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R3GMRES: INCLUDING PRIOR INFORMATION IN GMRES-TYPE METHODS
FOR DISCRETE INVERSE PROBLEMS *
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Dedicated to Lothar Reichel on the occasion of his 60th dith

Abstract. Lothar Reichel and his collaborators proposed severatiter algorithms that augment the un-
derlying Krylov subspace with an additional low-dimensiosabspace in order to produce improved regularized
solutions. We take a closer look at this approach and iryegstia particular Regularized Range-Restricted GMRES
method, RGMRES, with a subspace that represents prior informationtahe solution. We discuss the implemen-
tation of this approach and demonstrate its advantage by noaeseral test problems.
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1. Introduction. This paper deals with iterative Krylov subspace methodséiving
large ill-conditioned systems of linear equations arisiram the discretization of inverse
problems. Lothar Reichel has made numerous contributioribis area (as we shall see
below) on which the present work builds. We consider discimterse problems of the form

(1.1) min |Az — b||2, A€R™" b zeR",

and we note that this problem takes the foAm = b when the square matriXd has full
rank. To compute a stable solution to this problem, one nmestrporate prior information
about the desired solution. Often this information takesftinm of a requirement concerning
the smoothness of the solution, but the information can bésspecified in the form of a
low-dimensional “signal subspace” in which the solutionatie; cf. [11].

The latter approach is particularly attractive for largede problems, where the signal
subspace can take the form of a Krylov subspace such as

K;j(ATA, ATb) for the CGLS and LSQR algorithm& 1, 20,
KC; (A, b) for the GMRES and MINRES algorithm§,[16],
KC;(A, Ab) for the RRGMRES and MR-II algorithmsl[8, 18],

wherek;(M,v) = spafv, Mv, M?v,..., M’~'v} andj is the number of iterations. De-
pending on the application, one or more of these subspacgbenaell suited to compute a
good regularized solution, i.e., a good approximation ihanly little sensitive to perturba-
tions of the data; cf.]5]. Moreover, it is possible to “subspace precondition” thesethods
in order to favorably adjust the above Krylov subspaceséies; cf. [/, 9, 13].

We can further improve the regularized solution by incogpiog additional specific prior
information. For example, we may know that the solution hasgaificant component in
a given subspac®V, of dimensionp < j (e.g., chosen to represent known smoothness
properties or known discontinuities). In connection wite ibove Krylov subspace methods,
Reichel and his collaborator§,[2, 3, 6] therefore proposed to decompose the solution into
a component irW, and another component in the orthogonal complemﬁﬁt which leads
to the idea of augmented Krylov subspace methods; seelaiko [
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This work focuses on the range-restricted GMRES (RRGMRE&thod, which was
designed for rank-deficient inconsistent systefspd which performs better than GMRES
under the influence of noisy datag. We consider a particular augmentation approach in
which we compute regularized solutions in a signal subsggcehat is the direct sum of the
two subspacesV, and/C; (A, Ab),

(1.2) Sp; =W, +K;(A,Ab) = {y + 2|y € W, Az € K;(A, Ab)},

which itself is a linear subspace. In particular, we disduss to implement the associated
algorithm Regularized RRGMRES {BMRES) efficiently, and we demonstrate its useful-
ness on selected test problems—including comparisons elidlted algorithms. Analogous

implementation issues related to CGLS and MR-II are lefutarfe work.

In Section2 we summarize the decomposition approach and the assoeiatgdented
RRGMRES method, and we argue why a different approach issaeieccompute regularized
solutions in the subspac®, ;. In Section3 we discuss the implementation details of our
algorithm, and we present several numerical examples itiddet Conclusions are drawn
in Sectionb5.

2. Incorporating prior information in regularizing iterat ions. The idea of incorpo-
rating prior information about the solution is at the hedralbregularization methods. For
example, in the Tikhonov problem

(2.1) min {[|Az —b[[3 + X*|[ L[5} ,

we explicitly require that the solution has a small (sentirjn as measured by the tefihz||».
The matrixL is often chosen as a discrete approximation to a differesyi@rator (to enforce
smoothness of the solution), and we can modifio incorporate other known features into
the solution.

As an example, if we wish to allow a discontinuity between sb&ition elements:,
andz,4q for 1 < ¢ < n—1, we can define the subspadé by

oneg/, 1 zerog/, 1
(2.2) W, =spar{wy,wa}, wi = [ zeroii—é,)l) } ro 2= { oneij—é,)l) } '
If the columns ofiV; form an orthonormal basis fof/, thenPV%,2 =1- WQWQT is the or-
thonormal projector olV;-. Hence, any linear combination of, andws is in the null space
of LPyy,. Substituting|| LPy;, x| for ||Lz |2 in (2.1) therefore ensures that any piecewise
constant solution with the desired breakpoint is not affédty the regularization.

This idea immediately generalizes to a general subspécand the associated projec-
tors Py, = W,W, and Py, = I — W,W,, where ranggV,) = W, andW, has or-
thonormal columns. Moreover, the idea carries over to thssace preconditioned versions
of the CGLS, LSQR, RRGMRES, and MR-l algorithms, and impdertations such as those
in Regularization Tools10] can be used whenever it is feasible to perform operatiotis wi
the oblique pseudoinverse DfPV%,p [12]. When it is impractical to perform these operations,
the approach by Hochstenbach and Reiché] ¢an be used.

2.1. The decomposition approach and the augmented Krylov &ispace method.
The principle of leaving the solution component)ivi, unaffected by the regularization is
key to many regularization methods, and it also underliedégcomposition method iri]]
which splits the solution space into a Krylov subspace thatatermined by the iterative
method (such as GMRES, RRGMRES, or LSQR) and the auxilisbgsace/V,, mentioned
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before. Let the span of the orthonormal column$igf represent the subspak®,. Then the

computed approximate solutiar¥’), for j = 1,2, 3, .. ., is partitioned as
20 = 30) _|_5;(j)7 70 — PW,,ﬂf(j), 70) — pVJ[;px(j)_

Since the dimensiop of WV, is assumed to be small, the compongfit is determined by
solving a small linear system of equations by a direct methdtle the component(?) is
computed by the GMRES or RRGMRES iterative method.

This decomposition method based on GMRES (RRGMRES) is,dh émuivalentto
the augmented GMRES (RRGMRES) method described]irsge [L, Theorem 2.2]. In the
augmented method, a Krylov subspace generated by GMRESNHRRES) is augmented by
the spacéV, in order to make full use of the prior information. Followifi#], we introduce
the QR factorization

2.3) AW, = V,R,

whereV], € R™*? has orthonormal columns arél € RP*? is upper triangular. Instead of
using the standard implementation of GMRES (RRGMRES) basetthe Arnoldi process,
in [2] the approximate solutior(?) of (1.1) is determined by solving the constrained least
squares problem

min || Az — b||3 st =z EWerle(P‘J,;A,u),

wherey = P‘%pbfor augmented GMRES and= P‘}pAb for augmented RRGMRES. Specif-

ically, after; steps of the modified Arnoldi process;) is computed via the modified Arnoldi
decomposition

(2.4) AWy Vosriprj ] = VorjerHps ;.

Here,H,,; € RP+i+1)x(r+J) is an upper Hessenberg matrix whose leading pringipap
submatrix isR from (2.3). The matrixV, ;1 = [V, Vpp1psj Uppjsr] € RO¥PHHD
has orthonormal columns, and the first column; of V,1.,+; iS given by

Py b/ || Py b2 for augmented GMRES,

Up+1 =

Py Ab/|| Py Ab|l>  for augmented RRGMRES.

Then, the iterate/) can be expressed as

) = [Wp Vp+1:p+j:| y),
wherey) € RP*J solves the least squares problem
(2.5) myin [ Hpjy — Vp1j+lb||§'

REMARK 2.1. The augmented method i#] pnd the equivalent decomposition method
in [1] both use a modified Arnoldi process that produces orthoabuctors which are or-
thogonal to the columns df,. The basis generated by this approach corresponds to aKrylo
subspace limited to the orthogonal complemenypf= rang€V,,).

In other words, the generated approximate solutith in the jth iteration lies in an
augmentation of the Krylov subspak® (Py> A, Py» b) for GMRES andiC; (Py: A, Py Ab)
for RRGMRES, instead of ; (A, b) and/C; (A, Ab), respectively, as one would expect.
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2.2. Another augmented Krylov subspace methodIn this work we want to solve
the least-squares problerh.{) in the subspacé, ; (1.2), so we should restrict the Krylov
subspace to the orthogonal complemen®¥f instead ofV,. To understand the relation
betweenV, andV,, we have the following result.

PROPOSITION2.2. Assume thad € R™*™ is nonsingular with the QR factorization
of AW, given in(2.3). The subspace®/, and}, are spanned by the columns of the matri-
ceslV, andV,,, respectively. Ther), = AW, ), whereA : R™ — R" is the linear operator
defined asd(w) = Aw withw € W,,.

For the rest of the paper we focus on the RRGMRES method. Tlgeywelamilton
theorem L9 states that the inverse of a matrix can be formed as a line@abmation of
its powers. In order to obtain higher accuracy, we therefweder an approximate solution
of (1.1) in its Krylov subspace, i.ek; (A, Ab) instead ofICj(P‘}pA, P‘}I)Ab). For example,
if the exact solutionc* to (1.1) is in the subspacizvpL NV,, then the approximate solution
obtained by solving the least-squares probldmi)(in S, ; could provide higher accuracy
than the one iV, + K;(P;: A, Py Ab). Below we formulate a simple extension of the
augmented RRGMRES method proposedjit¢ solve (L.1) in S,, ;.

In order to ensure that the approximate solution i§,in, the intuitive way to extend the
augmented RRGMRES method is to find a decomposition of thma for

(2.6) A[W, Ab A% ... Ab] =V, i1 Hyyy,

which is similar to the modified Arnoldi decomposition in4). Then the iterate’) can be
expressed as

2 = [W, Ab A% ... A%b]yD),

where{Ab, A%b, - - -, A7b} forms a basis ok ; (A, Ab), andy'?) solves the same least squares
problem as inZ%.5).

From a numerical point of view, the “naive” basfsib, A%b,..., A7b} of the Krylov
subspaceC; (A4, Ab) is not a good choice. Ag increases, most of the vectors in this basis
will point more and more into the same direction. Thus, tkisidis usually ill-conditioned,
which leads to a severe loss of precision and even breakdfiemsame iterations. Hence,
in the algorithm below we apply a Modified Gram-Schmidt (M@8&honormalization to the
basis{ Ab, A%b, ..., A7b}. See also the discussion of implementation issuesdh |

ALGORITHM 1. INTUITIVE VERSION.
1. Compute the QR factorizatiodW,, = V,,H,,, whereV,, ¢ R"*? andH,, ¢ RP*P,
2: Letu; = Ab, Upt1 = P‘J/;uh and normalize:; :U1/||7.L1||2, Up4+1 :varl/HUerl HQ
Then, expan@,,;1 := [V, vp41 | andWpyq :=[W), uq ).
3: Initialize R; := 1, and sey := 1.
4: Computey ;41 = Auj andu;y = vpijt1/[|[vpjalla-
5: Apply MGS orthonormalization to,,, 1, and expand/, 1 := [Vp+j Vprjt+1l,

Hpyyj:= H”Bj_l hp+j] € R+i+1)x(r+3) whereh,,, ; is from the MGS.
6: Solve
2

I 0
Hyj { 6) R! ] Y- VpTrj-s-lb
J 2

min
y

to obtainy?). Thenz) = W, jy).
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7: Apply MGS orthonormalization ta,;,, such that{u,...,u,11} becomes an or-
thonormal basis foiC; 1 (A, Ab), expandiW,; ;11 = [Wpi1 u;41], and expand

](%)j riv1 | € RUTUXGHD ‘wherer;, ; is from the MGS.

8: Stop, or sej := j + 1, and return to step 4.

Rjiq1:=

Because of the extra MGS orthonormalization in step 7, the&kwmo Algorithm 1 is
dominated by two MGS processes, and the algorithm therefsymptotically needs addi-
tional O(j2n) flops compared to the augmented RRGMRES method proposed]. inr
order to find a more efficient algorithm, in the next sectiontale into account the low
dimension ofW, and reorganize the framework of the augmented RRGMRES mietho

3. Implementation of the Regularized RRGMRES (RGMRES) method. In the al-
gorithm described below, instead of appendifig by the basis ofC; (A4, Ab) as in @.6), we
use the standard Arnoldi process to determine an orthordrasés of/C; (A, Ab) and then
augment it by, in each step of the iterative algorithm. While this may seemloersome,
we shall see that the computational overhead is favorabfflenthan that of Algorithri.

3.1. The basic algorithm. Our new Regularized RRGMRES method* GMRES, is
based on the decomposition

@) A wl=[va ]| G

where AV, = V, 1 H; is obtained afterj steps of the Arnoldi process. Herg;, € R™"*J
has orthonormal columns with the first column = Ab/| Ab||», and H; € RUTD*J js
an upper Hessenberg matrix. The columnd/pform an orthonormal basis of the Krylov
subspacéC; (A, Ab). We then augment this basis to a basisgf, which turns out to be the
augmented matrixV; W, 1.

We must also augmerif;;; with a basis of the range o}V, which leads to the aug-
mented matriX V; X7J |, where the orthonormal vectors lNr} € R"*? are also orthogo-
nal to the columns of/;;;. Furthermore, we introduce the two matricgs € RU+1)>»
and F; € RP*P which are composed of the coefficients 47V, with respect to the basis
of V;41 and the subspace m@il, respectively:

G; =V, AW,,  F;=V,"AW,.
Substituting 8.1) into (1.1) shows that the iteratet’) € Sp.; can be expressed as
0 = [V Wy,

wherey ) solves the least squares problem

2

(3.2) min

Y

H; G;
0 F,

2

This leads to the RGMRES method presented below.
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ALGORITHM 2. RRGMRES METHOD.
1. Setv, = Ab/||Ab||2, 1 :=wv1, Gy = UIAWP' andj = 1.
2: Use the Arnoldi process to obtain,; andh; such thatAV; = V;,1H;, where

Vi1 =V, vjy1]andH; := { Hj— hj} e RUTDXI (with H; = hy).

0

Gi ] |

c RU+xp,
J+1AW

3: Computeld; = {
4: Orthonormalized 1V, W|th respecttd/jﬂ to obtainV;, and compute”; = V,” AWW,.
5: Solve .2) to obtainy?). Thenz) = [V; W, ]y").

6

. Stop, or sef := j + 1, and return to step 2.

In every iteration we need to recomptﬁfpandFj in step 4 because of the expansion of
the Krylov subspacé’; (A, Ab), but due to the small value ¢f the computational work of
Algorithm 2 is still dominated by the Arnoldi process (see the impleragom details below).
Hence, the computational work of the neWGMRES method is asymptotically the same as
that of the augmented RRGMRES methodih [

3.2. Implementation details. The key to an efficient implementation is to update an
orthogonal factorization of the coefficient matrix in thasésquares probler.Q)

70D p(2)
H; G, ;o
_ (22)
0 7 @l o T
0 0
whereTj(“) € RI*J andT(22 € RP*P are upper triangular an@ is orthogonal.

The submatnXZ”J(H) is updated via Givens transformations as in the standard EMR
and RRGMRES algorithms; the rotations are also applie@;tand the right-hand side, i.e.,
to VjTHb. At this stage, before treating the submatkix we have an intermediate system of
the form (shown forj = 3 andp = 2):

X X X X X X

X X X X X

T;“) intermediate| x| x x| x
0 F ‘7ij XX || % < store rowy + 1,

X X X

X X X

where the rightmost column represents the right-hand 3ide.need to store row + 1 of
the intermediate system for reasons that will be explairedovih To complete the orthogonal
reduction, we apply an orthogonal transformation thatlve®the bottonp + 1 rows of the
system and produces a system of the form

X X X |x x| x

X X | X X | x

X | X X || %X
* ok | x |7

* || %

*

wherex denotes an element that has changed. Notéltﬁgﬁ in this example consists of the
elements in rows 4-5 and columns 4-5.
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In the next iteration (herg = 4), the Arnoldi process produces a new columiffthat
is inserted as columpin the (1,1)-block. This block is then reduced to upper giaar form

[(® ® ®
® ®
®

[(® ® ®
® ®
®

ES S I

X X X X X
X X|* * ®Q®

X XX Q) ® K&
X XX Q1R
X XX Q1K
X X% % @ Q®
X X% % @ Q&

The elements denoted by are from the intermediate system of the previous iteratidrile
those denote by are new. After the reduction, the elements denoted bye updated by
means of the stored Givens transformation from the previteuations, and those denoted
by x are transformed by the new Givens rotation. This is followgdn orthogonal transfor-
mation involving the bottonp + 1 rows of the system as before.

The key observation here is that in the previous iteratjoa:(3), row j + 1 = 4 of the
intermediate system waserwritten(to obtain triangular form). Therefore, we must store this
row, so that we can insert it again into the system at the Ipégirof the next iterationj(= 4)
before the Givens rotation is applied.

Let us consider the additional work in the above algorithrmpared to the standard
Arnoldi procedure for RRGMRES, where the work involvedjiiterations isO(j2n) flops.

In each iteration, the additional work is dominated by:
1. orthonormalization of the columns f to v, requiring2pn flops,
2. computation of the new; requiring2p?n flops (assumingiW,, is stored),
3. application of an orthogonal transformation that ineslthe bottom rightp+1) x p
submatrix requiring aboup? flops.
Hence, the additional work involved jhiterations is abowjp(p + 1)n flops.

4. Numerical examples.The purpose of this section is to illustrate the performasfce
the above algorithms with several examples. In all exampéelirst generate a noise-free sys-
tem of the formAzeyact = bexact, @nNd then we add noise to the right-hand $ide beyxact +e¢,
wheree is a random vector of Gaussian white noise scaled such||tiiay||bexact|l2 = 7
(where we specify). For each example we report the relative ettt e —z7) |2 /|| Texact |2
and the relative residual norfib — Az ||, /||b|2. We use MATLAB and compare combina-
tions of the following algorithms.

e CGLS is the implementation fromeERULARIZATION ToOLS[10].

e PCGLS is the subspace-preconditioned CGLS algorithm frag R ARIZATION

TooLswith L an approximation to the second derivative operator.

e RRGMRES is the implementation fromERULARIZATION TOOLS.

e ARRGMRES is our implementation of Augmented RRGMRES fréin [

e R?GMRES is our implementation of Algorithiafrom Section3.
All five methods exhibit semi-convergence, but for some efdkamples, the slower methods
do not reach the minimum error within the number of iteragishown in the plots.

4.1. The solution has a very large component in the augmentain subspace. This
example, which was also used ih P], is the test problenderiv2(n,2) from REGULAR-
IZATION TooLs [10] with n = 32 and relative noise levej = 10~°. The augmentation
matrix W, represents the subspace spanned by the constant and Hrduinetion

Wy = spafwi,wa}, wi = (1,17...71)T7 Wy = (1,2,...7n)T.
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Solutions Relative errors Residual norms

N M B .\‘*\_\N
1077 ; Q 10 f

10 10’
0 10 20 30 0 5 10 15 0 5 10 15

Iteration j Iteration j

—— CGLS

——A—— PCGLS

04 ——4—— ARRGMRES
. —#—— R’GMRES

0.2

FIG. 4.1.Exampled.1 Left: best solutions within 15 iterations. Middle and rigbonvergence histories.

Solutions o Relative error o Residual norms
10 10
0.1 = 2dals .
—— ARRGMRES 10—2
—#— R°GMRES
_ "
0.05 1072 . \
10
0
0 10 20 30 0 5 10 15 0 5 10 15
Iteration j Iteration j

FIG. 4.2.Exampled.2. Left: best solutions within 15 iterations. Middle and rigbonvergence histories.

HereHWQWJZL’exaCtHQ/HZL'exactHQ = 0.99 and ||(I — WQWQT)xexactHQ/erxact”Q = 0.035,
so the exact solution....t has a very large component#y,. Hence, any iterative regular-
ization method only needs to spend its effort in capturireggimall component iVs-. The
results are shown in Figurel

Allright singular vectors ofA (not shown here) tend towards zero at both endpoints—this
is due to the particular discretization of the problem wtaskumes zero boundary conditions.
Hence, the SVD basis is not well suited for this particulaem whose solution is nonzero
at both endpoints. This explains the bad performance of CGlttich produces filtered
SVD solutions as can be seen in Figdré. PCGLS performs much better becausg is
identical to the null space df, and therefore any component of the solution in this sulsspac
is immediately captured independent of the iterations.

The residual norms for PCGLS, ARRGMRES, antqRRES approach approximately
the same level determined by the noise, and all three methrod#de regularized solutions
with good accuracy; our algorithm®&MRES has the fastest semi-convergence.

4.2. Fix orimprove boundary conditions. In this example, the matrid is the same as
above, but we modified the exact solutrfirom deriv2(n,2) by means ok = x."3
which gives a new exact solution with a large first derivatitethe right endpoint. The
relative noise level here ig = 10~%, and we use the same augmentation subspace as above.
The results are shown in Figude2.

Again the SVD basis is not well suited for this problem, and.S®roduces bad results.
The other three iterative methods work well; this time baeaour choice ofV; is able to
compensate for the “incorrect” or “incompatible” boundapnditions by allowing the regu-
larized solutions to have nonzero values and nonzero digegaat the endpoints. The error
histories of these methods resemble those of the previam@r, and again our algorithm
R3GMRES has the fastest semi-convergence.
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Solutions Relative errors B Residual norms
10 ——e— RRGMRES
2 —t+— ARRGMRES
10t —— R%GMRES
107
1
107 .
0 10
0 50 100 0 10 20 0 10 20
Iteration j Iteration j

FiG. 4.3.Example4.3. Left: best solutions within 20 iterations. Middle and rigérror histories.

j=1 j=2
0.2 0.2
0.9
0.1 0.1
08
0 0
07
-0.1 -0.1
0.2 0.2 06
“0 50 100 0 50 100
05
i=3 =4
0.2 0.2 0.4
0.1 0.1 0.3
0 0 0.2
-0.1 -0.18/ 01
-0.2 -0.2
0 50 100 0 50 100 5 10 15 20

FiG. 4.4. Example4.3. Left: the first four orthonormal basis vectods ;. ; of ARRGMRES (solid blue lines)
andv; of R3GMRES (dashed green lines). Right: an image plqﬂgﬁvp+1:p+20\, which shows the size of the
coefficients of the columns I}, 41420 In the basis ofV2q.

4.3. Capture a single discontinuity. In this example, the matrixl is from the test
problemgravity(n) in REGULARIZATION TooLswith n = 100, but the exact solution
is changed to include a single discontinuity between elestea 50 and/+1 = 51. We use
the matrixiW, from (2.2), which allows us to represent this discontinuity. The treéanoise
level isn = 1073,

The results are shown in Figude3for the three methods RRGMRES, ARRGMRES, and
R3GMRES, and we see that for all three methods the residuals\detrease monotonically.
Clearly, RRGMRES is not well suited for representing thediginuity because this method
does not use the augmentation subspate Surprisingly ARRGMRES, in spite of the fact
that it usesiV,, does not give much better results—all its iterates haveiceftinging”
artifacts near the discontinuity. After some iteration$GRIRES is able to produce much
better regularized solutions. We note that the relativerenistory for RGMRES is not
smooth. This is not an error since it is only the residual ntrat has guaranteed monotonic
behavior.

To explain why RGMRES gives better reconstructions than ARRGMRES in this ex
ample, we study the basis vectors that, in addition to theroos of\W/,,, are used to repre-
sent the solution. For ARRGMRES, these vectors are the awam, |, 7,12, . .., Upq; Of
the matrixVj, 1.+, which is an orthonormal basis &f;(Py- A, Py- Ab). For RGMRES,
these vectors are the columas, vs,...,v; of V;, which are orthonormal basis vectors
of IC; (A, Ab).
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Solutions Relative errors Residual norms
0 0
10 10 —e— RRGMRES
2 —— ARRGMRES
10—2 —=— R’GMRES
1 -2
10
0 10
0 50 100 0 5 10 15 0 5 10 15
Iteration j Iteration j

FIG. 4.5.Exampled.4. Left: best solution obtained within 15 iterations. Middled right: error histories.

The left part of Figured.4 displays the first four vectors of each method, and we see
that some of the very smooth components present in the ladigs are missing from the
former. This is confirmed by the image plot in the right partFadure 4.4, which dis-
plays the coefficients 0, 1,012, ..., Up+20 When expressed in terms of the orthonor-
mal basisvy, vs, ..., ve. This plot clearly shows that the first two smooth componémts
R3GMRES represented by andv, are missing from the basis in ARRGMRES. Hence, the
latter algorithm has difficulties in capturing the smootimpmnents of the solution.

4.4. Handling an additional discontinuity in the augmentaton subspace.In this ex-
ample, we use the same test problem as before, and our goalésrionstrate what happens
if we include a discontinuity inV, that is not present in the exact solution. This corresponds
to a situation where our prior information tells us abgpotential discontinuities, but not
all of them may be present in the given problem. Specificailyhis example there is one
discontinuity in the solution but two iV,. We use an augmentation matfik; similar to
that in 2.2) allowing discontinuities between elements 50-51 and 85-/e noise level
isn=10"%

The results are shown in Figure5. RRGMRES does not capture the discontinuity
and instead produces smooth reconstructions. ARRGMRESabsluces bad solutions; the
main reason being that it enforces both discontinuities-h-tieé desired and the undesired.
R3GMRES is the only method that introduces a single discoittinuhere needed. The
explanation is the same as before, namely, that the baslRRRGMRES lacks the smooth
components that are present in the basis fl6RRES.

5. Conclusions. Inspired by Lothar Reichel’'s work, we developed an iteatiegular-
ization algorithm RGMRES based on RRGMRES that is able to incorporate priorimnde
tion in the form of a low-dimension subspace in which the Bokuis expected to have a large
component. Our algorithm computes regularized solutionag subspace that is the direct
sum of this subspace and the Krylov subspace associateRRGMRES. Numerical ex-
amples show that our method gives regularized solutiortsatieaat least as accurate as those
computed by other methods, and in most cases our algoritfiastisr or more accurate (or
both).

Acknowledgements. Our interest in augmented RRGMRES was initiated by discus-
sions with Dr. Nao Kuroiwa, who visited DTU in 2011-2012. ddethat led to the current
algorithm arose in a student project done in collaboratigh ®mil Brandt Keergaard.



146

(1]

(2]
(3]

(4]

[5]
(6]

(7]

(8]

B
[10]
(11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]

[19]
(20]

ETNA
Kent State University
http://etna.math.kent.edu

Y. DONG, H. GARDE, AND P. C. HANSEN

REFERENCES

J. BAGLAMA AND L. REICHEL, Decomposition methods for large linear discrete ill-pogaoblems
J. Comp. Appl. Math., 198 (2007), pp. 332-343.

, Augmented GMRES-type methodsmer. Linear Algebra Appl., 14 (2007), pp. 337-350.

J. BAGLAMA, L. REICHEL, AND D. RICHMOND, An augmented LSQR methddumer. Algorithms, 64
(2013), pp. 263-293

D. CALVETTI, B. LEWIS, AND L. REICHEL, GMRES-type methods for inconsistens systemsar Algebra
Appl., 316 (2000), pp. 157-169

, On the regularizing properties of the GMRES methddmer. Math, 91 (2002), pp. 605-625.

D. CALVETTI, L. REICHEL, AND A. SHuUIBI, Enriched Krylov subspace methods for ill-posed problems
Linear Algebra Appl., 362 (2003), pp. 257-273.

, Invertible smoothing preconditioners for linear discrédtgposed problemsAppl. Numer. Math., 54
(2005), pp. 135-149.

M. HANKE, Conjugate Gradient Type Methods for lll-Posed ProbleRisnan Research Notes in Mathemat-
ics 327, Longman, Harlow, 1995.

M. HANKE AND P. C. HANSEN, Regularization methods for large-scale problei@arveys Math. Industry,
3(1993), pp. 253-315

P. C. HaANSEN, Regularization Tools version 4.0 for Matlab 7Mumer. Algorithms, 46 (2007), pp. 189-194.

, Discrete Inverse Problems: Insight and Algorithr&$AM, Philadelphia, 2010.

, Oblique projections and standard-form transformationsdiscrete inverse problemslumer. Linear
Algebra Appl., 20 (2013), pp. 250-258.

P. C. HANSEN AND T. K. JENSEN, Smoothing-norm preconditioning for regularizing minimuesidual
methodsSIAM J. Matrix Anal. Appl., 29 (2006/07), pp. 1-14.

M. HOCHSTENBACH ANDL. REICHEL, An iterative method for Tikhonov regularization with a gexiéinear
regularization operatorJ. Integral Equations Appl., 22 (2010), pp. 465-482.

T. K. JENSEN AND P. C. HANSEN, Iterative regularization with minimum-residual metho&$T, 47 (2007),
pp. 103-120.

M. E. KILMER AND G. W. STEWART, Iterative Regularization and MINRESIAM J. Matrix Anal. Appl.,
21 (1999), pp. 613-628

N. KUROIWA AND T. NODERA, The adaptive augmented GMRES method for solving ill-posstlgms
ANZIAM J., 50 (2008), pp. C654—-C667.

A. NEUMAN, L. REICHEL, AND H. SADOK, Implementations of range restrited iterative methods ifogdr
discrete ill-posed problem&inear Algebra Appl., 436 (2012), pp. 3974-3990.

Y. SAAD, Iterative Methods for Sparse Linear Syste®\M, Philadelphia, 2003.

A. VAN DER SLUIS AND H. A. VAN DER VORST, SIRT- and CG-type methods for the iterative solution of
sparse linear least-squares problgrhnear Algebra Appl., 130 (1990), pp. 257-302.




