i(t)oi(t) — Bi()i(t),  i=1,2.

Now we are able to represeBt .
THEOREM8.2. Let B € F"*™ be a nonsingular, centrosymmetfit+ H Bezoutian of
ordern = 2¢. Then, with the notation introduced above,

L1 oo [ He(s27h) 0 =
Bl — T e8] 1
| T ey [
Moreover,

p-l_1 Jo —Je Af 0 Jo I
111 I 0 A, —J¢ Iy

(8.6) :}1[‘]‘}14;[(][ Ie]+}1[_ff}Ae_[—Je L],
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where

®7)  Af = (Rf)TTH(s?")(RE)TY, Ay = (Ry) T H(s3 (R,

We remark that the first and the second summan@ @j,(

—Jy

e J( e
©.8) A+::}1h }Aj[Jg 1), A::}l[ Ie

}Az [—Je L],

are the inverses @b, | andB__ restricted td'} andF" , respectively; compare Rema#i.
Infact, AS andA¢ are centrosymmetri€ + H matrices with the symmetry properties§).
Hence, they are of the forn3{4). The symbols of thesE-+ H matrices (which are not unique)
are computed frorm;”*1 in the next section. For this, we first identifzg(j{IE as particular
symmetric’ + H matrices.

9. Representations of inverses of' + H Bezoutians as centrosymmetricl’ + H
matrices. In the previous two sections (see Theorem3%and8.2), we arrived at the ma-
trices A3 and AS. As already promised there, we are going to identify theseioest as
particular centrosymmetri¢’ + H matrices and compute their symbols. The starting point
are the matriceslg)), Aél_)l, and A7, which will be identified as particular symmetric (not
centrosymmetric)l’ + H matrices based on auxiliary results established in thevatlg
subsection.

9.1. Relations between Hankel matrices and symmetri@® + H matrices. There
exist identities between Hankel matrices and four kindsasfipularsymmetricl’ + H ma-
trices. In fact, these relationships hold for one-sidechitdimatrices and were established
in [1, Theorem 5]. The finite matrix versions, which are of intétesus, are immediate
consequences. The identities involve the matri@esR,, R;t, and D,, which were defined

in (5.1), (5.3, and (7.10.
THEOREMO.1.[1] Leta = (ax)?"_,, at" = (af )7y 1 a” = (a; )7y, and
a# = (aff)?-2,,. , be four symmetric vectors,

ar = a—_g, a;c" = afk, a, =a_,, and ak# = afk,
where the first three vectors are related to the last one by
(9.2) ak# =20 — Q2 — Qfy2 = 2&;: + a;:fl + azﬂ =2a; —a;_ — gy

Define the vectos = (1) by

1 k
(9.2) Sk =5 Zaﬁﬂj (])
§=0

as well as the x ¢ Toeplitz-plus-Hankel matrices

o o
THe(a) = [aj—k — aj+k+2]j,k1:0’ TH;(3+) = [a;k + a;_+k+1 ]jgkl:m
# [ # 14-1 — (o= — [~ - -1
THY (a#) := [ai y + a7y |5 =0 TH, (a7) =[a; } —aj 411 ] k=0

Then the Hankel matri¥fy(s) = [ s+ ]ﬁfklzo can be represented as

Hy(s) = Qf D,TH] (a*)D,Q; = R} TH,(a)R,

(9.3)
= (R))"TH{ (a*)R; = (R, )" TH, (a”)R; .
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We can rephrase the relationshif@s1f and ©.2) betweens and the symmetric vec-
torsa”, a, at, anda~ as follows. First of all, using the notatio.(),

(9.4) s =3(S2-1)"a? = Q3,1 Dav1(af )15
Thus, there is a one-to-one correspondence betwaeda. In particular,
0— — —
(9.5) (a?)i:(f = D2e1—1Q2£T—1Sa
which can be written explicitly as
L5

9.6)  af =250, af =a¥, = (~1)7s,_o; ((k—j) N (k—j—l)) |

= J J—1

[l

fork =1,2,...,2¢ — 2. This can be derived using Propositibre.
However, the correspondence 1) between the vectoes, a#, anda* is not bijective. It
can be expressed with the help of linear maps

Aopsr  (an)ilo = (a)P52 A (aD)iS)! = (025
given by
2 0 -2 0 2
ap aq
0 1 0 —1 o s
(9.7) -1 0 2 0 -1 — 1
.. ’ . ’ . '. ’ . ' #
0 -1 0 2 0 -1 a2e Ao
2 £2 0 + #
41 2 41 " %,
41 2 41 Lol !
.- .- -- :t. #.
0 +1 2 41 A20-1 a3y

From this we observe that the kernel A%y, consists of all vectors with period two
(i.e., ar = ar_s) and thus has dimension two, while the kernels/\@} andA;, consist of
all vectors which are alternating,{ = —a;_,) or constantd,, = a,_,), respectively, and
thus have dimension one. The maps_; andAgzZ are surjective.

The fact thata anda® are not uniquely determined ky* corresponds to the fact that
the matrices'H, (a), TH; (a*), andTH;, (a~) do not determine their symbols uniquely (as
one can easily verify). Indeed, they are only unique up tgukementioned vectors in the re-
spective kernels. Still, a®(3) requires, there is a one-to-one correspondence betive@s),
THY (a#), TH,(a), andTHF (a®).

It is worth to make the relationship betweana®, ands more explicit. Recall that,
ande were introduced in¥.2) and thatMs,; and Mfe were defined in{.1) and 8.1).
Clearly, ©.4) and 0.7) lead to

20 _ -1 AT o_ -1 T T
Agpi1(ar)imo = Doy 1Qop— 18 = Doy 1 T 1Uz_ss,
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taking into accountq.4). By a straightforward computatiofiy, , M2, | = —Day_1A241.
Hence,
(9.8) Mzﬂ_l(ak)iio = *U2TZ—15 == 2_2T—1S~
Furthermore,
+ 20— 1 —1
Ay (ay, ) = Dy, 1Q2e 18 =Dy 1T2e 1U2z 18-

RecallTy 1 = Ty, Ty, = Ty Ty, and verify that 755 )T (ME)" = Doy 1 AZ,
to conclude that

(9.9) (ngi 1)T(af)i£;01 = (TQZ 1)TU272—15 = i(R2j[zf1)_Ts~

The equations9.5), (9.8), and 0.9 together with Propositioh.2 can be used to determine
vectorsa?, a, anda® satisfying the assumptions of Theor@m for each prescribesl

The formulas 9.8) and ©.9) can be written down explicitly as it was done ¢ for
(9.5. This will be performed in SectiohO.

9.2. Representation ofB—! as a centrosymmetricT’ + H matrix. Let B be a non-
singular, centrosymmetri€ + H Bezoutian of order. We continue the discussion of how
to represent3~! as7T + H matrix. Depending of whether is odd or even, we arrived
at representations @8~ ! in the Theoremg.3and8.2. On the other hand, we know from
Theorem4.6that B—! has to be a centrosymmetric+ H matrix. Due to Remarls.2 and
Proposition3.3, this T + H matrix can be written as a sum of two particular+ H ma-
trices of the form 8.4). The formulas stated in the aforementioned theorems liegstith
the results of the previous subsection now allow us to catecthis directly and to establish
explicit formulas for the symbols of tHE + H matrices.

Let us start with considering & + H BezoutianB of odd ordern = 2¢ — 1. From
Theorem7.3and Theoren®.1(see, in particular, the first line i®(3)), it follows that

AD = THF (a®) and ALY, = TH,_ (@),

where a©® = (a{”)222%, , anda® = (a}")?22, , are symmetric vectors of

length4¢ — 3 = 2n — 1. In view of (9.5) and Q.8), we obtain
0 — 1 — — —
(a’l(c ))ilz P =Dyt ,0Q5 s and Mﬁfl(a; ))13102 = — Ryl s* 0

The vectorss*~! and s% 3 are the ones featured in Theoréh8, which are determined
by (7.7). Notice thatM/], | is surjective and has a two-dimensional kernel consistfrajlo

vectorse, s = (o, B, a, B,...)T.
Thus, in connection with711), we conclude that

B~ = iZZrTHf(a(O))(Z;)T + iZ[ATHéfl( “ ))(Ze 1)T~

Therein the first and the second term at¢ and A°, respectively, introduced in7(12.
Taking into account the structure &f~ andZ,,, a straightforward computation yields

©10) A% =1z} THFO)ZHT = Hal%+ a1
and
(9.11) A? = iZ[—lTHffl(a(l))(Z[—ﬂT = ﬂa;l_k - aﬁ)k ];;clz_e+1 )
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which are precisely the two particular centrosymmeéirie H matrices of the form3.4); see
also @.1). Thus, we arrive at the following theorem.
THEOREM 9.2. Let B be a nonsingular, centrosymmetric + H Bezoutian of odd
ordern = 2¢ — 1. Then witha(®) anda") as above, we have
_ 1 0 1) 16—1 (© 1) qe—1
(9.12) B = 1 ([a§3k + an Lkt T [ajJr)k - a§'+k ]j,k:%ﬂ) :
Now, let B be aT' + H Bezoutian of even orden, = 2¢. Consider in Theorerf.1the

vectorss?‘ ! for i = 1,2, defined in 8.5) in place ofs. In view of Theorem8.2 and the
second line ing.3), we obtain

Af =THf(a*) and A, =TH, (a"),

where the symmetric vectoss® = (aj)7" ", , of length4¢ — 1 = 2n — 1 are given by

0— - 0—
(Mz) " (af)i=o' = (R ) "s1,
— —\20— — _ 0—
(Mze)T(ak)i:ol =—(Ry_4) Ts3i
Notice that the matrice@szg)T are surjective and have a one-dimensional kernel congistin

of all vectorse, .
Now, in view of 8.6), it follows that

_JZ

I

~ J,
B 1:}1[5 ]TH;}(a*)[Jg Ig]+}1|:

} TH; (a7) [~ 1] .

where the first summand equal§ and the second equal’ ; see 8.8). Since

(9.13) Je | THy (a*) [Je Ie] = [a+ + aj. }H
) Ig ¢ ¢ Le j—k j+k+1 jk=—t
and
AT - B 1
(9.14) { L | TH, (a™) [=J; L] = {aj_k - aﬁkHL,k:—z’

which areT + H matrices of the form3.4), see also3.2), we obtain the final result in the
even case.

THEOREM 9.3. Let B be a nonsingular, centrosymmetfic + H Bezoutian of even
ordern = 2¢. Then witha™ anda™ as above, we have

_ 1 — -1 - -1
(9.15) Bl = 1 ([ajtk T a; gl t [ajJrkJrl T Okt ]j,k:%) :

10. Algorithms. Let ann x n matrix B be given. From Sectiof.4we know that if B
is a nonsingular, centrosymmetfic+ H Bezoutian, then we can represent it in the form

B = Bezg,(ug,vy) + Bezgy(u_, v_),

where(u.y, v, ) satisfy the conditions stated in Lemm&. In Remark4.10we established

a procedure to verify whethds is a nonsingular, centrosymmetfic+ H Bezoutian. The

procedure also describes an algorithm for the computati@ppropriate (nonunique) vec-
torsuy, v4. Thus, we can consider these vectors to be the starting fovitite computation

of B
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First we discuss the case wherés odd,n = 2¢ — 1. We are going to present @(n?)
algorithm that computes the inverse Bfbased on the observations made in the previous
sections.

1o Denotef”r2 =u,,v""? = v, . Compute (e.g., by using the Horner scheme
+: YV +
iy . 0= (t) iy V-(1)
u+(t):7‘;27_17 V+(t):t2—1
(20) Write these vectors as
Wit = WP L T = ), =0l
Recall Remarlé.3and compute the vectors
n-+2i £+i—1 _ n42i l+i—1
= (Qea) ™" () Ly = Q)™ (1), L,
where(Q,.;)~! is given in Propositiorb.2.
(30) Find the vectorg?(“+) =3 = (s( )) (D=3 (= 0,1) from the solutions of the Be-

zout equations7.6) and by polynomlal multlpllcat|0n7(7) The Bezout equations
can be solved via Euclid’s algorithm.

(40) It remains to compute the symmetric vectafd = (a ))iﬂ 22[ 5 Which determine
the matrices'H} (a(®)) andTH,_, (a(!)). From ©.6) and 0.8) we get

k—3j k—j—1
af” = 257", aEf’):aS’;: (-1)s iO)m(( '])+( 2 ))
: J J—
=0

fork=1,...,2¢—2,and

13) .
1 1 j (1 k—j 1 1
o) ol =3 (V) =l

j=0 J

for k = 0,...,2¢ — 4. Now B~! is given by 0.12. Notice that, as expected,
the vectora(!) is not uniquely determined. However, this ambiguity doesafe
fect TH,_,(a(")) and the matrix9.12.

REMARK 10.1. The stepsl() and Qo) can be performed in an alternative way by using
the inverse ofR,.; (given in Propositiorb.2) and

wEER () = (- DuH (), VIR () = (7 - V()
(belonging taf™ "' *2[¢]) instead ofu’} 7> andv’}*'. Clearly, in terms of the given vectors,

u" () = (> — Duy(t), u"t?i=u_,
Vi) = (12 = 1)v (1), vit?i=v_,

Writing the vectors as

1171+2i+2 —. (un—ZQL+2)§t’LZ o V’E+2i+2 — ( TLT721+2)§-—_C[ i i= O7 17
it follows that
= (Roa) M@M)L VI = (Rep) TN
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Secondly, we consider the even case- 2¢ and design a(n?) inversion algorithm
similar to the algorithm above for the odd case.
(1e) Compute (e.g., by using the Horner scheme)

n+1 ll+(t) n+1 VJr(t) n+1 u*(t) n+1 )
t) = t) i=—=— t) i=——— t) = .
u " (t) SRR (t) R (t) T (t)
! im0’ (z”“)jzo the vectors of the

last¢ + 1 components ofu’; !, vty 27 respectively. Compute the vec-
tors

n ¢ n ¢ n £
(2e) Denote by (u “)J:O,(v‘“)] o ()

u=(Qu1) " (u}”‘l)jio, v=(Qus1)" ('U;LH)j:O )

= (Qer1) 7 ( 7“)@-:07 2= (Qes1)"! (Z;LH)j:o ’

where(Q¢;) ! is given in Propositiorb.2
(3e) Find the vectors?~' = (s!")2,! (i = 1,2) from the solutions of the Bezout

equations §.3 and 8.9 V|a] Euclid’s algorithm and by polynomial multiplicati-

ons @8.5).

(4e) It remains to compute the symmetric vectats = (aif);~,,,, which build the
matrlceészt( +). In view of (9.9) we obtain the following equations,

K [
. ) [5] = " [ (k-1 o
Apyq T ag :Z(_l) j Sk—25 — Z (-1) j Sk—2j-1

=0 =0
and
L5] . [E52) .
- (k—=J\ @ (k—j—1\
ap = Oy = Z(_W( J )S’(“)%‘ + Z <_1)]( J )8’2)23‘17

Jj=0 Jj=0

fork =0,...,2¢ — 2, along withai = a*,.

Now B~ is represented &8 + H matrix according tog.15. As before, the vec-
torsa® are not uniquely determined. This does not affEH;k(ai) and the ma-
trix (9.19.
REMARK 10.2. The stepsl€) and e) can be performed in one step using the inverse
of RF. Indeed, we have

u= (R ()2, uy=(ul)iZl, €T,
v= (RN, ve =)z, €FL,
y =R Nu;)iZs, w- = (u;)Zl, €F",
z=(R))'(v;)iZ, v =(v;)Zt, eF2

A formula for the inverse oRéi is given in 6.4).

11. Alternative representations. Let us first consider the odd case= 2¢ — 1. We
arrived at a representation of the inverse of The- H Bezoutian3~' = A% + A° as the
sum of two centrosymmetri€ + H matrices with particular symmetries. These two matrices
are represented i®(10 and ©.11). While the first one,

o 0 0
AL = %Z;TH?&(a(O))(Z;)T = i[ o +a§—£k}§ 41
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has a unique symbol, the symbol of the second one

o - _ 1 1) 10—
A? = iZZATHé—l(a(l))(Zeﬂ)T = i[aﬁfk - a;ﬁk}ﬁ,klzfprl

is not unique. Itis possible to remedy this situation andii@im a representation that involves
uniquely determined coefficients. It comes at the experesettile modified representation is
a product of three matrices.

In order to derive this formula, we start again from

o _ 1 _ 1 _ 3\
A? = %Z£—1A§—)1(Ze—1)Ta A%—)1 = Re—T1H(S2Z J)Rz—ll

but apply the first relationship i®(3) of Theoren®.1, namely that between the Hankel matrix
and the matri>d‘Hj’i1 (rather tharil'H,_1). This yields

A§17)1 =R, "Q1 Dy TH] | (a")Dy1Qe1 R,
with
(111 ah = @), e FYTTL ()35t = Doty (Quems) TSR,
Using 6.3) it follows that
Aéz = TeiﬁDé—lTHffl(5(1))D€—1Tz:11
and thus
A? = iZz_flTe:TlDf—lTHil(A(1))D€—1Te:11(Z[71)T-

Introduce thg2¢ — 3) x (2¢ — 1) matrix

. r
0 -1 10
1 0 -1 1 0 1
1 ) :
Eze—1=§ : 0 -1 0 1 0 C o
-1 0 -1 1 0 1
0 -1 10
.__1 1_.

which has a triangular-type structure combined with a chdmbard pattern. Notice that the
columns are even and the rows are odd vectors. The columreimitidle is zero. Inci-
dentally,>,,_; establishes an isomorphism betwe@ti—! andIF?f‘?’; compare 2.2). A
straightforward computation gives that

Z[—l = Eszflzj—lDei—llTeTfr
Therefore,

A? = iZZTHZLTHf_l(5(1))(ZZ_OTZ%17
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and the product in the middle computes to a particular ceptmmnetricT” + H matrix of
size2( —3 =n — 2.

We are now in the position to present the promised alteradbikmula, a representation
as a product of three matrices.

PrRoOPOSITION11.1.

-2
o _ 1T ~(1) ~(1)
A? =385, {aj—k + aj+k}j7k:_£+2 201,
with a*) being defined irf11.1).
Although it is not immediately clear from this formula thd? is a centrosymmet-

ric T'+ H matrix as well, this can be verified with little effort and ifmls also from 9.11).
In particular, one can show that the relationship betweensymbolsa® € Fi~* and

a ¢ 747 is given by

o =20f? ol el

see also9.1).

The derived formula may be of advantage when one is intet@staultiplying A° with
a vector since the multiplication witho, andeTef1 can be performed fast.

Let us now turn to the even case= 2/, where we had the expressio®s13 and ©.14)
for A andA¢, both involving nonunique symboist. To obtain alternative formulas, start
from (8.7) and @.8). Again apply only the first identity in9(3) in order to conclude that

AF = (RF)""Q/ D,/ TH] (8 )DeQu(R¥) ™",

with a uniquea™ = (a);2,,,, € F{'~* given by

(112) ()75 = Dot (Qae—1) st h . (a)7507 = Dot 1 (Qae—1) T3
Use 6.3) to conclude

A = (TF) " DyTH] (8%) Dy(T;5) ™
and thus

e +J, _ . 3
Afi[ ' } (TF)~" Dy THE (%) Du(T7) ! [+ 0 1|

Introduce theg2¢ — 1) x 2¢ matrices

+1 1
~1 +1 1 F1
+1 -1 +1 1 F1 1

+ .

Y=g -1 +1 1 I
1 -1 £l 1 F1 1
-1 +1 1 F1

| £1 1]
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The columns are all even vectors, while the rows are even drdegpending on thé+)
or (—) case. Itis straightforwardly verified that

+.J _
|-z
It follows that
¢ =1(25)" 2 TH] (8%)(Z))"'S5, .

As before, the middle term become®'a H matrix, and thus we obtain the desired alternative
formula for AS..
PROPOSITION11.2.

wherea™ is defined in(11.2).
The relationship toq.13 and ©.14) in terms of the symbol is

At _ o + + +
a, = 2a, :I:akH:takfl,

as one can easily check.
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