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RATIONAL INTERPOLATION METHODS FOR SYMMETRIC
SYLVESTER EQUATIONS *
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Abstract. We discuss low-rank approximation methods for large-scatensgtric Sylvester equations. Follow-
ing similar discussions for the Lyapunov case, we introdutergergy norm by the symmetric Sylvester operator.
Given a rankn,, we derive necessary conditions for an approximation beirtignap with respect to this norm. We
show that the norm minimization problem is related to an objedtinction based on th& >-inner product for sym-
metric state space systems. This objective function leadssteofider optimality conditions that are equivalent to the
ones for the norm minimization problem. We further propose amaiive procedure and demonstrate its efficiency
by means of some numerical examples.
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1. Introduction. In this paper, we consider large-scale linear matrix equati
(1.1) AXM + EXH = G,

where AJE € R™" M,H € R™™ and G € R"*™. The sought-after solu-
tion X € R™ ™ to the Sylvester equatiofil.1) is of great interest within systems and con-
trol theory; seeq]. In particular, forM = E7, H = A7, andG = BB, the resulting
Lyapunov equatiocharacterizes stability properties of an underlying dyicairsystem

Ex(t) = Ax(t) + Bu(t),
y(t) = Cx(1),

where, respectively(¢), u(t), andy(¢) are calledstate, contral andoutputof the system.
Linear matrix equations of the formi () have been studied for several years now. However,
finding efficient algorithms for large, m is still an active area of research within the nu-
merical linear algebra community. For a detailed introdurcinto linear matrix equations,
we refer to the two recent survey articles3] 39]. Since direct methods, e.g., the Bartels-
Stewart algorithm%] or Hammarling’s methodZ8] require cubic complexity to solvel (1),
they are only feasible as long asm are of medium size. Depending on the individual com-
puter architecture, this nowadays might cover system dsnes up ton, m ~ 10*. Often,
however, dynamical systems and thus matrix equationstrissuh a spatial discretization
of a partial differential equation (PDE). Here, one easiig®up with dimensions that can-
not be handled by the mentioned direct methods. For the gkeoase wherés is of full
rank, there is still no easily applicable technique to coreXi. On the other hand, assum-
ing thatG = BCT, whererank(B), rank(C) < n,m, the singular values oX often
decay very fast; se&| 25, 32, 36]. In other words, the low numerical rank of the solution
allows for low-rank approximation&X ~ VX, W7, whereV € R"*" W ¢ R"X"r

(1.2)
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andX, € R *" with n, < n,m. This phenomenon has lead to several numerically ef-
ficient methods that are also applicable in a large-scatengetThe most popular choices
can basically be classified into two categories: (a) methzded on alternating directions
implicit (ADI) schemes; (b) methods based on projection prmlongation. Methods that
specifically address the computation of low-rank approxioms to the solution of Sylvester
equations can be found i6,[8, 11, 21]. The literature on low-rank solution for the Lyapunov
case goes back even further and has achieved more attefoti@ncletailed overview on this
topic, we refer to 10, 12, 13, 19, 30, 31, 33, 35, 37, 38, 42]. Other techniques are based on
the tensorized linear system (séd,[24, 32]) or Riemannian optimization; seé(), 41]. Es-
pecially the latter class of methods is important in the erhof this article as it inspired the
approach discussed here though we do not use Riemanniamizgiton explicitly. It rather
occurs implicitly at the minimization of a certain energyrmo

The structure of this paper is as follows. For a special symnpeoperty of the matrices
in (1.1, in Section2 we introduce an objective function based on the energy ndrtheo
underlying Sylvester operator. We further derive firstesrdecessary conditions for this
objective function. In SectioB, we establish a connection between the energy norm and
the Ho-inner product of two dynamical control systems of the forhi2. We show that
this inner product exhibits first-order necessary optitpalonditions that are equivalent to
the ones for the energy norm. Based on techniques from edtioterpolation, we discuss
the use of an iterative Sylvester solver applicable in latme settings. In Sectich we
provide numerical results to demonstrate the applicgbidftthe method. As these results
correspond to Sylvester equations arising in imaging, vefligpreview the use of large-scale
Sylvester equationd (1) for problems evolving in image restoration as discussgdn18].
We conclude with a short summary in Secttmn

In all what follows, A >~ 0 (A = 0) denotes a symmetric positive (semi-)definite ma-
trix. With @ we denote the Kronecker product of two matrices. Vectanrabf a ma-
trix A, i.e., stacking all columns A into a long vector, is denoted byc (A) . The (matrix-
valued) residue of a meromorphic matrix-valued func®fs) at a pointh € C is denoted
asres[G(s), A]. All vectors and matrices are denoted by boldface letterssaatar quantities
by italic letters. The Kronecker delty; is defined as

1 i=j,
5ij = )
0 otherwise.

2. Symmetric Sylvester equations and the energy normFrom now on, we consider
symmetric Sylvester equations of the form

(2.1) AXM + EXH = G,

whereA,E € R"*" A E > 0, M,H € R™*™ M,H > 0, andG € R™*™. While in
some applications the matri& is not necessarily of low (numerical) rank, we still might
construct approximationX ~ X := VX, W7 with V e R W e R™ " and
X, € R™ " Note that we do not requirX, to be a square matrix and thus we have
the freedom to choos¥ and W such that they have a different number of columns. Still,
using X,. € R"*" seems to be a natural choice and also simplifies the notafitis
representation can always be obtained from a rectangyldoy employing its singular value
decomposition (SVD). Throughout the article, we alwaysiass thatV and W have full
column rank an&.. is nonsingular.

The most common way to evaluate the quality of an approxonas by means of the
norm of the errof X — X||. For the spectral norm or the Frobenius norm, the best rank
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approximation is given by the SVD. This result is well-knoamd follows from the Eckart-
Young-Mirsky theorem that can be found in standard textsamlch as, e.g.2B]. Unfortu-
nately, computing an SVD-based approximation would regthie full solutionX itself. For
symmetric systems, however, another natural choice fosoresy errors is the energy norm.
Note that due to the definiteness of the matrices, for the &re- X we can define a norm
via

- T -
IX — X2, = vec (X—X) (M® A +He E) vec (X—X).
— —Ls»0 —
The energy norm for matrix equations was first investigatedkitail in 40, 41] and later dis-
cussed in the context {;-model reduction ing]. Note that there is also a direct connection
between the Frobenius norm and the energy norm of the BrrorX :

elLge

v |12 T
IX - X2, = el oo =72

lell3 > Amin(Ls) [|X — X%

The previous inequality holds due to the fact that the RgylegjuotientR(Ls, ) is bounded
from below by the minimal eigenvalue of the symmetric matfix. Assume now that for
a given Sylvester equatior2.() and a prescribed dimension. < n, the goal is to find
matricesV € R™"*" "W ¢ R™*" andX, € R"*"r such that

(2.2) IX - VX, WT|2. = min X - VX, WT|Z_.
VER"X"T7 WERman,
X, €R™" X™r nonsingular

As a first step towards optimization, one usually considess-firder necessary optimal-
ity conditions forV, W, and X... For this, we state some useful properties for computing
the derivative of the trace function with respect to a matrixccording to B, for a ma-
trix Y € R™*™ and matrice¥, L of compatible dimensions, it holds that

9 [tr (KYL)] = KTL”,
oY
(2.3) 5
Sy Lt (KYLYT)] = KTYL” + KYL.
Using these properties, we can give the following geneaatiin of results similarly obtained
for the Lyapunov equation irdfL].

LEMMA 2.1.Assume thatV, W, X,.) solveg2.2). Then it holds

(2.4a) (AVX,W'M + EVX,W'H- G)W =0,
(2.4b) VT (AVX, W'M + EVX,W'H - G) =0,
(2.4c) VI (AVX,W'M + EVX,W'H - G)W =0.

Proof. Note that by vectorization of(1), we know that

Lsvec (X) = vec (G).
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Consequently, we obtain

FIV, W, X,) = vee (X — VX, W) Lgvee (X — VX, WT)
= vec (X)" vec (G) — 2 vec (VXTWT)T vec (G)
+vee (VX, W) (M® A +HeE)vee (VX, W7)
=tr (X"G) —2tr (WX V'G)
+tr (WXIVI(AVX, WM + EVX,W'H)) .

Using thattr (K) = tr (K”) andtr (KL) = tr (LK) for matricesK, L of compatible
dimensions together witl2(3) gives

% =2(AVX, WM + EVX,WTH - G)WXZ,
% =2MWX!VTAVX, + HWX!V'E - G")VX,,
;}z — 2VT(AVX, WM + EVX,WTH — G)W.

Since a minimizer has to satisfy the first-order necessatiynafity conditions, it also holds
that

o _of _ o _
oV OW 90X,

Together withX,. being nonsingular, this shows the assertion. O

Along the lines of f0], one might consider solving?(2) by a Riemannian optimization
method. While this certainly is possible, in what follows wefer to proceed via a connec-
tion of (2.2) and the?{,-inner product of two dynamical systems. This particulaggults in
a conceptionally simpler algorithm, which is easy to impata

3. Tangential interpolation of symmetric state space systas. In this section, it will
prove beneficial to assume that the right hand €idis given in factored fornG = BC”
with B € R"*? andC € R™*4. At this point, it is not particularly important that we
haveq < n,m. This also means we can always ensure such a decompositi@xgbythe
SVD of G. We now can associate the energy norm of the soluKowith the #H,-inner
product of two dynamical systems defined by their transfecfions. For this, recall that if a
symmetric state space system is given as

Ex(t) = —Ax(t) + Bu(t),
y(t) = Bx(t),

with x(¢) € R™*", u(t),y(t) € R, denoting state, control, and output of the system, the
transfer functions the rational matrix valued function

(3.1)

Gi(s) = BT (sE+ A)"'B.

SinceE, A > 0, system 8.1) is asymptotically stable and the poles@f (s) are all in the
open left half of the complex plane. Hence, @ (s) and

Gy(s):=CT(sM+H)'C,
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theHs-inner product is defined as
(G1,Ga),, = L trace (G (w)G (zw)T> dw
L2)y, = 50 . 12 2
1 oo

trace (G1(—w)Gz(w)") dw.

:ﬂ .

The previous expression turns out to be exactly the squareanergy norm oX.
PROPOSITION3.1. LetX be the solution oAAXM + EXH = BC”. Then it holds that

IX[|Zs = (G1,Ga)yy, »

whereG4(s) = BT (sE + A)~!'B andGy(s) = C*(sM + H) "' C.
Proof. First note that we have

X%, = vec(X)" (M ® A +H® E)vec (X).
SinceX is a solution of the Sylvester equation, this implies that
1X|2, = vec (X)" vec (BCT).
Due to the properties of theace-operator, we have
1X[|%, = trace (X"BC") = trace (B"XC).

On the other hand, it is well-known (see, e.d]) that the solution of a Sylvester equation
can be obtained by complex integration as
1 o0

(—wE 4+ A)"'BCT (1wM + H) dw.

:% .

Pre- and post-multiplication with, respectiveR! andC show the assertion. O
Instead of parameterizing the minimization problex?| via V, W, X,., the goal is to
usereducedrational transfer functions

Gi1,(s) =BT (sE, +A,)"'B, and Gg,(s) = CI'(sM, +H,)"'C,,

with symmetric positive definite matriced.., E,.,M,, and H,. of dimensionn, x n,
andB,., C,. € R"*4, Since using every entry of the system matrices would lead tvar-
parameterization, we repla€g, , andGs, , by their pole-residue representation&or this,
let A,.Q = E, QA be the eigenvalue decomposition of the matrix pefwil, E,.). SinceA.,
andE, are symmetric positive definite, we can cho@EE, Q = I. Hence, we have

Ny . T
Gl,r(s) = BrT<5ET + Ar)_lBr = BZQ(QT(SET + AT>Q>_1QTBT = Z sb;b;\.’

i=1

with A = diag(A1,...,\,,) andBX'Q = [by,..., b, |. The name of the representation is
due to the fact thab;b] = res[G1 ..(s), \;]. Analogously, letG ,.(s) be given as

N

T

C;C:
Gop(s) =Y —1,
= S+ 0j
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where thes; are the eigenvalues of the pen@,, M.,.) andcjc]T =res[Ga - (s),0,]. Next,
define an objective function via

T =(G1 —Gi1,,Ga— Gar)y,.

For reduced transfer functions obtained within a projectiamework, in P] we have claimed
that

J <(G1,Ga)u, — (G, Go ), = [ X = X]|Z,,
whereX can be constructed by prolongation of the solufnof a reduced Sylvester equa-
tion. For the sake of completeness, we give a proof basededoltbwing two results from7]
and 0] (stated here for multi-input multi-output systems).

LEMMA 3.2 [2]. Suppose thaG(s) andH(s) = >, sw —L_¢,;b! are stable and have
simple poles. Then

Zc G(ui)b

LEMMA 3.3 [20]. LetH(s) = BT(sI — A) !B be a symmetric state space system,
and letH,.(s) = BT (sI, — A,)"'B, be any reduced model d&f(s) constructed by a
compression o (s), i.e., A, = VI AV, B, = VI'B. Then, for anys > 0,

H(s) —H,(s) = 0.
LEMMA 3.4. LetGy(s) = BT(sE + A)"'B and Gz(s) = CT(sM + H)*lc be
given transfer functions. Suppose tt@f ,.(s) = BI(sE, + A,)"'B, = Y17, SH

andGs,,.(s) = CF(sM, + H,)"'C, = Y, jfg have been constructed by orthogonal
projections

A, =VTAV, E, = V'EV, B, = VB,
H, = WHW, M, = WIMW, C, =WTcC.

Then
(G1—G1,,G2—Go ), <(G1,Ga)n, — (Gir, Gor)as

Proof. For theHs-inner product, we find
(G1=G1,,G2— Gaoy)n, = (G1,Go)n, — (G, G2 — Ga ),
- <G2,r7 Gl - Gl,r>’H2 - <G1,r7 G2,r>7{2'
Applying Lemma3.2to the second term gives

N

—(G1,, G2 — Ga,) ZbT Ga(Ni) — Gar (M) b

SinceG; - is constructed by orthogonal projection, it must have stables and thus; > 0.
Moreover, Lemma.3yields Gz(s) — Gz, (s) = 0, which shows that

—(G1,7, G2 — G )p, <0.

The same argument yield&- ,,, G1 — G1 )%, > 0 and proves the statement. 0O

In particular, the proof indicates that equality holds {@:(\;) — G2,-(A\;))b; = 0
and(Gi(o;) — G1,-(0;)) c; = 0. Again this generalizes our SISO formulation &).[More-
over, the latter condition is directly related to the gradief ;7 with respect to the parame-
tersb;, \;, ¢c;, ando;.
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THEOREM 3.5. Let G4 (s), Ga(s), G1,.(s), and G2 ,.(s) be symmetric state space sys-

tems with simple poles. Suppose thaf..., A, andoy,...,o,, are the poles of the re-
duced transfer functions wittes|G,,.(s), A\;] = b;b] andres[Gs,,(s),0;] = c;c], for
1,7 = 1,...,n,. The gradient of7 with respect to the parameters listed as

{b,\,c,o} =[bl, \,ci,01,....,b} N, .} on]"

is given byV p, x.c.01 7, @ vector of lengtten,. (¢ +- 1) partitioned inton,. vectors of length
2(q + 1) of the form

2(Ga,r(Ak) — G2(Ag)) by
bl (G5 ,.(Ak) — G5(Ar))bg
)
)

)

\Y c,o’j =
(Vibrear ), 2(G1.(0k) — Gi(ow)) cn

ci (Gl (%) — Gi(on))ex

fork=1,...,n,
Proof. Observe that for thé-th entry ofb;, we have

0T P <8G1r >
- Gi - G1,,Gs— Go, )y, — — Gy— Go,
d(by)e 3('%)4( ! b 2/ a(br) 2 T Ho

YA biel
<e£ kaG2G2r> < ke( 3G2G2r>
s+ A ’ Ho s+ A ’ Ho

= —e{ (G2(M\r) — G2, (M) b — bi (G2(Ar) — Gar(Ar)) €
= —2e/ (G2(Ar) — Ga,r(Ak)) b,

whereey is the (-th unit vector. The previous steps follow from Lemr&& and the fact
thatG, andG. , are symmetric state space systems. Similarly, for the alire/with respect
to A\, we find

oT 0 0
v 87)\;§<G1 -GG — Gop)p, = — <3/\k

()
(s + Ag)2’ ’ r Hy

For the latter expression, we can use the MIMO analogug6fllemma 2.4] and obtain

Gl,r7 G2 - G2,7‘>
Ho

oJ

= b} (G}, (\k) — GH(Ak))bg.
8)\k ’

The proofs forc;,, andoy, use exactly the same arguments and are thus omitted herell
REMARK 3.6. Note the change of sign for the derivatives with respect, andoy,

compared to the special case#$-optimal model reduction discussed if{.[ This simply

follows from a different notation in this manuscript. Usirg o; < 0 together with transfer

ra(s) = Y00, ?5 would lead to

- b;b!
function representations. | G ,(s) = 5
similar expressions as ifT].
In [9], we stated the inequality from Lemn®4 and showed that equality holds if the
gradient of 7 is zero. In fact, we can even show that the correspondingceztitransfer
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functions can be used to compute a tripé, W, X,.) satisfying the first-order necessary
optimality conditions from Theorer.1

THEOREM 3.7. Consider the Sylvester equatigi2.1) with factored right-hand
sideG = BC,

AXM + EXH = BC,

and denote, respectively;l( ) = B7(sE + A)"!'B and Gy(s) = CT(sM + H)~!C.

SupposER . (s) = 317 2B andGa . (s) = Y77, Sc_fgﬂj satisfy
(3.2&) GLT(UIc)Ck O'k)ck,

(32b) (ZZ/WC;/LT(O']C)(}]C = Cp Gl(O'k)Ck,
(3.20) GQ,T(Ak)bk ()\k)bk,

(3.2d) bi G4 . (Ax)by = bi G5(Ae )by,

fork=1,...,n,. DefineX € R"*"r Y € R andZ € R™*"" via

Xos — bchj

Tl Wt Y; = (0;E+A)"'Be;, Z; = (A\,M+H)"'Cb;.
4 J

Then the triple(Y, Z, X~ 1) satisfieq2.4).

Proof. First note that §.2) definesn,(¢ + 1) constraints on, respectivelyz ,(s)
andGs . (s). Due to the pole-residue representation, exactly the sambauof parameters
defines the rational matrix valued transfer functidks, (s) and G, (s). Hence,G1 ,.(s)
andGs, are uniquely determined by (). Echoing the argumentation ia7, Lemma 3.11]
and [34], without loss of generality we can thus assume that theaedltransfer functions
are obtained b¥/M-orthogonal projections via

A:VTAV, B:: [bl,...,bq]T:VTB,
> =WTHW, C:=lcy,...,c,]T =WTC,
whereV andW are such that

span{V} D, span {(oiE + A)*chi} ,

Mg

span{W} > span {(\;M+H) 'Cb,}.

Jj=1,...,ny

Due to the definition oK;; we further obtain
X; = (0;1+A)"'Be;, X! =()\I+%)"'Cby,

whereA = diag (A1, ..., \,, ) andX® = diag (o1, ..., 0,,) . Using well-known results from
projection-based rational interpolation (s€€)}, we conclude

VX; =Y;, WX =127,
and therefor&vX = Y andWX” = Z. Keeping this in mind, forZ.4), we obtain
(AYX'Z"M + EYX'Z"H - BC") Z
= (AYW'M + EYW'H - BC") wx”
= (AY + EYSZ - BCHXT = 0.
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Here, the last step follows from the definitiondf Similarly, it holds that
Y' (AYX™'Z"™M + EYX'Z"H - BC") =X"V" (AVZ"M + EVZ"H - BC™)
=XT(AZ"™ + z"H - BCT) = 0.
Again, the last equality is due to the definitionZofFinally, we have
Y (AYX™'Z"M + EYX'Z"H - BC") Z
=X"VT (AVXW'M + EVXW'H - BC") Wx”
=x7 (AX +XS - BCT) XT = 0.
Once more, the last identity is true due to the definitioiXof a
REMARK 3.8. From the proof of Theorerd.7, we find that the same approximation
is obtained wherfY, Z, X~1) is replaced by V, W, X) whereV andW are the projection
matrices constructingx, ,(s) and Gg ,.(s). Furthermore note thak solves the projected
reduced Sylvester equation. This in particular implies tha.approximatio’XW7 fulfills
the common Galerkin condition on the residual; s&4.[
The natural question that arises is whether trigés W, X,.) fulfilling (2.4) also yield
reduced transfer functior&, ,.(s) and G, ,(s) with vanishing gradien¥ (, » ¢ »1J. The
answer is given by the following result.

THEOREM3.9. Letatriple(V, W, X,.) be given such thgR.4) holds. Suppose reduced
transfer function€G, ,.(s) and G, (s) are defined via

A, =VTAV, E, = VTEV, B, = VB,
H, = WIHW, M, = WIMW, Cc,=WwWTcC.

Then it holds thaW¥ (, x ¢,o}J = 0.
Proof. The third condition inZ2.4) implies

A.X,M, +E,X,H, - B,CT =0.

Assuming thattl, R = M, RX is the eigenvalue decomposition @,., M.,.), post-multi-
plication of the above equation wiit) := Re; gives

A, X, M,r; +0,E, X, M,r; =B, Clr;.
N—_—— N—_—— N——

X X Cj

Hence, we have; = (0;E, + A,)"'B,c;. Also, post-multiplication of the third equation
in (2.4) with r; yields

AVX,M,r; + 0;EVX,M,r; = BCIr;.
In particular, we conclud®x; = (cE + A)~'Bc;,. This, however, yields

GLT(O'J‘)CJ‘ = BTV<O'jET + AT)_lBCj = BT(O'jE + A>_1BCj = (-}1(0']‘)Cj7
¢l Gy . (0j)c; = —c] Bl (0;E, + A,)'V'EV(0,;E, + A,) 'B,c;
=—c]B"(0,E+ A)"'E(0;E + A)"'Bc; = ¢] G| (0;)c;.

The proof forG . follows analogously. a
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In summary, we can state that the first-order necessary alitynconditions for the
objective functionsf(V,W,X,) and 7 (b, A, c,o) are equivalent to each other. For the
remainder of this paper, we focus on the objective functionAlong the lines of 7], we
present the Hessian of with respect to the parametefb, A, c, o }.

LEMMA 3.10. The Hessian off with respect to{b, X, ¢, o'} is given byVy, . 17,
a(2n,(q¢+1)) x (2n,(g+ 1)) matrix partitioned inton? matrices of siz€(q+1) x 2(¢g+1)
defined by

(v?b)"c"’}j)k@
cb+cT'b 1, cocl by
0 0 2 ( ’;§+§k: ) _2§0e+}k)2
c; byb b, cic; by
= b TObT I bObT _2()‘[’&)6052 (;ei)\i);
yci, +by cply b, ck
2( - ’(C)'k-‘rﬁ\zk ) - (o'i+k)\e§2 0 0
bl crcl cI'bble
20t 20uten® 0 0
[ 2(Gor (M) = G2(Ak)  2(Gh (M) — G5H(Ak))be 0 0
45, |2PE(Gh () = GAOW) BT (G, (M) — GEW) b 0 0
0 0 0 0
L 0 0 0 0
(0 o 0 0
s 0 0 0 0
1o 0 2(Gis(ox) — Gi(ow)  2(Gh (o) — Gi(ow))ck
0 0 2¢{ (Gl (ok) = Gi(ow) ¢ (G, (ok) — G (on)) ci

The proof follows by direct computation of the partial datives. Since a similar derivation
can be found inT] for the H,-optimal case, we omit the details.

Unfortunately, the objective functiaff is unbounded so that its minimization is not well
defined. This can be seen by considering= 1. In this case,

bbT ceT
Gl,T(S) = + )\ al’ld G27r(8) = p i
are the reduced transfer functions. By Lem8n3 for the objective function we get
bTcc’b
J = (G1,Ga), — b Ga(A)b — "Gy (n)e + Atp

Hence, by scalingrb and X ¢, we further obtain

bTcc™b
A

and we can arbitrarily decrease the valugjoby increasingx. In fact, a similar conclusion

can be drawn from the Hessian in Theor8riQ Multiplication of (V%b)\’cya}j)n with

z:=[ab? 0 < 0] yields

1
J = (G1,G2)n, — ?bTGy(N)b — gcTel(ﬂ)c +

)

z' (V%ba)vca"}j) 11 zZ= 20‘2b1T(G27"'(/\1) — G2(A1))b1 + 2C1T(G1J'(0'1) — Ga(01))es

(b{cy)?

+ 8« .
o1+ A\
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For a stationary point, we thus find

(bfc1)?
o1+ M '

z’ (V%b,)\’c,a}ﬂ) L2 Sa

In other words, the Hessian is always indefinite and, coresgttyy all stationary points are
saddle points. While this will cause problems for optimiaatioutines, we can still extend
the idea of iterative correction as i7] to the MIMO Sylvester case. Algorithrhis a suit-
able generalization of a SISO version we propose®finue to the iterative structure, upon
convergence, the reduced transfer functiéhs, (s) and Gz ,.(s) will tangentially interpo-
late the original transfer functio@; (s) and G(s) such that the corresponding gradient in
Lemma3.5 vanishes. According to Theoref7, in this way we can compute stationary
points of the objective functios, which is obviously bounded.

ALGORITHM 1: MIMO (Sy)’IRKA
Input: Interpolation points{\,..., A, .} and{o1,...,0,,}.
Tangential directionsB = [by,...,b, ]andC = [cy,...,c,.].
Output: Gq,,(s), Go,-(s) satisfying 8.2)
1: while relative change id\;, 0;} > tol do
2. ComputeV andW from

span{V} > span {(o;E+A) 'Bc;},
i=

1,....n,

span{W} > span {(A;M+H) 'Cb,}.
j=1,....n,

ComputeE, = VTEV, A, = VTAV, B, = VTB.

ComputeM,, = WMW, H, = WHW, C, = WTC.

ComputeA,Q = E, QA with Q"E,.Q =1

ComputeH, R = M, R with R"M, R = L.

Update); = diag(A), B = B7Q, o, = diag(X), C = CTR.

8: end while

9: SetGy,.(s) = BI(sE, + A,)"'B,.

10: SetGy . (s) = CI'(sM, + H,)"'C,.

S

3.1. Initialization. The efficiency of Algorithml obviously depends on the number of
iterations needed until a typical convergence criteriosaigsfied. Hence, an important point
is the initialization of the algorithm. Several stratedieschoosing interpolation points and
tangential directions are possible. However, there egistatural choice for the applications
that we consider in the next section. Below, we will see tHatiared and noisy image some-
times is given as the right hand siGe= BC”. ThoughG deviates from the original unper-
turbed image, it still is related to it. In other words,can be seen as a (rough) approximation
to the solutionX of the underlying Sylvester equation. For this reason, iweinterested in
constructing an approximation of ramk, we propose to use a truncated singular value de-
composition ofG ~ U, D, ZL , with U, € R"*" | Z € R™*" andD,, € R"*"r.
SinceUZTU,LT =1 andZZT Z,, = I, we can construct an initial reduced model via

A, =U! AU, , E, = U} EU,, B, = U] B,

Ny

H, =Z] HZ,,, M, = Z! MZ,,, C,=1Z] C.
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Initial interpolation points and tangential directiongithcan be obtained by computing the
pole-residue representations for

Gi.(s) =BI(sE,+A,)"'B, and G,,(s)=CI(sM, +H,) 'C,.

In all our numerical examples, we initialize Algorithinby this procedure. Moreover, as
we mentioned earlier, the right hand si@eis not necessarily low-rank, and we thus have to
face transfer functions with a large number of inputs anghatst In the case df,-optimal
model reduction, this can slow down the convergence oftiteralgorithms such as IRKA
significantly; seeT]. For this reason, in our examples we repl&eédy its truncated singular
value decomposition, which is of rank.. While this means we are actually approximating
the solution of a perturbed Sylvester equation, we will fa¢this does not seem to influence
the quality of restored images using this procedure as iqadn the next section.

4. Numerical results. We study the performance of Algorithirfor two examples from
image restoration. At this point, we emphasize that whéwved should only be understood
as a numerical validation of Algorithr. Moreover, due to the dedication of this special
issue, we believe that the following examples are partiuksppropriate. We are aware of
the fact that using matrix equations within image restorafiroblems isot state-of-the-art
Nowadays, methods based on total (generalized) variatioi. gnorm minimization usually
produce much more accurate results.

All simulations were generated on an Ift&lore’i5-3317U CPU, 3 GB RAM, Ubuntu
Linux 12.10, MATLABQ® Version 7.14.0.739 (R2012a) 64-bit (glnxa64).

4.1. Sylvester equations in image restorationBesides their use in control theory,
Sylvester equations also appear in restoration problemsldgraded images. We give a
brief recapitulation of the discussions ihg 16, 18]. Consider an image represented by a
matrix F € R™*™ with grayscale pixel valueR';; betweer) and255. Unfortunately, often
the matrixF is not given exactly but is perturbed by some noise or blgrpmocess. The
result is a degraded imadge € R"*™ that is obtained after an out-of-focus or atmospheric
blur. One way to compute an approximately restored infge F is given by the solution
to a regularized linear discrete ill-posed problem of threnfo

(4.2) min [Fx — g3 + A Lx]3

Here,x = vec(X),g = vec(G), H models the degradation process dnds a regular-
ization operator with regularization parameferThe solution to 4.1) can be computed by
solving the linear system

(H™H + \’LTL)x = H'g.

While the choice of an appropriate or optimal paramatisra nontrivial task, we rather want
to focus on efficiently solving the linear system oncéas been determined. This can, for
example, be done by using the L-curve criterion or the gdizerhcross validation method;
see P2, 29. Following, e.g., L5], assuming certain separability properties of the blgyrin
matrix H = Hs ® H; and the regularization operathr = L, ® Ly, problem ¢.1) has a
special structure and can equivalently be solved by theeSydv equation

(4.2) (H{H,)X(H7 Hy) + \*(L{ L) X(LyLy) = G.

In particular, we note that the matrices defining the matqguation are symmetric positive
(semi-)definite. Before we proceed, we mention typicalates ofH andL that we take up
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re

(a) Original image. (b) Blurred and noisy image.

FE

(c) Restored image (exact)eypt = 0.079. (d) Restored image (apprdeps = 0.127.

Fig. 4.1: Uniform blur(r; = 5) and atmospheric bluic = 7,y = 2) for n,, = 40.

again in the numerical examples. Again, we follow the mortaiterl discussions inlp, 16].
A uniform out-of-focus blur for example can be modeled bydhé&orm Toeplitz matrix

(43) U, = 27'1—1 |Z - ]| < T
Y0 otherwise.
Atmospheric blur can be realized by a Gaussian Toeplitzimatr
i—j)? .
(4 4) T.. =<0 1271— exXp (7 ( 2&72) ) |”L — J| <,
. i = ="
0 otherwise.

As in [15, 16], given an original image&X, we use out-of-focus-blu(3) and atmospheric
blur (4.4) to construct a blurred imag@. The final degraded imag@ is then obtained by
adding Gaussian white noi®é to G such that% =102
Lothar Reichel. Due to the already mentioned dedication of this speciakisthe first
example is an image showing Lothar Reic¢hdlhe matrixX € R363%490 contains grayscale

1The photo is taken frort t p: / / owpdb. nf 0. de/ det ai | ?phot o_i d=3467.


http://owpdb.mfo.de/detail?photo_id=3467
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(a) Original image. (b) Blurred and noisy image.

il

(c) Restored image (exact)ypy = 1.438. (d) Restored image (apprdeops = 0.127.

Fig. 4.2: Uniform blur(r; = 6) and atmospheric bl = 12, r; = 6) for n,, = 40.

pixel values from the interval, 255]. The blurring matrice¥l; andH, in (4.2) are Toeplitz
matrices as in4.3) and @.4). First, we construcH; with r; = 5 andH, with o = 7
andr, = 2. We got inspired by the values chosen1®[16]. For the regularization operators
we use discrete first-order derivatives such that

1 -1 1

1 _1 '.. 1
0 -1 0

In Figure4.1dwe show the results obtained by AlgoritHnfior n,. = 40. We obtain a relative
change less tham0~2 after 10 iterations. Recall that we also approximate therakeyl
image G by a low rank matrix of rank 40. We compare our result with teeonstructed
image obtained by solving the Sylvester equation exactlynieans of the Bartels-Stewart
algorithm @.19. For both variants, the optimal value of the regularizaparametei is
computed by minimization over a logarithmically spaceeiwal [10~3, 10] with 20 points.
Figure4.1 shows that the quality of the approximately reconstructeage is similar to that
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(a) Original image. (b) Blurred and noisy image.

(c) Restored image (exac)ypt = 0.070. (d) Restored image (appriops = 0.298.

Fig. 4.3: Uniform blur(r; = 4) and atmospheric bluioc = 7,r, = 5) for n,, = 50.

of the exactly reconstructed image. Actually, in terms & tblative spectral norm error,
Algorithm 1 (0.0185) outperforms the full solutiof0.1260).

Figure4.2 shows similar results for different blurring matrices. Elewve choose; = 6,
o = 12, andry = 6. While the quality of the reconstructed images clearly is wdtsan
in the first setting, Algorithni obviously yields far better results than we obtain by sajvin
the Sylvester equation explicitly. Moreover, the final (gyenorm optimal) iterate from
Algorithm 1 is found after 20 iteration steps.

Magdeburg cathedral. The second example is an image from the cathedral in Magde-
burg, Germany. The matrixX is of size436 x 556. We choose; = 4,0 = 7, andry = 5.
Since the Sylvester equation is larger than in the first exanpge increase the rank of the
approximation ton,, = 50. Figure4.3 shows a similar comparison as in the first example.
Algorithm 1 needs 19 steps before convergence is obtained. Again,|tiseespectral norm
error for the approximate solutiq0.018) is smaller than for the exact soluti¢2.890). We
get similar results for the parameter valugs= 5,0 = 7, andry = 2. The results are shown
in Figure4.4. The number of iterations needed in Algoritins 13. Once more, note that
the method used for reconstruction is probably not the mmshisticated and explains the
modest quality of the approximations. Still, we point outtthe reconstructed images com-
puted by an approximate solution of the Sylvester equaticallicases perform better than

2The photo is taken from
http://commons. wi ki medi a. org/ wi ki / Fi | e: Magdebur ger _Dom Sei t enansi cht . j pg.


http://commons.wikimedia.org/wiki/File:Magdeburger_Dom_Seitenansicht.jpg
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(a) Original image. (b) Blurred and noisy image.

0L

= AL -

(c) Restored image (exactept = 0.336. (d) Restored image (appriopt = 0.055.

Fig. 4.4: Uniform blur(r; = 5) and atmospheric bluio = 7, ry = 2) for n,, = 50.

the actual exact solution. This might be due to the badly itmmeéd matrices which may
cause numerical perturbations when one tries to computeiifrsolution explicitly.

5. Conclusions. In this paper, we have studied symmetric Sylvester equatasing in
dynamical control systems. The symmetric structure of thexdon allows to measure errors
of low-rank approximations in terms of an energy norm indubg the Sylvester operator.
For a given rank:,., we have derived first-order optimality conditions for an pgmation
optimal with respect to this energy norm. We have then estadd a connection to thl-
inner product of two symmetric state space systems. Thegponding first-order optimality
conditions have been shown to be equivalent to the onesdetatthe energy norm mini-
mization problem. The stationary points of th&-inner product itself have been shown to
be necessarily saddle points. An iterative interpolataocedure trying to find these saddle
points has been suggested. The two numerical examplegedm@rd many similar experi-
ments not described here demonstrate the applicabilityeofrtethod.
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