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ON THE COMPUTATION OF THE DISTANCE TO
QUADRATIC MATRIX POLYNOMIALS THAT ARE SINGULAR
AT SOME POINTS ON THE UNIT CIRCLE *

ALEXANDER MALYSHEV T AND MILOUD SADKANE ¥
Dedicated to Lothar Reichel on the occasion of his 60th Hath

Abstract. For a quadratic matrix polynomial, the distance to the set aflgatic matrix polynomials which have
singularities on the unit circle is computed using a biseebased algorithm. The success of the algorithm depends
on the eigenvalue method used within the bisection to detheceigenvalues near the unit circle. To this end, the
QZ algorithm along with the Laub trick is employed to compute dnti-triangular Schur form of a matrix resulting
from a palindromic reduction of the quadratic matrix polyndmitis shown that despite rounding errors, the Laub
trick followed, if necessary, by a simple refinement procedunekes the results reliable for the intended purpose.
Several numerical illustrations are reported.
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1. Introduction. Robust stability of dynamic systems is often measured byligtance
to instability, or stability radius, which is equal to thernmoof the smallest perturbation under
which the perturbed system loses its stability. For a cowtirs-time systemz/dt = Ax
with a square complex matrig, the distance to instability (se&], 12, 13, 26]) is given by

d.(A) = Lnelﬁ Omin (iwl — A),

wherei = +/—1, I is the identity matrix, and;, denotes the smallest singular value of a
matrix. R. Byers}] and other authors (see, e.d., 2, 3, 4, 21]) have exploited the remarkable
fact thato is a singular value ofw! — A for somew € R if and only if iw is an eigenvalue of
the Hamiltonian matrix

o) = |4 o)

where A* denotes the conjugate transposedofThis means that the imaginary eigenvalues
of H(o) determine the-level set of the multivalued function

iR 3 iw +— singular spectrum ofiwl — A).

Note thatH (o) has no eigenvalues on the imaginary axis if and only|if< d..
When investigating the discrete-time stability of systemps, = Axy, the distance to
instability is determined by

dqa(A) = miﬂr{g Omin (€™ — A),

we
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and the eigenvalues on the unit cirelé = {\ € C: |\| = 1} of the linear symplectic matrix
pencil

/\B(O’)—A(o)_/\[é Z{] B [f} ﬂ

determine ther-level set of the multivalued function
e™® 5 e 1 singular spectrum ofe’’ I — A).

More general formulations of the level set approach desdriabove can be found
in [4, 8, 13. The common feature of various variants of the level set@ggh is a refor-
mulation of the initial problem to one that requires the dixi whether a matrix or a matrix
pencil has an eigenvalue on the imaginary axis or the urdtecint is important to find out
how this decision can be made reliable in spite of inaccegaiti the computed eigenvalues
caused by roundoff errors. In the pap§}, it has been demonstrated that such a reliability
can be achieved by the bisection methodsptpupled with the structure-preserving methods
such as those discussed Il 15, 22, 23, 24].

Below we deal with the distance to instability for the secander discrete-time system

(1.2) Aoz + A1xpsr + Aszpqo =0,

whereAg, Ay, As € C™*™. When the systeml(]) is stable, that is, when all eigenvalues of
the quadratic polynomial

(1.2) Q\) = Ag + AA; + N2 A,

are located in the open unit disk, the distance to instgl{@itso called the complex stability
radius) is given by

d:= d(Q) = min {||AH2 |3) € C such that

1.3
3 det(Ag + A + XA + A2 Ay) = 0 and| )| 21}.
Formula (.3 gives the size of the smallest perturbation of the coefiisiely, A, and Ao
that places an eigenvalue of the perturbed polyno@ial) on the unit circle. It corresponds
to the distance of the matrix polynomiél.2) to the set of unstable quadratic matrix poly-
nomials. For matrices and matrix polynomials, this not®important in control theory and
other engineering applications; see, €.6.8] 10, 11, 12, 13, 20, 25, 2€6).

Formula (L.3) has, in fact, a wider meaning: for an arbitrary quadratid¢ringolyno-
mial (1.2), it represents the distance to the set of quadratic matfynpmials which have
singularities on the unit circle, i.e.,

(1.4) d= ];nelﬂré Omin(Q(e™)).

The present work extends the investigation on the estimatfdhe distancel started
in [17]. We assume some familiarity with the results of that papWhile the main result
of [17] is a proof of the fact that the structure-preserving methcah provide reliable lower
bounds for the distance to a contour, the present papefiggdtie use of the so-called Laub
trick as a structure-preserving method and recommends atidefin addition to the Laub
trick. It also introduces an indicator functigr{o) which suitably characterizes the distance
of the eigenvalues to the unit circle.
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The outline of this paper is as follows: in Secti@dithe distance problem is recast as a
palindromic eigenvalue problem having or having not anmighkie on the unit circle. Sec-
tion 3 introduces and justifies the use of the indicator funciida). Section4 studies the
Laub trick [18, 24], which is used to compute the anti-triangular Schur forra ofatrix using
the standard QZ algorithmlf)]. It is shown that this transformation can be done reliably
despite rounding errors. SectibBrsummarizes the algorithms including a deflation procedure
which refines the anti-triangular Schur form to decide whethe computed eigenvalues are
on the unit circle and consequently estimates the sougtaraie using a bisection method.
Comparisons with the MATLAB optimization functidiminbnd and other numerical illustra-
tions are presented in Secti6nConcluding remarks are given in Sectign

2. Reduction to a palindromic linear matrix pencil. Recent advances in eigenvalue
problems with palindromic structure motivated us to transfthe distance eigenvalue prob-
lem (1.4) as follows.

First note that

(21) Uup = min {grnin (AO + Al + AQ), OIIliH(AO - Al + AQ)}

is a rough upper bound fet. For eachy € [d, 0,,], there exist a suitablg € C on the unit
circle |A| = 1 and singular vectors andv such that

(Ao + A1 + N A)u=0v  and (A5 + A} + X2A3) v = ou.

The equivalent equalitigfsdy + AA; + A2 Az) Au=Aov and(A\?Af + MA; + A3) v=A?0u
can be gathered as

0 A+ NAT+ N2AY] ] N 0] [Au
AQ + /\A1 + )\2142 0 v a 0 o v
Hence,
0 A —ol A} 21 0 Af Au| |0
|:A0 O:|+A|:A1 —(7]:|+>\ A2 0 v a 0]
Denoting
I R . |
Ak—{Ak 0 }, k=0,1,2, and w_{y],

we arrive at the eigenvalue problgAi\)w = 0, whereP(\) is the quadratic matrix polyno-
mial

PN = A+ XAy — o) + N2 Ay,

which depends on the parameter Note thatP()) is palindromic becausel; = Aj
andA; = Aj. As a consequence, its spectrum is symmetric with respebetanit circle.
The distancel defines the partition0, o,,] = [0,d) U [d, 0yp] such thatP(\) has a
singularity on the unit circle it € [d, o] (0 < d). We continue with a transformation
of P(A) into a linear pencil of double size which preserves the gatimic structure:
2.2) X £AX* with X = ﬁ)@ Al; “]] .
0
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To avoid cumbersome notation, we will not exhibit the de@ ofX ono. The transfor-
mation @.2) will be referred to as “Toeplitz reduction”. Note that theuality

X 4+ A2X* = [)\II ﬂ {P(()A) é?l(:;)q KI ﬂl

proves that the eigenvalues®f+ A X * are squares of those B \). Moreover, it was shown
in [17] that

d— o, when0 <o <d,

2.3 i Omin (X 4+ X*e) =
(2.3) oer’ ( ¢*) {0, whend < o.

3. An indicator function via the generalized Schur form. Let us consider the gen-
eralized Schur form of the palindromic pendil + A X* computed by the QZ algorithm in
floating point arithmetic

whereT, andT,- are upper triangulai) and Z are unitary, and the backward erraks,
andA,« are of sufficiently small norm

(3.2) d = max {||Azll2, || Az

2}’ =0 <€machine) HX||2 .

We introduce the indicator function

)

(3.3) x(o) = minmin |(To) ik + € (Tos )ik
where(T) designates thith diagonal element of the matrik. It is obvious that
x(o) = mkin‘ (T )ik| = [T )ik |-
PROPOSITION3.1. We have
x(0) > max(0,d — o — 20).
Proof. Since for any triangular matriX it holds that
Imin(T) < min | (Tl ,
we have the inequality
Omin (T + €Ty ) < min |(To)kk + € (T )|, VweR.

It follows that

i min Ta: ina:* S i i Tz iw T;,_n* = .
i min(Ti + €Ti) < g uin (T + (T s = x(0)

Moreover, 8.1) implies that
Omin(Tp + €Ty ) > omin (X + ™ X*) — 24,
and therefore
X(0) > Omin (X + €™ X*) — 26.
Applying (2.3) we arrive at the desired estimatér) > max(0,d — o — 29). a



ETNA
Kent State University
http://etna.math.kent.edu

DISTANCE TO THE UNIT CIRCLE 169

The following practical upper bound
(3.4) d<o+25+ (o)

is a corollary of Propositio.1. Note that the upper boun@.4) does not require structure-
preserving methods for the computation of the Schur forme féxt sections are devoted to
reliable lower bounds fod.

4. On the Laub trick. Structure preserving eigenvalue methods especially eéar
the palindromic pencil4.2) are mostly based on the anti-triangular Schur form of a ma-
trix [15, 24]. They include thd/ RV -type methods2, 24], Q R-type methods with the Laub
trick [23, 24], and Jacobi-type method&4]. Another idea based on structured doubling al-
gorithms is pursued ing]. All these algorithms suffer from the presence of eigemgalon
the unit circle. Nevertheless, we show below that when theip& + AX* has no eigen-
values on the unit circle, the Laub trick followed, if necays by a deflation procedure is
satisfactory for our purposes.

The Laub trick for Hamiltonian and symplectic matrices isctéed, e.g., in]8]. The
first step in the palindromic version of the Laub trick is lihea the) Z algorithm, and the
following proposition shows that despite rounding erremme columns of) andZ remain
almost orthogonal.

THEOREM4.1. Assume that the pencll + AX* of order2n has no eigenvalues on the
unit circle, and consider its computed generalized Schumf(3.1) with a reordering of the
eigenvalues in non-decreasing order of magnitude and tickvard errorsA, andA .- that
satisfy(3.2) and26 < d — o.

Denote byZ; and@; the firstn columns ofZ and ) and recall that

d—o= ‘rﬁinl Omin (X +AX7™), wheno < d.

Then

1Z: QL2 Smm{wnzm 1}.

(d—o—25)2

Proof. First note that since the pencil + AX™* has no eigenvalues on the unit circle, it
follows thato < d; see Sectio. Therefored < d — o = minjyj—; Omin (X + AX™).

Let us denote by and R then x n upper triangular matrices formed by the finstows
and columns ofl}, andT .-, respectively. Since the pencll + AX* is palindromic and the
eigenvalues are arranged in non-decreasing order of nuagnithe eigenvalues & + AR
lie in the open unit disk, and, in particuldk,is nonsingular. Moreover, fron8(1) we obtain

[ o (RS I = [EE YO

and hence,

(X +2X) 7 s
1
< .
“d—o0—20

-1
w5+ 2, <

Also, from 3.1) we have

XZ1 =S — Ay Zy, X7y =@Q1R — Ay 74,
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and a premultiplication on the left by} gives

(4.1) (Z1Q1)S = R (Q121) = A,
(4.2) SHQ171) = (Z7Q1)R = A%,

with A = ZF A, Zy — Z{(Ay+)*Z1. Note that]| A2 = [|A*||2 < 26 and that equationd(2)
is simply the conjugate transpose &f1).

To eliminate the matrix);Z; from (4.1 and @.2), we multiply @.1) from the left
by S*(R~1)* and from the right byR—!, multiply (4.2) from the right by R~!, and add
the resulting equations. This leads to the following maggation forZ; Q. :

(4.3) ZiQr — (R7'S)" (Z{Q1) SR™' = = [(RT'S)* A+ A*| R™".

Since the eigenvalues ¢ 71S5)* and SR~ lie in the open unit disk, the unique solution
of (4.3 is given by (see, e€.9.9])

2m
Zi = %/0 ((R_IS)* — e-l'@[)_l ((R_IS)*A + A*) R-1 (SR_I B ew])_l o,

which simplifies to

ZiQy =-S"Y — R'Y", where

1 [ 1

(5" —e R )T A(S—¢R) T db.

= % o
The proof follows by taking the norm and noting thid*|| < || X |2+, ||| < || X |2+ 9,
[Vl2 < 26 - maxg || (S — €®R) " |2, andmaxg || (S —¢®R) ' | < 2. O

Using the notation of Theorerh1, letU = [Z;, Q1 J], whereJ is the anti-diagonal unit
matrix of ordern. Then

(4.4) UXU =T+ Ay,
(4.5) UU =1+ A,
with
0 R*J

4.6 T=
(4-6) Ls J(QTXQl)J] !

A = [(Z1Q0)S — ZinZy —Z7(Bs)* Q1]

! —JQiAZ, 0 '
P Zi@Q1J
Ao = AL = LQTZI : } .

Note thatR*J and.J S are lower anti-triangular and that

1Al < ([ 27 Qull2]|Sl2 + 2 max([Az |2, | Apl2)

(4.7) 46(]| X ||2 + 6)?
< 22N T
Sd-o—22 ¥
) 16(| Xl + 6
(4.8) 1Aslle = 12012 < 2UXT2 +9)

(d—o—20)2
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It follows that the matriX/ is close to being unitary and* X U is close to being lower block
anti-triangular provided thdtX||»/(d — o) is not large.

In accordance with3.4) we have, approximately, the bouad> d if x(o) is small.
We expect that < d holds approximately whew(o) is not small. The precise lower
bound @.117) is justified as follows.

From (4.5), it is easy to see that the matiik = U I+ Ag)’% is unitary and that

1 . 1Az]l2

4.9 T+A0) 2 =14As with [[Alls < ———22 .
(4.9) ( 2) 3 [As]|2 30— [Aala)
Then @.4) becomes

(4.10) U XU = (I+23)(T+A)(I+A3) =T+ Ay,

with
Ay =A1+TA3+ AsT + A1As+ AsAy + AsTA3 + AsA1As.
In view of (4.9), we have

A1z + [|Azll2]| T[]
(1—1[lAzf2)?

and from @.4), (4.5), (4.7), and @.8), we have at first order iNZ; Q1 ||2 andJ:

A1 ll2 + [ Az]]2]|T][2
(1= [Az]l2)?

Now from (4.10), we have

U* (e—in + ein*> U _ (e—in+ ein*) + (e—iwA4 + ei“’AZ) ;

A4z <

~ 2 (127 Qull2ll X[z +0) -

and a result on palindromic perturbations of palindromiegile (see 17, Section 4]) tells us
that

5. Algorithms. The arguments of Sectiohjustify the Laub trick. Namely, when the
palindromic pencil 2.2) has no eigenvalues on the unit circle, the anti-triangfalan can be
computed via the QZ algorithm despite rounding errors. H@rehe presence of eigenval-
ues near the unit circle makes this computation difficult, anefinement procedure should be
used in this case. The numerical procedures are summanizddarithm 1 and Algorithm?2
below.

Algorithm 1 The Laub trick.

Input: 2n x 2n matrix X.

Output: Unitary matrixU, block anti-triangulafl’ = U* X U, vectorr of n residual norms.
Compute a QZ factorization of the pendil + A.X* with the eigenvalues ordered in non-
decreasing magnitude such tligtX 7 = 7, andQ*X*Z = T,.-.

ComposdJ = [Z(:,1:n) Q(:,n:—1:1)] and orthonormalize the columns &t
SetT' =U*XU.
fork=1,...,ndo
Setry = />_,; |Ti;|?, where the summation is taken over the indices satisfying
1<j<kl1<i<2n—jorl<i<k1<j<2n—i.
end for
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Algorithm 2 The Laub trick with deflation.
Input: 2n x 2n matrix X and toleranceol.
Output: Unitary matrixU, block-anti-triangulafl’ = U* X U.
Call [U,T,r] = laub(X).
Compute the numbér of residuals-, which are less thatvl, and set = k.
while k£ > 0 do
Call VTl =laub(T(k+1:end — k,k+1:end —k)).
U(G,i+1:2n—4)=U(:,i+1:2n—10)V.
Compute the numbeék of residuals-, which are less thatvl, and set =i + k.
end while
T=U*XU.

Algorithm 1 is adopted fromZ%3]. The MATLAB notation Z(:,1 : n) andQ(:,n: —1:1)
denotes the first columns ofZ and the firsta columns ofQ in reverse order. The residual
measures the gap betweEri XU and its lower anti-triangular part. More precisely, t#ta
component of- contains the Frobenius norm of the fikstows and columns of the strictly
upper anti-triangular part af*XU. If the pencil X + A\X* has no eigenvalues near the
unit circle, then the vector has small components aiié“ XU has the desired lower anti-
triangular form. The presence of eigenvalues near the ingieaneans that the dominant
eigenvalues oB R~! are near the unit circle; see the proof of Theorerh This translates
into a large value of| Z; Q1 |2, as formula £.8) shows. The matriX; Q; has tiny entries in
its leading principal part, which correspond to the eigams well separated from the unit
circle, and larger entries elsewhere thus causing an isereathe last components of In
this case, we propose to re-apply Algoritlinonly to the columns ot/ which contribute to
the increase of the componentsrofSuch an operation is repeated recursively until the last
components of are small. The resulting matri&* XU has a block lower anti-triangular
form. The presence of upper diagonal elements is due to #ee=pce of eigenvalues near or
on the unit circle. A formal description is given in Algonith2.

Algorithm 2 correctly computes the anti-triangular form for the ped€it- AX™* which
has no eigenvalues near the unit circle. In the following@atgm, Algorithm3, it is implicitly
combined with a bisection to estimate the distatice

Algorithm 3 Bisection.

Input: m x m matricesdy, A1, Ao, and a tolerance parameteit.

Output: « andg such that eithef/1.001 < a<d < for0=a <d < <1.001tol.
o = O, ﬁ = HliIl {Umin(AO =+ A1 + AQ), Umin(AO — Al —+ Ag)}
while 5 > 1.001 max(tol, o) do

d = /8 - max(tol, a).

if (2.2) has an eigenvalue on the unit cir¢heen

B =d,
else
a=d.
end if
end while

Algorithm 3 is written in the style of §]. It estimates the distanaé within a factor
of 1.001. The upper bound?(1) provides a first estimate fatrand this bound is then refined
by the decision taken on the eigenvaluesf). The problem of computing the eigenvalues
of (2.2) is reduced to the one faf + AT, whereT is as defined in4.6) and computed by
Algorithm 2.
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The computed bounds farmust be tuned to include the effect of roundoff errors. Thus,
the computed upper bount should be increased by the val2& + x (o) with 0 = d; as
shown in B.4). Concerning the correction of the computed lower boddhe best way is to
compute the matrix/* X U from (4.13) foro = d», then compute the 2-norm of its part above
the anti-diagonal. Let us denote this &y This valued, yields||A,||; satisfying @.11). The
computed lower bound, should be decreased by the vailig.

6. Numerical tests. We present in this section results of numerical experimerits
the method summarized in Algorith& where the anti-triangular form of is computed by
Algorithm 2. In all numerical tests, the parametet equalsl0—* ||[4 A1  Ay]]|,. We
also show comparisons with the MATLAB functidminbnd, which finds a minimum of the
functional

0> [0, 27’1’] — Omin (Aoe_w + A + Agew) .

ExMAPLE 6.1. Consider the quadratic matrix polynomial\) with coefficients

11111 3.5 1 1 1 1
11 11 1 35 1 1 1
A(): 1 1 1 5 A1: 1 1 3.5 1 1 B AQZAS
11 1 1 1 35 1
1 1 1 1 1 35

Algorithm 3yieldsa = 3 = 4.246 x 10~2. The functionfminbnd yieldsd = 4.246 x 102,
Figure 6.1 illustrates the fact that the functiop defined in 8.3) is large in the inter-
val (0, d) and small in the intervdli, o,,;,; see the discussion at the end of Section

X(9)
x(@)

5 0.01 0.02 0.03 0.04 0.05

e 10 o

10° 10°

[

10

FiG. 6.1.Behavior of the functior (o) for Example6.1

EXMAPLE 6.2. In this test case, the quadratic matrix polynomial isiaé 3 and is
constructed as follows:

Ak = QlTkQ'm k= Oa 17 27

where the elements @; and@,. are chosen randomly with zero means and standard devi-
ations one7}, is strictly upper triangular with on its strictly upper triangular part. The diago-
nal elements of7, are all equal tol, and those of7, and 7; are chosen so
thatTy(k, k) = p?/(1 + ) andTy (k, k) = (p* + To(k, k))/(1 + €1), for k = 1,2, 3, with
€1 =107%, e = 1074, €3 = 1073, andp is a parameter to be varied. The quadratic matrix
polynomial thus constructed has all its eigenvalues ingidecircle of centef) and radiug.
Table6.1displays results for two different values @f Figure6.2 shows the behavior of
the functiony.
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TABLE 6.1
Results for Exampl6.2.

Estimates of distance

Method | p ‘
algorithm3 | 0.9 [3.38 x 1077, 3.38 x 107 7]
fminbnd 0.9 3.38 x 1077
algorithm3 | 1.001 | [4.62 x 10713 | 1.38 x 1071?]
fminbnd 1.001 1.38 x 10712
10° 107
10”
107
107
E10* 210°
107
10°
107
1076 14 -12 -10 -8 —6 1079714 -13 -12 11
10 10 10U 10 10 10 10 s 10 10

FiG. 6.2.Behavior of the functio (o) for Example.2. Left: p = 0.9. Right: p = 1.001.

TABLE 6.2
Results from Algorithr2 for Examplet.2.

o p=209 p=1.001

iter r iter r
10~ 4 9.82 x 10714 5 6.65 x 10~14
1072 ] 3 | 148x10713 | 0 |[9.09x 1073
10710 3 | 128x10713 | 4 |6.86x1073
108 3 4.66 x 10714 0 6.63 x 102
106 2 9.33 x 102 1 1.42 x 1071
1074 1 2.24 x 1071 1 1.09 x 10!
1072 1 5.03 x 1071 1 5.11 x 10~1

FiG. 6.3. Antitriangular form of X for Example5.2with p = 0.9. Left: o = 10~ 19, Right: o = 10—,

Table 6.2 displays information provided by Algorithr. In this table, the Frobenius
norm of the upper anti-triangular part @f = U* XU is denoted by, and the number of
refinement steps needed to reduc¢o a block anti-triangular form is denoted fyr. Small
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(large) values of- indicate thatl’ = U* XU is reduced to an anti-triangular (block-anti-
triangular) form. An illustration is given in Figur6.3. In the latter case, the quadratic
pencil’ () has an eigenvalue near or on the unit circle.

7. Concluding remarks. The tests examples presented in the previous section and sev
eral numerical tests not reported here have shown that sieetimnn method described in Al-
gorithm 3 often gives very good estimates of the distance. At the lfdhis algorithm are
the QZ algorithm, the Laub trick, and a refinement that enésaittee reduction to (block) anti-
triangular form. The resulting algorithm takes into acdoiansome extent the palindromic
structure and benefits from the error analysis for the pedimit reduction 2.2) developed in
[17]. Variants of Algorithm3 have been tested where, instead of Algorithrthe@Z method
and methods developed if,[15, 16] were used to compute the eigenvaluesp), With a
few exceptions, these methods delivered results compmatatthose given by the proposed
method. However, they are either unstructured and/or ctetipnally expensive or lack a
stability analysis. The MATLAB methoéiminbnd has the advantage of being fast but may
stagnate in a local minimum.
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