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Abstract. In this paper we discuss how to compute the inverse of a nonsingular, centrosymmetric Toeplitz-plus-
Hankel BezoutianB of ordern and how to find a representation ofB−1 as a sum of a Toeplitz and a Hankel matrix.
Besides the known splitting property ofB as a sum of two split-Bezoutians, the connection of the latter to Hankel
Bezoutians of about half size is used. The fast inversion of the Hankel Bezoutians together with an inversion formula,
which was the subject of a previous paper, leads us to an inversion formula forB−1 as a Toeplitz-plus-Hankel matrix.
It also enables us to design anO(n2) inversion algorithm.
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1. Introduction. The present paper can be considered a continuation of [3] and [4]. In
particular, in [4] we discussed how to invert a Hankel Bezoutian, and we presented a corre-
sponding fast algorithm. Here, we will use these results forthe inversion of a centrosymmetric
Toeplitz-plus-Hankel Bezoutian (shortly,T + H Bezoutian). A motivation to deal with the
inversion of Bezoutians was recently given by Böttcher and Halwass; see [2].

Historically, Bezoutians were introduced in connection with elimination theory; see [19].
Much later, their importance for the inversion of Hankel andToeplitz matrices was discovered
by Lander [14]. In particular, he observed that the inverse of a nonsingular Hankel (Toeplitz)
matrix is a Hankel (Toeplitz) Bezoutian and vice versa. A large amount of literature devoted
to the inversion of Toeplitz and Hankel matrices has appeared. The starting points were
the papers of Trench [18] and Gohberg and Semencul [6]. Later, in [9], it was discovered
that the inverse of a nonsingular matrix which is the sum of a Toeplitz and a Hankel matrix
(briefly T +H matrix) possesses a generalized Bezoutian structure. Matrices with such a
Bezoutian structure are referred to asT +H Bezoutians. There is a number of papers dealing
with the inversion ofT +H matrices; see, e.g., [5, 11, 12, 15, 16] and references therein.

The converse problem—the inversion of Bezoutians—has been given short shrift up to
now. In [8, Part I, Subsection 3.8], the inverse of a Hankel Bezoutian was computed but
only in the strongly nonsingular case. The motivation therewas that such a procedure is of
importance for solving matrix equations of Lyapunov-type.In [7] (see also [13]), a formula
for the inverse of a Hankel or a Toeplitz Bezoutian was presented in the language of matrices
generated by rational functions. A general approach to the inversion problem for Hankel or
Toeplitz Bezoutians was given in [4].

As far as we are aware of, the question of how to obtain fast inversion algorithms or
representations for inverses ofT + H Bezoutians is discussed here for the first time. We
assume that the matrices under considerations possess an additional symmetry. The reason
behind this is that on the one hand such additional symmetries of structured matrices are not
unusual, but on the other hand this symmetry allows a splitting. The aim for the future is the
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fast inversion of generalT +H Bezoutians, but this requires new ideas and seems to be a big
challenge.

We consider the setting where the entries of the matrices aretaken from an arbitrary
field F of characteristic different from two.

Let us now sketch the main ideas of the paper.T + H Bezoutians are matrices of the
form B = [ bij ]

n−1
i,j=0 for which there exist eight polynomialsgi, fi (1 ≤ i ≤ 4) such that in

polynomial language

(t− s)(1− ts)

n−1∑

i,j=0

bijt
isj =

4∑

i=1

gi(t)fi(s).

As already indicated above,T + H Bezoutians arise as the inverses of nonsingularT + H

matrices, i.e., matrices of the form[ai−j + si+j ]
n−1
j,k=0. Conversely, the inverses of nonsingu-

lar T +H Bezoutians areT +H matrices [9].
In the present paper, we restrict ourselves to centrosymmetric T +H Bezoutians whose

inverses are centrosymmetricT + H matrices. Recall that a matrixB is called centrosym-
metric ifB = JnBJn, whereJn is the flip matrix

(1.1) Jn :=




0 1
. .

.

1 0


 .

Thus, given a nonsingular, centrosymmetricT +H BezoutianB, our aim is to compute the
Toeplitz and Hankel parameters{ai} and{si} of its inverse, aT +H matrix represented by

B−1 = [ ai−j + si+j ]
n−1
i,j=0 .

This task is accomplished in several steps. Our starting point is the fact that the centrosymme-
try of B leads to a splitting of the formB = B+++B−−, whereB±± are specialT +H Be-
zoutians, which are called split-Bezoutians of(±) type. This splitting was discovered in
[10, Section 8] (see also [12]) and arises from the property that both the space of all symmet-
ric vectors (x = Jnx) and the space of all skewsymmetric vectors (x = −Jnx) are invariant
subspaces of the centrosymmetric matrixB.

The second step consists in relatingB++ andB−− to Hankel Bezoutians. In the case the
matrixB being of odd order, sayn = 2ℓ− 1, we use a result of [12] to transformB++ into a
nonsingular Hankel Bezoutian of orderℓ. Similarly, the matrixB−− can be transformed into
a Hankel Bezoutian of sizeℓ− 1. In summary, we arrive at a representation of the form

B = W

[
B

(1)
H 0

0 B
(2)
H

]
WT ,

whereW is a certain explicit transformation (involving triangular matrices) andB(1)
H , B

(2)
H

are the mentioned Hankel Bezoutians. A similar representation is derived in the case of even
matrix order,n = 2ℓ, with both Hankel Bezoutians of sizeℓ.

Now we are in a position to use the formulas and algorithms established in [4] to compute
the inverse of the Hankel Bezoutians, which are Hankel matrices. Consequently, the following
structure of the inverse of theT +H BezoutianB is obtained,

B−1 = W−T

[
H1 0

0 H2

]
W−1 ,
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whereH1, H2 are Hankel matrices, the parameters of which are given by thesolution of
corresponding Bezout equations; see [4]. It remains to discover the Toeplitz-plus-Hankel
structure behind this representation. In other words, we want to find a Toeplitz matrixT and
a Hankel matrixH such that

B−1 = T +H .

This goal can be achieved utilizing finite versions of results given in [1]. These results are
formulas between Hankel matrices and four kinds of particular symmetricT +H matrices. It
is perhaps interesting to note that these four types of matrices are related to the above Hankel
matricesH1 andH2, where one has to distinguish between the case of even and oddorder.

The paper is organized as follows. Starting with some preliminaries in Section2, in
Section3, basic observations onT + H matrices are made, which are useful to understand
the final result and the structure of the formulas encountered. The issue that the symbols
of T +H matrices are not uniquely determined (since there are nonzero matrices which are
both Toeplitz and Hankel) is also discussed.

In Section4, known, but for us important, results on Toeplitz-, Hankel-, andT +H Be-
zoutian are recalled. In particular, an answer is given to questions such as how to determine
whether a matrix is aT +H Bezoutian and what is specific if this matrix is centrosymmet-
ric. Here also the structure of the splitting matricesB±± is investigated. In Section5, we
explicitly compute the inverses of certain triangular matrices which occur in our formulas.
Section6 highlights the connection between split-Bezoutians of(+) type (of odd order) and
Hankel Bezoutians. Inversion formulas for centrosymmetric T + H Bezoutian of odd and
even order are proved in Section7 and Section8, respectively.

In Section9, we reinterpret the representations given for the inversesin the previous
sections as a sum of a Toeplitz and a Hankel matrix and discusshow the corresponding
parameters defining these matrices can be computed. Here theresults of [1] are used.

Section10 is not only meant as a summary but even more. Here we design an algorithm
for the computation of the inverse of a centrosymmetricT + H BezoutianB of ordern.
The parameters in theT + H matrix which occur in the representation ofB−1 obtained in
the previous section can be computed withO(n2) operations (additions and multiplications).
Note that, as pointed out in Section3, these parameters are not unique.

In Section11we present alternative representations ofB−1 as aT+H matrix. These rep-
resentation are slightly more complicated, however, the issue of nonuniqueness is resolved.
For matrix-vector multiplications they are equally suitable and have the advantage that the
parameters are unique.

Besides the inversion of centrosymmetricT + H Bezoutians, there is the related inter-
esting problem of the inversion of centroskewsymmetricT +H Bezoutians. Though similar,
it is not completely analogous to the centrosymmetric case and will be the subject of a forth-
coming paper.

2. Preliminaries. Throughout this paper, we consider vectors or matrices, theentries
of which are taken from a fieldF with a characteristic not equal to2. By F

n we denote the
linear space of all vectors of lengthn, byFm×n the linear space of allm×n matrices, andIn
denotes the identity matrix inFn×n.

We will often use polynomial language. We denote byF
n[t] the linear space of all

polynomials int of degree less thann, the coefficients of which are inF. To each vec-
tor x = (xj)

n−1
j=0 ∈ F

n, we associate the polynomial

x(t) := ln(t)
Tx =

n−1∑

j=0

xjt
j ∈ F

n[t],
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where

(2.1) ln(t) :=
(
1, t, t2, . . . , tn−1

)T
.

Moreover, we associate to a matrixA = [ aij ]
n−1
i,j=0 the bivariate polynomial

A(t, s) = ln(t)
TA ln(s) =

n−1∑

i,j=0

aij t
isj

and call it thegenerating polynomial ofA.
For a vectorx ∈ F

n, we write

xJ := Jnx ,

whereJn is introduced in (1.1). In polynomial language this means

xJ(t) = x(t−1)tn−1 .

With this notation, a vectorx ∈ F
n is said to besymmetricif x = xJ andskewsymmetric

if x = −xJ . The matrices

P± := 1
2 (In ± Jn)

are the projections fromFn onto the subspacesFn
± consisting of all symmetric, respectively

skewsymmetric vectors, i.e.,

F
n
± :=

{
x ∈ F : xJ = ±x

}
.

An n × n matrix A is calledcentrosymmetricif A = JnAJn. It is easy to see that a cen-
trosymmetric matrixA mapsFn

± to F
n
±, i.e.,AP± = P±AP±.

The various spacesFn
± for n even or odd are related to each other. This can be most

easily expressed in polynomial language. In fact, we have

F
2ℓ
+ [t] =

{
(t+ 1)x(t) : x(t) ∈ F

2ℓ−1
+ [t]

}
,

F
2ℓ
− [t] =

{
(t− 1)x(t) : x(t) ∈ F

2ℓ−1
+ [t]

}
,

F
2ℓ+1
− [t] =

{
(t2 − 1)x(t) : x(t) ∈ F

2ℓ−1
+ [t]

}
.

(2.2)

These basic observations, which will be of importance in Lemma 4.7, Theorem7.1, and
Theorem8.1, can be seen as follows. Letx± ∈ F

n
±. Then in casen is even, we have

x−(1) = x+(−1) = 0, while in casen is odd, we havex−(1) = x−(−1) = 0.

3. Basics on Toeplitz-plus-Hankel matrices.Let us first introduce Toeplitz matrices
and Hankel matrices. To a given vectora = (ai)

n−1
i=−n+1 ∈ F

2n−1 we associate then × n

Toeplitz matrix

Tn(a) = [ai−j ]
n−1
i,j=0 ,

and to a vectors = (si)
2n−2
i=0 ∈ F

2n−1 we associate then× n Hankel matrix

Hn(s) = [si+j ]
n−1
i,j=0 .

The vectorsa ands are called thesymbolof Tn(a) andHn(s), respectively. For the symbol
of the Hankel matrices, occasionally a different indexing will be useful. Note that a Hankel
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matrix multiplied (from the left or from the right) by the flipmatrixJn introduced in (1.1) is
a Toeplitz matrix.

A matrix which is the sum of a Toeplitz and a Hankel matrix is called Toeplitz-plus-
Hankel matrix, shortlyT+H matrix. For such matrices it is convenient to adopt the following
notation. Forn = 2ℓ− 1 we write

(3.1) Tn(a) +Hn(s) = [ai−j + si+j ]
ℓ−1
i,j=−ℓ+1 ,

while for n = 2ℓ we write

(3.2) Tn(a) +Hn(s) = [ai−j + si+j+1]
ℓ−1
i,j=−ℓ

.

Alternatively, we could also write (in both cases)

Tn(a) +Hn(s) = [ai−j + si+j−n+1]
n−1
i,j=0 .

Therein, we sets = (si)
n−1
i=−n+1 ∈ F

2n−1 in slight contrast to the above definition.
REMARK 3.1. Hankel matricesHn(s) are symmetric, and Toeplitz matricesTn(a) are

persymmetric, i.e.,Tn(a)
T = JnTn(a)Jn. Thus, a Toeplitz matrix is symmetric if and only if

it is centrosymmetric, while a Hankel matrix is persymmetric if and only if it centrosymmet-
ric. Consequently, aT +H matrix is symmetric if and only if its Toeplitz part is symmetric.
A T +H matrix is persymmetric if and only if its Hankel part is persymmetric.

A centrosymmetricT + H matrix is always symmetric and persymmetric. Indeed, the
centrosymmetry ofTn(a) +Hn(s) implies

Tn(a) +Hn(s) = Tn(a
J ) +Hn(s

J ).

Taking the transpose yields

Tn(a
J) +Hn(s) = Tn(a) +Hn(s

J ).

Adding and subtracting these two equations and dividing by2 implies Tn(a) = Tn(a
J )

andHn(s) = Hn(s
J ). From here the symmetry and persymmetry ofTn(a) andHn(s) and

thus of the sum follows.
Let us continue with a few basic observations aboutT+H matrices, which are motivated

by our aim to constructT+H matrices as inverses ofT+H Bezoutians. As we will see soon,
aT+H matrix given by (3.1) or (3.2) does not uniquely determine its symbolsa ands. Since
this nonuniqueness issue will naturally reoccur in our construction, it is convenient to clarify
the relationship between symbols and the matrix now. We firstconsider the general case, then
the centrosymmetric case, and finally more specific cases that will also be encountered.

A generalT + H matrix of sizen involves4n − 2 parameters. However, matrices of
“checkerboard pattern” are both Hankel and Toeplitz. Hence, the vectorsa, s ∈ F

2n−1 are
not uniquely determined in the matrixTn(a) +Hn(s). In fact, the linear space of allT +H

matrices of sizen has dimension4n− 4.
For centrosymmetricTn(a)+Hn(s), the considerations in Remark3.1imply thata = aJ

ands = sJ . In other words,a, s ∈ F
2n−1
+ , and this is also sufficient for centrosymmetry.

Thus,2n parameters are involved. However, for the same reason as above, the linear space of
all centrosymmetricT +H matrices of sizen has dimension2n− 2.

We continue with a simple general observation; see [12, Lemma 5.1].
REMARK 3.2. Each centrosymmetric matrixA can be uniquely written as the sum of

two (centrosymmetric) matricesA = A+ +A− which possess the additional symmetries

(3.3) A±P± = P±A± = ±A±.
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In fact, we can putA± := AP± = P±A. In other words, all rows and columns ofA+ are
symmetric vectors whereas all rows and columns ofA− are skewsymmetric vectors. Further-
more,

rankA = rankA+ + rankA− .

Applying the previous remark to a centrosymmetricT +H matrixA, it follows thatA+

andA− are (centrosymmetric)T +H matrices as well. What (3.3) means forT +H matrices
in terms of the symbol is stated next. We use the notation(±) to distinguish the two cases.

PROPOSITION3.3. Let A± ∈ F
n×n be aT + H matrix satisfying(3.3). Then there

exists a vectora(±) ∈ F
2n−1
+ such that

(3.4) A± = Tn(a
(±))±Hn(a

(±)).

Proof. LetA± = Tn(a) +Hn(s) with a, s ∈ F
2n+1
+ . ThenA± = ±A±P± implies that

A± = ± 1
2 (Tn(a± s)±Hn(a± s)) .

Puta(±) := ± 1
2 (a± s) ∈ F

2n−1
+ , and (3.4) follows.

As mentioned above, the Toeplitz and Hankel symbols of aT+H matrix are not uniquely
determined. Notice that the proposition does not claim thatevery representation ofA± as a
sum of a Toeplitz and Hankel matrix is of the form (3.4). In fact, this is easily seen to be false
in general.

Moreover, even if we restrict ourselves to representations(3.4), the vectorsa(±) need not
be unique. In fact, assumeTn(a

(±))±Hn(a
(±)) = 0 with a(±) ∈ F

2n−1
+ , and introduce

eα,β := (α, β, α, . . . , β, α)T ∈ F
2n−1
+ .

Then

a(+) =

{
0 if n odd,

eα,−α if n even,
a(−) =

{
eα,β if n odd,

eα,α if n even.

For the dimensiond±n of the linear space of allT + H matrices of ordern satisfying (3.3),
we obtain thatd+n = n for n odd andd−n = n − 2 for n odd, whiled±n = n − 1 for n even.
Notice thatd+n + d−n = 2n− 2 as observed earlier.

4. Bezoutians.

4.1. Displacement transformations. In order to define Hankel and Toeplitz Bezou-
tians, we use transformations∇H and∇T which transform a matrixB = [bij ]

n−1
i,j=0 ∈ F

n×n

into a matrix ofF(n+1)×(n+1) according to the rule

∇H(B) = [ bi−1,j − bi,j−1 ]
n

i,j=0 ,

∇T (B) = [ bij − bi−1,j−1 ]
n

i,j=0 .

Here we putbij = 0 if i or j is not in the set{0, 1, . . . , n−1}. In polynomial language, these
transformations are given by

(∇H(B)) (t, s) = (t− s)B(t, s) ,

(∇T (B)) (t, s) = (1− ts)B(t, s) .
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For the definition of Toeplitz-plus-Hankel Bezoutians, we need the transformation

∇T+H : Fn×n −→ F
(n+2)×(n+2) ,

which sends a matrixB = [bij ]
n−1
i,j=0 into

∇T+H(B) = [ bi−1,j + bi−1,j−2 − bi,j−1 − bi−2,j−1 ]
n+1
i,j=0 .

Again, we putbij = 0 if i or j is not in the set{0, 1, . . . , n− 1}. Notice that

(∇T+H(B)) (t, s) = (t− s)(1− ts)B(t, s)

in polynomial language. Moreover,

∇T+H(B) = ∇T (∇H(B)) = ∇H(∇T (B)).

4.2. H Bezoutians andT Bezoutians. The Hankel Bezoutian(briefly H Bezoutian)
of two vectorsu,v ∈ F

n+1 is, by definition, then × n matrix B = BezH(u,v) with the
generating polynomial

B(t, s) =
u(t)v(s)− v(t)u(s)

t− s
.

Clearly, in caseu andv are linearly dependent,B is the zero matrix.
PROPOSITION4.1. A nonzero matrixB ∈ F

n×n is anH Bezoutian if and only ifB is
symmetric and

rank∇H(B) = 2 .

In this case there exists a rank decomposition of the form

∇H(B) = [u,v]

[
0 1

−1 0

]
[u,v]T = uvT − vuT ,

with linearly independent vectorsu,v ∈ F
n+1 andB = BezH(u,v).

REMARK 4.2. Different pairs of (linearly independent) vectors mayproduce the same
nonzeroH Bezoutian. In fact,

BezH(u,v) = BezH(û, v̂)

if and only if there is a2× 2 matrixϕ such that[ û v̂ ] = [u v ]ϕ with detϕ = 1.
REMARK 4.3. It is well-known (see, e.g., [8]) that BezH(u,v) is nonsingular if and

only if u(t) andv(t) aregeneralized coprime, which means thatu(t) andv(t) are coprime
in the usual sense and thatdegu(t) = n or degv(t) = n.

The following connection between Hankel matrices andH Bezoutians is a classical result
discovered by Lander in 1974 [14].

THEOREM 4.4. A nonsingular matrix is anH Bezoutian if and only if its inverse is a
Hankel matrix.

The following question arises: given theH BezoutianB of the generalized coprime
polynomialsu(t),v(t), how can we compute the symbols of its inverse, a Hankel matrix
with Hn(s) = B−1? The answer is given in [4].
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THEOREM 4.5. Assumeu(t),v(t) ∈ F
n+1[t] to be generalized coprime, and let

B = BezH(u,v). Then the Bezout equations

u(t)α(t) + v(t)β(t) = 1(4.1)

uJ (t)γJ (t) + vJ(t)δJ(t) = 1(4.2)

have unique solutionsα(t),β(t),γ(t), δ(t) ∈ F
n[t], and

B−1 = Hn(s),

with s = (si)
2n−2
i=0 ∈ F

2n−1 given by

sJ (t) = −α(t)δ(t) + β(t)γ(t).

Further possibilities for the computation ofs are discussed in [4]. For instance, it is
found that it suffices to solve only one of the Bezout equations (4.1) or (4.2).

Analogous results can be obtained forToeplitz Bezoutian(briefly T Bezoutians), which
are defined as matricesB = BezT (u,v) of ordern with the generating polynomial

B(t, s) =
u(t)vJ (s)− v(t)uJ (s)

1− ts
.

Here,u,v ∈ F
n+1. A nonzero matrixB ∈ F

n×n is a T Bezoutian if and only ifB is
persymmetric and

rank∇TB = 2 .

There is a simple relation betweenH- andT Bezoutians,

BezT (u,v) = −BezH(u,v)Jn .

Thus, to all results aboutH Bezoutians, there are corresponding results forT Bezoutians.

4.3. T + H Bezoutians. A matrix B ∈ F
n×n is called aToeplitz-plus-Hankel Be-

zoutian(briefly T +H Bezoutian) if

rank∇T+H(B) ≤ 4 .

This condition is equivalent to the existence of eight polynomials (vectors)gi(t),
fi(t) (i = 1, 2, 3, 4) in F

n+2[t] such that

(t− s)(1− ts)B(t, s) =
4∑

i=1

gi(t)fi(s) .

The vectorsgi, fi (i = 1, 2, 3, 4) are not uniquely determined byB. However, two different
choices are related to each other by a simple transformation; see [17].

Clearly,T Bezoutians as well asH Bezoutians are alsoT +H Bezoutians. But the sum
of aT - and aH Bezoutian is, in general, not aT +H Bezoutian.

The following important relationship was proved in [9].
THEOREM 4.6. A nonsingular matrixB is a T + H Bezoutian if and only if its in-

verseB−1 is a sum of a Toeplitz and a Hankel matrix.
If B is a matrix of ordern ≥ 2 and rank ∇T+H(B) < 4, then the first and the last

column or the first and the last row ofB are linearly dependent. Hence, forT + H Be-
zoutian(n ≥ 2) to be nonsingular, it is necessary thatrank∇T+H(B) = 4; see [9].

A simple criterion for the nonsingularity of aT + H Bezoutian in terms of the eight
vectorsgi, fi (i = 1, 2, 3, 4) has not yet been discovered.
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4.4. CentrosymmetricT + H Bezoutians. Let us now specialize toT+H Bezoutians
B which are centrosymmetric, i.e.,JnBJn = B. The following decomposition result, proved
in [12], characterizesnonsingular, centrosymmetricT +H Bezoutians. The nonsingularity
criterion is related to the greatest common divisors of two polynomials, henceforth denoted
by gcd(·, ·).

Hereafter, the subscripts+ or− of a vector designate the symmetry or skewsymmetry of
this vector.

LEMMA 4.7. Ann× n matrixB is a nonsingular, centrosymmetricT +H Bezoutian if
and only if∇T+H(B) admits a representation

(4.3) ∇T+H(B) = u+v
T
+ − v+u

T
+ + u−v

T
− − v−u

T
− ,

whereu+,v+ ∈ F
n+2
+ such that

(4.4) gcd(u+(t),v+(t)) =

{
1 if n odd,

t+ 1 if n even,

andu−,v− ∈ F
n+2
− such that

(4.5) gcd(u−(t),v−(t)) =

{
t2 − 1 if n odd,

t− 1 if n even.

Notice that ifu+,v+ ∈ F
n+2
+ with n even, thent + 1 is a common divisor ofu+(t)

andv+(t) due to (2.2). Similar statements hold also foru− andv−. Thus, it is justified to
call the greatest common divisorminimal in the above cases (4.4) and (4.5). Obviously, in
view of the symmetries,u±,v± ∈ F

n+2
± , if bothdegu±(t) ≤ n anddegv±(t) ≤ n are true,

then zero is a common root ofu±(t) andv±(t). As a consequence, if (4.4) or (4.5) hold, then

max{deg(u±(t)), deg(v±(t))} = n+ 1,

respectively.
On the other hand, every matrixB satisfying (4.3) with u±,v± ∈ F

n+2
± is a centrosym-

metricT +H Bezoutian even if the greatest common divisors are not minimal.
Moreover, since

(∇T+H(B)(t, s) = −(∇T+H(B))(s, t),

any nonsingular, centrosymmetricT +H Bezoutian is a symmetric matrix. This follows, of
course, also from Theorem4.6and Remark3.1. Notice that the assumption of nonsingularity
is essential. For instance, eachB ∈ F

3×3 satisfyingJ3B = BJ3 = B is of the form

B =




a b a

c d c

a b a


 .

Such matrices are singular, centrosymmetricT + H Bezoutians, which are symmetric only
if b = c.

An immediate consequence of Lemma4.7is the following theorem. In fact, for its proof,
it suffices to write down (4.3) in polynomial language.
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THEOREM 4.8. A nonsingular, centrosymmetricT +H BezoutianB of ordern allows
the following (unique) splitting

(4.6) B = B++ +B−− ,

whereB++ = P+B andB−− = P−B are special centrosymmetricT +H Bezoutians,

B±±(t, s) =
u±(t)v±(s)− v±(t)u±(s)

(t− s)(1− ts)
,

and whereu±,v± ∈ F
n+2
± satisfy(4.4) and (4.5).

We callB++ orB−− split-Bezoutian of(+) or of (−) typeand write

(4.7) B±± = Bezsp(u±,v±).

The matricesB++ andB−−, besides being centrosymmetric, have the following additional
symmetries,

(4.8) B±±P± = P±B±± = ±B±± .

Thus, the splitting (4.6) is just that of Remark3.2. This means that, as already stated there,
all rows and columns ofB++ are symmetric vectors, whereas all rows and columns ofB−−

are skewsymmetric vectors. Additionally,B++ andB−− are symmetric matrices. Hence, all
entries of each of these matrices are determined by the entries in the highlighted triangle—
which is about the eighth part of the matrix—in the following diagram.

Clearly, the entries of this triangle are given by the first⌊n
2 ⌋+ 1 entries ofu+,v+ in the(+)

case and by the first⌊n
2 ⌋ entries ofu−,v− in the(−) case. Here⌊ · ⌋ denotes the entire part.

For the split-Bezoutians, the following statement is analogous to Remark4.2. Different
pairs of (linearly independent) vectors may produce the same nonzero split-Bezoutian. In
fact,

(4.9) Bezsp(u±,v±) = Bezsp(û±, v̂±)

if and only if there is a2×2 matrixϕ± such that[ û± v̂± ] = [u± v± ]ϕ± with detϕ± = 1.
REMARK 4.9. A centrosymmetricT +H BezoutianB which admits the splitting (4.6)

hasFn
+ andFn

− as invariant subspaces withB++|F
n
+ andB−−|F

n
− being the corresponding

restrictions. Therefore,B is similar to the direct sum ofB++|F
n
+ andB−−|F

n
− and thus is

nonsingular if and only if bothB++|F
n
+ andB−−|F

n
− are invertible. The inverses can be

identified withT + H matricesA+ andA− which are of the form (3.4). This is due to the
symmetries (3.3) and (4.8). In fact, as will be shown in more detail later,B−1 = A+ +A−.

REMARK 4.10. Given a centrosymmetric matrixB of ordern, one can ask how to
decide whetherB is a nonsingularT+H Bezoutian and how to determine vectorsu± andv±

occurring in (4.6) and (4.7). This can be done by the following procedure.
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1. ComputeB++ := P+B andB−− := P−B.

2. Verify whetherrank∇T+H(B++) = rank∇T+H(B−−) = 2.
(If this is not fulfilled, stop:B is not aT+H Bezoutian orB is a singular Bezoutian.)

3. Determine bases{u±, v̂±} in the image of∇T+H(B±±).
(Due to the assumption of centrosymmetry, we haveu±, v̂± ∈ F

n+2
± .)

4. Verify whether the greatest common divisors of{u±(t), v̂±(t)} are minimal;
cf. (4.4), (4.5).
(If this is not fulfilled, stop:B is singular.)

5. Using the vectorsu± and v̂± (chosen in Step 3), compute the unique vectorsv±

andû± such that

∇T+H(B±±) = u±v
T
± − v̂±û

T
±.

In fact, it is easy to see thatv± = λ±v̂± andu± = λ−1
± û± with someλ± ∈ F\{0}

so that we finally obtain

∇T+H(B±±) = u±v
T
± − v±u

T
±.

(To determineλ± it remains to compare a nonzero entry of∇T+H(B±±) with the
corresponding entry ofu±v̂

T
± − v̂±u

T
±.)

6. Now,B = B++ +B−− is a nonsingularT +H Bezoutian with

B±± = Bezsp(u±,v±),

where the two pairs(u+,v+) and(u−,u−) are unique up to transformations dis-
cussed in (4.9).

5. Inversion of certain matrices. In the following sections, certain upper triangular
matrices and their inverses will occur, which are importantfor applying our algorithm to the
inversion ofT+H Bezoutians in Section10. As a preparation, we are now going to introduce
these matrices and compute their inverses. One of the matrices is theℓ× ℓ matrix

(5.1) Qℓ =




(
0
0

)
0

(
2
1

)
0 · · ·

(
1
0

)
0

(
3
1

) ...

(
2
0

)
0

.. . 0

(
3
0

) .. .
(
ℓ−1
1

)

.. . 0

0
(
ℓ−1
0

)




,

i.e.,

Qℓ := [ qij ]
ℓ−1
i,j=0 with qij =

{( j
j−i

2

)
if j ≥ i andj − i is even,

0 otherwise.
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Upon defining the followingℓ× ℓ upper-triangular Toeplitz band matrices,

(5.2) Tℓ :=




1 0 −1 0

1 0
. . .

.. .
. . . −1

1 0

0 1




, T±
ℓ :=




1 ±1 0

1 ±1
. . .

. ..

1 ±1

0 1




,

we also introduce the following threeℓ× ℓ matrices

(5.3) Rℓ := TℓQℓ and R±
ℓ := T±

ℓ Qℓ.

Note that the entries ofRℓ = [ rij ]
ℓ−1
i,j=0 are given by

rij =





( j
j−i

2

)
−
( j

j−i

2
−1

)
if j > i andj − i is even,

1 if j = i,

0 otherwise,

and that the entries ofR±
ℓ =

[
r±ij

]ℓ−1

i,j=0
are given by

r±ij =





( j
j−i

2

)
if j ≥ i andi− j is even,

±
( j

j−i−1

2

)
if j > i andi− j is odd,

0 if i > j.

The inverses ofQℓ, Rℓ, andR±
ℓ can be described in terms of the matrix

Uℓ := [uij ]
ℓ−1
i,j=0, with uij =

{(−i−1
j−i

2

)
if j ≥ i andj − i even,

0 otherwise.

Noting that
(
−i−1

k

)
= (−1)k

(
i+k
k

)
, whence

(
−i− 1

j−i
2

)
= (−1)

j−i

2

( j+i
2

j−i
2

)
,

we observe that this matrix reads as

Uℓ =




(
0
0

)
0 −

(
1
1

)
0 · · ·

(
1
0

)
0 −

(
2
1

) ...

(
2
0

)
0

. . . 0

(
3
0

) . . . −
(
ℓ−2
1

)

. . . 0

0
(
ℓ−1
0

)




.
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LEMMA 5.1. We haveUℓTℓQℓ = Iℓ.
Proof. As usual, we let

(
α
k

)
= α(α−1)···(α−k+1)

k! , for k = 0, 1, . . . , and
(
α
k

)
= 0,

for k = −1,−2, . . . . The(i, k)-entry ofUℓTℓQℓ is given by

ℓ−1∑

j=0

(uij − ui,j−2)qjk =
∑

j∈I(i,k)

{(
−i− 1

j−i
2

)
−

(
−i− 1
j−i
2 − 1

)}(
k

k−j
2

)
,

whereI(i, k) denotes the index set of all0 ≤ j ≤ ℓ− 1 for which j − i as well ask − j are
nonnegative and even. This index set is nonempty only ifk − i is nonnegative and even. In
this case, using the familiar identity

∑

j+k=n

(
α

j

)(
β

k

)
=

(
α+ β

n

)
,

we conclude that the above term equals

(
k − i− 1

k−i
2

)
−

(
k − i− 1
k−i
2 − 1

)
=

{
1 if k = i,

0 if k 6= i.

Thus, we have shown thatUℓTℓQℓ is the identity matrix.
As a consequence, we obtain the explicit form of the inversesof Qℓ, Rℓ, andR±

ℓ . Notice
thatTℓ = T+

ℓ T−
ℓ = T−

ℓ T+
ℓ .

PROPOSITION5.2. We have

(5.4) Q−1
ℓ = UℓTℓ, R−1

ℓ = Uℓ, (R±
ℓ )

−1 = UℓT
∓
ℓ .

6. Connections betweenH Bezoutians and split-Bezoutians of (+) type of odd or-
der. We are first going to show that a split-Bezoutian of(+) type and of odd order is con-
nected with anH Bezoutian of about half the size. This will be a main key for our further
considerations.

Introduce a matrixSℓ of size(2ℓ− 1)× ℓ as the isomorphism defined by

Sℓ : F
ℓ → F

2ℓ−1
+ , (Sℓx) (t) = x(t+ t−1)tℓ−1, x ∈ F

ℓ.

The nonzero entries of the matrixSℓ are binomial coefficients arranged in the following
triangular-type structure,

(6.1) Sℓ =




0
(
ℓ−1
ℓ−1

)

. .
.

0
(
2
2

)
. .

. (
ℓ−1
ℓ−2

)

(
1
1

)
0 . .

. ...

(
0
0

)
0

(
2
1

) ...

(
1
0

)
0

. ..
...

(
2
0

) . ..
(
ℓ−1
1

)

. .. 0

0
(
ℓ−1
0

)




.



ETNA
Kent State University 

http://etna.math.kent.edu

TOEPLITZ-PLUS-HANKEL BEZOUTIANS 119

Notice that the matrixQℓ defined in (5.1) is (roughly) the lower half ofSℓ. For later use, we
observe that

(6.2) Sℓ = Z+
ℓ Qℓ,

whereZ+
ℓ is the following matrix of size(2ℓ− 1)× ℓ,

Z+
ℓ =




0 1
. .

.
0

1 . .
. ...

1 0
...

1
. . .

...
. . . 0

0 1




,

i.e.,Z+
ℓ = [zij ]

2ℓ−2
i=0

ℓ−1
j=0 with

zij =

{
1 j = |ℓ− 1− i|,

0 otherwise.

Note that the firstℓ rows of this matrix are equal to the flip matrixJℓ introduced in (1.1) and
the lastℓ rows are equal to the identityIℓ.

The main result of this section is the following.
THEOREM 6.1. [12] Let u+,v+ ∈ F

n+2
+ , n = 2ℓ − 1, and letu,v ∈ F

ℓ+1 be such
thatu+ = Sℓ+1u , v+ = Sℓ+1v. Then

(6.3) Bezsp(u+,v+) = −Sℓ BezH(u,v)ST
ℓ .

Proof. Recall the definition ofln(t) in (2.1) and observe that

ST
ℓ l2ℓ−1(t) = lℓ(t+ t−1)tℓ−1.

Now we only need to consider

−l2ℓ−1(t)
T Bezsp(u+,v+) l2ℓ−1(s) = −

u+(t)v+(s)− v+(t)u+(s)

(t− s)(1− ts)

and

l2ℓ−1(t)
TSℓ BezH(u,v)ST

ℓ l2ℓ−1(s)

= l(t+ t−1)T tℓ−1 BezH(u,v) sℓ−1l(s+ s−1)

= tℓ−1u(t+ t−1)v(s+ s−1)− v(t+ t−1)u(s+ s−1)

(t+ t−1)− (s+ s−1)
sℓ−1

to observe equality in (6.3).
REMARK 6.2. Letu,v ∈ F

ℓ+1 andu+ = Sℓ+1u, v+ = Sℓ+1v. Then the pairu(t)
andv(t) is generalized coprime if and only if the pairu+(t) andv+(t) is coprime. Hence,
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in view of Remark4.3and (6.3), it can be easily seen thatBezsp(u+,v+) restricted toF2ℓ−1
+

is invertible if and only ifu+(t) andv+(t) are coprime.
REMARK 6.3. SinceSℓ+1 is an isomorphism fromFℓ+1 to F

2ℓ+1
+ , there is a one-to-one

correspondence betweenu andu+ in Theorem6.1(and similarly betweenv andv+). In fact,
the equationu+ = Sℓ+1u can be solved by using the inverse ofQℓ+1; see Proposition5.2.
If u+ = (u+

i )
ℓ
i=−ℓ ∈ F

2ℓ+1
+ , then

u = Q−1
ℓ+1(u

+
i )

ℓ
i=0 = Uℓ+1Tℓ+1(u

+
i )

ℓ
i=0 .

7. Inversion of centrosymmetricT + H Bezoutians of odd order. In order to con-
tinue the discussion, let us come back to the splitting (4.6) for a nonsingular, centrosymmet-
ric T +H BezoutianB = B++ +B−− of ordern.

If n is odd, we have just seen how to reduce its first termB++ = Bezsp(u+,v+) to
anH Bezoutian. We will now do the same for the second termB−− by first reducing it to a
split-Bezoutian of(+) type with odd ordern− 2. The resulting term can then be reduced to
anH Bezoutian in the same way asB++.

Thus, letB−− = Bezsp(u−,v−) with u−,v− ∈ F
n+2
− be given. In view of Lemma4.7

(see also (2.2)), we can defineun
+,v

n
+ ∈ F

n
+ by

u−(t) =:
(
t2 − 1

)
un
+(t), v−(t) =: (t2 − 1)vn

+(t).

Here and in what follows, the superscript of a vector denotesits length. We obtain

Bezsp(u−,v−)(t, s) = (t2 − 1)
un
+(t)v

n
+(s)− vn

+(t)u
n
+(s)

(t− s)(1− ts)
(s2 − 1)

= (t2 − 1)Bezsp(u
n
+,v

n
+)(t, s)(s

2 − 1).

In matrix language, this reads as

Bezsp(u−,v−) = Mn−2 Bezsp(u
n
+,v

n
+)M

T
n−2 ,

whereMn−2 is then× (n− 2) matrix

(7.1) Mn−2 :=




−1 0

0 −1

1 0
. . .

1
. . . −1
. . . 0

0 1




.

SinceMn−2 is the matrix of the operator of multiplication byt2 − 1 in the corresponding
polynomial spaces (with respect to the canonical bases) andis an isomorphism fromFn−2

+

to F
n
−, whereas the transposeMT

n−2 is an isomorphism fromFn
− to F

n−2
+ , the split-Bezouti-

an Bezsp(u−,v−) restricted toFn
− is invertible if and only ifBezsp(un

+,v
n
+) restricted

to F
n−2
+ is invertible.
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Combining all this, we arrive at the following result. Therein, we rewriteu+ =: un+2
+

andv+ =: vn+2
+ .

THEOREM 7.1. [12] Letn be odd. ThenB ∈ F
n×n is a nonsingular, centrosymmetric

T +H Bezoutian if and only if it can be represented in the form

(7.2) B = Bezsp(u
n+2
+ ,vn+2

+ ) +Mn−2Bezsp(u
n
+,v

n
+)M

T
n−2,

with un+2i
+ (t),vn+2i

+ (t) ∈ F
n+2i
+ [t] being coprime fori = 0, 1.

Let n = 2ℓ− 1. Taking into account Theorem6.1and Remark6.2, we conclude that the
split-Bezoutians occurring in (7.2) can be represented as

Bezsp(u
n+2i
+ ,vn+2i

+ ) = −Sℓ+i−1BezH
(
uℓ+i,vℓ+i

)
ST
ℓ+i−1, i = 0, 1 ,

with

(7.3) un+2i
+ = Sℓ+iu

ℓ+i, vn+2i
+ = Sℓ+iv

ℓ+i

and the pairs(uℓ+i(t),vℓ+i(t)) being generalized coprime. It follows that

(7.4) B = Wn

[
BezH(vℓ+1,uℓ+1) 0

0 BezH(vℓ,uℓ)

]
WT

n ,

where

(7.5) Wn := [ Sℓ | Mn−2Sℓ−1 ] .

Notice that the minus sign disappeared since we interchanged uℓ+i andvℓ+i.
Due to (7.3), the vectorsuℓ+i, vℓ+i (i = 0, 1) can be computed as indicated in Re-

mark6.3. We will come back to this in Section10, where also another possibility is discussed;
see Remark10.1.

For the sake of simplicity, hereafter we writeJ for the matrix (1.1) of the corresponding
order. AssumingB to be nonsingular and thus(uℓ+i(t),vℓ+i(t)) to be generalized coprime
polynomials, the Bezout equations

(7.6)
uℓ+i(t)αi(t) + vℓ+i(t)βi(t) = 1

(
Juℓ+i

)
(t) (Jγi) (t) +

(
Jvℓ+i

)
(t) (Jδi) (t) = 1

have unique solutionαi,βi,γi, δi ∈ F
ℓ+i−1 (i = 0, 1). Defining vectorss2ℓ−3 ands2ℓ−1

by

(7.7)
(
Js2(ℓ+i)−3)

)
(t) = αi(t)δi(t)− βi(t)γi(t),

we know from Theorem4.5that the inverse ofBezH(vℓ+i,uℓ+i) is the Hankel matrix

Hℓ+i−1

(
s2(ℓ+i)−3)

)
=

(
BezH

(
vℓ+i,uℓ+i

))−1
, i = 0, 1.

Taking into account (7.4), we obtain the following representation ofB−1.
THEOREM 7.2. Letn = 2ℓ − 1, and letB ∈ F

n×n be a nonsingular, centrosymmetric
T +H Bezoutian. Then, with the notation introduced above,

(7.8) B−1 = W−T
n

[
Hℓ(s

2ℓ−1) 0

0 Hℓ−1(s
2ℓ−3)

]
W−1

n .
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As we will see, the matrixWn is indeed invertible. For the purpose of representing its
inverse, introduce the following(2ℓ− 1)× (ℓ− 1) matrix

Z−
ℓ−1 :=




0 −1
. .

.
0

−1 . .
. ...

0
...

1
. ..

...
. .. 0

0 1




.

Recall (5.3) and (5.2), in particular,Rℓ−1 = Tℓ−1Qℓ−1. A simple but crucial computation
yields

Mn−2Sℓ−1 = Z−
ℓ−1Rℓ−1.

This together with (6.2) and (7.5) implies

(7.9) Wn = [ Z+
ℓ Qℓ | Z

−
ℓ−1Rℓ−1 ] = [ Z+

ℓ | Z−
ℓ−1 ]

[
Qℓ 0

0 Rℓ−1

]
.

Therefore,Wn has the following structure,

Wn =




JQ̃ℓ −JRℓ−1

eT1 Qℓ 0ℓ−1

Q̃ℓ Rℓ−1


 ,

whereQ̃ℓ is the matrixQℓ with the first row deleted,e1 is the first unit vector, and0ℓ−1 is the
row zero vector of appropriate length. The structure ofWn is displayed schematically in the
following diagram.

JQℓ

Qℓ

−JRℓ−1

Rℓ−1

0 0
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In view of (7.9), we see thatWn is invertible since so are the triangular matricesQℓ

andRℓ−1, and the matrix

Zn := [ Z+
ℓ | Z−

ℓ−1 ] =




0 1 0 −1
. .

.
0 . .

.
0

1 . .
. ... −1 . .

. ...

1 0
... 0

...

1
. ..

... 1
. ..

...
. .. 0

. .. 0
0 1 0 1




.

In fact,

Z−1
n = 1

2

[
D−1

ℓ 0

0 Iℓ−1

]
ZT
n ,

where

(7.10) Dℓ := diag( 12 , 1, . . . , 1).

Hence,

W−1
n = 1

2

[
Q−1

ℓ D−1
ℓ 0

0 R−1
ℓ−1

]
ZT
n = 1

2

[
Q−1

ℓ D−1
ℓ (Z+

ℓ )T

R−1
ℓ−1(Z

−
ℓ−1)

T

]
.

As a consequence, the structure ofW−1
n is (up to a diagonal matrix) as indicated in the

following diagram.

Q−1

ℓ J

−R−1

ℓ−1
J

Q−1

ℓ

R−1

ℓ−1

0

0

0

0

Collecting all results, we obtain the following reformulation of (7.8).
THEOREM 7.3. Letn = 2ℓ − 1, and letB ∈ F

n×n be a nonsingular, centrosymmetric
T +H Bezoutian. Then, with the notation introduced above,

B−1 = 1
4Zn

[
A

(0)
ℓ 0

0 A
(1)
ℓ−1

]
ZT
n

= 1
4Z

+
ℓ A

(0)
ℓ (Z+

ℓ )T + 1
4Z

−
ℓ−1A

(1)
ℓ−1(Z

−
ℓ−1)

T ,(7.11)
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where

A
(0)
ℓ := D−1

ℓ Q−T
ℓ Hℓ(s

2ℓ−1)Q−1
ℓ D−1

ℓ ,

A
(1)
ℓ−1 := R−T

ℓ−1Hℓ−1(s
2ℓ−3)R−1

ℓ−1.

Let us remark that the matrices

(7.12) Ao
+ := 1

4Z
+
ℓ A

(0)
ℓ (Z+

ℓ )T and Ao
− := 1

4Z
−
ℓ−1A

(1)
ℓ−1(Z

−
ℓ−1)

T

are precisely the inverses ofB++ andB−−, restricted toFn
+ andFn

−, respectively; see Re-
mark 4.9. As we know from Proposition3.3, these are special centrosymmetricT + H

matrices (3.4) with symbols which we are going to compute in Section9. There we also iden-
tify the matricesA(0)

ℓ andA(1)
ℓ−1 as special symmetric (but in general not centrosymmetric)

T +H matrices.

8. Inversion of centrosymmetricT + H Bezoutians of even order.We start again
with the splitting formula (4.6) for B nonsingular, centrosymmetric but now of even or-
dern = 2ℓ. Remembering Lemma4.7and (2.2), we observe that there are vectors

un+1
+ ,vn+1

+ ,yn+1
+ , zn+1

+ ∈ F
n+1
+

such that

u+(t) =: (t+ 1)un+1
+ (t), v+(t) =: (t+ 1)vn+1

+ (t),

u−(t) =: (t− 1)yn+1
+ (t), v−(t) =: (t− 1)zn+1

+ (t) .

We obtain

B++ = M+
n−1Bezsp

(
un+1
+ ,vn+1

+

)
(M+

n−1)
T ,

B−− = M−
n−1Bezsp

(
yn+1
+ , zn+1

+

)
(M−

n−1)
T ,

where the matrices

(8.1) M±
n−1 :=




±1 0 · · · 0

1 ±1
. ..

...

0 1
. .. 0

...
. . .

. .. ±1
0 · · · 0 1




are of sizen× (n− 1). We arrive at a similar assertion as in Theorem7.1.
THEOREM 8.1. [12] Letn be even. ThenB ∈ F

n×n is a nonsingular, centrosymmetric
T +H Bezoutian if and only if it can be represented in the form

(8.2) B = M+
n−1Bezsp

(
un+1
+ ,vn+1

+

)
(M+

n−1)
T +M−

n−1Bezsp
(
yn+1
+ , zn+1

+

)
(M−

n−1)
T ,

with (un+1
+ (t),vn+1

+ (t)), (yn+1
+ (t), zn+1

+ (t)) being pairs of coprime polynomials inFn+1
+ [t].

Since the four vectors appearing in (8.2) belong toFn+1
+ , the split-Bezoutians are of

(+) type and odd ordern− 1 = 2ℓ− 1. Taking into account (6.3), we obtain

Bezsp
(
un+1
+ ,vn+1

+

)
= SℓBezH(v,u)ST

ℓ ,

Bezsp
(
yn+1
+ , zn+1

+

)
= SℓBezH(z,y)ST

ℓ ,
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with un+1
+ =: Sℓ+1u, vn+1

+ =: Sℓ+1v, yn+1
+ =: Sℓ+1y, zn+1

+ =: Sℓ+1z. Hence,

B = W̃n

[
BezH(v,u) 0

0 BezH(z,y)

]
W̃T

n ,

with

W̃n :=
[
M+

n−1Sℓ | M
−
n−1Sℓ

]
.

Again a basic but crucial computation yields

M±
n−1Sℓ =

[
±JℓR

±
ℓ

R±
ℓ

]
,

with R±
ℓ introduced in (5.3). Therefore,

W̃n =

[
Jℓ −Jℓ
Iℓ Iℓ

] [
R+

ℓ 0

0 R−
ℓ

]
.

We obtain

W̃−1
n = 1

2

[ (
R+

ℓ

)−1
0

0
(
R−

ℓ

)−1

] [
Jℓ Iℓ
−Jℓ Iℓ

]
,

where
(
R±

ℓ

)−1
is given in Proposition5.2.

The vectorsu, v, y, andz can be computed as indicated in Remark6.3. This and
alternative ways are outlined in Section10.

In order to describe the inverses ofBezH(v,u) andBezH(z,y), which are Hankel ma-
trices, we consider the Bezout equations

(8.3)
u(t)α1(t) + v(t)β1(t) = 1

uJ(t)γJ
1 (t) + vJ(t)δJ1 (t) = 1

and

(8.4)
y(t)α2(t) + z(t)β2(t) = 1

yJ(t)γJ
2 (t) + zJ(t)δJ2 (t) = 1.

These equations have unique solutionsαi,βi,γi, δi ∈ F
ℓ (i = 1, 2) since(u(t),v(t)) and

(y(t), z(t)) are pairs of generalized coprime polynomials. Finally, defines2ℓ−1
1 ands2ℓ−1

2 by

(8.5) (Js2ℓ−1
i )(t) = αi(t)δi(t)− βi(t)γi(t), i = 1, 2.

Now we are able to representB−1.
THEOREM 8.2. LetB ∈ F

n×n be a nonsingular, centrosymmetricT +H Bezoutian of
ordern = 2ℓ. Then, with the notation introduced above,

B−1 = W̃−T
n

[
Hℓ(s

2ℓ−1
1 ) 0

0 Hℓ(s
2ℓ−1
2 )

]
W̃−1

n .

Moreover,

B−1 = 1
4

[
Jℓ −Jℓ
Iℓ Iℓ

] [
A+

ℓ 0

0 A−
ℓ

] [
Jℓ Iℓ
−Jℓ Iℓ

]

= 1
4

[
Jℓ
Iℓ

]
A+

ℓ [ Jℓ Iℓ ] +
1
4

[
−Jℓ
Iℓ

]
A−

ℓ [−Jℓ Iℓ ] ,(8.6)
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where

(8.7) A+
ℓ := (R+

ℓ )
−THℓ(s

2ℓ−1
1 )(R+

ℓ )
−1, A−

ℓ := (R−
ℓ )

−THℓ(s
2ℓ−1
2 )(R−

ℓ )
−1.

We remark that the first and the second summand of (8.6),

(8.8) Ae
+ := 1

4

[
Jℓ
Iℓ

]
A+

ℓ [ Jℓ Iℓ ] , Ae
− := 1

4

[
−Jℓ
Iℓ

]
A−

ℓ [−Jℓ Iℓ ] ,

are the inverses ofB++ andB−− restricted toFn
+ andFn

−, respectively; compare Remark4.9.
In fact,Ae

+ andAe
− are centrosymmetricT +H matrices with the symmetry properties (3.3).

Hence, they are of the form (3.4). The symbols of theseT+H matrices (which are not unique)
are computed froms2ℓ−1

i in the next section. For this, we first identifyA±
ℓ as particular

symmetricT +H matrices.

9. Representations of inverses ofT + H Bezoutians as centrosymmetricT + H

matrices. In the previous two sections (see Theorems7.3 and8.2), we arrived at the ma-
tricesAo

± andAe
±. As already promised there, we are going to identify these matrices as

particular centrosymmetricT + H matrices and compute their symbols. The starting point
are the matricesA(0)

ℓ , A(1)
ℓ−1, andA±

ℓ , which will be identified as particular symmetric (not
centrosymmetric)T + H matrices based on auxiliary results established in the following
subsection.

9.1. Relations between Hankel matrices and symmetricT + H matrices. There
exist identities between Hankel matrices and four kinds of particularsymmetricT +H ma-
trices. In fact, these relationships hold for one-sided infinite matrices and were established
in [1, Theorem 5]. The finite matrix versions, which are of interest to us, are immediate
consequences. The identities involve the matricesQℓ, Rℓ, R

±
ℓ , andDℓ, which were defined

in (5.1), (5.3), and (7.10).
THEOREM 9.1. [1] Leta = (ak)

2ℓ
k=−2ℓ, a

+ = (a+k )
2ℓ−1
k=−2ℓ+1, a− = (a−k )

2ℓ−1
k=−2ℓ+1, and

a# = (a#k )
2ℓ−2
k=−2ℓ+2 be four symmetric vectors,

ak = a−k, a+k = a+−k, a−k = a−−k, and a
#
k = a

#
−k,

where the first three vectors are related to the last one by

(9.1) a
#
k = 2ak − ak−2 − ak+2 = 2a+k + a+k−1 + a+k+1 = 2a−k − a−k−1 − a−k+1.

Define the vectors = (sk)
2ℓ−2
k=0 by

(9.2) sk =
1

2

k∑

j=0

a
#
k−2j

(
k

j

)

as well as theℓ× ℓ Toeplitz-plus-Hankel matrices

THℓ(a) := [ aj−k − aj+k+2 ]
ℓ−1
j,k=0, TH+

ℓ (a
+) := [ a+j−k + a+j+k+1 ]

ℓ−1
j,k=0,

TH#
ℓ (a

#) := [ a#j−k + a
#
j+k ]

ℓ−1
j,k=0, TH−

ℓ (a
−) := [ a−j−k − a−j+k+1 ]

ℓ−1
j,k=0.

Then the Hankel matrixHℓ(s) = [ sj+k ]
ℓ−1
j,k=0 can be represented as

Hℓ(s) = QT
ℓ DℓTH

#
ℓ (a

#)DℓQℓ = RT
ℓ THℓ(a)Rℓ

= (R+
ℓ )

TTH+
ℓ (a

+)R+
ℓ = (R−

ℓ )
TTH−

ℓ (a
−)R−

ℓ .
(9.3)
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We can rephrase the relationships (9.1) and (9.2) betweens and the symmetric vec-
torsa#, a, a+, anda− as follows. First of all, using the notation (6.1),

(9.4) s = 1
2 (S2ℓ−1)

Ta# = QT
2ℓ−1D2ℓ−1(a

#
k )

2ℓ−2
k=0 .

Thus, there is a one-to-one correspondence betweens anda#. In particular,

(9.5) (a#k )
2ℓ−2
k=0 = D−1

2ℓ−1Q
−T
2ℓ−1s ,

which can be written explicitly as

(9.6) a
#
0 = 2s0, a

#
k = a

#
−k =

⌊ k
2
⌋∑

j=0

(−1)jsk−2j

((
k − j

j

)
+

(
k − j − 1

j − 1

))
,

for k = 1, 2, . . . , 2ℓ− 2. This can be derived using Proposition5.2.
However, the correspondence (9.1) between the vectorsa, a#, anda± is not bijective. It

can be expressed with the help of linear maps

Λ2ℓ+1 : (ak)
2ℓ
k=0 7→ (a#k )

2ℓ−2
k=0 , Λ±

2ℓ : (a
±
k )

2ℓ−1
k=0 7→ (a#k )

2ℓ−2
k=0

given by

(9.7)




2 0 −2 0
0 1 0 −1

−1 0 2 0 −1
. . .

.. .
. . .

.. .
.. .

0 −1 0 2 0 −1







a0
a1
...

a2ℓ


 =




a
#
0

a
#
1
...

a
#
2ℓ−2


 ,




2 ±2 0
±1 2 ±1

±1 2 ±1
.. .

. ..
. . .

0 ±1 2 ±1







a±0
a±1
...

a±2ℓ−1


 =




a
#
0

a
#
1
...

a
#
2ℓ−2


 .

From this we observe that the kernel ofΛ2ℓ+1 consists of all vectors with period two
(i.e., ak = ak−2) and thus has dimension two, while the kernels ofΛ+

2ℓ andΛ−
2ℓ consist of

all vectors which are alternating (a+k = −a+k−1) or constant (a−k = a−k−1), respectively, and
thus have dimension one. The mapsΛ2ℓ+1 andΛ±

2ℓ are surjective.
The fact thata anda± are not uniquely determined bya± corresponds to the fact that

the matricesTHℓ(a),TH
+
ℓ (a

+), andTH−
ℓ (a

−) do not determine their symbols uniquely (as
one can easily verify). Indeed, they are only unique up to thejust mentioned vectors in the re-
spective kernels. Still, as (9.3) requires, there is a one-to-one correspondence betweenHℓ(s),
TH#

ℓ (a
#), THℓ(a), andTH±

ℓ (a
±).

It is worth to make the relationship betweena, a±, ands more explicit. Recall thatTℓ

andT±
ℓ were introduced in (5.2) and thatM2ℓ+1 andM±

2ℓ were defined in (7.1) and (8.1).
Clearly, (9.4) and (9.7) lead to

Λ2ℓ+1(ak)
2ℓ
k=0 = D−1

2ℓ−1Q
−T
2ℓ−1s = D−1

2ℓ−1T
T
2ℓ−1U

T
2ℓ−1s,
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taking into account (5.4). By a straightforward computation,TT
2ℓ−1M

T
2ℓ−1 = −D2ℓ−1Λ2ℓ+1.

Hence,

(9.8) MT
2ℓ−1(ak)

2ℓ
k=0 = −UT

2ℓ−1s = −R−T
2ℓ−1s.

Furthermore,

Λ±
2ℓ(a

±
k )

2ℓ−1
k=0 = D−1

2ℓ−1Q
−T
2ℓ−1s = D−1

2ℓ−1T
T
2ℓ−1U

T
2ℓ−1s.

RecallT2ℓ−1 = T+
2ℓ−1T

−
2ℓ−1 = T−

2ℓ−1T
+
2ℓ−1 and verify that(T±

2ℓ−1)
T (M±

2ℓ)
T = ±D2ℓ−1Λ

±
2ℓ

to conclude that

(9.9) (M±
2ℓ−1)

T (a±k )
2ℓ−1
k=0 = ±(T∓

2ℓ−1)
TUT

2ℓ−1s = ±(R±
2ℓ−1)

−T s.

The equations (9.5), (9.8), and (9.9) together with Proposition5.2 can be used to determine
vectorsa#, a, anda± satisfying the assumptions of Theorem9.1for each prescribeds.

The formulas (9.8) and (9.9) can be written down explicitly as it was done in (9.6) for
(9.5). This will be performed in Section10.

9.2. Representation ofB−1 as a centrosymmetricT + H matrix. Let B be a non-
singular, centrosymmetricT +H Bezoutian of ordern. We continue the discussion of how
to representB−1 asT + H matrix. Depending of whethern is odd or even, we arrived
at representations ofB−1 in the Theorems7.3 and8.2. On the other hand, we know from
Theorem4.6 thatB−1 has to be a centrosymmetricT + H matrix. Due to Remark3.2 and
Proposition3.3, this T + H matrix can be written as a sum of two particularT + H ma-
trices of the form (3.4). The formulas stated in the aforementioned theorems together with
the results of the previous subsection now allow us to conclude this directly and to establish
explicit formulas for the symbols of theT +H matrices.

Let us start with considering aT + H BezoutianB of odd ordern = 2ℓ − 1. From
Theorem7.3and Theorem9.1(see, in particular, the first line in (9.3)), it follows that

A
(0)
ℓ = TH#

ℓ (a
(0)) and A

(1)
ℓ−1 = THℓ−1(a

(1)),

where a(0) = (a
(0)
k )2ℓ−2

k=−2ℓ+2 and a(1) = (a
(1)
k )2ℓ−2

k=−2ℓ+2 are symmetric vectors of
length4ℓ− 3 = 2n− 1. In view of (9.5) and (9.8), we obtain

(a
(0)
k )2ℓ−2

k=0 = D−1
2ℓ−1Q

−T
2ℓ−1s

2ℓ−1 and MT
2ℓ−1(a

(1)
k )2ℓ−2

k=0 = −R−T
2ℓ−3s

2ℓ−3.

The vectorss2ℓ−1 ands2ℓ−3 are the ones featured in Theorem7.3, which are determined
by (7.7). Notice thatMT

2ℓ−1 is surjective and has a two-dimensional kernel consisting of all
vectorseα,β = (α, β, α, β, . . . )T .

Thus, in connection with (7.11), we conclude that

B−1 = 1
4Z

+
ℓ TH#

ℓ (a
(0))(Z+

ℓ )T + 1
4Z

−
ℓ−1THℓ−1(a

(1))(Z−
ℓ−1)

T .

Therein the first and the second term areAo
+ andAo

−, respectively, introduced in (7.12).
Taking into account the structure ofZ+

ℓ andZ−
ℓ−1, a straightforward computation yields

(9.10) Ao
+ = 1

4Z
+
ℓ TH#

ℓ (a
(0))(Z+

ℓ )T = 1
4 [ a

(0)
j−k + a

(0)
j+k ]

ℓ−1
j,k=−ℓ+1

and

(9.11) Ao
− = 1

4Z
−
ℓ−1THℓ−1(a

(1))(Z−
ℓ−1)

T = 1
4 [ a

(1)
j−k − a

(1)
j+k ]

ℓ−1
j,k=−ℓ+1 ,
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which are precisely the two particular centrosymmetricT +H matrices of the form (3.4); see
also (3.1). Thus, we arrive at the following theorem.

THEOREM 9.2. Let B be a nonsingular, centrosymmetricT + H Bezoutian of odd
ordern = 2ℓ− 1. Then witha(0) anda(1) as above, we have

(9.12) B−1 =
1

4

(
[ a

(0)
j−k + a

(1)
j−k ]

ℓ−1
j,k=−ℓ+1 + [ a

(0)
j+k − a

(1)
j+k ]

ℓ−1
j,k=−ℓ+1

)
.

Now, letB be aT +H Bezoutian of even order,n = 2ℓ. Consider in Theorem9.1 the
vectorss2ℓ−1

i , for i = 1, 2, defined in (8.5) in place ofs. In view of Theorem8.2 and the
second line in (9.3), we obtain

A+
ℓ = TH+

ℓ (a
+) and A−

ℓ = TH−
ℓ (a

−),

where the symmetric vectorsa± = (a±k )
2ℓ−1
k=−2ℓ+1 of length4ℓ− 1 = 2n− 1 are given by

(M+
2ℓ)

T (a+k )
2ℓ−1
k=0 = (R+

2ℓ−1)
−T s2ℓ−1

1 ,

(M−
2ℓ)

T (a−k )
2ℓ−1
k=0 = −(R−

2ℓ−1)
−T s2ℓ−1

2 .

Notice that the matrices(M±
2ℓ)

T are surjective and have a one-dimensional kernel consisting
of all vectorseα,∓α.

Now, in view of (8.6), it follows that

B−1 = 1
4

[
Jℓ
Iℓ

]
TH+

ℓ (a
+) [ Jℓ Iℓ ] +

1
4

[
−Jℓ
Iℓ

]
TH−

ℓ (a
−) [−Jℓ Iℓ ] ,

where the first summand equalsAe
+ and the second equalsAe

−; see (8.8). Since

(9.13)

[
Jℓ
Iℓ

]
TH+

ℓ (a
+) [ Jℓ Iℓ ] =

[
a+j−k + a+j+k+1

]ℓ−1

j,k=−ℓ

and

(9.14)

[
−Jℓ
Iℓ

]
TH−

ℓ (a
−) [−Jℓ Iℓ ] =

[
a−j−k − a−j+k+1

]ℓ−1

j,k=−ℓ
,

which areT + H matrices of the form (3.4), see also (3.2), we obtain the final result in the
even case.

THEOREM 9.3. Let B be a nonsingular, centrosymmetricT + H Bezoutian of even
ordern = 2ℓ. Then witha+ anda− as above, we have

(9.15) B−1 =
1

4

(
[ a+j−k + a−j−k ]

ℓ−1
j,k=−ℓ + [ a+j+k+1 − a−j+k+1 ]

ℓ−1
j,k=−ℓ

)
.

10. Algorithms. Let ann× n matrixB be given. From Section4.4we know that ifB
is a nonsingular, centrosymmetricT +H Bezoutian, then we can represent it in the form

B = Bezsp(u+,v+) + Bezsp(u−,v−),

where(u±,v±) satisfy the conditions stated in Lemma4.7. In Remark4.10we established
a procedure to verify whetherB is a nonsingular, centrosymmetricT + H Bezoutian. The
procedure also describes an algorithm for the computation of appropriate (nonunique) vec-
torsu±, v±. Thus, we can consider these vectors to be the starting pointfor the computation
of B−1.
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First we discuss the case wheren is odd,n = 2ℓ− 1. We are going to present anO(n2)
algorithm that computes the inverse ofB based on the observations made in the previous
sections.

(1o) Denoteun+2
+ := u+,v

n+2
+ := v+. Compute (e.g., by using the Horner scheme)

un
+(t) :=

u−(t)

t2 − 1
, vn

+(t) :=
v−(t)

t2 − 1
.

(2o) Write these vectors as

un+2i
+ =: (un+2i

+,j )ℓ+i−1
j=−ℓ−i+1, vn+2i

+ =: (vn+2i
+,j )ℓ+i−1

j=−ℓ−i+1, i = 0, 1.

Recall Remark6.3and compute the vectors

uℓ+i := (Qℓ+i)
−1

(
un+2i
+,j

)ℓ+i−1

j=0
, vℓ+i := (Qℓ+i)

−1
(
vn+2i
+,j

)ℓ+i−1

j=0
,

where(Qℓ+i)
−1 is given in Proposition5.2.

(3o) Find the vectorss2(ℓ+i)−3 = (s
(i)
j )

2(ℓ+i)−3
j=0 (i = 0, 1) from the solutions of the Be-

zout equations (7.6) and by polynomial multiplication (7.7). The Bezout equations
can be solved via Euclid’s algorithm.

(4o) It remains to compute the symmetric vectorsa(i) = (a
(i)
k )2ℓ−2

k=−2ℓ−2 which determine

the matricesTH#
ℓ (a

(0)) andTHℓ−1(a
(1)). From (9.6) and (9.8) we get

a
(0)
0 = 2s

(0)
0 , a

(0)
k = a

(0)
−k =

⌊ k
2
⌋∑

j=0

(−1)js
(0)
k−2j

((
k − j

j

)
+

(
k − j − 1

j − 1

))
,

for k = 1, . . . , 2ℓ− 2, and

a
(1)
k − a

(1)
k+2 =

⌊ k
2
⌋∑

j=0

(−1)js
(1)
k−2j

(
k − j

j

)
, a

(1)
k = a

(1)
−k,

for k = 0, . . . , 2ℓ − 4. Now B−1 is given by (9.12). Notice that, as expected,
the vectora(1) is not uniquely determined. However, this ambiguity does not af-
fectTHℓ−1(a

(1)) and the matrix (9.12).

REMARK 10.1. The steps (1o) and (2o) can be performed in an alternative way by using
the inverse ofRℓ+i (given in Proposition5.2) and

un+2i+2
− (t) := (t2 − 1)un+2i

+ (t), vn+2i+2
− (t) := (t2 − 1)vn+2i

+ (t)

(belonging toFn+2i+2
− [t]) instead ofun+2i

+ andvn+2i
+ . Clearly, in terms of the given vectors,

un+4
− (t) := (t2 − 1)u+(t) , un+2

− := u− ,

vn+4
− (t) := (t2 − 1)v+(t) , vn+2

− := v− .

Writing the vectors as

un+2i+2
− =: (un+2i+2

−,j )ℓ+i
j=−ℓ−i, vn+2i+2

− =: (vn+2i+2
−,j )ℓ+i

j=−ℓ−i, i = 0, 1,

it follows that

uℓ+i = (Rℓ+i)
−1(un+2i+2

−,j )ℓ+i
j=1, vℓ+i = (Rℓ+i)

−1(vn+2i+2
−,j )ℓ+i

j=1.
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Secondly, we consider the even casen = 2ℓ and design anO(n2) inversion algorithm
similar to the algorithm above for the odd case.

(1e) Compute (e.g., by using the Horner scheme)

un+1
+ (t) :=

u+(t)

t+ 1
, vn+1

+ (t) :=
v+(t)

t+ 1
, yn+1

+ (t) :=
u−(t)

t− 1
, zn+1

+ (t) :=
v−(t)

t− 1
.

(2e) Denote by
(
un+1
j

)ℓ
j=0

,
(
vn+1
j

)ℓ
j=0

,
(
yn+1
j

)ℓ
j=0

,
(
zn+1
j

)ℓ
j=0

the vectors of the

lastℓ+ 1 components ofun+1
+ ,vn+1

+ ,yn+1
+ , zn+1

+ , respectively. Compute the vec-
tors

u = (Qℓ+1)
−1

(
un+1
j

)ℓ
j=0

, v = (Qℓ+1)
−1

(
vn+1
j

)ℓ
j=0

,

y = (Qℓ+1)
−1

(
yn+1
j

)ℓ
j=0

, z = (Qℓ+1)
−1

(
zn+1
j

)ℓ
j=0

,

where(Qℓ+i)
−1 is given in Proposition5.2.

(3e) Find the vectorss2ℓ−1
i = (s

(i)
j )2ℓ−1

j=0 (i = 1, 2) from the solutions of the Bezout
equations (8.3) and (8.4) via Euclid’s algorithm and by polynomial multiplicati-
ons (8.5).

(4e) It remains to compute the symmetric vectorsa± = (a±k )
2ℓ−1
k=−2ℓ+1 which build the

matricesTH±
ℓ (a

±). In view of (9.9) we obtain the following equations,

a+k+1 + a+k =

⌊ k
2
⌋∑

j=0

(−1)j
(
k − j

j

)
s
(1)
k−2j −

⌊ k−1

2
⌋∑

j=0

(−1)j
(
k − j − 1

j

)
s
(1)
k−2j−1

and

a−k − a−k+1 =

⌊ k
2
⌋∑

j=0

(−1)j
(
k − j

j

)
s
(2)
k−2j +

⌊ k−1

2
⌋∑

j=0

(−1)j
(
k − j − 1

j

)
s
(2)
k−2j−1,

for k = 0, . . . , 2ℓ− 2, along witha±k = a±−k.
Now B−1 is represented asT +H matrix according to (9.15). As before, the vec-
torsa± are not uniquely determined. This does not affectTH±

ℓ (a
±) and the ma-

trix (9.15).
REMARK 10.2. The steps (1e) and (2e) can be performed in one step using the inverse

of R±
ℓ . Indeed, we have

u = (R+
ℓ )

−1(u+
i )

ℓ−1
i=0 , u+ = (u+

i )
ℓ−1
i=−ℓ ∈ F

n
+,

v = (R+
ℓ )

−1(v+i )
ℓ−1
i=0 , v+ = (v+i )

ℓ−1
i=−ℓ ∈ F

n
+,

y = (R−
ℓ )

−1(u−
i )

ℓ−1
i=0 , u− = (u−

i )
ℓ−1
i=−ℓ ∈ F

n
−,

z = (R+
ℓ )

−1(v−i )
ℓ−1
i=0 , v− = (v−i )

ℓ−1
i=−ℓ ∈ F

n
−.

A formula for the inverse ofR±
ℓ is given in (5.4).

11. Alternative representations. Let us first consider the odd casen = 2ℓ − 1. We
arrived at a representation of the inverse of theT + H BezoutianB−1 = Ao

+ + Ao
− as the

sum of two centrosymmetricT +H matrices with particular symmetries. These two matrices
are represented in (9.10) and (9.11). While the first one,

Ao
+ = 1

4Z
+
ℓ TH#

ℓ (a
(0))(Z+

ℓ )T = 1
4 [ a

(0)
j−k + a

(0)
j+k ]

ℓ−1
j,k=−ℓ+1 ,
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has a unique symbol, the symbol of the second one

Ao
− = 1

4Z
−
ℓ−1THℓ−1(a

(1))(Z−
ℓ−1)

T = 1
4 [ a

(1)
j−k − a

(1)
j+k ]

ℓ−1
j,k=−ℓ+1

is not unique. It is possible to remedy this situation and to obtain a representation that involves
uniquely determined coefficients. It comes at the expense that the modified representation is
a product of three matrices.

In order to derive this formula, we start again from

Ao
− = 1

4Z
−
ℓ−1A

(1)
ℓ−1(Z

−
ℓ−1)

T , A
(1)
ℓ−1 = R−T

ℓ−1H(s2ℓ−3)R−1
ℓ−1

but apply the first relationship in (9.3) of Theorem9.1, namely that between the Hankel matrix
and the matrixTH#

ℓ−1 (rather thanTHℓ−1). This yields

A
(1)
ℓ−1 = R−T

ℓ−1Q
T
ℓ−1Dℓ−1TH

#
ℓ−1(â

(1))Dℓ−1Qℓ−1R
−1
ℓ−1,

with

(11.1) â(1) = (â
(1)
k )2ℓ−4

k=−2ℓ−4 ∈ F
4ℓ−7
+ , (â

(1)
k )2ℓ−4

k=0 = D−1
2ℓ−3(Q2ℓ−3)

−T s2ℓ−3.

Using (5.3) it follows that

A
(1)
ℓ−1 = T−T

ℓ−1Dℓ−1TH
#
ℓ−1(â

(1))Dℓ−1T
−1
ℓ−1

and thus

Ao
− = 1

4Z
−
ℓ−1T

−T
ℓ−1Dℓ−1TH

#
ℓ−1(â

(1))Dℓ−1T
−1
ℓ−1(Z

−
ℓ−1)

T .

Introduce the(2ℓ− 3)× (2ℓ− 1) matrix

Σ2ℓ−1 =
1

2




−1 1
0 −1 1 0
−1 0 −1 1 0 1
...

. ..
.. . . .

.
. .

. ...
... 0 −1 0 1 0

...
... . .

.
. .

. . . .
. . .

...
−1 0 −1 1 0 1
0 −1 1 0
−1 1




,

which has a triangular-type structure combined with a checkerboard pattern. Notice that the
columns are even and the rows are odd vectors. The column in the middle is zero. Inci-
dentally,Σ2ℓ−1 establishes an isomorphism betweenF

2ℓ−1
− andF

2ℓ−3
+ ; compare (2.2). A

straightforward computation gives that

Z−
ℓ−1 = ΣT

2ℓ−1Z
+
ℓ−1D

−1
ℓ−1T

T
ℓ−1.

Therefore,

Ao
− = 1

4Σ
T
2ℓ−1Z

+
ℓ−1TH

#
ℓ−1(â

(1))(Z+
ℓ−1)

TΣ2ℓ−1 ,
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and the product in the middle computes to a particular centrosymmetricT + H matrix of
size2ℓ− 3 = n− 2.

We are now in the position to present the promised alternative formula, a representation
as a product of three matrices.

PROPOSITION11.1.

Ao
− = 1

4Σ
T
2ℓ−1

[
â
(1)
j−k + â

(1)
j+k

]ℓ−2

j,k=−ℓ+2
Σ2ℓ−1 ,

with â(1) being defined in(11.1).
Although it is not immediately clear from this formula thatAo

− is a centrosymmet-
ric T +H matrix as well, this can be verified with little effort and follows also from (9.11).
In particular, one can show that the relationship between the symbolsa(1) ∈ F

4ℓ−3
+ and

â(1) ∈ F
4ℓ−7
+ is given by

â
(1)
k = 2a

(1)
k − a

(1)
k+2 − a

(1)
k−2 ;

see also (9.1).
The derived formula may be of advantage when one is interested in multiplyingAo

− with
a vector since the multiplication withΣ2ℓ−1 andΣT

2ℓ−1 can be performed fast.
Let us now turn to the even casen = 2ℓ, where we had the expressions (9.13) and (9.14)

for Ae
+ andAe

−, both involving nonunique symbolsa±. To obtain alternative formulas, start
from (8.7) and (8.8). Again apply only the first identity in (9.3) in order to conclude that

A±
ℓ = (R±

ℓ )
−TQT

ℓ DℓTH
#
ℓ (â

±)DℓQℓ(R
±
ℓ )

−1 ,

with a uniquêa± = (â±k )
2ℓ−2
k=−2ℓ+2 ∈ F

4ℓ−3
+ given by

(11.2) (â+k )
2ℓ−2
k=0 = D−1

2ℓ−1(Q2ℓ−1)
−T s2ℓ−1

1 , (â−k )
2ℓ−2
k=0 = D−1

2ℓ−1(Q2ℓ−1)
−T s2ℓ−1

2 .

Use (5.3) to conclude

A±
ℓ = (T±

ℓ )−TDℓTH
#
ℓ (â

±)Dℓ(T
±
ℓ )−1

and thus

Ae
± = 1

4

[
±Jℓ
Iℓ

]
(T±

ℓ )−TDℓTH
#
ℓ (â

±)Dℓ(T
±
ℓ )−1

[
± Jℓ Iℓ

]
.

Introduce the(2ℓ− 1)× 2ℓ matrices

Σ±
2ℓ =

1

2




±1 1
−1 ±1 1 ∓1
±1 −1 ±1 1 ∓1 1
...

. . .
.. . . .

.
. .

. ...
... −1 ±1 1 ∓1

...
... . .

.
. .

. . ..
.. .

...
±1 −1 ±1 1 ∓1 1
−1 ±1 1 ∓1
±1 1




.



ETNA
Kent State University 

http://etna.math.kent.edu

134 T. EHRHARDT AND K. ROST

The columns are all even vectors, while the rows are even or odd depending on the(+)
or (−) case. It is straightforwardly verified that

[
±Jℓ
Iℓ

]
= (Σ±

2ℓ)
TZ+

ℓ D−1
ℓ (T±

ℓ )T .

It follows that

Ae
± = 1

4 (Σ
±
2ℓ)

TZ+
ℓ TH#

ℓ (â
±)(Z+

ℓ )TΣ±
2ℓ .

As before, the middle term becomes aT+H matrix, and thus we obtain the desired alternative
formula forAe

±.
PROPOSITION11.2.

Ae
± = 1

4 (Σ
±
2ℓ)

T
[
â±j−k + â±j+k

]ℓ−1

j,k=−ℓ+1
Σ±

2ℓ ,

whereâ± is defined in(11.2).
The relationship to (9.13) and (9.14) in terms of the symbol is

â±k = 2a±k ± a±k+1 ± a±k−1 ,

as one can easily check.
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1984.
[9] , On the inverses of Toeplitz-plus-Hankel matrices, Linear Algebra Appl., 106 (1988), pp. 39–52.

[10] , Hartley transform representations of inverses of real Toeplitz-plus-Hankel matrices, in Proceedings
of the International Conference on Fourier Analysis and Applications, F. Al-Musallam, A. B̈ottcher,
P. Butzer, G. Heinig, and V. K. Tuan, eds., Numer. Funct. Anal.Optim., 21 (2000), pp. 175–189.

[11] , Efficient inversion formulas for Toeplitz-plus-Hankel matrices using trigonometric transformations,
in Structured Matrices in Mathematics, Computer Science, andEngineering, II, V. Olshevsky, ed.,
vol. 281 of Contemporary Mathematics, AMS, Providence, 2001,pp. 247–264.

[12] , Centrosymmetric and centro-skewsymmetric Toeplitz-plus-Hankel matrices and Bezoutians, Linear
Algebra Appl., 366 (2003), pp. 257–281.

[13] , Introduction to Bezoutians, in Numerical Methods for Structured Matrices and Applications,
D. A. Bini, V. Mehrmann, V. Olshevsky, E. E. Tyrtyshnikov, andM. van Barel, eds., vol. 199 of Oper.
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