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Abstract. We present an efficient algorithm for computing a few extreme singular values of a large sparsem×n
matrixC. Our algorithm is based on reformulating the singular value problem as an eigenvalue problem forCTC.
To address the clustering of the singular values, we developan inverse-free preconditioned Krylov subspace method
to accelerate convergence. We consider preconditioning that is based on robust incomplete factorizations, and we
discuss various implementation issues. Extensive numerical tests are presented to demonstrate efficiency and robust-
ness of the new algorithm.
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1. Introduction. Consider the problem of computing a few of the extreme (i.e.,largest
or smallest) singular values and the corresponding singular vectors of anm × n real ma-
trix C. For notational convenience, we assume thatm ≥ n as otherwise we can considerCT .
In addition, most of the discussions here are valid for the casem < n as well with some
notational modifications. Letσ1 ≤ σ2 ≤ · · · ≤ σn be the singular values ofC. Then nearly
all existing numerical methods are based on reformulating the singular value problem as one
of the following two symmetric eigenvalue problems:

(1.1) σ2
1 ≤ σ2

2 ≤ · · · ≤ σ2
n are the eigenvalues ofCTC

or

−σn ≤ · · · ≤ −σ2 ≤ −σ1 ≤ 0 = · · · = 0
︸ ︷︷ ︸

m−n

≤ σ1 ≤ σ2 ≤ · · · ≤ σn

are the eigenvalues of theaugmented matrix

(1.2) M :=

[
0 C
CT 0

]

.

Namely, a singular value ofC can be obtained by computing the corresponding eigenvalue
of eitherA := CTC orM .

Computing a few selected eigenvalues of a large symmetric matrix is a subject that has
been well studied in the last few decades; see [4, 37] for surveys. To compute a few extreme
eigenvalues of a large symmetric matrix, the standard method of choice is the Lanczos al-
gorithm [13, p. 304] or the implicitly restarted Lanczos method [39] (ARPACK [30]). Their
speed of convergence depends on how well the desired eigenvalues are separated from the
rest of the spectrum. When the (relative) separation is smallor the desired eigenvalues lie
in the interior of the spectrum, a shift-and-invert spectral transformation is usually used to
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accelerate the convergence; see [13, 14]. This requires inverting or factorizing a shifted
matrix. For sparse matrices, a factorization may create excessive fill-ins of the zero en-
tries, which results in significant memory and operation costs. When the factorization of the
shifted matrix is inefficient or infeasible, several methods have been developed that employ
either inexact shift-and-invert or somepreconditioningtransformations. The Jacobi-Davidson
method [38], the JDCG algorithm [34], the locally preconditioned conjugate gradient method
(LOBPCG) [26, 27], and the inverse-free preconditioned Krylov subspace method [20, 32]
are some of the methods in this class. There is a large body of literature on various aspects of
the large symmetric eigenvalue problem; see [1, 2, 4, 15, 19, 33, 37, 40, 45] and the references
therein for further discussions.

To compute a few extreme singular values ofC, we can apply the Lanczos algorithm or
the implicitly restarted Lanczos algorithm to one of the twoformulations (1.1) and (1.2), and
this can often be done implicitly. Indeed, several methods have been introduced that exploit
the special structure and the associated properties of these eigenvalue problems. The Lanczos
bidiagonalization method introduced in [17] is a widely used method for the singular value
problems that implicitly applies the Lanczos method to the formulation (1.1). A robust im-
plementation calledlansvd is provided in PROPACK [29]. The implicit restart strategy
has been developed for the Lanczos bidiagonalization algorithm in [3] and [28], which also
include the robust MATLAB implementationsirlba andirlanb , respectively. Other as-
pects of the Lanczos bidiagonalization algorithm are discussed in [10, 24, 42]. These methods
based on the Lanczos algorithm for the eigenvalue problem (1.1) work well when the corre-
sponding eigenvalue is reasonably well separated. However, their convergence may be slow if
the eigenvalue is clustered, which turns out to be often the case when computing the smallest
singular values through (1.1). Specifically, for the formulation (1.1), the spectral separation
for σ2

1 as an eigenvalue ofCTC may be much smaller than the separation ofσ1 fromσ2 since

σ2
2 − σ2

1

σ2
n − σ2

2

=
σ2 − σ1
σn − σ2

σ1 + σ2
σn + σ2

≪ σ2 − σ1
σn − σ2

(assumingσ2 ≪ σn). On the other hand, for the formulation (1.2), σ1 is an interior eigenvalue
of M , for which a direct application of the Lanczos algorithm does not usually result in
convergence.

The shift-and-invert transformation is a standard method to deal with clustering or to
compute interior eigenvalues. For example, to compute a fewof the smallest singular values,
MATLAB’s routine svds applies ARPACK [30, 39] to the augmented matrixM (1.2) with
a shift-and-invert transformation. This works well for square matrices. However, for comput-
ing the smallest singular value of a non-square matrix, a subtle difficulty arises in using the
shift-and-invert transformation forM becauseM is singular, and with a shift close to0, the
method often converges to one of them− n zero eigenvalues ofM rather than toσ1. On the
other hand, one can avoid the shift-and-invert procedure byconsidering the Jacobi-Davidson
method for the augmented matrix (1.2), and a method of this type, called JDSVD, has been
developed in [21, 22] that efficiently exploits the block structure of (1.2). The JDSVD method
replaces the shift-and-invert step by approximately solving so-called correction equations us-
ing a preconditioned iterative method. When computingσ1 as an interior eigenvalue of the
augmented matrix (1.2), convergence of JDSVD appears to strongly depend on the quality of
the preconditioner for the correction equation. This demands a good preconditioner forM or
M − µI, which is unfortunately difficult to construct whenm 6= n owing to the singularity
of M .

It appears that the augmented matrix formulation (1.2) has some intrinsic difficulties
when it is used to compute a few of the smallest singular values of a non-square matrix
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because of the existence of the zero eigenvalues ofM . For this reason, we propose to recon-
sider formulation (1.1) in this situation. While (1.1) has the advantage of a smaller dimen-
sion in the underlying eigenvalue problem, a clear disadvantage is that there is no efficient
method to carry out the shift-and-invert transformation(CTC − µI)−1 other than explic-
itly forming CTC. Note thatCTC is typically much denser thanC and explicitly comput-
ing CTC may result in a loss of accuracy with the condition number being squared. In the
case ofµ = 0, which can be used to compute a singular valueσ1 that is sufficiently close to 0,
the inverse ofCTC can be implicitly obtained by computing the QR factorization ofC. This
is the approach taken inlansvd of PROPACK [29]. However, since a complete QR factor-
ization of a sparse matrix may be expensive owing to possibleexcessive fill-ins of the zero
entries, it is interesting to study other approaches that use incomplete factorizations instead.
Other drawbacks of (1.1) include the need to compute left singular vectors when theyare
required and the potential loss of accuracy caused by computing σ2

1 whenσ1 is tiny; see Sec-
tion 3. In particular, the computed left singular vectors may havelow accuracy if the singular
values are small; see the discussions in Section3.

In this paper, we propose to address the small separation ofσ2
1 in the formulation (1.1) by

considering a preconditioned Krylov subspace method. Specifically, we shall implicitly ap-
ply the inverse-free preconditioned Krylov subspace method of [20] (or its block version [36])
toA = CTC. As already discussed, the standard shift-and-invert transformation is not prac-
tical for (1.1) as it requires a factorization ofCTC − µI. The inverse-free preconditioned
Krylov subspace method is an effective way to avoid the shift-and-invert transformation
for computing a few extreme eigenvalues of the symmetric generalized eigenvalue prob-
lem Ax = λBx, whereA andB are symmetric withB positive definite. In this method,
an approximate eigenvectorxk is iteratively improved through the Rayleigh-Ritz projection
onto the Krylov subspace

Km(Hk, xk) := span
{
xk, Hkxk, H

2
kxk, . . . , H

m
k xk

}
,

whereHk := A−ρkB andρk is the Rayleigh quotient ofxk. The projection is carried out by
constructing a basis for the Krylov subspace through an inner iteration, where the matricesA
andB are only used to form matrix-vector products. The method is proved to converge at
least linearly, and the rate of convergence is determined bythe spectral gap of the smallest
eigenvalue ofHk (rather than the original eigenvalue problem as in the Lanczos method).
An important implication of this property is that a congruence transformation of(A,B) de-
rived from an incompleteLDLT factorization of a shifted matrixA − µB may be applied
to reduce the spectral gap of the smallest eigenvalue ofHk and hence, to accelerate the con-
vergence to the extreme eigenvalue. This is referred to as preconditioning. A block version
of this algorithm has also been developed in [36] to address multiple or severely clustered
eigenvalues.

In applying the inverse-free preconditioned Krylov subspace method [20, 36] to the ma-
trix A = CTC, we directly construct the projection ofC rather than the projection ofCTC
used for the eigenvalue problem. In this way, we compute approximations ofσ1 directly
from the singular values of the projection ofC rather than using the theoretically equivalent
process of computing approximations ofσ2

1 from the projection ofCTC. By computingσ1
directly, we avoid the pitfall of a loss of accuracy associated with computingσ2

1 if σ1 is tiny.
On the other hand, the potential difficulty with the accuracyof the computed left singular
vector in this case is intrinsic to the approach ofCTC. An efficient implementation of the
inverse-free preconditioned Krylov subspace method depends on the construction of a pre-
conditioner derived from an incompleteLDLT factorization ofCTC − µI. Constructing
a preconditioner forCTC has been discussed extensively in the literature in the context of
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solving least squares problems (see [5, 8, 9, 16, 31, 35, 43]), and one method well suited
for our problem is the robust incomplete factorization (RIF) of [8, 9]. For the shifted ma-
trix CTC − µI, however, there is no known effective method for computing afactorization
without formingCTC first. It turns out that the robust incomplete factorization(RIF) can be
easily adapted to construct anLDLT factorization of the shifted matrixCTC − µI without
formingCTC. Our numerical results demonstrate that the RIF preconditioner in combina-
tion with the inverse-free preconditioned Krylov subspacemethod leads to a very efficient
preconditioned algorithm for the singular value problem. Numerical tests also exhibit that
this method is particularly competitive for computing a fewof the smallest singular values of
non-square matrices.

The paper is organized as follows. Section2 develops the inverse-free preconditioned
Krylov subspace method for the singular value problem. Section 3 presents the robust in-
complete factorization (RIF) preconditioner forCTC − µI. Section4 briefly describes a
MATLAB implementation calledsvdifp that we have developed. Section5 presents some
numerical examples comparing our method with several existing programs for the singular
value problem. We conclude in Section6 with some remarks. We consider real matrices
throughout, but all results can be generalized to complex matrices in a trivial way.

Throughout,‖ · ‖ denotes the 2-norm for both vectors and matrices.‖ · ‖1 denotes the
1-norm.‖ ·‖max denotes the max norm, i.e., the largest entry of the matrix inabsolute values.
〈x, y〉 := xT y is the Euclidean inner product, and for a symmetric positivedefinite matrixA,
〈x, y〉A := xTAy is theA-inner product.

2. The inverse-free preconditioned Krylov subspace method. We compute the singu-
lar values ofC by computing the eigenvalues ofA = CTC. To address the problem of slow
convergence caused by the reduced spectral gap ofσ2

1 in the Lanczos algorithm, we apply
the inverse-free preconditioned Krylov subspace projection method of [20], whose speed of
convergence can be accelerated by preconditioning using some incomplete factorizations. We
first describe this basic method for the eigenvalue problem in Section2.1. We then develop a
corresponding algorithm for the singular value problem in Section2.2.

2.1. The generalized eigenvalue problem.Consider the problem of computing the
smallest eigenvalue of the generalized eigenvalue problemfor (A,B), i.e.,Ax = λBx. Note
that we need to discuss the generalized eigenvalue problem here even though the singular
value problem will be formulated as a standard eigenvalue problem forCTC because our
preconditioning scheme will actually transform it to an equivalent generalized eigenvalue
problem.

In an iterative process, assume thatxk is an approximate eigenvector at stepk. We con-
struct a new approximationxk+1 by the Rayleigh-Ritz projection of(A,B) onto the Krylov
subspace

Km(A− ρkB, xk) = span{xk, (A− ρkB)xk, . . . , (A− ρkB)mxk} ,

where

ρk = ρ(xk) :=
xTkAxk
xTkBxk

is the Rayleigh quotient andm is a parameter to be chosen. Specifically, letZm be the
matrix consisting of the basis vectors ofKm(A − ρkB, xk). We then form the matrices
Am = ZT

m(A − ρkB)Zm andBm = ZT
mBZm and find the smallest eigenvalueµ1 and a

corresponding eigenvectorh for (Am, Bm). Then the new approximate eigenvector is

(2.1) xk+1 = Zmh,
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and, correspondingly, the Rayleigh quotient

(2.2) ρk+1 = ρk + µ1

is a new approximate eigenvalue. This is the basic process ofthe inverse-free Krylov subspace
method; see [20] or Algorithm 2.2 below for a formal description. The construction of the
basis vectorsZm for Km(A− ρkB, xk) is accomplished using either the Lanczos method or
the Arnoldi method with theB-inner product; see [20] for a more detailed discussion.

It is shown in [20, Theorem 3.2] thatρk always converges to an eigenvalue andxk con-
verges into the direction of an eigenvector. Furthermore, the following theorem characterizes
the speed of convergence.

THEOREM 2.1 ( [20, Theorems 3.2 and 3.4]).LetA andB be symmetric withB positive
definite, and letλ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of(A,B). Let (ρk, xk) be the
approximate eigenpair at stepk of the inverse-free Krylov subspace method defined by(2.1)
and (2.2), and assume thatλ1 < ρ0 < λ2. Thenρk converges toλ1. Furthermore, if
µ1 < µ2 ≤ · · · ≤ µn are the eigenvalues ofA− ρkB, then

(2.3) ρk+1 − λ1 ≤ (ρk − λ1)ǫ
2
m + 2(ρk − λ1)

3/2ǫm

(‖B‖
σ2

) 1

2

+O
(
(ρk − λ1)

2
)
,

where

ǫm = min
p∈Pm,p(µ1)=1

max
i6=1

|p(µi)|

andPm denotes the set of all polynomials of degree not greater thanm.
This theorem demonstrates thatρk converges at least with the rate ofǫ2m, which is deter-

mined by the spectral distribution ofA − ρkB. It is also shown in [20, Corollary 3.5] that,
asymptotically, the eigenvalues ofA−ρkB in this bound can be replaced by those ofA−λ1B
to simplify it. Namely, letting0 = γ1 < γ2 ≤ · · · ≤ γn be the eigenvalues ofA − λ1B, we
have

(2.4)
ρk+1 − λ1
ρk − λ1

≤ 4

(
1−

√
ψ

1 +
√
ψ

)2m

+4

(
1−

√
ψ

1 +
√
ψ

)m (‖B‖
σ2

) 1

2

(ρk−λ1)
1

2 +O(ρk−λ1),

where

ψ :=
γ2 − γ1
γn − γ1

=
γ2
γn

·

By (2.4) (or Theorem2.1), convergence of the inverse-free Krylov subspace method
can be accelerated by increasing the relative gap betweenγ1 andγ2 (or µ1 andµ2). This
can be achieved by a congruent equivalent transformation, which is called preconditioning.
Specifically, we can compute anLDLT factorization ofA− λ1B that is scaled such that

(2.5) L−1(A− λ1B)L−T = D = diag(1, . . . , 1, 0).

We then consider the preconditioned problem

(2.6) (Â, B̂) := (L−1AL−T , L−1BL−T ),

which has exactly the same eigenvalues as the pencil(A,B). However, applying our algo-
rithm to (Â, B̂), the speed of convergence depends on the spectral gap of

Â− λ1B̂ = L−1(A− λ1B)L−T = D,
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which has exactly two eigenvalues, namelyγ1 = 0 and γ2 = · · · = γn = 1. Then
ψ = 1, andρk+1 − λ1 = O

(
(ρk − λ1)

2
)
, which implies quadratic convergence ofρ(k).

In general, one may use a step-dependent preconditioner by computing the factorization
A− ρkB = LkDkL

T
k . Then, using (2.3), we also obtain quadratic convergence ofρ(k);

see [20] for details.
The preconditioning strategies discussed above are ideal situations where the fullLDLT

factorization is computed. A practical way of implementingthis is to compute an incomplete
factorization ofA− µB as an approximation, whereµ is an approximation ofλ1. With such
a matrixL, we may expect the eigenvalues ofÂ−λ1B̂ = L−1(A−λ1B)L−T to be clustered
around two points. Thenψ ≈ 1, which results in accelerated convergence by (2.4); see [36]
for an analysis. We can also construct a preconditionerLk from an incompleteLDLT fac-
torization ofA − ρkB at each step to reduceǫm and hence to accelerate convergence. This
is a more costly approach, but it can be used to update a preconditioner when it appears
ineffective.

As in the preconditioned conjugate gradient method for linear systems, the precondition-
ing transformation (2.6) can be carried out implicitly. Indeed, all we need is to construct, at
the iterationk, a basis for the transformed Krylov subspace

L−T K̂m(Ĥk, L
Txk) = Km(L−TL−1Hk, xk),

whereHk = A−ρkB andĤk = Â−ρkB̂ = L−1HkL
−T . This is achieved by using matrix-

vector multiplications withL−TL−1Hk, and the only operation involving the precondition-
ing transformation isL−TL−1; see [20] for details. For completeness, we state the following
preconditioned algorithm from [20, Algorithm 4] (with a possibly step-dependent precon-
ditionerL as discussed above and a construction of aB-orthonormal basis of the Krylov
subspace).

ALGORITHM 2.2. Inverse free preconditioned Krylov subspace method for(A,B).
1 Inputm and an initial approximate eigenvectorx0 with ‖x0‖ = 1;
2 ρ0 = ρ(x0);
3 Fork = 0, 1, 2, . . . until convergence
4 construct a preconditionerL;
5 construct aB-orthonormal basis{z0, z1, . . . , zm} for

Km(L−TL−1(A− ρkB), xk);
6 formAm = ZT

m(A− ρkB)Zm, whereZm = [z0, z1, . . . , zm];
7 find the smallest eigenvalueµ1 and an eigenvectorh of Am;
8 ρk+1 = ρk + µ1 andxk+1 = Zmh.
9 End
The above algorithm computes the smallest eigenvalue only.To find additional eigen-

values, we need to use a deflation procedure. A natural deflation process discussed in [32]
is to shift the eigenvalues that have been computed and then apply the algorithm. Specifi-
cally, assume that(λi, vi) (for 1 ≤ i ≤ ℓ) areℓ eigenpairs that have been computed, and let
Vℓ = [v1, . . . , vℓ] satisfyV T

ℓ BVℓ = I. ThenAVℓ = BVℓΛℓ, whereΛℓ = diag{λ1, . . . , λℓ}.
If λℓ+1 ≤ λℓ+2 ≤ . . . ≤ λn are the remaining eigenvalues of(A,B), thenλℓ+1 is the
smallest eigenvalue of

(2.7) (Aℓ, B) := (A+ (BVℓ)Σ(BVℓ)
T , B),

whereΣ = diag{α− λi} andα is any value chosen to be greater thanλℓ+2. Thereforeλℓ+1

can be computed by applying the inverse-free preconditioned Krylov subspace algorithm
to (Aℓ, B). For the singular value problem forC to be discussed in the next section, we apply
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the inverse-free preconditioned Krylov subspace toA = CTC implicitly by applying the pro-
jection onC. However, the deflation (2.7) changes the structure toCTC + (BVℓ)Σ(BVℓ)

T ,
for which an implicit projection is difficult to construct. In this setting, it is more desirable to
work with (A,B) directly.

An alternative approach is to project the Krylov subspace totheB-orthogonal comple-
ment ofVℓ := span{v1, . . . , vℓ}. Namely, we apply projections directly on(A,B) but re-
place the Krylov subspaceKm(A−ρkB, xk) or in the preconditioned algorithm, the subspace
Km(L−TL−1(A− ρkB), xk), respectively, by the projected subspace

(2.8) Km((I − VℓV
T
ℓ B)(A− ρkB), xk) or Km((I − VℓV

T
ℓ B)L−TL−1(A− ρkB), xk).

This enforces that all approximate eigenvectors obtained are in theB-orthogonal complement
of Vℓ and hence their convergence to an eigenvector corresponding to one out of the eigen-
values{λℓ+1, . . . , λn} provided the iteration converges. This deflation approach has the
advantage of not changing the matrixA = CTC for the singular value problem. However,
its convergence property is not understood as the existing theory (Theorem2.1) is not readily
applicable to the setting of projected Krylov subspaces. However, our numerical experiments
show that this deflation strategy works as intended.

2.2. The singular value problem forC. We consider the singular value problem for
anm×nmatrixC. We apply Algorithm2.2to the eigenvalue problemA = CTC andB = I.
However, a direct application involves computing the eigenvalueρk of the projection prob-
lem involvingAm, which converges toσ2

1 . One potential difficulty associated with this ap-
proach is thatρk computed in this way may have a larger error ifσ1 is very small (relative
to ‖C‖). Specifically, if ρ̃k is the computed Ritz value, it follows from the standard back-
ward error analysis [18] that ρ̃k is the exact eigenvalue of a perturbed matrixAm + Em

with ‖Em‖ = O(u)‖Am‖, whereu is the machine precision. Then

|ρ̃k − ρk| ≤ O(u)‖Am‖ ≤ O(u)‖A‖ = O(u)‖C‖2

and

|
√

ρ̃k −√
ρk| ≤ O(u)‖C‖ ‖C‖√

ρ̃k +
√
ρk

≈ O(u)‖C‖κ(C)/2 ,

whereκ(C) = σn/σ1 is the condition number ofC. In particular, the relative error

|√ρ̃k −√
ρk|√

ρk
≤ O(u)

‖C‖2
√
ρk(

√
ρ̃k +

√
ρk)

≈ O(u)κ(C)2/2

is proportional toκ(C)2. Thus, very little relative accuracy may be expected ifκ(C) is of
order1/

√
u. In contrast, a backward stable algorithm should produce anapproximation ofσ1

with absolute error of the order ofO(u)‖C‖ and the relative error of the order ofO(u)κ(C).
We note that the above discussion is based on a worst case upper bound. It is likely pessimistic
particularly in the bound of‖Am‖, but it does highlight the potential loss of accuracy when
one approximatesσ1 through computingσ2

1 ; see Example5.1 in Section5.
To achieve the desired backward stability, we propose to construct a two-sided projec-

tion ofC, from which we compute the approximate singular values directly. This is similar to
the Lanczos bidiagonalization algorithm, where a bidiagonal projection matrix is constructed
whose singular values directly approximate the singular values ofC. Algorithmically, we
construct an orthonormal basis{z0, z1, . . . , zm} for Km(L−TL−1(A− ρkI), xk) and simul-
taneously an orthonormal basis{y0, y1, . . . , ym} for span{Cz0, Cz1, . . . , Czm} as follows.
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First,f0,0 = ‖Cz0‖2, andy0 = Cz0/f0,0. Then, fori = 1, . . . ,m, we generatezi andyi by

fi,izi = L−TL−1(CTCzi−1 − ρkzi−1)− f0,iz0 − f1,iz1 − · · · − fi−1,izi−1,

gi,iyi = Czi − g0,iy0 − g1,iy1 − · · · − gi−1,iyi−1,(2.9)

wherefj,i = zTj L
−TL−1(CTCzi−1 − ρkzi−1), gj,i = yTj Czi, andfi,i andgi,i are cho-

sen so that‖yi‖ = ‖zi‖ = 1. Assumingdim(Km(L−TL−1(A − ρkI), xk)) = m + 1,
the recurrence forzi does not breakdown, and the process leads to an orthonormal basis
{z0, z1, . . . , zm}. It is easy to show that the recurrence foryi does not breakdown either and
{y0, y1, . . . , ym} is orthonormal. LetYm = [y0, y1, . . . , ym]. ThenCZm = YmGm, where
Gm = [gij ]

m
i,j=0. It follows thatZT

m(CTC)Zm = GT
mGm. If σ(1)

k is the smallest singular

value ofGm, then(σ(1)
k )2 is the smallest eigenvalue ofAm = ZT

m(CTC)Zm, i.e., the so

constructed value(σ(1)
k )2 is equal toρk+1 in Algorithm 2.2.

By computingσ(1)
k directly, we avoid a possible loss of accuracy. Specifically, if σ̃(1)

k is
the computed singular value ofGm using the standard SVD algorithm such assvd , then it
follows from backward stability that̃σ(1)

k is the exact singular value ofGm + Fm for some
Fm with ‖Fm‖ = O(u)‖Gm‖. Then

|σ̃(1)
k − σ

(1)
k | ≤ O(u)‖Gm‖ ≤ O(u)‖C‖,

and hence,

|σ̃(1)
k − σ

(1)
k |

σ
(1)
k

≤ O(u)κ(C).

Thus, as Algorithm2.2 converges, i.e.,
√
ρk = σ

(1)
k → σ1, the approximate singular value

σ̃
(1)
k can approximateσ1 with a relative accuracy of the order ofO(u)κ(C).

To compute additional eigenvalues, we use a deflation based on the projected Krylov
subspace (2.8) and compute the direct projection ofC in the same way. We summarize
this process in the following algorithm, Algorithm2.3, that computes the(ℓ + 1)st smallest
singular value when the firstℓ singular values have already been computed.

ALGORITHM 2.3. Inverse free preconditioned Krylov subspace method for SVD.
1 Input:m; Vℓ = [v1, . . . , vℓ] with CTCvi = σ2

i vi andV T
ℓ Vℓ = I;

initial right singular vectorx0 such that‖x0‖ = 1 andV T
ℓ x0 = 0;

2 initialize: ρ0 = ‖Cx0‖; Gm = [gij ] = 0 ∈ R
(m+1)×(m+1);

3 Fork = 0, 1, 2, . . . until convergence
4 construct a preconditionerL;
5 z0 = xk; w = Cz0; m′ = m;
6 g0,0 = ‖w‖ andy0 = w/g0,0;
7 Fori = 1 : m
8 zi = (I − VℓV

T
ℓ )L−TL−1(CTw − ρkzi−1)

9 Forj = 0 : i− 1
10 zi = zi − (zTj zi)zj ;
11 End
12 If ‖zi‖ 6= 0, zi = zi/‖zi‖; otherwise,m′ = i and break;
13 w = Czi; yi = w;
14 Forj = 0 : i− 1
15 gj,i = yTj yi andyi = yi − gj,iyj ;
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16 End
17 gi,i = ‖yi‖ andyi = yi/gi,i;
18 End

19 compute the smallest singular valueσ(1)
k+1 of Gm = [gij ]

m′

i,j=0,
and a corresponding unit right singular vectorh;

20 ρk+1 = (σ
(1)
k+1)

2, xk+1 = [z0, z1, . . . , zm′ ]h;
21 End
We make some remarks concerning Algorithm2.3. The presented algorithm has defla-

tion included, whereℓ singular values and right singular vectors are given as inputs. When
none is given, it computes the smallest singular valueσ1 by settingℓ = 0 andVℓ to the empty
matrix. At line 4, a preconditioner needs to be constructed such thatLDLT ≈ CTC − µI
for µ equal toρk or a fixed initial value. An algorithm based on RIF to compute an incomplete
factorL implicitly from C will be discussed in the next section. As stated, different precon-
ditioners may be used for different iteration steps, but forefficiency reasons, we usually use
the same preconditioner. Line 9 implements the deflation andpreconditioning techniques
implicitly. The for loop at lines 7–18 constructs an orthonormal basis{z0, z1, . . . , zm′} for
the Krylov subspace and simultaneously an orthonormal basis {y0, y1, . . . , ym′} such that
CZm′ = Ym′Gm′ , wherem′ = dim(Km((I − VℓV

T
ℓ )L−TL−1(A − ρkB), xk)) − 1. Then

Gm′ = Y T
m′CZm′ . Its smallest singular value and a corresponding right singular vectorh are

computed to construct a new approximate right singular vector at lines 19–20.
The process is theoretically equivalent to Algorithm2.2 as applied toA = CTC and

B = I. When no preconditioning is used, i.e.,L = I, the inverse-free Krylov subspace
method is simply the Lanczos method forA with a restart afterm iterations. When the
preconditioning is used, we effectively transform the standard eigenvalue problem forCTC
to the equivalent generalized eigenvalue problem for(Â, B̂) = (L−1CTCL−T , L−1L−T ),
to which the inverse-free Krylov subspace method is applied.

In theeigifp implementation [32] of the inverse-free preconditioned Krylov subspace
method for the eigenvalue problem, an LOBPCG-type (locallyoptimal preconditioned conju-
gate gradient [25, 27]) subspace enhancement was also included to further accelerate conver-
gence. Note that, in the LOBPCG method, the steepest descentmethod is modified by adding
the previous approximate eigenvectorxk−1 to the space spanned by the current approxima-
tion and its residualspan{xk, (A− ρkB)xk} to construct a new approximate eigenvector. It
results in a conjugate gradient-like algorithm that has a significant speedup in convergence
over the steepest descent method. This idea has also been used in eigifp [32] by adding the
previous approximate eigenvectorxk−1 to the Krylov subspaceKm(A− ρkB, xk), which is
also found to accelerate convergence in many problems. As the extra cost of adding this vec-
tor is quite moderate, we also use this subspace enhancementin our implementation for the
singular value problem. Algorithmically, we just need to add after thefor loop at lines 7–18
the construction of an additional basis vectorzm′+1 by orthogonalizingxk − xk−1 against
{z0, z1, . . . , zm′}. Note that we have usedxk − xk−1 rather thanxk−1 for orthogonaliza-
tion because orthogonalizingxk−1 againstz0 = xk typically leads to a cancellation when
xk ≈ xk−1. To avoid possible cancellations, we implicitly compute the orthogonalization of
xk − xk−1 againstz0 = xk through

d = Z̃m′

[

− ĥT ĥ
h1

ĥ

]

, where h =

[
h1
ĥ

]

∈
[

R

R
m×1

]

is the unit right singular vector of the projection matrixGm, andZ̃m′ is the matrix of the
basis vectors at line 19 of the previous step (stepk − 1) of Algorithm 2.3, i.e.,xk = Z̃m′h
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andxk−1 = Z̃m′e1, wheree1 = [1, 0, . . . , 0]T . It is easy to check that

d = Z̃m′h− 1

h1
Z̃m′e1 = xk − 1

h1
xk−1 =

1

h1
(xk − xk−1)−

h1 − 1

h1
xk

andxTk d = 0. Therefore, a new basis vector that extends the subspace with xk − xk−1 can
be obtained by orthogonalizingd against{z1, . . . , zm′} as

fm′+1,m′+1zm′+1 = d− f1,m′+1z1 − · · · − fm′,m′+1zm′ .

Moreover,Cd = CZm′ [− ĥT ĥ
h1

, ĥ]T , and thenCzm′+1 can be computed without the explicit
multiplication byC from

Czm′+1 =
Cd− f1,m′+1Cz1 − · · · − fm′,m′+1Czm′

fm′+1,m′+1
,

from whichym′+1 and an additional column ofG are computed as in (2.9). However, with
possible cancellations in the last formula,Czm′+1 may be computed with large errors and we
suggest to computeCzm′+1 explicitly when high accuracy is needed.

The algorithm we have presented computes approximate singular values and simultane-
ously the corresponding right singular vectors only. In applications where singular triplets are
required, we can compute approximate left singular vectorsfrom the right singular vectors
obtained. This is a limitation of theCTC formulation (1.1) and Algorithm2.3, where we
reduce the eigenvalue residualrp of the approximate singular value and right singular vector

pair (σ(1)
k , xk) (with ‖xk‖ = 1),

rp := ‖CTCxk − (σ
(1)
k )2xk‖.

From this residual, the errors of the approximate singular valueσ(1)
k and approximate right

singular vectorxk can be bounded as (see [13, p. 205])

|σ(1)
k − σ1| ≤

r2p

(σ
(1)
k + σ1)gap

and sin∠(xk, v1) ≤
rp
gap

,

where we assume thatσ1 is the singular value closest toσ(1)
k , v1 is a corresponding right

singular vector, andgap = mini6=1 |σ(1)
k − σi|. When a corresponding left singular vector is

needed, it can be obtained as

(2.10) wk = C
xk

σ
(1)
k

provided thatσ(1)
k 6= 0. Then the accuracy of the approximate singular triplet(σ

(1)
k , wk, xk)

can be assessed by

rt :=

∥
∥
∥
∥
∥

[

Cxk − σ
(1)
k wk

CTwk − σ
(1)
k xk

]∥
∥
∥
∥
∥
=

∥
∥
∥
∥
M

[
wk

xk

]

− σ
(1)
k

[
wk

xk

]∥
∥
∥
∥
.

It is easily checked that

(2.11) rt =
rp

σ
(1)
k

.
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Therefore, for a tiny singular value, a small residualrp for the pair(σ(1)
k , xk) does not imply

a small residualrt for the singular triplet(σ(1)
k , wk, xk). Indeed, the constructed left sin-

gular vectorwk may not be a good approximation even ifxk is a good approximate right
singular vector as indicated byrp. This appears to be an intrinsic difficulty of theCTC for-
mulation (1.1). Specifically, in the extreme case ofσ1 = 0, a corresponding left singular
vector is any vector in the orthogonal complement ofR(C) (the range space ofC), and it can
not be obtained from multiplying a right singular vector byC or any vector in the subspace
CKm(CTC, xk) = Km(CCT , Cxk) ⊂ R(C). In this case, we need to considerCCT on a
new random initial vector to compute a left singular vector.

An alternative formulation for the left singular vector is obtained by calculating the left
singular vectorg of the projection matrixGm at line 19 of Algorithm2.3and then forming

(2.12) wk = [y0, y1, . . . , ym′ ]g .

It is easy to check that this is theoretically equivalent to (2.10) if σ(1)
k 6= 0. However, an

advantage of this formulation is that it is still defined evenwhenσ(1)
k = 0 although the

quality of the approximation is not assured. Our numerical experiments indicate that (2.12)
is in general similar to (2.10) but may lead to a slightly better left singular vectors in some
problems. In our implementation, we use (2.11) to estimate the residual of singular triplets
to avoid the cost of computing it, but at termination, we use (2.12) to compute a left singular
vector and then recompute its residual.

In the algorithm, we have usedrp for the convergence test unless a left singular vector
is required. When this is indeed needed,rt is used for the convergence test. As discussed
above, however,rt may never converge to0 if σ(1)

k is extremely small. Therefore, in order
to properly terminate the iteration in such a situation, we propose to monitor the magnitude
of the computed singular value, and when an extremely small singular value (i.e., of the
order of machine precision) is detected, the stopping criterion should be switched to usingrp.
By properly terminating the iteration according torp, we can still obtain a sufficiently good
approximate singular value and a right singular vector. After that, we can then separately
apply the algorithm toCT to compute a left singular vector.

In the following algorithm, we present an extension of Algorithm 2.3 by the subspace
enhancement steps and termination criteria discussed above. It also includes the additional
step needed in computing the left singular vector when it is required.

ALGORITHM 2.4. Inverse free preconditioned Krylov subspace method for SVDwith
LOBPCG enhancement.

1–17 See lines 1–17 of Algorithm2.3.
18 zm′+1 = dk;w = Cdk;
19 Forj = 0 : m′

20 zm′+1 = zm′+1 − (zTj zm′+1)zj ;
21 w = w − (zTj zm′+1)Czj ;
22 End
23 If ‖zm′+1‖ 6= 0
24 zm′+1 = zm′+1/‖zm′+1‖, w = w/‖zm′+1‖; ym′+1 = w;
25 Forj = 0 : m′

26 gj,m′+1 = yTj ym′+1 andym′+1 = ym′+1 − gj,m′+1yj ;
27 End
28 gm′+1,m′+1 = ‖ym′+1‖ andym′+1 = ym′+1/gm′+1,m′+1;
29 m′ = m′ + 1;
30 End
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31 compute the smallest singular valueσ(1)
k+1 of Gm = [gij ]

m′

i,j=0,
and a corresponding unit right singular vectorh;

32 dk+1 = Zm′(h− e1/h1);Cdk+1 = CZm′(h− e1/h1);

33 ρk+1 = (σ
(1)
k+1)

2, xk+1 = Zm′h;
34 res = ‖CTCxk+1 − ρk+1xk+1‖;

35 If singular triplet is desired andσ(1)
k+1 > u‖C‖2

36 res = res/σ
(1)
k+1;

37 End
38 test convergence usingres;
39 End
40 If singular triplet is desired
41 compute a left singular vectorg of Gm andwk+1 = [y0, y1, . . . , ym′ ]g;
42 End

43 Output:(σ(1)
k+1, xk+1) or, if singular triplet is required,(σ(1)

k+1, wk+1, xk+1).

In Algorithm 2.4, lines 1–17 are identical to Algorithm2.3. In lines 18–30, the subspace
is expanded withxk−xk−1 using the method mentioned earlier. In line 32 the orthogonaliza-
tion of xk+1 − xk againstxk+1 is computed to be used in the next iteration. The algorithm,
by default, computes the singular value and the right singular vectors. If singular triplets are
desired, in lines 35–37 an appropriate residual is computedto be used for testing conver-
gence. This is only for the purpose of terminating the iteration. At convergence, however, we
compute the left singular vectorwk+1 and the residual of the singular triplets explicitly.

Finally, we mention that the algorithm can be adapted trivially to compute the largest
singular value. Namely, to compute the largest singular values ofC, we just need to modify
line 19 in Algorithm2.3 and line 31 in Algorithm2.4 to calculate the largest singular value
of Gm and a corresponding right singular vector, and the rest of the algorithm remains the
same. It is easy to see that the convergence theory of [20] extends to this case. We also note
that the above algorithm is based on a vector iteration for computing a single singular value. A
block matrix iteration version of the inverse-free preconditioned Krylov subspace method has
been developed in [36] to compute multiple eigenvalues or extremely clustered eigenvalues.
It can be adapted as in Algorithm2.3to the task of computing multiple or extremely clustered
singular values. Here, we omit a formal statement of the algorithm; see [36].

3. Preconditioning by robust incomplete factorizations (RIF). In this section, we
discuss how to construct a preconditionerL, i.e., an approximateLDLT factorization
CTC − µI = LDLT , where

√
µ is an approximation of the singular value to be computed

andD is a diagonal matrix of0 or±1. This generally requires forming the matrixCTC−µI,
which may be much denser thanC and hence leads to a denserL. In addition, forming the
matrix is associated with a potential loss of information invery ill-conditioned cases although
this appears not to pose a problem when only an approximate factorization is sought [23].

For computing the smallest singular value,µ = 0 is a natural first choice for the shift.
In this case, we need an incomplete factorization of a symmetric positive semidefinite ma-
trix, for which numerous techniques have been developed; see [6] for a survey. Indeed,
if µ = 0, the problem is the same as constructing a preconditioner for the linear least
squares problem. One method that has been well studied is theincompleteQR factorization;
see [5, 16, 31, 35, 43]. The incompleteQR factorization methods, such as the incomplete
modified Gram-Schmidt method or the incomplete Givens rotation method, can be used here
to construct a preconditioner for computing the smallest singular values that are close to 0.
While these methods are effective and often result in a much faster convergence, they tend
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to have high intermediate storage requirements in our experiences; see [9] as well. More-
over, they can not deal with the caseµ 6= 0. On the other hand, Benzi and Tuma propose a
method for constructing a preconditioner forCTC in [9] called robust incomplete factoriza-
tion (RIF). This method can be easily adapted to the computation of an incompleteLDLT

factorization forCTC − µI and is found to have more moderate fill-ins. We discuss now the
RIF preconditioner for the SVD algorithm.

Let A ∈ R
n×n be a sparse symmetric positive definite matrix. The idea of RIF is to

obtain the factorizationA = LTDL by applying anA-orthogonalization process to the unit
basis vectorse1, e2, . . . , en (i.e., I = [e1, e2, . . . , en]). It will become a Gram-Schmidt pro-
cess for the unit basis vectors with respect to the inner product 〈x, y〉A := xTAy, i.e., for
i = 1, 2, . . . , n,

(3.1) zi = ei −
i−1∑

j=1

〈ei, zj〉A
〈zj , zj〉A

zj .

This is the classical Gram-Schmidt (CGS) process. The corresponding modified Gram-
Schmidt (MGS) process can be implemented by updating the basis vectorzi initialized as
zi = ei (1 ≤ i ≤ n) by the following nested loop: forj = 1, 2, . . . , n, orthogonalize eachzi
(for i = j + 1, . . . , n) againstzj by

(3.2) zi = zi −
〈zi, zj〉A
〈zj , zj〉A

zj .

This updating process allows discardingzj to free the memory once it is orthogonalized
against allzi (for i = j + 1, . . . , n). Let

lij =
〈zi, zj〉A
〈zj , zj〉A

if i ≥ j,

and setlij = 0 if i < j. ThenL = [lij ] is a unit lower triangular matrix, and this process re-
sults in anA-orthogonal matrixZ = [z1, z2, . . . , zn] such thatI = ZLT . ThenZTAZ = D
impliesA = LDLT , whereD = diag[d1, d2, . . . , dn] anddj = 〈zj , zj〉A.

Clearly, by (3.1), zi ∈ span{e1, e2, . . . , ei}, andZ is upper triangular. Since CGS (3.1)
and MGS (3.2) are theoretically equivalent, (3.2) can be formulated as

zi = zi − lijzj , with lij =
〈ei, zj〉A
〈zj , zj〉A

,

which is computationally more efficient (see [7]) for a problem likeA = CTC. In addition,
asA is sparse,〈ei, zj〉A = eTi Azj may be structurally zero for manyi, j resulting in a
sparse matrixL. The A-orthogonalization process can efficiently exploit the propertylij = 0
by skipping the corresponding orthogonalization step. Furthermore, one may also drop the
entry lij and skip the orthogonalization iflij is sufficiently small. This would result in an
incomplete factorization called robust incomplete factorization (RIF).

RIF has also been used in [9] to efficiently construct preconditioners forCTC for a full
rank matrixC ∈ R

m×n arising from the normal equation for the least squares problem. An
advantage of RIF forCTC is that theCTC-orthogonalization process can be carried out
usingC only as

(3.3) zi = zi − lijzj , with lij =
〈Czi, Czj〉
〈Czj , Czj〉

,
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for j = 1, 2, . . . , n andi = j + 1, . . . , n, where〈·, ·〉 is the Euclidean inner product. In this
setting, the following CGS formulation oflij

zi = zi − lijzj , with lij =
〈Cei, Czj〉
〈Czj , Czj〉

is preferred over the MGS formulation because of the need to computeCzi in MGS (3.3) each
time zi is updated, whereas onlyCei (thei-th column ofC) is needed in CGS. Since we are
only interested in an incomplete factorization by applyinga dropping threshold forzi andlij ,
the difference in stability between CGS and MGS is not significant. Also, the computation
of lij requires formingCzj once for eachzj , which involves sparse-sparse matrix-vector
multiplications and can be efficiently computed as a linear combination of a few columns
of C; see [9]. We also observe that the inner products inlij involve two sparse vectors as
well.

If we multiply both sides of (3.3) by C, it is possible to get around the computation
of wi := Czi as a matrix-vector multiplication in MGS (3.3) by computing it through the
updating formula

(3.4) wi = wi − lijwj , with lij =
〈wi, wj〉
〈wj , wj〉

,

which maintains the MGS form. However, since the matrixL is all we need, it is not necessary
in this formula to computezi anymore. Indeed, sincewi is initialized asCei, (3.4) is just the
modified Gram-Schmidt process in the Euclidean inner product applied to the columns ofC,
and it becomes the MGS method for theQR factorization ofC. However, withwi initialized
asCei andzi initialized asei, the generated sequencewi is expected to be much denser than
the correspondingzi, which appears to be the case in our experiments. This may be the main
motivation of using the A-orthogonalization in RIF.

We observe that the same process can be extended to our problem of constructing an
LDLT factorization forA := CTC − µI with a shiftµ ≈ σ2

1 . The corresponding orthogo-
nalization process is

zi = zi − lijzj , with lij =
〈Cei, Czj〉 − µ〈ei, zj〉
〈Czj , Czj〉 − µ〈zj , zj〉

,

for j = 1, 2, . . . , n andi = j+1, . . . , n. Now, if µ < σ2
1 , thenCTC−µI is positive definite,

and with the divisor inlij being nonzero, the process is well defined.
If µ = σ2

1 , thenCTC−µI is positive semidefinite and the process may encounter a zero
division if 〈Czj , Czj〉−µ〈zj , zj〉 = 0 for somej. However, in this case,(CTC − µI)zj = 0,
and then〈Czi, Czj〉 − µ〈zi, zj〉 = 0 for any i. Then we do not need to carry out the or-
thogonalization againstzj . Continuing the process, we still obtainz1, z2, . . . , zn such that
〈Czj , Czi〉 − µ〈zj , zi〉 = 0 butZTAZ = D will have zeros in the diagonal. However, this
does not cause any problem as we still haveCTC − µI = LDLT , and by using a scaled
L, we haveD with 0 and1 as diagonal elements. This is precisely the factorization needed;
see (2.5).

If µ > σ2
1 , thenCTC − µI is indefinite and the process may breakdown with the occur-

rence of〈Czj , Czj〉−µ〈zj , zj〉 = 0 but(CTC−µI)zj 6= 0 for somej. In practice, the exact
breakdown is unlikely, but we may encounter a near breakdown〈Czj , Czj〉 − µ〈zj , zj〉 ≈ 0,
which may cause an instability in the process. However, since we are only interested in an
incomplete factorization which incur a perturbation through dropping small elements, we
propose to modify the pivot by simply setting〈Czj , Czj〉 −µ〈zj , zj〉 to some nonzero scalar
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such as the dropping threshold and skip the orthogonalization againstzj . This perturbation
is consistent with the dropping strategy in the incomplete factorization and would amount
to a perturbation tozj of the order of magnitude of the dropping threshold. In any case, it
only affects the quality of the preconditioner and hence efficiency of the overall algorithm,
but it does not reduce the accuracy of the singular value computed by our method. In our
experiences, the algorithm handles modest indefiniteness very well, but the quality of the
preconditioner deteriorates as the matrix indefiniteness increases.

The incompleteLDLT factorization provided by RIF needs to be scaled so thatD has
diagonals equal to0,±1 for its use as a preconditioner for the singular value problem. This
can be achieved by multiplyingL byD1/2 on the right. The following is the RIF algorithm
as adapted from [9] with the columns ofL scaled.

ALGORITHM 3.1. Robust Incomplete Factorization ofCTC − µI.
1 Input:η1 (drop threshold forL) andη2 (drop threshold forZ);
2 initialization:Z = [z1, z2, . . . , zn] = I; L = [lij ] = I ∈ R

n×n;
3 Forj = 1 to n
4 dj = 〈Czj , Czj〉 − µ〈zj , zj〉;
5 ljj =

√

|dj |;
6 If ljj > max{η1‖Cej‖1,u}
7 Fori = j + 1 to n
8 pij = 〈Czj , Cei〉 − µ〈zj , ei〉;
9 If |pij |/ljj ≥ max{η1‖Cej‖1,u}
10 zi = zi − pij

dj
zj andlij = sgn(pjj) · pij/ljj ;

11 If |zi(ℓ)| < η2‖zi‖1 for anyℓ, setzi(ℓ) = 0;
12 End
13 End
14 Else
15 ljj = max{η1‖Cej‖,u}
16 End
17 End

We present some remarks concerning Algorithm3.1. At line 6, we test the divisorljj
for near-breakdown. If a near-breakdown occurs, we setljj to the breakdown threshold
max{η1‖Cej‖1,u} at line 15 and skip the orthogonalization process. Here, we note that
the threshold is chosen to be relative to the norm ofCej asCzj is constructed from it through
orthogonalization andu is added to the definition of the threshold to deal with the possible
situation ofCej = 0. We skip the orthogonalization ofzi if lij is below the given threshold
max{η1‖Cej‖1,u}. In that case,lij is set to 0. To further improve the efficiency of the
algorithm, we also apply a dropping rule tozi at line 11 by setting all entries ofzi that are
below the thresholdη2‖zi‖1 to 0. This will maintainZ as sparse as possible and improve
the efficiency of the algorithm. In our experiments, the quality of the constructed precon-
ditioner appears to depend more on the magnitude ofη2 than that ofη1. So η2 is chosen
to be much smaller thanη1. In our implementation, we setη1 = 10−3 andη2 = 10−8 as
the default values. Finally, on output, the algorithm produces an approximate factorization
CTC − µI ≈ LDLT with D having only0,±1 as diagonal elements.

4. Robust implementation. One advantage of the inverse-free preconditioned Krylov
subspace method is its simplicity of the implementation with the number of inner iterations
being the only parameter to select. We have implemented Algorithm 2.3 in combination
with the RIF preconditioner (Algorithm3.1) in a black-box MATLAB implementation for
the singular value problem. The program calledsvdifp is used in our numerical tests.
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Our programsvdifp is based on the MATLAB programeigifp [32], which im-
plements the inverse-free preconditioned Krylov subspacemethod with several algorithmic
enhancements for the generalized eigenvalue problem. We have incorporated many features
of eigifp into our implementation, but the core iteration involves the construction of the
projection ofC as outlined in Algorithm2.3. Noting that for Algorithm2.3, the only required
user input ism (the inner iteration) and a preconditioner, we have adoptedthe same strategy
used ineigifp in determiningm; see [32]. Namely,m can be either specified by the user
or, by default, adaptively determined by the program according to its effect on the rate of
convergence. Note that experiments have shown that an optimal value ofm is larger if the
problem is more difficult, while it is smaller if the problem is easier (e.g., with a good pre-
conditioner). On the other hand, to determine a preconditioner, we first need an approximate
singular value as a shift for the RIF preconditioner. Here different strategies will be used
depending on whether computing the largest or the smallest singular values is the goal.

For computing the smallest singular value, we assume0 is a good initial approximate
singular value, and, using0 as the shift, we compute a preconditioner by Algorithm3.1 and
carry out a preconditioned iteration.

For computing the largest singular value, the standard Lanczos bidiagonalization algo-
rithm [17] should work well because the spectral separation is typically doubled through the
CTC formulation (1.1), i.e.

σ2
n − σ2

n−1

σ2
n−1 − σ2

1

=
σn − σn−1

σn−1 − σ1

σn + σn−1

σn−1 + σ1
≈ 2

σn − σn−1

σn−1 − σ1
·

However, for problems with clustered largest singular values, the preconditioning approach
can still be very beneficial. One difficulty then is that thereis no good approximate singular
value readily available initially, and no preconditioner can be derived. Following the strategy
in eigifp [32], we start the iteration with no preconditioning, and when asufficiently good
approximate singular valueσ has been found as determined by the residual, we compute a
preconditioner forCTC −µI by Algorithm3.1with the shiftµ = σ2+ rp and then continue
the iteration with preconditioning, whererp is the residual and henceµ is an upper bound for
the true singular value. This typically leads to accelerated convergence.

In both cases, the program monitors the approximate singular value obtained and the
convergence rate and may update the preconditioner using anupdated approximate singular
value as the shift if a significant deviation of the singular value from the shift is detected.
The same strategy is followed when computing several singular values with deflation. The
program can be run with no required user input. However, it also allows various optional
parameters, which the user may supply to improve performance. These include the inner
iterationm, the RIF thresholds, an initial approximate singular value(which can be used to
compute a preconditioner), or a preconditioner itself, among others.

5. Numerical examples.In this section, we present some numerical examples to demon-
strate the capability and efficiency of the preconditioned inverse-free Krylov subspace method
for the singular value problem. We compare our MATLAB implementationsvdifp with
several existing programs (i.e.,irlba of Baglama and Reichel [3], jdsvd of Hochsten-
bach [21, 22], lansvd of Larson [29], andsvds of MATLAB, which is based on ARPACK
[30] of Lehoucq, Sorenson, and Yang). The programirlba [3] implements an augmented
implicitly restarted Lanczos bidiagonalization algorithm. The programjdsvd [21, 22] im-
plements a Jacobi-Davidson method on the augmented matrix formulation. (Note that a pro-
gram based on the Jacobi-Davidson method forCTC has also been developed recently [23].)
The codelansvd [29] implements the Lanczos bidiagonalization algorithm forR−1 from
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theQR factorization ofC = QR for computing the smallest singular value. The MAT-
LAB programsvds implements ARPACK [30] and uses the inverse ofM (or M − µI) in
the formulation (1.2) for computing the smallest singular value. We note thatsvdifp and
jdsvd compute one singular value at a time, whileirlba , lansvd , andsvds can com-
pute several singular values simultaneously. On the other hand,svdifp andjdsvd can use
preconditioners to accelerate convergence, whileirlba , lansvd , andsvds have to use
the shift-and-invert approach.

In the first three examples, we test the programs on computingthe smallest singular
value, while in the fourth example we demonstrate the capability of svdifp in computing
several of the largest singular values using deflation. All the executions were carried out using
MATLAB version 8.0.0.783 from MathWorks on a PC with an Intelquad-core i7-2670QM
with 2.20GHz and 12 GB of RAM running Ubuntu Linux 12.04. The machine epsilon is
u ≈ 2.2 · 10−16. The performance parameters we consider for comparisons are the resid-
ual of the approximate singular triplet obtained, the number of matrix-vector multiplications
where applicable, and the CPU time. The CPU time is gathered with on-screen outputs sup-
pressed. For the methods that require some factorization ofthe matrix, we also consider
the number of non-zeros in the factors, which indicates the memory requirements and their
potential limitations.

We first present an example that tests the capability ofsvdifp to compute tiny singular
values accurately. We also show that applyingeigifp directly to the eigenvalue problem
for CTC may result in a loss of accuracy for the computed singular value. Here, in using
eigifp , the matrix-vector multiplicationCTCx is obtained by computingCx first and then
multiplying byCT . Even thoughCTC is not explicitly formed, the singular value is obtained
from the projection ofCTC, potentially resulting in a loss of accuracy; see the discussion in
Section2.

EXAMPLE 5.1. We consider the following matrix

C = UΣV T , with Σ =

[
D
0

]

∈ R
m×n,

whereD = diag(1, 1/24, . . . , 1/n4) andU andV are random orthogonal matrices generated
by U=orth(rand(m,m)) andV=orth(rand(n,n)) in MATLAB. We test and com-
pare the accuracy of the smallest singular value computed bysvdifp andeigifp with
n = 100 andm = 100 or m = 200. In either case, the exact smallest singular value ofC
is σ1 = 10−8, and the second smallest singular value is approximately1.041 · 10−8. The
convergence is tested using the criterion‖CTCv1 − σ2

1v1‖ < η‖C‖2, and to achieve the best
accuracy possible, we use a very small thresholdη = 10−19 and run the iteration until the
residual stagnates. Both methods are run without preconditioning and with the number of
inner iteration set to 20.

Table5.1lists the best smallest singular values and their residualsobtained. Forsvdifp ,
with κ(C) = 108, the residual deceases to about10−18 and the computed value ofσ1 has
a relative error of the order of10−10 ≈ uκ(C). This is the best accuracy one may expect
from a backward stable method. On the other hand foreigifp , the residual decreases and
then stagnates at around10−16. The relative error of the computed singular values oscillates
around10−4, and no better approximation can be obtained. The singular value computed by
applyingeigifp directly lost about 5 digits of accuracy in this case.

It is interesting to observe that with a good preconditioning, eigifp appears to be
able to computeσ1 accurately. Note thatC is a dense matrix and the default preconditioner



ETNA
Kent State University 

http://etna.math.kent.edu

214 Q. LIANG AND Q. YE

TABLE 5.1
Example5.1. σ1: computed smallest singular value bysvdifp andeigifp , Res:‖CTCv1 − σ2

1
v1‖.

m = 100 m = 200
σ1 Res σ1 Res

svdifp 1.0000000008e-08 1e-201.00000000001e-08 2e-20
eigifp 1.0001e-08 8e-17 1.00008e-8 8e-17

TABLE 5.2
Test matrices used for Examples5.2and5.3.

No. Matrix Size Non-zeros σ1 κ(C) source

Square Matrix

1 dw2048 2048× 2048 10114 4.68e-4 2.03e3 Matrix Market
2 fidap004 1601× 1601 31837 6.57e-4 2.39e3 Matrix Market
3 hor131 434× 434 41832 1.53e-5 4.31e4 Matrix Market
4 jagmesh1 936× 936 6264 5.63e-3 1.23e3 Matrix Market
5 lshp 3025× 3025 20833 1.03e-4 6.78e4 Matrix Market
6 pde2961 2961× 2961 14585 1.62e-2 6.42e2 Matrix Market
7 pores3 532× 532 3474 2.67e-1 5.61e5 Matrix Market
8 sherman 1000× 1000 3750 3.23e-4 1.56e4 Matrix Market

Rectangular Matrix

9 well1033 1033× 320 4372 1.09e-2 1.66e2 Matrix Market
10 well1850 1850× 712 8755 1.61e-2 1.11e2 Matrix Market
11 lpi cplex1 5224× 3005 10947 6.39e-2 3.13e3 UFLSMC
12 qiulp 1900× 1192 4492 7.57e-1 4.08e1 UFLSMC
13 ge 10099× 16369 44825 1.08e-3 1.28e7 UFLSMC
14 p010 10099× 19090 118000 1.50e-1 1.18e2 UFLSMC
15 lp ganges 1309× 1706 6937 1.87e-4 2.13e4 UFLSMC
16 cep1 1521× 4769 8233 1.00e0 1.49e1 UFLSMC
17 gen2 1121× 3264 81855 1.41e0 3.35e1 UFLSMC
18 Maragal5 3320× 4654 93091 7.11e-46 2.30e46 UFLSMC
19 lp ship12s 1151× 2869 8284 0 - UFLSMC

constructed byeigifp is the (complete)LDLT factorization. However, if we use a precon-
ditioner that is constructed fromATA by artificially dropping the entries ofA that are smaller
than10−3, then a similar loss of accuracy occurs.

Next, we test and comparesvdifp with several existing programs for the SVD on
computing the smallest singular value for a set of test problems. The test matrices consist of
both square and non-square matrices taken from the Matrix Market [11] and the University
of Florida Sparse Matrix Collection [12]. They are listed in Table5.2 together with some
basic information on the matrices (the smallest singular values are computed by MATLAB’s
svd(full(A)) ).

Since these programs may have very different approaches andhave different assump-
tions on computing resources, we carry out the tests in two different settings. We first con-
sider those programs in Example5.2 that do not use any exact factorization for the inverse,
i.e., svdifp , jdsvd , and irlba . Sincesvdifp and jdsvd can be implemented with
or without preconditioning, we test them first with preconditioning and then without precon-
ditioning together withirlba . In the second test (Example5.3), we considersvds and
lansvd , where theLU factorization ofM and the QR factorization ofC are respectively
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TABLE 5.3
Example5.2 with preconditioning. CPU: CPU time, MV: # of matrix-vectormultiplications, nnz: number of

non-zeros of the preconditioner, Res:‖[Cv1 − σ1u1;CTu1 − σ1v1]‖/‖C‖1.

svdifp jdsvd
No. CPU MV nnz Res CPU MV nnz Res

Square Matrix

1 0.6 179 25564 9e-7 0.4 136 49019 2e-11
2 1.5 223 91593 1e-7 0.9 102 179673 2e-8
3 0.6 3545 15719 5e-7 0.1 148 11740 3e-10
4 0.4 289 33065 6e-7 0.7 146 67112 6e-10
5 7.3 1103 170276 8e-7 1.7 100 425650 6e-10
6 1.9 113 69291 3e-8 0.3 126 89000 2e-9
7 0.04 25 4870 3e-13 0.09 96 46461 3e-7
8 0.2 355 13695 3e-7 0.1 84 11630 2e-7

Rectangular Matrix

9 0.03 91 2235 2e-10 2.8 750 59291 1e-7
10 0.08 69 6325 7e-8 9.6 426 312083 1e-7
11 0.4 69 8995 2e-7 9.0 320 49318 2e-7
12 0.2 91 13620 1e-8 1.2 350 94671 3e-7
13 10.4 91 110017 5e-7 1689. 20052 141008 1e-4
14 13.1 157 138793 2e-7 474. 438 11276604 1e-7
15 0.3 91 18573 9e-9 10.6 358 421304 2e-13
16 2.0 113 106822 3e-8 1.1 266 41793 6e-7
17 4.3 267 297609 9e-7 36023. 36846 8055182 1e-3
18 28.0 24 997991 3e-2a 9002. 3744 8666363 7e-7
19 0.08 24 6868 7e-2b 0.5 136 65642 4e-8

aFor this matrix,σ1 =7.11e-46 according to MATLAB’ssvd . AlthoughRes =3e-2, the residual defined by
‖CTCv1 − σ2

1
v2
1
‖ is 3e-24, while the computed singular value is 2e-25. The singular values returned byjdsvd

for this matrix is 3e-5. Also note that 113 singular values of this matrix are smaller than the machine precision and
the second smallest is 1.7e-31.

bFor this matrix,σ1 = 0 according to MATLAB’s svd . Although Res = 6e-2, the residual defined by
‖CTCv1 − σ2

1
v2
1
‖ is 2e-25, while the computed singular value is 4e-27. The singular values returned byjdsvd

for this matrix is 6e-7. Also note that 35 singular values are smaller than the machine precision. The second smallest
singular value is 0 as well and the third one is 1.3e-18.

computed for the shift-and-invert. To facilitate a comparison, we considersvdifp using
theR factor from theQR factorization ofC as a preconditioner. Namely, if a complete
factorization is possible,svdifp may also take advantage of it by using a more effective
preconditioner although this is not the best way to use the program.

EXAMPLE 5.2. We consider the performance ofsvdifp , jdsvd , andirlba in com-
puting the smallest singular value of the matrices in Table5.2. For matrices withm < n, we
consider their transposed instead. We set the initial vector for all three methods to be the same
random vector generated byrandn(n,1) . We also select the parameters in the three codes
so that each method carries out about the same number of matrix-vector multiplications in
each inner iteration. Specifically, forsvdifp , we set the number of inner iterationsm to 10.
In jdsvd , the maximum number of steps of the inner linear solver is setto 10, which is also
its default value. We use the default settings ofjdsvd for all other parameters. In partic-
ular, the refined extraction of the Ritz vector is used throughout, and the dimension of the
search subspace varies between10 and20. In irlba , we setk = 1 (the number of desired
singular values) andadjust = 8 (the number of initial vectors added to thek restart vectors
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to form an initial subspace). They are chosen so that the dimension of the initial subspace is
consistent with the default choices:k = 6, adjust = 3. All other parameters inirlba are
set to their default values. Thenirlba applies 10 bidiagonalization steps after each restart.
Based on these settings, all three methods carry out approximately 22 matrix-vector multipli-
cations (byC orCT ) in each outer iteration. We set the maximum number of outer iterations
to 10000 for all, and, unless stated otherwise, the stoppingcriterion is

(5.1) Res := ‖[Cv1 − σ1u1;C
Tu1 − σ1v1]‖/‖C‖1 < 10−6,

where(σ1, u1, v1) is the approximate singular triplet obtained at stepk.
We first comparesvdifp andjdsvd , both of which allow using preconditioning to ac-

celerate convergence. Insvdifp , the default RIF preconditioner is used, i.e., an incomplete
factorization ofCTC is constructed by Algorithm3.1with the default choices of thresholds
η1 = 10−3 andη2 = 10−8. In jdsvd , a preconditioner is needed for solving a correc-
tion equation in the inner iteration, and we use the routinecreate prec jdsvd.m that
accompaniesjdsvd to construct a preconditioner forM . Specifically, for square matrices,
we compute the ILU factorization ofC, from which a preconditioner forM is constructed.
For non-square matrices, we compute the ILU factorization of M, but because of the singu-
larity of M , breakdown often occurs, in which case the ILU factorization of a shifted matrix
M − µI is used whereµ = 2p · 10−2‖M‖max andp is the first non-negative integer that
stops the breakdown. The dropping threshold for all ILU factorizations is10−3. In addition,
jdsvd uses BiCGSTAB [41] as the inner linear solver when a preconditioner is present.

In Table5.3 the results of this test are presented. In the table,nnz is the number of
non-zeros in the preconditioner (L for svdifp and bothL andU for jdsvd ). In theMV
column, we list the number of matrix-vector multiplications by eitherC or CT . Res is the
relative residual of the approximate singular triplet (5.1).

We observe thatsvdifp achieves satisfactory convergence within10000 iterations in
all problems. For matrices 18 and 19, the singular values areextremely small and there-
fore the residual of the singular triplet computed by (2.11) is not expected to converge. For
these two problems, the termination criterion is switched to using the eigenvalue residual
‖CTCv1 − σ2

1v1‖ instead when a singular value of the order of the machine precision is de-
tected (see the discussion on the left singular vectors in Section 2), and then, even though
Res is fairly large, the computed singular values, which are given in the footnotes, are ac-
tually very good approximations already. Therefore, with the limitation of not returning any
good left singular vector in such cases,svdifp still produces good approximate singu-
lar values and right singular vectors.jdsvd also achieve satisfactory convergence within
10000 iterations in all but problems 13 and 17. For those two problems, the preconditioned
linear solvers in the inner iterations ofjdsvd converge early in less than the maximum
10 iterations allowed, which is why the total matrix-vectormultiplications are less than the
maximum possible. Matrix 17 is also a difficult problem with 138 singular values clustered
between 1.41421 and 1.41425. In terms of performance measured byMVandCPU, jdsvd
outperforms the other methods slightly for square problems, while svdifp does that for
non-square problems. In terms ofnnz , RIF in svdifp has substantially less memory re-
quirement.

We next comparesvdifp and jdsvd without preconditioning. They are also com-
pared withirlba . When no preconditioner is present,jdsvd uses MINRES as the inner
linear solver. Forirlba , we only report its results with a one-sided full reorthogonalization,
which is the default setting. We list the results of this testin Table5.4. For problems 18 and 19
with extremely small singular values, the convergence testis switched to use the eigenvalue
residual‖CTCv1 − σ2

1v1‖, but at termination, the residual of the singular triplet with the left
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TABLE 5.4
Example 5.2 without preconditioning. CPU: CPU time, MV: # of matrix-vector multiplications,

Res:‖[Cv1 − σ1u1;CTu1 − σ1v1]‖/‖C‖1.

svdifp jdsvd irlba

No. CPU MV Res CPU MV Res CPU MV Res

Square Matrix

1 2.2 8033 1e-06 2.1 7542 9e-7 2.8 13856 9e-7
2 4.9 18901 1e-06 6.0 21830 1e-6 21.9 104496 8e-7
3 20.1 220002 5e-04 34.8 220038 1e-5 25.9 220018 2e-2
4 9.5 81227 1e-06 4.8 26308 9e-7 13.4 90350 1e-6
5 27.3 69457 1e-06 20.7 62476 1e-6 59.8 220018 3e-2
6 3.5 9023 1e-06 3.0 9280 1e-6 6.1 23668 9e-7
7 21.1 220002 2e-03 35.7 220038 2e-5 27.2 220018 2e-2
8 15.1 127185 9e-07 23.7 127134 1e-6 32.6 220018 3e-2

Rectangular Matrix

9 1.2 7153 1e-06 0.4 2284 6e-7 0.2 1206 7e-8
10 0.5 2467 8e-07 0.6 2262 1e-6 0.3 1888 8e-8
11 0.7 1697 1e-06 0.4 1074 6e-7 0.2 634 2e-7
12 0.3 1257 1e-06 0.7 2900 1e-6 0.2 1228 1e-7
13 500. 220002 1e-03 189. 220038 3e-5 167. 220018 2e-2
14 18.4 6669 1e-06 2.0 1866 1e-6 2.8 2856 6e-8
15 0.1 553 1e-06 0.3 1008 1e-6 0.09 480 9e-8
16 0.1 245 2e-07 0.08 238 1e-7 0.02 62 9e-9
17 0.9 2269 8e-07 3.8 9918 9e-7 62. 220018 5e-7
18 122. 228135 9e-06a 116. 220038 2e-6 94. 220018 3e-3
19 0.6 2034 7e-16b 2.3 8136 6e-7 0.2 942 7e-8

aFor this matrix, the residual defined by‖CTCv1−σ2

1
v2
1
‖ is 2e-15, while the computed singular value is 1e-12.

The singular values returned byjdsvd is 5e-10. The singular values returned byirlba is 6e-7.
bFor this matrix, the residual defined by‖CTCv1−σ2

1
v2
1
‖ is 3e-14, while the computed singular value is 9e-15.

The singular values returned byjdsvd is 1e-14. The singular values returned byirlba is 4e-16.

singular vector computed by (2.12) has actually converged to a satisfactory level. Neverthe-
less, we list the computed singular values and the eigenvalue residuals in the footnotes. We
note that, without preconditioning,svdifp converges much more slowly than the ones with
preconditioning, and it appears that the additional iterations have resulted in a substantially
reduction of the singular triplet residual. We do not expectthis to be the case in general.

It appears that all three methods are comparable in convergence with each method out-
performing in some problems. For non-square matrices,irlba has the best results outper-
forming in most problems. Note thatsvdifp without preconditioning is simply the restarted
Lanczos method with the LOBPCG-type subspace enhancement.On the other hand,irlba
is also essentially the Lanczos method, but, with the implicit restart, it uses a larger projection
subspace with the same number of matrix-vector multiplications in each restart. Therefore,
irlba may be expected to outperformsvdifp without preconditioning in most cases. We
also note that the performance ofsvdifp (Table5.4) is significantly improved by precondi-
tioning (Table5.3). Several difficult problems with slow convergence are solved fairly easily
after preconditioning. With a drop tolerance of10−3, the RIF preconditioner appears to pro-
duce a good preconditioner that also has a relatively small number of fill-ins. Indeed, the
number of non-zeros inL (Table5.3) is typically 2 to 3 times that ofC (Table5.2).
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TABLE 5.5
Example5.3. CPU: CPU time, nnz: non-zeros ofR or L andU , Res:‖[Cv1 − σ1u1;CTu1 − σ1v1]‖/‖C‖1.

svdifp svds lansvd
No. CPU nnz Res CPU nnz Res CPU nnz Res

Square Matrix

1 0.05 83918 1e-16 0.09 193650 4e-15 0.04 83918 2e-13
2 0.1 249160 6e-17 0.1 259562 5e-16 0.09 249160 7e-14
3 0.01 29165 2e-15 0.04 99351 5e-16 0.01 29165 3e-11
4 0.01 35267 9e-13 0.05 69421 1e-15 0.02 35267 3e-10
5 0.1 196083 4e-16 0.2 439407 4e-15 0.08 196083 3e-12
6 0.06 142050 5e-15 0.1 279930 4e-14 0.06 142050 4e-13
7 0.01 8561 9e-13 0.03 52239 5e-17 0.01 8561 2e-15
8 0.01 32816 2e-16 0.05 49971 3e-16 0.02 32816 2e-13

Rectangular Matrix

9 0.01 2974 2e-13 - - - 0.01 2974 4e-11
10 0.01 9209 1e-12 - - - 0.01 9209 2e-10
11 0.8 1514019 1e-14 - - - 0.6 1514019 7e-16
12 0.06 48470 2e-12 - - - 0.05 48470 2e-13
13 0.4 313320 8e-11 - - - 0.3 313320 8e-15
14 0.6 505993 8e-16 - - - 0.3 505993 2e-12
15 0.02 30975 1e-17 - - - 0.02 30975 4e-14
16 0.4 263226 9e-12 - - - 0.2 263226 8e-11
17 54.7 550793 1e-10 - - - 15.6 550793 1e-16
18 10.2 2046096 5e-2a - - - - - -
19 2.3 7336 5e-17b - - - - - -

aFor this matrix, the residual defined by‖CTCv1−σ2

1
v2
1
‖ is 8e-17, while the computed singular value is 2e-17.

bFor this matrix, the residual defined by‖CTCv1−σ2

1
v2
1
‖ is 3e-15, while the computed singular value is 3e-16.

EXAMPLE 5.3. In this example, we comparesvdifp with svds and lansvd . For
computing the smallest singular value,svds is based on applying ARPACK [30] to M−1

or the shift-and-invert matrix(M − µI)−1. lansvd computes theQR factorization by
R = qr(C,0) in MATLAB and then computes the largest singular value ofR−1 by the
Lanczos bidiagonalization algorithm. For comparison, we useR = qr(C,0) as the pre-
conditioner forsvdifp . This approach runs into difficulty ifR is singular or nearly singular.
Indeed,lansvd breaks down in such situations (problems 18 and 19). An advantage with
svdifp is thatR is only used as a preconditioner and its accuracy only affects the speed of
convergence but not the accuracy of the computed singular values. Therefore, we can simply
perturb the zero or nearly zero diagonal entries ofR to deal with its singularity. For singular
or nearly singularR, it is important to use a column pivoting in theQR factorization but
MATLAB’s R = qr(C,0) employs a column approximate minimum degree permutation
to minimize fill-ins. For this test, if the resultingR is nearly singular, we compute aQR
factorization by[˜,R,e] = qr(C,0) , which appears to employ a column pivoting. We
then set the diagonal elements ofR that are less than the threshold

√
u‖R‖1 to the threshold

to construct a preconditioner forsvdifp .

All three codes require no additional input parameters other than the matrix, but we
set the initial vector to the same random vector for all of them. We run the programs until
convergence as determined by the algorithms themselves. Wecompare the residualRes
defined by (5.1), the CPU time, as well as the number of non-zeros used in the factorizations
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TABLE 5.6
Example5.4: 5 largest singular values of matrixlp ganges . σk: singular value,µ: shift used

for preconditioning, MV: # of matrix-vector multiplications, Res:‖[Cv1−σ1u1;C
Tu1−σ1v1]‖/‖C‖1.

preconditioning no preconditioning

σk µ MV Res MV Res

3.9908 3.9926 91 3e-12 443 5e-11
3.9906 3.9907 91 2e-14 289 9e-11
3.9895 3.9900 91 1e-13 531 7e-11
3.9894 3.9895 91 5e-13 641 4e-11
3.9892 3.9893 91 4e-12 1103 6e-11

(nnz ). Forsvdifp andlansvd , nnz is the number of non-zeros inR, and forsvds , it is
the total non-zeros inL andU of the LU-factorization ofM .

The results are given in Table5.5. All three methods perform comparably for square
matrices.svds with the zero shift fails for all non-square matrices because of the singularity
of M , which is marked by “-” in the table. Even using a small nonzero shift, svds usually
converges to the eigenvalue0 rather thanσ1. svdifp and lansvd can both solve non-
square problems with comparable performances. However,lansvd can fail for matrices
that are nearly rank deficient (problems 18 and 19, marked by “-”) because of the inversion
of a singular or nearly singular matrixR. On the other hand,svdifp does not suffer from
a similar problem becauseR is slightly perturbed to be used as a preconditioner. Overall,
svdifp appears most robust in this setting.

Finally, we considersvdifp for computing several of the largest singular values with
deflation. With the shifts chosen inside the spectrum now, RIF constructs anLDLT factor-
ization for an indefinite matrixCTC − µI. So, this also demonstrates the capability of RIF
to work with indefinite matrices.

EXAMPLE 5.4. We considersvdifp with and without preconditioning in computing
the 5 largest singular values of the matrix 15 (lp ganges ) in Table5.2. In both cases, we
set the termination threshold to1 · 10−10, and the number of outer iterations to 10000. To
compute the largest singular value,svdifp adaptively chooses a shift for preconditioning;
see Section4. When computing the next largest singular value, the mean of the largest and the
second largest singular values of the projection matrix constructed in computing the previous
largest singular value is used as the shift to compute an RIF preconditioner. Then,svdifp
proceeds with a deflated preconditioned iteration. Note that the second largest singular value
of the projection matrix is a lower bound of the singular value to be computed and the mean
value should provide a better estimate. The same procedure is used for the additional singular
values.

We present the results with and without preconditioning forthe 5 largest singular values
in Table5.6. We list the number of matrix-vector multiplications (byC orCT ) used for each
singular value, the residualRes obtained, and in the preconditioned case, the shiftµ used.
We note that both methods can compute the singular values correctly, while preconditioning
by RIF significantly accelerates the convergence ofsvdifp . In particular, the shifted matrix
is indefinite now but with the modest indefiniteness in computing a few extreme singular
values, RIF results in a very effective preconditioner.

6. Concluding remarks. We have presented an inverse-free preconditioned Krylov sub-
space algorithm for computing a few of the extreme singular values of a rectangular matrix.
The robust incomplete factorization (RIF) has been adaptedto efficiently construct precondi-
tioners for the shifted matrixCTC − µI. A preliminary MATLAB implementation has been
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developed and is demonstrated to be very competitive compared to other existing programs
in both settings of using preconditioners or shift-and-invert. A major disadvantage of our ap-
proach or theCTC formulation in general appears to be the potential difficulty in computing
left singular vectors corresponding to tiny singular values. This is a problem that we plan to
further study. We also plan to refine the MATLAB programsvdifp and make it available
for download in the near future.
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