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ON THE COMPUTATION OF THE DISTANCE TO
QUADRATIC MATRIX POLYNOMIALS THAT ARE SINGULAR

AT SOME POINTS ON THE UNIT CIRCLE ∗
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Abstract. For a quadratic matrix polynomial, the distance to the set of quadratic matrix polynomials which have
singularities on the unit circle is computed using a bisection-based algorithm. The success of the algorithm depends
on the eigenvalue method used within the bisection to detect the eigenvalues near the unit circle. To this end, the
QZ algorithm along with the Laub trick is employed to compute the anti-triangular Schur form of a matrix resulting
from a palindromic reduction of the quadratic matrix polynomial. It is shown that despite rounding errors, the Laub
trick followed, if necessary, by a simple refinement proceduremakes the results reliable for the intended purpose.
Several numerical illustrations are reported.
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1. Introduction. Robust stability of dynamic systems is often measured by thedistance
to instability, or stability radius, which is equal to the norm of the smallest perturbation under
which the perturbed system loses its stability. For a continuous-time systemdx/dt = Ax
with a square complex matrixA, the distance to instability (see [11, 12, 13, 26]) is given by

dc(A) = min
ω∈R

σmin(iωI −A),

wherei =
√
−1, I is the identity matrix, andσmin denotes the smallest singular value of a

matrix. R. Byers [5] and other authors (see, e.g., [1, 2, 3, 4, 21]) have exploited the remarkable
fact thatσ is a singular value ofiωI −A for someω ∈ R if and only if iω is an eigenvalue of
the Hamiltonian matrix

H(σ) =

[

A −σI
σI −A∗

]

,

whereA∗ denotes the conjugate transpose ofA. This means that the imaginary eigenvalues
of H(σ) determine theσ-level set of the multivalued function

iR ∋ iω 7→ singular spectrum of(iωI −A).

Note thatH(σ) has no eigenvalues on the imaginary axis if and only if|σ| < dc.
When investigating the discrete-time stability of systemsxk+1 = Axk, the distance to

instability is determined by

dd(A) = min
ω∈R

σmin(e
iωI −A),
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and the eigenvalues on the unit circleeiR = {λ ∈ C : |λ| = 1} of the linear symplectic matrix
pencil

λB(σ)−A(σ) = λ

[

I σI
0 A∗

]

−
[

A 0
σI I

]

determine theσ-level set of the multivalued function

eiR ∋ eiω 7→ singular spectrum of(eiωI −A).

More general formulations of the level set approach described above can be found
in [4, 8, 13]. The common feature of various variants of the level set approach is a refor-
mulation of the initial problem to one that requires the decision whether a matrix or a matrix
pencil has an eigenvalue on the imaginary axis or the unit circle. It is important to find out
how this decision can be made reliable in spite of inaccuracies in the computed eigenvalues
caused by roundoff errors. In the paper [5], it has been demonstrated that such a reliability
can be achieved by the bisection method of [5] coupled with the structure-preserving methods
such as those discussed in [14, 15, 22, 23, 24].

Below we deal with the distance to instability for the second-order discrete-time system

(1.1) A0xk +A1xk+1 +A2xk+2 = 0,

whereA0, A1, A2 ∈ C
m×m. When the system (1.1) is stable, that is, when all eigenvalues of

the quadratic polynomial

(1.2) Q(λ) = A0 + λA1 + λ2A2

are located in the open unit disk, the distance to instability (also called the complex stability
radius) is given by

d := d(Q) = min
{

‖∆‖2
∣

∣ ∃λ ∈ C such that

det(A0 +∆+ λA1 + λ2A2) = 0 and|λ| ≥ 1
}

.
(1.3)

Formula (1.3) gives the size of the smallest perturbation of the coefficientsA0, A1, andA2

that places an eigenvalue of the perturbed polynomialQ(λ) on the unit circle. It corresponds
to the distance of the matrix polynomial(1.2) to the set of unstable quadratic matrix poly-
nomials. For matrices and matrix polynomials, this notion is important in control theory and
other engineering applications; see, e.g., [7, 8, 10, 11, 12, 13, 20, 25, 26].

Formula (1.3) has, in fact, a wider meaning: for an arbitrary quadratic matrix polyno-
mial (1.2), it represents the distance to the set of quadratic matrix polynomials which have
singularities on the unit circle, i.e.,

(1.4) d = min
ω∈R

σmin(Q(eiω)).

The present work extends the investigation on the estimation of the distanced started
in [17]. We assume some familiarity with the results of that paper.While the main result
of [17] is a proof of the fact that the structure-preserving methods can provide reliable lower
bounds for the distance to a contour, the present paper justifies the use of the so-called Laub
trick as a structure-preserving method and recommends a deflation in addition to the Laub
trick. It also introduces an indicator functionχ(σ) which suitably characterizes the distance
of the eigenvalues to the unit circle.
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The outline of this paper is as follows: in Section2 the distance problem is recast as a
palindromic eigenvalue problem having or having not an eigenvalue on the unit circle. Sec-
tion 3 introduces and justifies the use of the indicator functionχ(σ). Section4 studies the
Laub trick [18, 24], which is used to compute the anti-triangular Schur form ofa matrix using
the standard QZ algorithm [19]. It is shown that this transformation can be done reliably
despite rounding errors. Section5 summarizes the algorithms including a deflation procedure
which refines the anti-triangular Schur form to decide whether the computed eigenvalues are
on the unit circle and consequently estimates the sought distance using a bisection method.
Comparisons with the MATLAB optimization functionfminbnd and other numerical illustra-
tions are presented in Section6. Concluding remarks are given in Section7.

2. Reduction to a palindromic linear matrix pencil. Recent advances in eigenvalue
problems with palindromic structure motivated us to transform the distance eigenvalue prob-
lem (1.4) as follows.

First note that

(2.1) σup = min
{

σmin(A0 +A1 +A2), σmin(A0 −A1 +A2)
}

is a rough upper bound ford. For eachσ ∈ [d, σup], there exist a suitableλ ∈ C on the unit
circle |λ| = 1 and singular vectorsu andv such that

(

A0 + λA1 + λ2A2

)

u = σv and
(

A∗
0 + λ̄A∗

1 + λ̄2A∗
2

)

v = σu.

The equivalent equalities
(

A0 + λA1 + λ2A2

)

λu=λσv and
(

λ2A∗
0 + λA∗

1 +A∗
2

)

v=λ2σu
can be gathered as

[

0 A∗
2 + λA∗

1 + λ2A∗
0

A0 + λA1 + λ2A2 0

] [

λu
v

]

= λ

[

σ 0
0 σ

] [

λu
v

]

.

Hence,
[

[

0 A∗
2

A0 0

]

+ λ

[

−σI A∗
1

A1 −σI

]

+ λ2

[

0 A∗
0

A2 0

]

]

[

λu
v

]

=

[

0
0

]

.

Denoting

Ak =

[

0 A∗
2−k

Ak 0

]

, k = 0, 1, 2, and w =

[

λu
v

]

,

we arrive at the eigenvalue problemP(λ)w = 0, whereP(λ) is the quadratic matrix polyno-
mial

P(λ) = A0 + λ (A1 − σI) + λ2A2,

which depends on the parameterσ. Note thatP(λ) is palindromic becauseA1 = A∗
1

andA2 = A∗
0. As a consequence, its spectrum is symmetric with respect tothe unit circle.

The distanced defines the partition[0, σup] = [0, d) ∪ [d, σup] such thatP(λ) has a
singularity on the unit circle ifσ ∈ [d, σup] (σ < d). We continue with a transformation
of P(λ) into a linear pencil of double size which preserves the palindromic structure:

(2.2) X + λX∗ with X =

[

A0 A1 − σI
0 A0

]

.
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To avoid cumbersome notation, we will not exhibit the dependence ofX onσ. The transfor-
mation (2.2) will be referred to as “Toeplitz reduction”. Note that the equality

X + λ2X∗ =

[

I 0
λI I

] [

P(λ) A1 − σI
0 P(−λ)

] [

I 0
λI I

]−1

proves that the eigenvalues ofX+λX∗ are squares of those ofP(λ). Moreover, it was shown
in [17] that

(2.3) min
ω∈R

σmin(X +X∗eiω) =

{

d− σ, when0 ≤ σ < d,

0, whend ≤ σ.

3. An indicator function via the generalized Schur form. Let us consider the gen-
eralized Schur form of the palindromic pencilX + λX∗ computed by the QZ algorithm in
floating point arithmetic

(3.1) Q∗ (X +∆x)Z = Tx, Q∗ (X∗ +∆x∗)Z = Tx∗ ,

whereTx andTx∗ are upper triangular,Q andZ are unitary, and the backward errors∆x

and∆x∗ are of sufficiently small norm

(3.2) δ = max {‖∆x‖2, ‖∆x∗‖2} = O (ǫmachine) ‖X‖2 .

We introduce the indicator function

(3.3) χ(σ) = min
k

min
ω∈R

∣

∣(Tx)kk + eiω(Tx∗)kk
∣

∣ ,

where(T )kk designates thekth diagonal element of the matrixT . It is obvious that

χ(σ) = min
k

∣

∣ |(Tx)kk| − |(Tx∗)kk|
∣

∣ .

PROPOSITION3.1. We have

χ(σ) ≥ max(0, d− σ − 2δ).

Proof. Since for any triangular matrixT it holds that

σmin(T ) ≤ min
k

|(T )kk| ,

we have the inequality

σmin(Tx + eiωTx∗) ≤ min
k

∣

∣(Tx)kk + eiω(Tx∗)kk
∣

∣ , ∀ω ∈ R.

It follows that

min
ω∈R

σmin(Tx + eiωTx∗) ≤ min
ω∈R

min
k

∣

∣(Tx)kk + eiω(Tx∗)kk
∣

∣ = χ(σ).

Moreover, (3.1) implies that

σmin(Tx + eiωTx∗) ≥ σmin(X + eiωX∗)− 2δ,

and therefore

χ(σ) ≥ σmin(X + eiωX∗)− 2δ.

Applying (2.3) we arrive at the desired estimateχ(σ) ≥ max(0, d− σ − 2δ).
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The following practical upper bound

(3.4) d ≤ σ + 2δ + χ(σ)

is a corollary of Proposition3.1. Note that the upper bound (3.4) does not require structure-
preserving methods for the computation of the Schur form. The next sections are devoted to
reliable lower bounds ford.

4. On the Laub trick. Structure preserving eigenvalue methods especially devised for
the palindromic pencil (2.2) are mostly based on the anti-triangular Schur form of a ma-
trix [15, 24]. They include theURV -type methods [22, 24], QR-type methods with the Laub
trick [23, 24], and Jacobi-type methods [24]. Another idea based on structured doubling al-
gorithms is pursued in [6]. All these algorithms suffer from the presence of eigenvalues on
the unit circle. Nevertheless, we show below that when the pencil X + λX∗ has no eigen-
values on the unit circle, the Laub trick followed, if necessary, by a deflation procedure is
satisfactory for our purposes.

The Laub trick for Hamiltonian and symplectic matrices is described, e.g., in [18]. The
first step in the palindromic version of the Laub trick is based on theQZ algorithm, and the
following proposition shows that despite rounding errors,some columns ofQ andZ remain
almost orthogonal.

THEOREM 4.1. Assume that the pencilX + λX∗ of order2n has no eigenvalues on the
unit circle, and consider its computed generalized Schur form (3.1) with a reordering of the
eigenvalues in non-decreasing order of magnitude and the backward errors∆x and∆x∗ that
satisfy(3.2) and2δ < d− σ.

Denote byZ1 andQ1 the firstn columns ofZ andQ and recall that

d− σ = min
|λ|=1

σmin (X + λX∗) , whenσ ≤ d.

Then

‖Z∗
1Q1‖2 ≤ min

{

4δ(‖X‖2 + δ)

(d− σ − 2δ)2
, 1

}

.

Proof. First note that since the pencilX + λX∗ has no eigenvalues on the unit circle, it
follows thatσ < d; see Section2. Therefore0 < d− σ = min|λ|=1 σmin (X + λX∗).

Let us denote byS andR then× n upper triangular matrices formed by the firstn rows
and columns ofTx andTx∗ , respectively. Since the pencilX + λX∗ is palindromic and the
eigenvalues are arranged in non-decreasing order of magnitude, the eigenvalues ofS + λR
lie in the open unit disk, and, in particular,R is nonsingular. Moreover, from (3.1) we obtain

∥

∥

∥
(X + λX∗ +∆x + λ∆x∗)

−1
∥

∥

∥

2
=

∥

∥

∥
(Tx + λTx∗)

−1
∥

∥

∥

2
≥

∥

∥(S + λR)−1
∥

∥

2

and hence,

max
|λ|=1

∥

∥(S + λR)−1
∥

∥

2
≤ ‖ (X + λX∗)

−1 ‖2
1− ‖ (X + λX∗)

−1 ‖2 ‖∆x + λ∆x∗‖2

≤ 1

d− σ − 2δ
·

Also, from (3.1) we have

XZ1 = Q1S −∆xZ1, X∗Z1 = Q1R−∆x∗Z1,
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and a premultiplication on the left byZ∗
1 gives

(Z∗
1Q1)S −R∗(Q∗

1Z1) = ∆,(4.1)

S∗(Q∗
1Z1)− (Z∗

1Q1)R = ∆∗,(4.2)

with ∆ = Z∗
1∆xZ1 − Z∗

1 (∆x∗)∗Z1. Note that‖∆‖2 = ‖∆∗‖2 ≤ 2δ and that equation (4.2)
is simply the conjugate transpose of (4.1).

To eliminate the matrixQ∗
1Z1 from (4.1) and (4.2), we multiply (4.1) from the left

by S∗(R−1)∗ and from the right byR−1, multiply (4.2) from the right byR−1, and add
the resulting equations. This leads to the following matrixequation forZ∗

1Q1:

(4.3) Z∗
1Q1 − (R−1S)∗ (Z∗

1Q1)SR
−1 = −

[

(R−1S)∗∆+∆∗
]

R−1.

Since the eigenvalues of(R−1S)∗ andSR−1 lie in the open unit disk, the unique solution
of (4.3) is given by (see, e.g., [9])

Z∗
1Q1 =

−1

2π

∫ 2π

0

(

(R−1S)∗ − e−iθI
)−1 (

(R−1S)∗∆+∆∗
)

R−1
(

SR−1 − eiθI
)−1

dθ,

which simplifies to

Z∗
1Q1 = −S∗Y −R∗Y ∗, where

Y =
1

2π

∫ 2π

0

(

S∗ − e−iθR∗
)−1

∆
(

S − eiθR
)−1

dθ.

The proof follows by taking the norm and noting that‖R∗‖ ≤ ‖X‖2 + δ, ‖S∗‖ ≤ ‖X‖2 + δ,

‖Y ‖2 ≤ 2δ ·maxθ ‖
(

S − eiθR
)−1 ‖22, andmaxθ ‖

(

S − eiθR
)−1 ‖2 ≤ 1

d−σ−2δ
.

Using the notation of Theorem4.1, letU = [Z1, Q1J ], whereJ is the anti-diagonal unit
matrix of ordern. Then

U∗XU = T +∆1,(4.4)

U∗U = I +∆2,(4.5)

with

T =

[

0 R∗J
JS J(Q∗

1XQ1)J

]

,(4.6)

∆1 =

[

(Z∗
1Q1)S − Z∗

1∆xZ1 −Z∗
1 (∆x∗)∗Q1J

−JQ∗
1∆xZ1 0

]

,

∆2 = ∆∗
2 =

[

0 Z∗
1Q1J

JQ∗
1Z1 0

]

.

Note thatR∗J andJS are lower anti-triangular and that

‖∆1‖ ≤ ‖Z∗
1Q1‖2‖S‖2 + 2max(‖∆x‖2, ‖∆x∗‖2)

≤ 4δ(‖X‖2 + δ)2

(d− σ − 2δ)2
+ 2δ,

(4.7)

‖∆2‖2 = ‖Z∗
1Q1‖2 ≤ 4δ(‖X‖2 + δ)

(d− σ − 2δ)2
·(4.8)
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It follows that the matrixU is close to being unitary andU∗XU is close to being lower block
anti-triangular provided that‖X‖2/(d− σ) is not large.

In accordance with (3.4) we have, approximately, the boundσ ≥ d if χ(σ) is small.
We expect thatσ < d holds approximately whenχ(σ) is not small. The precise lower
bound (4.11) is justified as follows.

From (4.5), it is easy to see that the matrix̂U = U (I +∆2)
− 1

2 is unitary and that

(4.9) (I +∆2)
− 1

2 = I +∆3, with ‖∆3‖2 ≤ ‖∆2‖2
2(1− ‖∆2‖2)

·

Then (4.4) becomes

(4.10) Û∗XÛ = (I +∆3)(T +∆1)(I +∆3) = T +∆4,

with

∆4 = ∆1 + T∆3 +∆3T +∆1∆3 +∆3∆1 +∆3T∆3 +∆3∆1∆3.

In view of (4.9), we have

‖∆4‖2 ≤ ‖∆1‖2 + ‖∆2‖2‖T‖2
(1− ‖∆2‖2)2

,

and from (4.4), (4.5), (4.7), and (4.8), we have at first order in‖Z∗
1Q1‖2 andδ:

‖∆1‖2 + ‖∆2‖2‖T‖2
(1− ‖∆2‖2)2

≈ 2 (‖Z∗
1Q1‖2‖X‖2 + δ) .

Now from (4.10), we have

Û∗
(

e−iωX + eiωX∗
)

Û =
(

e−iωT + eiωT ∗
)

+
(

e−iω∆4 + eiω∆∗
4

)

,

and a result on palindromic perturbations of palindromic pencils (see [17, Section 4]) tells us
that

(4.11) σ ≤ d+ 2‖∆4‖2.

5. Algorithms. The arguments of Section4 justify the Laub trick. Namely, when the
palindromic pencil (2.2) has no eigenvalues on the unit circle, the anti-triangularform can be
computed via the QZ algorithm despite rounding errors. However, the presence of eigenval-
ues near the unit circle makes this computation difficult, and a refinement procedure should be
used in this case. The numerical procedures are summarized in Algorithm1 and Algorithm2
below.

Algorithm 1 The Laub trick.
Input: 2n× 2n matrixX.
Output: Unitary matrixU , block anti-triangularT = U∗XU , vectorr of n residual norms.

Compute a QZ factorization of the pencilX + λX∗ with the eigenvalues ordered in non-
decreasing magnitude such thatQ∗XZ = Tx andQ∗X∗Z = Tx∗ .
ComposeU =

[

Z(:, 1:n) Q(:, n :−1:1)
]

and orthonormalize the columns ofU .
SetT = U∗XU .
for k = 1, . . . , n do

Setrk =
√

∑

ij |Tij |2, where the summation is taken over the indices satisfying

1 ≤ j ≤ k, 1 ≤ i ≤ 2n− j or 1 ≤ i ≤ k, 1 ≤ j ≤ 2n− i.
end for
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Algorithm 2 The Laub trick with deflation.
Input: 2n× 2n matrixX and tolerancetol.
Output: Unitary matrixU , block-anti-triangularT = U∗XU .

Call [U,T,r] = laub(X).
Compute the numberk of residualsr, which are less thantol, and seti = k.
while k > 0 do

Call [V,T,r] = laub(T (k + 1 : end− k, k + 1 : end− k)).
U(:, i+ 1 : 2n− i) = U(:, i+ 1 : 2n− i)V .
Compute the numberk of residualsr, which are less thantol, and seti = i+ k.

end while
T = U∗XU .

Algorithm 1 is adopted from [23]. The MATLAB notationZ(:, 1 : n) andQ(:, n : −1 : 1)
denotes the firstn columns ofZ and the firstn columns ofQ in reverse order. The residualr
measures the gap betweenU∗XU and its lower anti-triangular part. More precisely, thekth
component ofr contains the Frobenius norm of the firstk rows and columns of the strictly
upper anti-triangular part ofU∗XU . If the pencilX + λX∗ has no eigenvalues near the
unit circle, then the vectorr has small components andU∗XU has the desired lower anti-
triangular form. The presence of eigenvalues near the unit circle means that the dominant
eigenvalues ofSR−1 are near the unit circle; see the proof of Theorem4.1. This translates
into a large value of‖Z∗

1Q1‖2, as formula (4.8) shows. The matrixZ∗
1Q1 has tiny entries in

its leading principal part, which correspond to the eigenvalues well separated from the unit
circle, and larger entries elsewhere thus causing an increase in the last components ofr. In
this case, we propose to re-apply Algorithm1 only to the columns ofU which contribute to
the increase of the components ofr. Such an operation is repeated recursively until the last
components ofr are small. The resulting matrixU∗XU has a block lower anti-triangular
form. The presence of upper diagonal elements is due to the presence of eigenvalues near or
on the unit circle. A formal description is given in Algorithm 2.

Algorithm 2 correctly computes the anti-triangular form for the pencilX + λX∗ which
has no eigenvalues near the unit circle. In the following algorithm, Algorithm3, it is implicitly
combined with a bisection to estimate the distanced.

Algorithm 3 Bisection.
Input: m×m matricesA0, A1, A2, and a tolerance parametertol.
Output: α andβ such that eitherβ/1.001 ≤ α ≤ d ≤ β or 0 = α ≤ d ≤ β ≤ 1.001 tol.
α = 0, β = min {σmin(A0 +A1 +A2), σmin(A0 −A1 +A2)}.
while β > 1.001max(tol, α) do

d =
√

β ·max(tol, α).
if (2.2) has an eigenvalue on the unit circlethen
β = d,

else
α = d.

end if
end while

Algorithm 3 is written in the style of [5]. It estimates the distanced within a factor
of 1.001. The upper bound (2.1) provides a first estimate ford and this bound is then refined
by the decision taken on the eigenvalues of (2.2). The problem of computing the eigenvalues
of (2.2) is reduced to the one forT + λT ∗, whereT is as defined in (4.6) and computed by
Algorithm 2.
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The computed bounds ford must be tuned to include the effect of roundoff errors. Thus,
the computed upper boundd1 should be increased by the value2δ + χ(σ) with σ = d1 as
shown in (3.4). Concerning the correction of the computed lower boundd2, the best way is to
compute the matrix̂U∗XÛ from (4.13) forσ = d2, then compute the 2-norm of its part above
the anti-diagonal. Let us denote this byδ4. This valueδ4 yields‖∆4‖2 satisfying (4.11). The
computed lower boundd2 should be decreased by the value2δ4.

6. Numerical tests. We present in this section results of numerical experimentswith
the method summarized in Algorithm3, where the anti-triangular form ofX is computed by
Algorithm 2. In all numerical tests, the parametertol equals10−14

∥

∥

[

A0 A1 A2

]∥

∥

2
. We

also show comparisons with the MATLAB functionfminbnd, which finds a minimum of the
functional

θ ∋ [0, 2π] 7→ σmin

(

A0e
−iθ +A1 +A2e

iθ
)

.

EXMAPLE 6.1. Consider the quadratic matrix polynomialQ(λ) with coefficients

A0 =













1 1 1 1 1
1 1 1 1

1 1 1
1 1

1













, A1 =













3.5 1 1 1 1
1 3.5 1 1 1
1 1 3.5 1 1
1 1 1 3.5 1
1 1 1 1 3.5













, A2 = A∗
0.

Algorithm 3 yieldsα = β = 4.246× 10−2. The functionfminbnd yieldsd = 4.246× 10−2.
Figure6.1 illustrates the fact that the functionχ defined in (3.3) is large in the inter-

val (0, d) and small in the interval[d, σup]; see the discussion at the end of Section3.
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FIG. 6.1.Behavior of the functionχ(σ) for Example6.1.

EXMAPLE 6.2. In this test case, the quadratic matrix polynomial is ofsize3 and is
constructed as follows:

Ak = QlTkQr, k = 0, 1, 2,

where the elements ofQl andQr are chosen randomly with zero means and standard devi-
ations one,Tk is strictly upper triangular with1 on its strictly upper triangular part. The diago-
nal elements ofT2 are all equal to1, and those ofT0 and T1 are chosen so
thatT0(k, k) = ρ2/(1 + ǫk) andT1(k, k) = (ρ2 + T0(k, k))/(1 + ǫk), for k = 1, 2, 3, with
ǫ1 = 10−5, ǫ2 = 10−4, ǫ3 = 10−3, andρ is a parameter to be varied. The quadratic matrix
polynomial thus constructed has all its eigenvalues insidethe circle of center0 and radiusρ.

Table6.1displays results for two different values ofρ. Figure6.2shows the behavior of
the functionχ.
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TABLE 6.1
Results for Example6.2.

Method ρ Estimates of distance

algorithm3 0.9 [3.38× 10−7 , 3.38× 10−7]

fminbnd 0.9 3.38× 10−7

algorithm3 1.001 [4.62× 10−13 , 1.38× 10−12]

fminbnd 1.001 1.38× 10−12
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FIG. 6.2.Behavior of the functionχ(σ) for Example6.2. Left: ρ = 0.9. Right: ρ = 1.001.

TABLE 6.2
Results from Algorithm2 for Example6.2.

σ ρ = 0.9 ρ = 1.001
iter r iter r

10−14 4 9.82× 10−14 5 6.65× 10−14

10−12 3 1.48× 10−13 0 9.09× 10−3

10−10 3 1.28× 10−13 4 6.86× 10−3

10−8 3 4.66× 10−14 0 6.63× 10−2

10−6 2 9.33× 10−2 1 1.42× 10−1

10−4 1 2.24× 10−1 1 1.09× 10−1

10−2 1 5.03× 10−1 1 5.11× 10−1
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FIG. 6.3.Antitriangular form ofX for Example6.2with ρ = 0.9. Left: σ = 10−10. Right:σ = 10−4.

Table6.2 displays information provided by Algorithm2. In this table, the Frobenius
norm of the upper anti-triangular part ofT = U∗XU is denoted byr, and the number of
refinement steps needed to reduceX to a block anti-triangular form is denoted byiter. Small
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(large) values ofr indicate thatT = U∗XU is reduced to an anti-triangular (block-anti-
triangular) form. An illustration is given in Figure6.3. In the latter case, the quadratic
pencilP(λ) has an eigenvalue near or on the unit circle.

7. Concluding remarks. The tests examples presented in the previous section and sev-
eral numerical tests not reported here have shown that the bisection method described in Al-
gorithm3 often gives very good estimates of the distance. At the heartof this algorithm are
the QZ algorithm, the Laub trick, and a refinement that enhances the reduction to (block) anti-
triangular form. The resulting algorithm takes into account to some extent the palindromic
structure and benefits from the error analysis for the palindromic reduction (2.2) developed in
[17]. Variants of Algorithm3 have been tested where, instead of Algorithm2, theQZ method
and methods developed in [6, 15, 16] were used to compute the eigenvalues of (2.2). With a
few exceptions, these methods delivered results comparable to those given by the proposed
method. However, they are either unstructured and/or computationally expensive or lack a
stability analysis. The MATLAB methodfminbnd has the advantage of being fast but may
stagnate in a local minimum.
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[14] D. KRESSNER, C. SCHRÖDER, AND D. S. WATKINS, Implicit QR algorithms for palindromic and even
eigenvalue problems, Numer. Algorithms, 51 (2009), pp. 209–238.

[15] D. S. MACKEY, N. MACKEY, C. MEHL, AND V. M EHRMANN, Numerical methods for palindromic eigen-
value problems: computing the anti-triangular Schur form, Numer. Linear Algebra Appl., 16 (2009),
pp. 63–86.

[16] A. N. MALYSHEV, Parallel algorithm for solving some spectral problems of linear algebra, Linear Algebra
Appl., 188/189 (1993), pp. 489–520.



ETNA
Kent State University 

http://etna.math.kent.edu

176 A. MALYSHEV AND M. SADKANE

[17] A. M ALYSHEV AND M. SADKANE , A bisection method for measuring the distance of a quadraticmatrix
pencil to the quadratic matrix pencils that are singular on the unit circle, BIT, 54 (2014), pp. 189–200.

[18] V. M EHRMANN, The Autonomous Linear Quadratic Control Problem. Theory and Numerical Solution,
Springer, Heidelberg, 1991.

[19] C. B. MOLER AND G. W. STEWART, An Algorithm for generalized matrix eigenvalue problems, SIAM J.
Numer. Anal., 10 (1973), pp. 241–256.

[20] G. PAPPAS AND D. HINRICHSEN, Robust stability of linear systems described by higher order dynamic
equations, IEEE Trans. Automat. Control, 38 (1993), pp. 1430–1435.

[21] G. ROBEL, On computing the infinity norm, IEEE Trans. Automat. Control, 34 (1989), pp. 882–884.
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