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Abstract. We discuss low-rank approximation methods for large-scale symmetric Sylvester equations. Follow-
ing similar discussions for the Lyapunov case, we introduce an energy norm by the symmetric Sylvester operator.
Given a ranknr, we derive necessary conditions for an approximation being optimal with respect to this norm. We
show that the norm minimization problem is related to an objective function based on theH2-inner product for sym-
metric state space systems. This objective function leads to first-order optimality conditions that are equivalent to the
ones for the norm minimization problem. We further propose an iterative procedure and demonstrate its efficiency
by means of some numerical examples.
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1. Introduction. In this paper, we consider large-scale linear matrix equations

AXM+EXH = G,(1.1)

where A,E ∈ R
n×n,M,H ∈ R

m×m, and G ∈ R
n×m. The sought-after solu-

tion X ∈ R
n×m to theSylvester equation(1.1) is of great interest within systems and con-

trol theory; see [1]. In particular, forM = ET , H = AT , andG = BBT , the resulting
Lyapunov equationcharacterizes stability properties of an underlying dynamical system

(1.2)
Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

where, respectively,x(t),u(t), andy(t) are calledstate, control, andoutputof the system.
Linear matrix equations of the form (1.1) have been studied for several years now. However,
finding efficient algorithms for largen,m is still an active area of research within the nu-
merical linear algebra community. For a detailed introduction into linear matrix equations,
we refer to the two recent survey articles [13, 39]. Since direct methods, e.g., the Bartels-
Stewart algorithm [5] or Hammarling’s method [28] require cubic complexity to solve (1.1),
they are only feasible as long asn,m are of medium size. Depending on the individual com-
puter architecture, this nowadays might cover system dimensions up ton,m ∼ 104. Often,
however, dynamical systems and thus matrix equations result from a spatial discretization
of a partial differential equation (PDE). Here, one easily ends up with dimensions that can-
not be handled by the mentioned direct methods. For the general case whereG is of full
rank, there is still no easily applicable technique to compute X. On the other hand, assum-
ing thatG = BCT , whererank(B), rank(C) ≪ n,m, the singular values ofX often
decay very fast; see [3, 25, 32, 36]. In other words, the low numerical rank of the solution
allows for low-rank approximationsX ≈ VXrW

T , whereV ∈ R
n×nr ,W ∈ R

m×nr ,
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andXr ∈ R
nr×nr , with nr ≪ n,m. This phenomenon has lead to several numerically ef-

ficient methods that are also applicable in a large-scale setting. The most popular choices
can basically be classified into two categories: (a) methodsbased on alternating directions
implicit (ADI) schemes; (b) methods based on projection andprolongation. Methods that
specifically address the computation of low-rank approximations to the solution of Sylvester
equations can be found in [6, 8, 11, 21]. The literature on low-rank solution for the Lyapunov
case goes back even further and has achieved more attention;for a detailed overview on this
topic, we refer to [10, 12, 13, 19, 30, 31, 33, 35, 37, 38, 42]. Other techniques are based on
the tensorized linear system (see [14, 24, 32]) or Riemannian optimization; see [40, 41]. Es-
pecially the latter class of methods is important in the context of this article as it inspired the
approach discussed here though we do not use Riemannian optimization explicitly. It rather
occurs implicitly at the minimization of a certain energy norm.

The structure of this paper is as follows. For a special symmetry property of the matrices
in (1.1), in Section2 we introduce an objective function based on the energy norm of the
underlying Sylvester operator. We further derive first-order necessary conditions for this
objective function. In Section3, we establish a connection between the energy norm and
the H2-inner product of two dynamical control systems of the form (1.2). We show that
this inner product exhibits first-order necessary optimality conditions that are equivalent to
the ones for the energy norm. Based on techniques from rational interpolation, we discuss
the use of an iterative Sylvester solver applicable in large-scale settings. In Section4, we
provide numerical results to demonstrate the applicability of the method. As these results
correspond to Sylvester equations arising in imaging, we briefly review the use of large-scale
Sylvester equations (1.1) for problems evolving in image restoration as discussed in[15, 18].
We conclude with a short summary in Section5.

In all what follows,A ≻ 0 (A � 0) denotes a symmetric positive (semi-)definite ma-
trix. With ⊗ we denote the Kronecker product of two matrices. Vectorization of a ma-
trix A, i.e., stacking all columns ofA into a long vector, is denoted byvec (A) . The (matrix-
valued) residue of a meromorphic matrix-valued functionG(s) at a pointλ ∈ C is denoted
asres[G(s), λ]. All vectors and matrices are denoted by boldface letters andscalar quantities
by italic letters. The Kronecker deltaδij is defined as

δij :=

{

1 i = j,

0 otherwise.

2. Symmetric Sylvester equations and the energy norm.From now on, we consider
symmetric Sylvester equations of the form

AXM+EXH = G,(2.1)

whereA,E ∈ R
n×n,A,E ≻ 0, M,H ∈ R

m×m,M,H ≻ 0, andG ∈ R
n×m. While in

some applications the matrixG is not necessarily of low (numerical) rank, we still might
construct approximationsX ≈ X̃ := VXrW

T with V ∈ R
n×nr ,W ∈ R

m×nr , and
Xr ∈ R

nr×nr . Note that we do not requireXr to be a square matrix and thus we have
the freedom to chooseV andW such that they have a different number of columns. Still,
usingXr ∈ R

nr×nr seems to be a natural choice and also simplifies the notation.This
representation can always be obtained from a rectangularXr by employing its singular value
decomposition (SVD). Throughout the article, we always assume thatV andW have full
column rank andXr is nonsingular.

The most common way to evaluate the quality of an approximation is by means of the
norm of the error‖X − X̃‖. For the spectral norm or the Frobenius norm, the best ranknr
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approximation is given by the SVD. This result is well-knownand follows from the Eckart-
Young-Mirsky theorem that can be found in standard textbooks such as, e.g., [23]. Unfortu-
nately, computing an SVD-based approximation would require the full solutionX itself. For
symmetric systems, however, another natural choice for measuring errors is the energy norm.
Note that due to the definiteness of the matrices, for the error X − X̃ we can define a norm
via

‖X− X̃‖2LS
:= vec

(

X− X̃
)T

︸ ︷︷ ︸

eT

(M⊗A+H⊗E)
︸ ︷︷ ︸

=:LS≻0

vec
(

X− X̃
)

︸ ︷︷ ︸

e

.

The energy norm for matrix equations was first investigated in detail in [40, 41] and later dis-
cussed in the context ofH2-model reduction in [9]. Note that there is also a direct connection
between the Frobenius norm and the energy norm of the errorX− X̃ :

‖X− X̃‖2LS
= eTLSe =

eTLS e

eT e
‖e‖22 ≥ λmin(LS) ‖X− X̃‖2F .

The previous inequality holds due to the fact that the Rayleigh quotientR(LS , e) is bounded
from below by the minimal eigenvalue of the symmetric matrixLS . Assume now that for
a given Sylvester equation (2.1) and a prescribed dimensionnr ≪ n, the goal is to find
matricesV ∈ R

n×nr ,W ∈ R
m×nr , andXr ∈ R

nr×nr such that

‖X−VXrW
T ‖2LS

= min
Ṽ∈R

n×nr , W̃∈R
m×nr ,

X̃r∈R
nr×nr nonsingular

‖X− ṼX̃rW̃
T ‖2LS

.(2.2)

As a first step towards optimization, one usually considers first-order necessary optimal-
ity conditions forV,W, andXr. For this, we state some useful properties for computing
the derivative of the trace function with respect to a matrix. According to [4], for a ma-
trix Y ∈ R

n×m and matricesK,L of compatible dimensions, it holds that

(2.3)

∂

∂Y
[tr (KYL)] = KTLT ,

∂

∂Y

[
tr
(
KYLYT

)]
= KTYLT +KYL.

Using these properties, we can give the following generalization of results similarly obtained
for the Lyapunov equation in [41].

LEMMA 2.1. Assume that(V,W,Xr) solves(2.2). Then it holds

(
AVXrW

TM+EVXrW
TH−G

)
W = 0,(2.4a)

VT
(
AVXrW

TM+EVXrW
TH−G

)
= 0,(2.4b)

VT
(
AVXrW

TM+EVXrW
TH−G

)
W = 0.(2.4c)

Proof. Note that by vectorization of (2.1), we know that

LS vec (X) = vec (G) .
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Consequently, we obtain

f(V,W,Xr) = vec
(
X−VXrW

T
)T

LS vec
(
X−VXrW

T
)

= vec (X)
T
vec (G)− 2 vec

(
VXrW

T
)T

vec (G)

+ vec
(
VXrW

T
)T

(M⊗A+H⊗E) vec
(
VXrW

T
)

= tr
(
XTG

)
− 2 tr

(
WXT

r V
TG

)

+ tr
(
WXT

r V
T (AVXrW

TM+EVXrW
TH)

)
.

Using thattr (K) = tr
(
KT

)
and tr (KL) = tr (LK) for matricesK,L of compatible

dimensions together with (2.3) gives

∂f

∂V
= 2(AVXrW

TM+EVXrW
TH−G)WXT

r ,

∂f

∂W
= 2(MWXT

r V
TAVXr +HWXT

r V
TE−GT )VXr,

∂f

∂Xr

= 2VT (AVXrW
TM+EVXrW

TH−G)W.

Since a minimizer has to satisfy the first-order necessary optimality conditions, it also holds
that

∂f

∂V
=

∂f

∂W
=

∂f

∂Xr

= 0.

Together withXr being nonsingular, this shows the assertion.
Along the lines of [40], one might consider solving (2.2) by a Riemannian optimization

method. While this certainly is possible, in what follows we prefer to proceed via a connec-
tion of (2.2) and theH2-inner product of two dynamical systems. This particularlyresults in
a conceptionally simpler algorithm, which is easy to implement.

3. Tangential interpolation of symmetric state space systems. In this section, it will
prove beneficial to assume that the right hand sideG is given in factored formG = BCT

with B ∈ R
n×q andC ∈ R

m×q. At this point, it is not particularly important that we
haveq ≪ n,m. This also means we can always ensure such a decomposition by,e.g., the
SVD of G. We now can associate the energy norm of the solutionX with the H2-inner
product of two dynamical systems defined by their transfer functions. For this, recall that if a
symmetric state space system is given as

(3.1)
Eẋ(t) = −Ax(t) +Bu(t),

y(t) = BTx(t),

with x(t) ∈ R
n×n,u(t),y(t) ∈ R

q, denoting state, control, and output of the system, the
transfer functionis the rational matrix valued function

G1(s) = BT (sE+A)−1B.

SinceE,A ≻ 0, system (3.1) is asymptotically stable and the poles ofG1(s) are all in the
open left half of the complex plane. Hence, forG1(s) and

G2(s) := CT (sM+H)−1C,
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theH2-inner product is defined as

〈G1,G2〉H2
=

1

2π

∫ ∞

−∞
trace

(

G1(ıω)G2(ıω)
T
)

dω

=
1

2π

∫ ∞

−∞
trace

(
G1(−ıω)G2(ıω)

T
)
dω.

The previous expression turns out to be exactly the square ofthe energy norm ofX.
PROPOSITION3.1. LetX be the solution ofAXM+EXH = BCT . Then it holds that

‖X‖2LS
= 〈G1,G2〉H2

,

whereG1(s) = BT (sE+A)−1B andG2(s) = CT (sM+H)−1C.
Proof. First note that we have

‖X‖2LS
= vec (X)

T
(M⊗A+H⊗E) vec (X) .

SinceX is a solution of the Sylvester equation, this implies that

‖X‖2LS
= vec (X)

T
vec

(
BCT

)
.

Due to the properties of thetrace-operator, we have

‖X‖2LS
= trace

(
XTBCT

)
= trace

(
BTXC

)
.

On the other hand, it is well-known (see, e.g., [1]) that the solution of a Sylvester equation
can be obtained by complex integration as

X =
1

2π

∫ ∞

−∞
(−ıωE+A)−1BCT (ıωM+H)−1dω.

Pre- and post-multiplication with, respectively,BT andC show the assertion.
Instead of parameterizing the minimization problem (2.2) via V,W,Xr, the goal is to

usereducedrational transfer functions

G1,r(s) = BT
r (sEr +Ar)

−1Br and G2,r(s) = CT
r (sMr +Hr)

−1Cr,

with symmetric positive definite matricesAr,Er,Mr, and Hr of dimensionnr × nr

andBr,Cr ∈ R
nr×q. Since using every entry of the system matrices would lead to an over-

parameterization, we replaceG1,r andG2,r by theirpole-residue representations. For this,
letArQ = ErQΛ be the eigenvalue decomposition of the matrix pencil(Ar,Er). SinceAr

andEr are symmetric positive definite, we can chooseQTErQ = I. Hence, we have

G1,r(s) = BT
r (sEr +Ar)

−1Br = BT
r Q(QT (sEr +Ar)Q)−1QTBr =

nr∑

i=1

bib
T
i

s+ λi

,

with Λ = diag(λ1, . . . , λnr
) andBT

r Q = [b1, . . . ,bnr
]. The name of the representation is

due to the fact thatbib
T
i = res[G1,r(s), λi]. Analogously, letG2,r(s) be given as

G2,r(s) =

nr∑

j=1

cjc
T
j

s+ σj

,
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where theσj are the eigenvalues of the pencil(Hr,Mr) andcjcTj = res[G2,r(s), σj ]. Next,
define an objective function via

J := 〈G1 −G1,r,G2 −G2,r〉H2
.

For reduced transfer functions obtained within a projection framework, in [9] we have claimed
that

J ≤ 〈G1,G2〉H2
− 〈G1,r,G2,r〉H2

= ‖X− X̃‖2LS
,

whereX̃ can be constructed by prolongation of the solutionXr of a reduced Sylvester equa-
tion. For the sake of completeness, we give a proof based on the following two results from [2]
and [20] (stated here for multi-input multi-output systems).

LEMMA 3.2 [2]. Suppose thatG(s) andH(s) =
∑m

i=1
1

s+µi
cib

T
i are stable and have

simple poles. Then

〈G,H〉H2
=

m∑

i=1

cTi G(µi)bi.

LEMMA 3.3 [20]. Let H(s) = BT (sI − A)−1B be a symmetric state space system,
and letHr(s) = BT

r (sIr − Ar)
−1Br be any reduced model ofH(s) constructed by a

compression ofH(s), i.e.,Ar = VTAV,Br = VTB. Then, for anys ≥ 0,

H(s)−Hr(s) � 0.

LEMMA 3.4. Let G1(s) = BT (sE + A)−1B andG2(s) = CT (sM + H)−1C be

given transfer functions. Suppose thatG1,r(s) = BT
r (sEr + Ar)

−1Br =
∑nr

i=1
bib

T
i

s+λi

andG2,r(s) = CT
r (sMr +Hr)

−1Cr =
∑nr

j=1

cjc
T
j

s+σj
have been constructed by orthogonal

projections

Ar = VTAV, Er = VTEV, Br = VTB,

Hr = WTHW, Mr = WTMW, Cr = WTC.

Then

〈G1 −G1,r,G2 −G2,r〉H2
≤ 〈G1,G2〉H2

− 〈G1,r,G2,r〉H2
.

Proof. For theH2-inner product, we find

〈G1 −G1,r,G2 −G2,r〉H2
= 〈G1,G2〉H2

− 〈G1,r,G2 −G2,r〉H2

− 〈G2,r,G1 −G1,r〉H2
− 〈G1,r,G2,r〉H2

.

Applying Lemma3.2to the second term gives

−〈G1,r,G2 −G2,r〉H2
= −

nr∑

i=1

bT
i (G2(λi)−G2,r(λi))bi.

SinceG1,r is constructed by orthogonal projection, it must have stable poles and thusλi ≥ 0.
Moreover, Lemma3.3yieldsG2(s)−G2,r(s) � 0, which shows that

−〈G1,r,G2 −G2,r〉H2
≤ 0.

The same argument yields〈G2,r,G1 −G1,r〉H2
≥ 0 and proves the statement.

In particular, the proof indicates that equality holds for(G2(λi)−G2,r(λi))bi = 0

and(G1(σj)−G1,r(σj)) cj = 0. Again this generalizes our SISO formulation in [9]. More-
over, the latter condition is directly related to the gradient of J with respect to the parame-
tersbi, λi, ci, andσi.



ETNA
Kent State University 

http://etna.math.kent.edu

RATIONAL INTERPOLATION METHODS FOR SYMMETRIC SYLVESTER EQUATIONS 153

THEOREM 3.5. LetG1(s),G2(s),G1,r(s), andG2,r(s) be symmetric state space sys-
tems with simple poles. Suppose thatλ1, . . . , λnr

andσ1, . . . , σnr
are the poles of the re-

duced transfer functions withres[G1,r(s), λi] = bib
T
i and res[G2,r(s), σj ] = cjc

T
j , for

i, j = 1, . . . , nr. The gradient ofJ with respect to the parameters listed as

{b,λ, c,σ} = [bT
1 , λ1, c

T
1 , σ1, . . . ,b

T
nr
, λnr

, cTnr
, σnr

]T

is given by∇{b,λ,c,σ}J , a vector of length2nr(q + 1) partitioned intonr vectors of length
2(q + 1) of the form

(
∇{b,λ,c,σ}J

)

k
=









2 (G2,r(λk)−G2(λk))bk

bT
k (G

′
2,r(λk)−G′

2(λk))bk

2 (G1,r(σk)−G1(σk)) ck

cTk (G
′
1,r(σk)−G′

1(σk))ck









,

for k = 1, . . . , nr.
Proof. Observe that for theℓ-th entry ofbk, we have

∂J

∂(bk)ℓ
=

∂

∂(bk)ℓ
〈G1 −G1,r,G2 −G2,r〉H2

= −

〈
∂G1,r

∂(bk)ℓ
,G2 −G2,r

〉

H2

= −

〈
eℓb

T
k

s+ λk

,G2 −G2,r

〉

H2

−

〈
bke

T
ℓ

s+ λk

,G2 −G2,r

〉

H2

= −eTℓ (G2(λk)−G2,r(λk))bk − bT
k (G2(λk)−G2,r(λk)) eℓ

= −2eTℓ (G2(λk)−G2,r(λk))bk,

whereeℓ is the ℓ-th unit vector. The previous steps follow from Lemma3.2 and the fact
thatG2 andG2,r are symmetric state space systems. Similarly, for the derivative with respect
to λk, we find

∂J

∂λk

=
∂

∂λk

〈G1 −G1,r,G2 −G2,r〉H2
= −

〈
∂

∂λk

G1,r,G2 −G2,r

〉

H2

=

〈
bkb

T
k

(s+ λk)2
,G2 −G2,r

〉

H2

.

For the latter expression, we can use the MIMO analogue of [27, Lemma 2.4] and obtain

∂J

∂λk

= bT
k (G

′
2,r(λk)−G′

2(λk))bk.

The proofs forck andσk use exactly the same arguments and are thus omitted here.
REMARK 3.6. Note the change of sign for the derivatives with respectto λk andσk

compared to the special case ofH2-optimal model reduction discussed in [7]. This simply
follows from a different notation in this manuscript. Usingλi, σj < 0 together with transfer

function representations
∑nr

i=1 G1,r(s) =
bib

T
i

s−λi
andGr,2(s) =

∑nr

j=1

cjc
T
j

s−σj
would lead to

similar expressions as in [7].
In [9], we stated the inequality from Lemma3.4 and showed that equality holds if the

gradient ofJ is zero. In fact, we can even show that the corresponding reduced transfer
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functions can be used to compute a triple(V,W,Xr) satisfying the first-order necessary
optimality conditions from Theorem2.1.

THEOREM 3.7. Consider the Sylvester equation(2.1) with factored right-hand
sideG = BC,

AXM+EXH = BC,

and denote, respectively,G1(s) = BT (sE + A)−1B andG2(s) = CT (sM + H)−1C.

SupposeG1,r(s) =
∑nr

i=1
bib

T
i

s+λi
andG2,r(s) =

∑nr

j=1

cjc
T
j

s+σj
satisfy

G1,r(σk)ck = G1(σk)ck,(3.2a)

cTkG
′
1,r(σk)ck = cTkG

′
1(σk)ck,(3.2b)

G2,r(λk)bk = G2(λk)bk,(3.2c)

bT
kG

′
2,r(λk)bk = bT

kG
′
2(λk)bk,(3.2d)

for k = 1, . . . , nr. DefineX ∈ R
nr×nr ,Y ∈ R

n×nr , andZ ∈ R
m×nr via

Xij =
bT
i cj

λi + σj

, Yi = (σiE+A)−1Bci, Zj = (λjM+H)−1Cbj .

Then the triple(Y,Z,X−1) satisfies(2.4).
Proof. First note that (3.2) definesnr(q + 1) constraints on, respectively,G1,r(s)

andG2,r(s). Due to the pole-residue representation, exactly the same number of parameters
defines the rational matrix valued transfer functionsG1,r(s) andG2,r(s). Hence,G1,r(s)
andG2,r are uniquely determined by (3.2). Echoing the argumentation in [17, Lemma 3.11]
and [34], without loss of generality we can thus assume that the reduced transfer functions
are obtained byE/M-orthogonal projections via

Λ = VTAV, B̃ := [b1, . . . ,bq]
T = VTB,

Σ = WTHW, C̃ := [c1, . . . , cq]
T = WTC,

whereV andW are such that

span{V} ⊃ span
i=1,...,nr

{
(σiE+A)−1Bci

}
,

span{W} ⊃ span
j=1,...,nr

{
(λjM+H)−1Cbj

}
.

Due to the definition ofXij we further obtain

Xi = (σiI+Λ)−1B̃ci, X
T
j = (λjI+Σ)−1C̃bj ,

whereΛ = diag (λ1, . . . , λnr
) andΣ = diag (σ1, . . . , σnr

) . Using well-known results from
projection-based rational interpolation (see [26]), we conclude

VXi = Yi, WX
T
j = Zj ,

and thereforeVX = Y andWX
T = Z. Keeping this in mind, for (2.4), we obtain

(
AYX

−1
Z
TM+EYX

−1
Z
TH−BCT

)
Z

=
(
AYWTM+EYWTH−BCT

)
WX

T

= (AY+EYΣ−BC̃T )XT = 0.
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Here, the last step follows from the definition ofY. Similarly, it holds that

Y
T
(
AYX

−1
Z
TM+EYX

−1
Z
TH−BCT

)
= X

TVT
(
AVZ

TM+EVZ
TH−BCT

)

= X
T (ΛZ

TM+ Z
TH− B̃CT ) = 0.

Again, the last equality is due to the definition ofZ. Finally, we have

Y
T
(
AYX

−1
Z
TM+EYX

−1
Z
TH−BCT

)
Z

= X
TVT

(
AVXWTM+EVXWTH−BCT

)
WX

T

= X
T
(

ΛX+ XΣ− B̃C̃T
)

X
T = 0.

Once more, the last identity is true due to the definition ofX.
REMARK 3.8. From the proof of Theorem3.7, we find that the same approximation

is obtained when(Y,Z,X−1) is replaced by(V,W,X) whereV andW are the projection
matrices constructingG1,r(s) andG2,r(s). Furthermore note thatX solves the projected
reduced Sylvester equation. This in particular implies that the approximationVXWT fulfills
the common Galerkin condition on the residual; see [37].

The natural question that arises is whether triples(V,W,Xr) fulfilling ( 2.4) also yield
reduced transfer functionsG1,r(s) andG2,r(s) with vanishing gradient∇{b,λ,c,σ}J . The
answer is given by the following result.

THEOREM3.9. Let a triple(V,W,Xr) be given such that(2.4) holds. Suppose reduced
transfer functionsG1,r(s) andG2,r(s) are defined via

Ar = VTAV, Er = VTEV, Br = VTB,

Hr = WTHW, Mr = WTMW, Cr = WTC.

Then it holds that∇{b,λ,c,σ}J = 0.
Proof. The third condition in (2.4) implies

ArXrMr +ErXrHr −BrC
T
r = 0.

Assuming thatHrR = MrRΣ is the eigenvalue decomposition of(Hr,Mr), post-multi-
plication of the above equation withrj := Rej gives

Ar XrMrrj
︸ ︷︷ ︸

xj

+σjEr XrMrrj
︸ ︷︷ ︸

xj

= Br C
T
r rj

︸ ︷︷ ︸

cj

.

Hence, we havexj = (σjEr +Ar)
−1Brcj . Also, post-multiplication of the third equation

in (2.4) with rj yields

AVXrMrrj + σjEVXrMrrj = BCT
r rj .

In particular, we concludeVxj = (σE+A)−1Bcj . This, however, yields

G1,r(σj)cj = BTV(σjEr +Ar)
−1Bcj = BT (σjE+A)−1Bcj = G1(σj)cj ,

cTj G
′
1,r(σj)cj = −cTj B

T
r (σjEr +Ar)

−1VTEV(σjEr +Ar)
−1Brcj

= −cTj B
T (σjE+A)−1E(σjE+A)−1Bcj = cTj G

′
1(σj)cj .

The proof forG2,r follows analogously.
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In summary, we can state that the first-order necessary optimality conditions for the
objective functionsf(V,W,Xr) andJ (b,λ, c,σ) are equivalent to each other. For the
remainder of this paper, we focus on the objective functionJ . Along the lines of [7], we
present the Hessian ofJ with respect to the parameters{b,λ, c,σ}.

LEMMA 3.10. The Hessian ofJ with respect to{b,λ, c,σ} is given by∇2
{b,λ,c,σ}J ,

a (2nr(q+1))× (2nr(q+1)) matrix partitioned inton2
r matrices of size2(q+1)×2(q+1)

defined by
(

∇2
{b,λ,c,σ}J

)

kℓ

=










0 0 2
(

cℓb
T
k +c

T
ℓ bkIq

σℓ+λk

)

−2
cℓc

T
ℓ bk

(σℓ+λk)2

0 0 −2
c
T
ℓ bkb

T
k

(λk+σℓ)2
2
b

T
k cℓc

T
ℓ bk

(σℓ+λk)3

2
(

bℓc
T
k +b

T
ℓ ckIq

σk+λℓ

)

−2
bℓb

T
ℓ ck

(σk+λℓ)2
0 0

−2
b

T
ℓ ckc

T
k

(λℓ+σk)2
2
c
T
k bℓb

T
ℓ ck

(λℓ+σk)3
0 0










+ δkℓ







2(G2,r(λk)−G2(λk)) 2(G′
2,r(λk)−G′

2(λk))bk 0 0

2bT
k (G

′
2,r(λk)−G′

2(λk)) bT
k

(
G′′

2,r(λk)−G′′
2(λk)

)
bk 0 0

0 0 0 0

0 0 0 0







+ δkℓ







0 0 0 0

0 0 0 0
0 0 2(G1,r(σk)−G1(σk)) 2(G′

1,r(σk)−G′
1(σk))ck

0 0 2cTk (G
′
1,r(σk)−G′

1(σk)) cTk
(
G′′

1,r(σk)−G′′
1(σk)

)
ck






.

The proof follows by direct computation of the partial derivatives. Since a similar derivation
can be found in [7] for theH2-optimal case, we omit the details.

Unfortunately, the objective functionJ is unbounded so that its minimization is not well
defined. This can be seen by consideringnr = 1. In this case,

G1,r(s) =
bbT

s+ λ
and G2,r(s) =

ccT

s+ µ

are the reduced transfer functions. By Lemma3.2, for the objective function we get

J = 〈G1,G2〉H2
− bTG2(λ)b− cTG1(µ)c+

bT ccTb

λ+ µ
.

Hence, by scalingαb and 1
α
c, we further obtain

J = 〈G1,G2〉H2
− α2bTG2(λ)b−

1

α2
cTG1(µ)c+

bT ccTb

λ+ µ
,

and we can arbitrarily decrease the value ofJ by increasingα. In fact, a similar conclusion

can be drawn from the Hessian in Theorem3.10. Multiplication of
(

∇2
{b,λ,c,σ}J

)

11
with

z :=
[
αbT

1 0 cT1 0
]T

yields

zT
(

∇2
{b,λ,c,σ}J

)

11
z = 2α2bT

1 (G2,r(λ1)−G2(λ1))b1 + 2cT1 (G1,r(σ1)−G2(σ1))c1

+ 8α
(bT

1 c1)
2

σ1 + λ1
.
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For a stationary point, we thus find

zT
(

∇2
{b,λ,c,σ}J

)

11
z = 8α

(bT
1 c1)

2

σ1 + λ1
.

In other words, the Hessian is always indefinite and, consequently, all stationary points are
saddle points. While this will cause problems for optimization routines, we can still extend
the idea of iterative correction as in [27] to the MIMO Sylvester case. Algorithm1 is a suit-
able generalization of a SISO version we proposed in [9]. Due to the iterative structure, upon
convergence, the reduced transfer functionsG1,r(s) andG2,r(s) will tangentially interpo-
late the original transfer functionG1(s) andG2(s) such that the corresponding gradient in
Lemma3.5 vanishes. According to Theorem3.7, in this way we can compute stationary
points of the objective functionf , which is obviously bounded.

ALGORITHM 1: MIMO (Sy)2IRKA

Input: Interpolation points:{λ1, . . . , λnr
} and{σ1, . . . , σnr

}.
Tangential directions:B̃ = [b1, . . . ,bnr

] andC̃ = [c1, . . . , cnr
] .

Output: G1,r(s),G2,r(s) satisfying (3.2)
1: while relative change in{λi, σi} > tol do
2: ComputeV andW from

span{V} ⊃ span
i=1,...,nr

{
(σiE+A)−1Bci

}
,

span{W} ⊃ span
j=1,...,nr

{
(λjM+H)−1Cbj

}
.

3: ComputeEr = VTEV, Ar = VTAV, Br = VTB.
4: ComputeMr = WTMW, Hr = WTHW, Cr = WTC.
5: ComputeArQ = ErQΛ with QTErQ = I.
6: ComputeHrR = MrRΣ with RTMrR = I.
7: Updateλi = diag(Λ), B̃ = BT

r Q, σi = diag(Σ), C̃ = CT
r R.

8: end while
9: SetG1,r(s) = BT

r (sEr +Ar)
−1Br.

10: SetG2,r(s) = CT
r (sMr +Hr)

−1Cr.

3.1. Initialization. The efficiency of Algorithm1 obviously depends on the number of
iterations needed until a typical convergence criterion issatisfied. Hence, an important point
is the initialization of the algorithm. Several strategiesfor choosing interpolation points and
tangential directions are possible. However, there existsa natural choice for the applications
that we consider in the next section. Below, we will see that ablurred and noisy image some-
times is given as the right hand sideG = BCT . ThoughG deviates from the original unper-
turbed image, it still is related to it. In other words,G can be seen as a (rough) approximation
to the solutionX of the underlying Sylvester equation. For this reason, if weare interested in
constructing an approximation of ranknr, we propose to use a truncated singular value de-
composition ofG ≈ Unr

Dnr
ZT

nr
, with Unr

∈ R
n×nr ,Z ∈ R

m×nr , andDnr
∈ R

nr×nr .
SinceUT

nr
Unr

= I andZT
nr
Znr

= I, we can construct an initial reduced model via

Ar = UT
nr
AUnr

, Er = UT
nr
EUnr

, Br = UT
nr
B,

Hr = ZT
nr
HZnr

, Mr = ZT
nr
MZnr

, Cr = ZT
nr
C.
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Initial interpolation points and tangential directions then can be obtained by computing the
pole-residue representations for

G1,r(s) = BT
r (sEr +Ar)

−1Br and G2,r(s) = CT
r (sMr +Hr)

−1Cr.

In all our numerical examples, we initialize Algorithm1 by this procedure. Moreover, as
we mentioned earlier, the right hand sideG is not necessarily low-rank, and we thus have to
face transfer functions with a large number of inputs and outputs. In the case ofH2-optimal
model reduction, this can slow down the convergence of iterative algorithms such as IRKA
significantly; see [7]. For this reason, in our examples we replaceG by its truncated singular
value decomposition, which is of ranknr. While this means we are actually approximating
the solution of a perturbed Sylvester equation, we will see that this does not seem to influence
the quality of restored images using this procedure as explained in the next section.

4. Numerical results. We study the performance of Algorithm1 for two examples from
image restoration. At this point, we emphasize that what follows should only be understood
as a numerical validation of Algorithm1. Moreover, due to the dedication of this special
issue, we believe that the following examples are particularly appropriate. We are aware of
the fact that using matrix equations within image restoration problems isnot state-of-the-art.
Nowadays, methods based on total (generalized) variation andL1-norm minimization usually
produce much more accurate results.

All simulations were generated on an IntelR©CoreTM i5-3317U CPU, 3 GB RAM, Ubuntu
Linux 12.10, MATLAB R© Version 7.14.0.739 (R2012a) 64-bit (glnxa64).

4.1. Sylvester equations in image restoration.Besides their use in control theory,
Sylvester equations also appear in restoration problems for degraded images. We give a
brief recapitulation of the discussions in [15, 16, 18]. Consider an image represented by a
matrixF ∈ R

n×m with grayscale pixel valuesFij between0 and255. Unfortunately, often
the matrixF is not given exactly but is perturbed by some noise or blurring process. The
result is a degraded imageG ∈ R

n×m that is obtained after an out-of-focus or atmospheric
blur. One way to compute an approximately restored imageX ≈ F is given by the solution
to a regularized linear discrete ill-posed problem of the form

min
x

‖Hx− g‖22 + λ‖Lx‖22 .(4.1)

Here,x = vec (X) ,g = vec (G) , H models the degradation process andL is a regular-
ization operator with regularization parameterλ. The solution to (4.1) can be computed by
solving the linear system

(HTH+ λ2LTL)x = HTg.

While the choice of an appropriate or optimal parameterλ is a nontrivial task, we rather want
to focus on efficiently solving the linear system onceλ has been determined. This can, for
example, be done by using the L-curve criterion or the generalized cross validation method;
see [22, 29]. Following, e.g., [15], assuming certain separability properties of the blurring
matrix H = H2 ⊗ H1 and the regularization operatorL = L2 ⊗ L1, problem (4.1) has a
special structure and can equivalently be solved by the Sylvester equation

(HT
1 H1)X(HT

2 H2) + λ2(LT
1 L1)X(LT

2 L2) = G.(4.2)

In particular, we note that the matrices defining the matrix equation are symmetric positive
(semi-)definite. Before we proceed, we mention typical structures ofH andL that we take up
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(a) Original image. (b) Blurred and noisy image.

(c) Restored image (exact),λopt = 0.079. (d) Restored image (appr.),λopt = 0.127.

Fig. 4.1: Uniform blur(r1 = 5) and atmospheric blur(σ = 7, r2 = 2) for nr = 40.

again in the numerical examples. Again, we follow the more detailed discussions in [15, 16].
A uniform out-of-focus blur for example can be modeled by theuniform Toeplitz matrix

Uij =

{
1

2r−1 |i− j| ≤ r,

0 otherwise.
(4.3)

Atmospheric blur can be realized by a Gaussian Toeplitz matrix

Tij =

{
1

σ
√
2π

exp
(

− (i−j)2

2σ2

)

|i− j| ≤ r,

0 otherwise.
.(4.4)

As in [15, 16], given an original imageX, we use out-of-focus-blur (4.3) and atmospheric
blur (4.4) to construct a blurred imagêG. The final degraded imageG is then obtained by
adding Gaussian white noiseN to Ĝ such that‖N‖

‖Ĝ‖ = 10−2.

Lothar Reichel. Due to the already mentioned dedication of this special issue, the first
example is an image showing Lothar Reichel1. The matrixX ∈ R

363×400 contains grayscale

1The photo is taken fromhttp://owpdb.mfo.de/detail?photo_id=3467.

http://owpdb.mfo.de/detail?photo_id=3467
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(a) Original image. (b) Blurred and noisy image.

(c) Restored image (exact),λopt = 1.438. (d) Restored image (appr.),λopt = 0.127.

Fig. 4.2: Uniform blur(r1 = 6) and atmospheric blur(σ = 12, r2 = 6) for nr = 40.

pixel values from the interval[0, 255]. The blurring matricesH1 andH2 in (4.2) are Toeplitz
matrices as in (4.3) and (4.4). First, we constructH1 with r1 = 5 andH2 with σ = 7
andr2 = 2. We got inspired by the values chosen in [15, 16]. For the regularization operators
we use discrete first-order derivatives such that

L1 =








1 −1
. ..

.. .
1 −1

0







, L2 =









1

−1
. . .
. . . 1

−1 0









.

In Figure4.1dwe show the results obtained by Algorithm1 for nr = 40. We obtain a relative
change less than10−2 after 10 iterations. Recall that we also approximate the degraded
imageG by a low rank matrix of rank 40. We compare our result with the reconstructed
image obtained by solving the Sylvester equation exactly bymeans of the Bartels-Stewart
algorithm (4.1c). For both variants, the optimal value of the regularization parameterλopt is
computed by minimization over a logarithmically spaced interval [10−3, 10] with 20 points.
Figure4.1shows that the quality of the approximately reconstructed image is similar to that
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(a) Original image. (b) Blurred and noisy image.

(c) Restored image (exact),λopt = 0.070. (d) Restored image (appr.),λopt = 0.298.

Fig. 4.3: Uniform blur(r1 = 4) and atmospheric blur(σ = 7, r2 = 5) for nr = 50.

of the exactly reconstructed image. Actually, in terms of the relative spectral norm error,
Algorithm 1 (0.0185) outperforms the full solution(0.1260).

Figure4.2shows similar results for different blurring matrices. Here, we chooser1 = 6,
σ = 12, andr2 = 6. While the quality of the reconstructed images clearly is worse than
in the first setting, Algorithm1 obviously yields far better results than we obtain by solving
the Sylvester equation explicitly. Moreover, the final (energy norm optimal) iterate from
Algorithm 1 is found after 20 iteration steps.

Magdeburg cathedral. The second example is an image from the cathedral in Magde-
burg, Germany2 . The matrixX is of size436× 556. We chooser1 = 4, σ = 7, andr2 = 5.
Since the Sylvester equation is larger than in the first example, we increase the rank of the
approximation tonr = 50. Figure4.3 shows a similar comparison as in the first example.
Algorithm 1 needs 19 steps before convergence is obtained. Again, the relative spectral norm
error for the approximate solution(0.018) is smaller than for the exact solution(2.890). We
get similar results for the parameter valuesr1 = 5, σ = 7, andr2 = 2. The results are shown
in Figure4.4. The number of iterations needed in Algorithm1 is 13. Once more, note that
the method used for reconstruction is probably not the most sophisticated and explains the
modest quality of the approximations. Still, we point out that the reconstructed images com-
puted by an approximate solution of the Sylvester equation in all cases perform better than

2The photo is taken from
http://commons.wikimedia.org/wiki/File:Magdeburger_Dom_Seitenansicht.jpg.

http://commons.wikimedia.org/wiki/File:Magdeburger_Dom_Seitenansicht.jpg
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(a) Original image. (b) Blurred and noisy image.

(c) Restored image (exact),λopt = 0.336. (d) Restored image (appr.),λopt = 0.055.

Fig. 4.4: Uniform blur(r1 = 5) and atmospheric blur(σ = 7, r2 = 2) for nr = 50.

the actual exact solution. This might be due to the badly conditioned matrices which may
cause numerical perturbations when one tries to compute thefull solution explicitly.

5. Conclusions. In this paper, we have studied symmetric Sylvester equations arising in
dynamical control systems. The symmetric structure of the equation allows to measure errors
of low-rank approximations in terms of an energy norm induced by the Sylvester operator.
For a given ranknr, we have derived first-order optimality conditions for an approximation
optimal with respect to this energy norm. We have then established a connection to theH2-
inner product of two symmetric state space systems. The corresponding first-order optimality
conditions have been shown to be equivalent to the ones related to the energy norm mini-
mization problem. The stationary points of theH2-inner product itself have been shown to
be necessarily saddle points. An iterative interpolatory procedure trying to find these saddle
points has been suggested. The two numerical examples reported and many similar experi-
ments not described here demonstrate the applicability of the method.
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