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Abstract. Lothar Reichel and his collaborators proposed several iterative algorithms that augment the un-
derlying Krylov subspace with an additional low-dimensional subspace in order to produce improved regularized
solutions. We take a closer look at this approach and investigate a particular Regularized Range-Restricted GMRES
method, R3GMRES, with a subspace that represents prior information about the solution. We discuss the implemen-
tation of this approach and demonstrate its advantage by meansof several test problems.
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1. Introduction. This paper deals with iterative Krylov subspace methods forsolving
large ill-conditioned systems of linear equations arisingfrom the discretization of inverse
problems. Lothar Reichel has made numerous contributions in this area (as we shall see
below) on which the present work builds. We consider discrete inverse problems of the form

(1.1) min
x
‖Ax− b‖22, A ∈ R

n×n, b, x ∈ R
n,

and we note that this problem takes the formAx = b when the square matrixA has full
rank. To compute a stable solution to this problem, one must incorporate prior information
about the desired solution. Often this information takes the form of a requirement concerning
the smoothness of the solution, but the information can alsobe specified in the form of a
low-dimensional “signal subspace” in which the solution must lie; cf. [11].

The latter approach is particularly attractive for large-scale problems, where the signal
subspace can take the form of a Krylov subspace such as

Kj(A
⊤A,A⊤b) for the CGLS and LSQR algorithms [11, 20],

Kj(A, b) for the GMRES and MINRES algorithms [5, 16],

Kj(A,Ab) for the RRGMRES and MR-II algorithms [4, 8, 18],

whereKj(M, v) ≡ span{v,Mv,M2v, . . . ,M j−1v} andj is the number of iterations. De-
pending on the application, one or more of these subspaces may be well suited to compute a
good regularized solution, i.e., a good approximation thatis only little sensitive to perturba-
tions of the data; cf. [15]. Moreover, it is possible to “subspace precondition” these methods
in order to favorably adjust the above Krylov subspaces if needed; cf. [7, 9, 13].

We can further improve the regularized solution by incorporating additional specific prior
information. For example, we may know that the solution has asignificant component in
a given subspaceWp of dimensionp ≪ j (e.g., chosen to represent known smoothness
properties or known discontinuities). In connection with the above Krylov subspace methods,
Reichel and his collaborators [1, 2, 3, 6] therefore proposed to decompose the solution into
a component inWp and another component in the orthogonal complementW⊥

p , which leads
to the idea of augmented Krylov subspace methods; see also [17].
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This work focuses on the range-restricted GMRES (RRGMRES) method, which was
designed for rank-deficient inconsistent systems [4] and which performs better than GMRES
under the influence of noisy data [15]. We consider a particular augmentation approach in
which we compute regularized solutions in a signal subspaceSp,j that is the direct sum of the
two subspacesWp andKj(A,Ab),

(1.2) Sp,j =Wp +Kj(A,Ab) ≡ {y + z | y ∈ Wp ∧ z ∈ Kj(A,Ab)},

which itself is a linear subspace. In particular, we discusshow to implement the associated
algorithm Regularized RRGMRES (R3GMRES) efficiently, and we demonstrate its useful-
ness on selected test problems—including comparisons with related algorithms. Analogous
implementation issues related to CGLS and MR-II are left to future work.

In Section2 we summarize the decomposition approach and the associatedaugmented
RRGMRES method, and we argue why a different approach is needed to compute regularized
solutions in the subspaceSp,j . In Section3 we discuss the implementation details of our
algorithm, and we present several numerical examples in Section 4. Conclusions are drawn
in Section5.

2. Incorporating prior information in regularizing iterat ions. The idea of incorpo-
rating prior information about the solution is at the heart of all regularization methods. For
example, in the Tikhonov problem

(2.1) min
x

{
‖Ax− b‖22 + λ2‖Lx‖22

}
,

we explicitly require that the solution has a small (semi-)norm as measured by the term‖Lx‖2.
The matrixL is often chosen as a discrete approximation to a differential operator (to enforce
smoothness of the solution), and we can modifyL to incorporate other known features into
the solution.

As an example, if we wish to allow a discontinuity between thesolution elementsxℓ

andxℓ+1 for 1 ≤ ℓ ≤ n−1, we can define the subspaceW2 by

(2.2) W2 = span{w1, w2}, w1 =

[
ones(ℓ, 1)

zeros(n−ℓ, 1)

]
, w2 =

[
zeros(ℓ, 1)

ones(n−ℓ, 1)

]
.

If the columns ofW2 form an orthonormal basis forW2, thenP⊥

W2
= I −W2W

⊤
2 is the or-

thonormal projector onW⊥
2 . Hence, any linear combination ofw1 andw2 is in the null space

of LP⊥

W2
. Substituting‖LP⊥

W2
x‖2 for ‖Lx‖2 in (2.1) therefore ensures that any piecewise

constant solution with the desired breakpoint is not affected by the regularization.
This idea immediately generalizes to a general subspaceWp and the associated projec-

torsPWp
= WpW

⊤
p andP⊥

Wp
= I − WpW

⊤
p , where range(Wp) = Wp andWp has or-

thonormal columns. Moreover, the idea carries over to the subspace preconditioned versions
of the CGLS, LSQR, RRGMRES, and MR-II algorithms, and implementations such as those
in Regularization Tools [10] can be used whenever it is feasible to perform operations with
the oblique pseudoinverse ofLP⊥

Wp
[12]. When it is impractical to perform these operations,

the approach by Hochstenbach and Reichel [14] can be used.

2.1. The decomposition approach and the augmented Krylov subspace method.
The principle of leaving the solution component inWp unaffected by the regularization is
key to many regularization methods, and it also underlies the decomposition method in [1],
which splits the solution space into a Krylov subspace that is determined by the iterative
method (such as GMRES, RRGMRES, or LSQR) and the auxiliary subspaceWp mentioned
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before. Let the span of the orthonormal columns ofWp represent the subspaceWp. Then the
computed approximate solutionx(j), for j = 1, 2, 3, . . ., is partitioned as

x(j) = x̂(j) + x̃(j), x̂(j) = PWp
x(j), x̃(j) = P⊥

Wp
x(j).

Since the dimensionp of Wp is assumed to be small, the componentx̂(j) is determined by
solving a small linear system of equations by a direct method, while the component̃x(j) is
computed by the GMRES or RRGMRES iterative method.

This decomposition method based on GMRES (RRGMRES) is, in fact, equivalentto
the augmented GMRES (RRGMRES) method described in [2]; see [1, Theorem 2.2]. In the
augmented method, a Krylov subspace generated by GMRES (RRGMRES) is augmented by
the spaceWp in order to make full use of the prior information. Following[2], we introduce
the QR factorization

(2.3) AWp = VpR,

whereVp ∈ R
n×p has orthonormal columns andR ∈ R

p×p is upper triangular. Instead of
using the standard implementation of GMRES (RRGMRES) basedon the Arnoldi process,
in [2] the approximate solutionx(j) of (1.1) is determined by solving the constrained least
squares problem

min
x
‖Ax− b‖22 s.t. x ∈ Wp +Kj(P

⊥

Vp
A, u),

whereu = P⊥

Vp
b for augmented GMRES andu = P⊥

Vp
Ab for augmented RRGMRES. Specif-

ically, afterj steps of the modified Arnoldi process,x(j) is computed via the modified Arnoldi
decomposition

(2.4) A
[
Wp V̄p+1:p+j

]
= V̄p+j+1H̄p+j .

Here,H̄p+j ∈ R
(p+j+1)×(p+j) is an upper Hessenberg matrix whose leading principalp× p

submatrix isR from (2.3). The matrixV̄p+j+1 =
[
Vp V̄p+1:p+j v̄p+j+1

]
∈ R

n×(p+j+1)

has orthonormal columns, and the first columnv̄p+1 of V̄p+1:p+j is given by

v̄p+1 =




P⊥

Vp
b/‖P⊥

Vp
b‖2 for augmented GMRES,

P⊥

Vp
Ab/‖P⊥

Vp
Ab‖2 for augmented RRGMRES.

Then, the iteratex(j) can be expressed as

x(j) =
[
Wp V̄p+1:p+j

]
y(j),

wherey(j) ∈ R
p+j solves the least squares problem

(2.5) min
y
‖H̄p+jy − V̄ ⊤

p+j+1b‖
2
2.

REMARK 2.1. The augmented method in [2] and the equivalent decomposition method
in [1] both use a modified Arnoldi process that produces orthonormal vectors which are or-
thogonal to the columns ofVp. The basis generated by this approach corresponds to a Krylov
subspace limited to the orthogonal complement ofVp = range(Vp).

In other words, the generated approximate solutionx(j) in the jth iteration lies in an
augmentation of the Krylov subspaceKj(P

⊥

Vp
A,P⊥

Vp
b) for GMRES andKj(P

⊥

Vp
A,P⊥

Vp
Ab)

for RRGMRES, instead ofKj(A, b) andKj(A,Ab), respectively, as one would expect.
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2.2. Another augmented Krylov subspace method.In this work we want to solve
the least-squares problem (1.1) in the subspaceSp,j (1.2), so we should restrict the Krylov
subspace to the orthogonal complement ofWp instead ofVp. To understand the relation
betweenWp andVp, we have the following result.

PROPOSITION2.2. Assume thatA ∈ R
n×n is nonsingular with the QR factorization

of AWp given in(2.3). The subspacesWp andVp are spanned by the columns of the matri-
cesWp andVp, respectively. Then,Vp = A(Wp), whereA : Rn → R

n is the linear operator
defined asA(w) = Aw with w ∈ Wp.

For the rest of the paper we focus on the RRGMRES method. The Cayley-Hamilton
theorem [19] states that the inverse of a matrix can be formed as a linear combination of
its powers. In order to obtain higher accuracy, we thereforeprefer an approximate solution
of (1.1) in its Krylov subspace, i.e.,Kj(A,Ab) instead ofKj(P

⊥

Vp
A,P⊥

Vp
Ab). For example,

if the exact solutionx∗ to (1.1) is in the subspaceW⊥
p ∩ Vp, then the approximate solution

obtained by solving the least-squares problem (1.1) in Sp,j could provide higher accuracy
than the one inWp + Kj(P

⊥

Vp
A,P⊥

Vp
Ab). Below we formulate a simple extension of the

augmented RRGMRES method proposed in [2] to solve (1.1) in Sp,j .
In order to ensure that the approximate solution is inSp,j , the intuitive way to extend the

augmented RRGMRES method is to find a decomposition of the form

(2.6) A
[
Wp Ab A2b . . . Ajb

]
= Vp+j+1Hp+j ,

which is similar to the modified Arnoldi decomposition in (2.4). Then the iteratex(j) can be
expressed as

x(j) =
[
Wp Ab A2b . . . Ajb

]
y(j),

where{Ab,A2b, · · · , Ajb} forms a basis ofKj(A,Ab), andy(j) solves the same least squares
problem as in (2.5).

From a numerical point of view, the “naive” basis{Ab,A2b, . . . , Ajb} of the Krylov
subspaceKj(A,Ab) is not a good choice. Asj increases, most of the vectors in this basis
will point more and more into the same direction. Thus, this basis is usually ill-conditioned,
which leads to a severe loss of precision and even breakdown after some iterations. Hence,
in the algorithm below we apply a Modified Gram-Schmidt (MGS)orthonormalization to the
basis{Ab,A2b, . . . , Ajb}. See also the discussion of implementation issues in [18].

ALGORITHM 1. INTUITIVE VERSION.
1: Compute the QR factorizationAWp = VpHp, whereVp ∈ R

n×p andHp ∈ R
p×p.

2: Letu1 = Ab, vp+1 = P⊥

Vp
u1, and normalizeu1=u1/‖u1‖2, vp+1=vp+1/‖vp+1‖2.

Then, expandVp+1 := [Vp vp+1 ] andWp+1 := [Wp u1 ].
3: InitializeR1 := 1, and setj := 1.
4: Computevp+j+1 = Auj anduj+1 = vp+j+1/‖vp+j+1‖2.
5: Apply MGS orthonormalization tovp+j+1, and expandVp+j+1 := [Vp+j vp+j+1],

Hp+j :=

[
Hp+j−1

0
hp+j

]
∈ R

(p+j+1)×(p+j), wherehp+j is from the MGS.

6: Solve

min
y

∥∥∥∥Hp+j

[
Ip 0
0 R−1

j

]
y − V ⊤

p+j+1b

∥∥∥∥
2

2

to obtainy(j). Thenx(j) = Wp+jy
(j).
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7: Apply MGS orthonormalization touj+1 such that{u1, . . . , uj+1} becomes an or-
thonormal basis forKj+1(A,Ab), expandWp+j+1 = [Wp+1 uj+1 ], and expand

Rj+1 :=

[
Rj

0
rj+1

]
∈ R

(j+1)×(j+1), whererj+1 is from the MGS.

8: Stop, or setj := j + 1, and return to step 4.

Because of the extra MGS orthonormalization in step 7, the work in Algorithm 1 is
dominated by two MGS processes, and the algorithm thereforeasymptotically needs addi-
tional O(j2n) flops compared to the augmented RRGMRES method proposed in [2]. In
order to find a more efficient algorithm, in the next section wetake into account the low
dimension ofWp and reorganize the framework of the augmented RRGMRES method.

3. Implementation of the Regularized RRGMRES (R3GMRES) method. In the al-
gorithm described below, instead of appendingWp by the basis ofKj(A,Ab) as in (2.6), we
use the standard Arnoldi process to determine an orthonormal basis ofKj(A,Ab) and then
augment it byWp in each step of the iterative algorithm. While this may seem cumbersome,
we shall see that the computational overhead is favorably smaller than that of Algorithm1.

3.1. The basic algorithm. Our new Regularized RRGMRES method, R3GMRES, is
based on the decomposition

(3.1) A [Vj Wp ] =
[
Vj+1 Ṽj

] [ Hj Gj

0 Fj

]
,

whereAVj = Vj+1Hj is obtained afterj steps of the Arnoldi process. Here,Vj ∈ R
n×j

has orthonormal columns with the first columnv1 = Ab/‖Ab‖2, andHj ∈ R
(j+1)×j is

an upper Hessenberg matrix. The columns ofVj form an orthonormal basis of the Krylov
subspaceKj(A,Ab). We then augment this basis to a basis ofSp,j , which turns out to be the
augmented matrix[Vj Wp ].

We must also augmentVj+1 with a basis of the range ofAWp, which leads to the aug-
mented matrix[Vj+1 Ṽj ], where the orthonormal vectors iñVj ∈ R

n×p are also orthogo-
nal to the columns ofVj+1. Furthermore, we introduce the two matricesGj ∈ R

(j+1)×p

andFj ∈ R
p×p which are composed of the coefficients ofAWp with respect to the basis

of Vj+1 and the subspace ofV⊥

j+1, respectively:

Gj = V ⊤

j+1AWp, Fj = Ṽ ⊤

j AWp.

Substituting (3.1) into (1.1) shows that the iteratex(j) ∈ Sp,j can be expressed as

x(j) = [Vj Wp ] y
(j),

wherey(j) solves the least squares problem

(3.2) min
y

∥∥∥∥∥

[
Hj Gj

0 Fj

]
y −

[
V ⊤

j+1

Ṽ ⊤

j

]
b

∥∥∥∥∥

2

2

.

This leads to the R3GMRES method presented below.



ETNA
Kent State University 

http://etna.math.kent.edu

R3GMRES: INCLUDING PRIOR INFORMATION IN GMRES-TYPE METHODS 141

ALGORITHM 2. R3GMRES METHOD.
1: Setv1 = Ab/‖Ab‖2, V1 := v1, G0 := v⊤1 AWp, andj := 1.
2: Use the Arnoldi process to obtainvj+1 andhj such thatAVj = Vj+1Hj , where

Vj+1 := [Vj vj+1 ] andHj :=

[
Hj−1

0
hj

]
∈ R

(j+1)×j (with H1 = h1).

3: ComputeGj =

[
Gj−1

v⊤j+1AWp

]
∈ R

(j+1)×p.

4: OrthonormalizeAWp with respect toVj+1 to obtainṼj , and computeFj= Ṽ ⊤

j AWp.
5: Solve (3.2) to obtainy(j). Thenx(j) = [Vj Wp ] y

(j).
6: Stop, or setj := j + 1, and return to step 2.

In every iteration we need to recomputeṼj andFj in step 4 because of the expansion of
the Krylov subspaceKj(A,Ab), but due to the small value ofp, the computational work of
Algorithm 2 is still dominated by the Arnoldi process (see the implementation details below).
Hence, the computational work of the new R3GMRES method is asymptotically the same as
that of the augmented RRGMRES method in [2].

3.2. Implementation details. The key to an efficient implementation is to update an
orthogonal factorization of the coefficient matrix in the least squares problem (3.2)

[
Hj Gj

0 Fj

]
= Q




T
(11)
j T

(12)
j

0 T
(22)
j

0 0


 ,

whereT (11)
j ∈ R

j×j andT (22)
j ∈ R

p×p are upper triangular andQ is orthogonal.

The submatrixT (11)
j is updated via Givens transformations as in the standard GMRES

and RRGMRES algorithms; the rotations are also applied toGj and the right-hand side, i.e.,
to V ⊤

j+1b. At this stage, before treating the submatrixFj , we have an intermediate system of
the form (shown forj = 3 andp = 2):

[
T

(11)
j intermediate

0 Fj Ṽ ⊤

j b

]
=




× × × × × ×
× × × × ×
× × × ×
× × ×
× × ×
× × ×



← store rowj + 1,

where the rightmost column represents the right-hand side.We need to store rowj + 1 of
the intermediate system for reasons that will be explained below. To complete the orthogonal
reduction, we apply an orthogonal transformation that involves the bottomp+ 1 rows of the
system and produces a system of the form




× × × × × ×
× × × × ×
× × × ×
∗ ∗ ∗
∗ ∗
∗



,

where∗ denotes an element that has changed. Note thatT
(22)
j in this example consists of the

elements in rows 4–5 and columns 4–5.
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In the next iteration (herej = 4), the Arnoldi process produces a new column ofHj that
is inserted as columnj in the (1,1)-block. This block is then reduced to upper triangular form




⊗ ⊗ ⊗ × ⊗ ⊗ ⊗
⊗ ⊗ × ⊗ ⊗ ⊗
⊗ × ⊗ ⊗ ⊗
× ⊗ ⊗ ⊗
× × × ×
× × ×
× × ×




→




⊗ ⊗ ⊗ ⋆ ⊗ ⊗ ⊗
⊗ ⊗ ⋆ ⊗ ⊗ ⊗
⊗ ⋆ ⊗ ⊗ ⊗
∗ ∗ ∗ ∗
∗ ∗ ∗
× × ×
× × ×




.

The elements denoted by⊗ are from the intermediate system of the previous iteration,while
those denote by× are new. After the reduction, the elements denoted by⋆ are updated by
means of the stored Givens transformation from the previousiterations, and those denoted
by ∗ are transformed by the new Givens rotation. This is followedby an orthogonal transfor-
mation involving the bottomp+ 1 rows of the system as before.

The key observation here is that in the previous iteration (j = 3), row j + 1 = 4 of the
intermediate system wasoverwritten(to obtain triangular form). Therefore, we must store this
row, so that we can insert it again into the system at the beginning of the next iteration (j = 4)
before the Givens rotation is applied.

Let us consider the additional work in the above algorithm compared to the standard
Arnoldi procedure for RRGMRES, where the work involved inj iterations isO(j2n) flops.
In each iteration, the additional work is dominated by:

1. orthonormalization of the columns of̃Vj to vj+1 requiring2pn flops,
2. computation of the newFj requiring2p2n flops (assumingAWp is stored),
3. application of an orthogonal transformation that involves the bottom right(p+1)×p

submatrix requiring about2p3 flops.
Hence, the additional work involved inj iterations is about2jp(p+ 1)n flops.

4. Numerical examples.The purpose of this section is to illustrate the performanceof
the above algorithms with several examples. In all exampleswe first generate a noise-free sys-
tem of the formAxexact = bexact, and then we add noise to the right-hand sideb = bexact+e,
wheree is a random vector of Gaussian white noise scaled such that‖e‖2/‖bexact‖2 = η
(where we specifyη). For each example we report the relative error‖xexact−x

(j)‖2/‖xexact‖2
and the relative residual norm‖b−Ax(j)‖2/‖b‖2. We use MATLAB and compare combina-
tions of the following algorithms.

• CGLS is the implementation from REGULARIZATION TOOLS [10].
• PCGLS is the subspace-preconditioned CGLS algorithm from REGULARIZATION

TOOLS with L an approximation to the second derivative operator.
• RRGMRES is the implementation from REGULARIZATION TOOLS.
• ARRGMRES is our implementation of Augmented RRGMRES from [2].
• R3GMRES is our implementation of Algorithm2 from Section3.

All five methods exhibit semi-convergence, but for some of the examples, the slower methods
do not reach the minimum error within the number of iterations shown in the plots.

4.1. The solution has a very large component in the augmentation subspace.This
example, which was also used in [1, 2], is the test problemderiv2(n,2) from REGULAR-
IZATION TOOLS [10] with n = 32 and relative noise levelη = 10−5. The augmentation
matrixW2 represents the subspace spanned by the constant and the linear function

W2 = span{w1, w2}, w1 = (1, 1, . . . , 1)⊤, w2 = (1, 2, . . . , n)⊤.
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FIG. 4.1.Example4.1. Left: best solutions within 15 iterations. Middle and right: convergence histories.
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FIG. 4.2.Example4.2. Left: best solutions within 15 iterations. Middle and right: convergence histories.

Here‖W2W
⊤
2 xexact‖2/‖xexact‖2 = 0.99 and‖(I −W2W

⊤
2 )xexact‖2/‖xexact‖2 = 0.035,

so the exact solutionxexact has a very large component inW2. Hence, any iterative regular-
ization method only needs to spend its effort in capturing the small component inW⊥

2 . The
results are shown in Figure4.1.

All right singular vectors ofA (not shown here) tend towards zero at both endpoints—this
is due to the particular discretization of the problem whichassumes zero boundary conditions.
Hence, the SVD basis is not well suited for this particular problem whose solution is nonzero
at both endpoints. This explains the bad performance of CGLS, which produces filtered
SVD solutions as can be seen in Figure4.1. PCGLS performs much better becauseW2 is
identical to the null space ofL, and therefore any component of the solution in this subspace
is immediately captured independent of the iterations.

The residual norms for PCGLS, ARRGMRES, and R3GMRES approach approximately
the same level determined by the noise, and all three methodsprovide regularized solutions
with good accuracy; our algorithm R3GMRES has the fastest semi-convergence.

4.2. Fix or improve boundary conditions. In this example, the matrixA is the same as
above, but we modified the exact solutionx from deriv2(n,2) by means ofx = x.ˆ3 ,
which gives a new exact solution with a large first derivativeat the right endpoint. The
relative noise level here isη = 10−4, and we use the same augmentation subspace as above.
The results are shown in Figure4.2.

Again the SVD basis is not well suited for this problem, and CGLS produces bad results.
The other three iterative methods work well; this time because our choice ofW2 is able to
compensate for the “incorrect” or “incompatible” boundaryconditions by allowing the regu-
larized solutions to have nonzero values and nonzero derivatives at the endpoints. The error
histories of these methods resemble those of the previous example, and again our algorithm
R3GMRES has the fastest semi-convergence.
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FIG. 4.3.Example4.3. Left: best solutions within 20 iterations. Middle and right: error histories.
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FIG. 4.4. Example4.3. Left: the first four orthonormal basis vectors̄vp+j of ARRGMRES (solid blue lines)
andvj of R3GMRES (dashed green lines). Right: an image plot of|V ⊤

20
V̄p+1:p+20|, which shows the size of the

coefficients of the columns in̄Vp+1:p+20 in the basis ofV20.

4.3. Capture a single discontinuity. In this example, the matrixA is from the test
problemgravity(n) in REGULARIZATION TOOLS with n = 100, but the exact solution
is changed to include a single discontinuity between elementsℓ = 50 andℓ+1 = 51. We use
the matrixW2 from (2.2), which allows us to represent this discontinuity. The relative noise
level isη = 10−3.

The results are shown in Figure4.3for the three methods RRGMRES, ARRGMRES, and
R3GMRES, and we see that for all three methods the residual norms decrease monotonically.
Clearly, RRGMRES is not well suited for representing the discontinuity because this method
does not use the augmentation subspaceWp. Surprisingly ARRGMRES, in spite of the fact
that it usesW2, does not give much better results—all its iterates have certain “ringing”
artifacts near the discontinuity. After some iterations, R3GMRES is able to produce much
better regularized solutions. We note that the relative error history for R3GMRES is not
smooth. This is not an error since it is only the residual normthat has guaranteed monotonic
behavior.

To explain why R3GMRES gives better reconstructions than ARRGMRES in this ex-
ample, we study the basis vectors that, in addition to the columns ofWp, are used to repre-
sent the solution. For ARRGMRES, these vectors are the columns v̄p+1, v̄p+2, . . . , v̄p+j of
the matrixV̄p+1:p+j , which is an orthonormal basis ofKj(P

⊥

Vp
A,P⊥

Vp
Ab). For R3GMRES,

these vectors are the columnsv1, v2, . . . , vj of Vj , which are orthonormal basis vectors
of Kj(A,Ab).
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FIG. 4.5.Example4.4. Left: best solution obtained within 15 iterations. Middleand right: error histories.

The left part of Figure4.4 displays the first four vectors of each method, and we see
that some of the very smooth components present in the latterbasis are missing from the
former. This is confirmed by the image plot in the right part ofFigure 4.4, which dis-
plays the coefficients of̄vp+1, v̄p+2, . . . , v̄p+20 when expressed in terms of the orthonor-
mal basisv1, v2, . . . , v20. This plot clearly shows that the first two smooth componentsin
R3GMRES represented byv1 andv2 are missing from the basis in ARRGMRES. Hence, the
latter algorithm has difficulties in capturing the smooth components of the solution.

4.4. Handling an additional discontinuity in the augmentation subspace.In this ex-
ample, we use the same test problem as before, and our goal is to demonstrate what happens
if we include a discontinuity inWp that is not present in the exact solution. This corresponds
to a situation where our prior information tells us aboutpotential discontinuities, but not
all of them may be present in the given problem. Specifically,in this example there is one
discontinuity in the solution but two inWp. We use an augmentation matrixW3 similar to
that in (2.2) allowing discontinuities between elements 50–51 and 75–76. The noise level
is η = 10−4.

The results are shown in Figure4.5. RRGMRES does not capture the discontinuity
and instead produces smooth reconstructions. ARRGMRES also produces bad solutions; the
main reason being that it enforces both discontinuities—both the desired and the undesired.
R3GMRES is the only method that introduces a single discontinuity where needed. The
explanation is the same as before, namely, that the basis forARRGMRES lacks the smooth
components that are present in the basis for R3GMRES.

5. Conclusions. Inspired by Lothar Reichel’s work, we developed an iterative regular-
ization algorithm R3GMRES based on RRGMRES that is able to incorporate prior informa-
tion in the form of a low-dimension subspace in which the solution is expected to have a large
component. Our algorithm computes regularized solutions in a subspace that is the direct
sum of this subspace and the Krylov subspace associated withRRGMRES. Numerical ex-
amples show that our method gives regularized solutions that are at least as accurate as those
computed by other methods, and in most cases our algorithm isfaster or more accurate (or
both).

Acknowledgements. Our interest in augmented RRGMRES was initiated by discus-
sions with Dr. Nao Kuroiwa, who visited DTU in 2011–2012. Ideas that led to the current
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