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COMPUTING SINGULAR VALUES OF LARGE MATRICES WITH AN
INVERSE-FREE PRECONDITIONED KRYLOV SUBSPACE METHOD *
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Abstract. We present an efficient algorithm for computing a few extremgudar values of a large sparsex n
matrix C. Our algorithm is based on reformulating the singular valablem as an eigenvalue problem fof C.
To address the clustering of the singular values, we deaidpverse-free preconditioned Krylov subspace method
to accelerate convergence. We consider preconditioniagishbased on robust incomplete factorizations, and we
discuss various implementation issues. Extensive numeests are presented to demonstrate efficiency and robust-
ness of the new algorithm.
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1. Introduction. Consider the problem of computing a few of the extreme (aggest
or smallest) singular values and the corresponding singetors of anm x n real ma-
trix C. For notational convenience, we assume that n as otherwise we can considgr .

In addition, most of the discussions here are valid for theeea < n as well with some
notational modifications. Let; < 05 < --- < o, be the singular values @f. Then nearly
all existing numerical methods are based on reformulatiegstngular value problem as one
of the following two symmetric eigenvalue problems:

(1.1) 02 <o2<...<o? arethe eigenvalues a1’ C
or
—0p << =03<-01<0=--=0<01<02<--- <0y
—_——
m—n

are the eigenvalues of tleigmented matrix

0 C
12 e[
Namely, a singular value af' can be obtained by computing the corresponding eigenvalue
of eitherA := CTC or M.

Computing a few selected eigenvalues of a large symmetricis a subject that has
been well studied in the last few decades; ge&7] for surveys. To compute a few extreme
eigenvalues of a large symmetric matrix, the standard ndetfichoice is the Lanczos al-
gorithm [13, p. 304] or the implicitly restarted Lanczos meth&d][(ARPACK [30]). Their
speed of convergence depends on how well the desired elgesvare separated from the
rest of the spectrum. When the (relative) separation is sonate desired eigenvalues lie
in the interior of the spectrum, a shift-and-invert spddir@nsformation is usually used to
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accelerate the convergence; sé8& [14]. This requires inverting or factorizing a shifted
matrix. For sparse matrices, a factorization may createssiee fill-ins of the zero en-
tries, which results in significant memory and operatiorts.0é/hen the factorization of the
shifted matrix is inefficient or infeasible, several methdtave been developed that employ
either inexact shift-and-invert or sompeeconditioningransformations. The Jacobi-Davidson
method B8], the IDCG algorithm34], the locally preconditioned conjugate gradient method
(LOBPCQG) |26, 27], and the inverse-free preconditioned Krylov subspacehote{20, 32

are some of the methods in this class. There is a large bodtgiEtlre on various aspects of
the large symmetric eigenvalue problem; ske[4, 15, 19, 33, 37, 40, 45] and the references
therein for further discussions.

To compute a few extreme singular value<gfwe can apply the Lanczos algorithm or
the implicitly restarted Lanczos algorithm to one of the iwomulations (.1) and (.2), and
this can often be done implicitly. Indeed, several metha&ltbeen introduced that exploit
the special structure and the associated properties af gigenvalue problems. The Lanczos
bidiagonalization method introduced ih7] is a widely used method for the singular value
problems that implicitly applies the Lanczos method to herfulation (.1). A robust im-
plementation calledansvd is provided in PROPACKZ9]. The implicit restart strategy
has been developed for the Lanczos bidiagonalization ithgoin [3] and [28], which also
include the robust MATLAB implementatioridba  andirlanb | respectively. Other as-
pects of the Lanczos bidiagonalization algorithm are dised in [0, 24, 42]. These methods
based on the Lanczos algorithm for the eigenvalue problefh york well when the corre-
sponding eigenvalue is reasonably well separated. Howinegr convergence may be slow if
the eigenvalue is clustered, which turns out to be often éise avshen computing the smallest
singular values throughL(1). Specifically, for the formulationl(1), the spectral separation
for o7 as an eigenvalue @f” C' may be much smaller than the separation pfrom o, since

05—0% 02— 0] o1+ 09 » 09 — 01
2-02 0,—020,+02  0O,— 09

On

(assumingr; < 0,,). On the other hand, for the formulatioh ®), o, is an interior eigenvalue
of M, for which a direct application of the Lanczos algorithm sla®t usually result in
convergence.

The shift-and-invert transformation is a standard mettemddal with clustering or to
compute interior eigenvalues. For example, to compute afdaive smallest singular values,
MATLAB's routine svds applies ARPACK B0, 39 to the augmented matrix/ (1.2) with
a shift-and-invert transformation. This works well for sge matrices. However, for comput-
ing the smallest singular value of a non-square matrix, desulifficulty arises in using the
shift-and-invert transformation fav/ becausel! is singular, and with a shift close t the
method often converges to one of thee— n zero eigenvalues d¥/ rather than ter;. On the
other hand, one can avoid the shift-and-invert proceduredbgidering the Jacobi-Davidson
method for the augmented matrik.®), and a method of this type, called JDSVD, has been
developed in21, 22] that efficiently exploits the block structure df.¢). The IDSVD method
replaces the shift-and-invert step by approximately sgj\so-called correction equations us-
ing a preconditioned iterative method. When computings an interior eigenvalue of the
augmented matrixi(2), convergence of JDSVD appears to strongly depend on tHeygok
the preconditioner for the correction equation. This dedisamgood preconditioner fad or
M — ul, which is unfortunately difficult to construct when # n owing to the singularity
of M.

It appears that the augmented matrix formulati@r?) has some intrinsic difficulties
when it is used to compute a few of the smallest singular wabfea non-square matrix
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because of the existence of the zero eigenvaluéd oFor this reason, we propose to recon-
sider formulation {.1) in this situation. While {.1) has the advantage of a smaller dimen-
sion in the underlying eigenvalue problem, a clear disathgais that there is no efficient
method to carry out the shift-and-invert transformat{@®’ C — uI)~! other than explic-
itly forming CT'C. Note thatC7' C is typically much denser thafi and explicitly comput-
ing CTC may result in a loss of accuracy with the condition numben@aiquared. In the
case ofu = 0, which can be used to compute a singular vatuéhat is sufficiently close to 0,
the inverse of>”' C can be implicitly obtained by computing the QR factorizataf C'. This
is the approach taken iansvd of PROPACK R9]. However, since a complete QR factor-
ization of a sparse matrix may be expensive owing to possidessive fill-ins of the zero
entries, it is interesting to study other approaches thainsomplete factorizations instead.
Other drawbacks of1(1) include the need to compute left singular vectors when trey
required and the potential loss of accuracy caused by cangpeit wheno, is tiny; see Sec-
tion 3. In particular, the computed left singular vectors may Haweaccuracy if the singular
values are small; see the discussions in Se@ion

In this paper, we propose to address the small separatiohiofthe formulation {.1) by
considering a preconditioned Krylov subspace method. i8paty, we shall implicitly ap-
ply the inverse-free preconditioned Krylov subspace metif¢20] (or its block version 36])
to A = CTC. As already discussed, the standard shift-and-inverstoamation is not prac-
tical for (1.1) as it requires a factorization ¢f”C — pI. The inverse-free preconditioned
Krylov subspace method is an effective way to avoid the shifi-invert transformation
for computing a few extreme eigenvalues of the symmetriceg@ized eigenvalue prob-
lem Az = ABz, where A and B are symmetric withB positive definite. In this method,
an approximate eigenvectoy, is iteratively improved through the Rayleigh-Ritz projeat
onto the Krylov subspace

Ko (Hy, xk) 1= span {xk, Hyxp, Hizg, ..., H,Z’ka} ,

whereH}, := A— p, B andpy is the Rayleigh quotient afy.. The projection is carried out by
constructing a basis for the Krylov subspace through arri@etion, where the matrice$
and B are only used to form matrix-vector products. The method@vgd to converge at
least linearly, and the rate of convergence is determinethéypectral gap of the smallest
eigenvalue ofH;, (rather than the original eigenvalue problem as in the Lascrethod).
An important implication of this property is that a congrueriransformation of A, B) de-
rived from an incompletd. DL factorization of a shifted matrixt — B may be applied
to reduce the spectral gap of the smallest eigenvalué,ofnd hence, to accelerate the con-
vergence to the extreme eigenvalue. This is referred toepditioning. A block version
of this algorithm has also been developed 36][to address multiple or severely clustered
eigenvalues.

In applying the inverse-free preconditioned Krylov sultspmethod 20, 36] to the ma-
trix A = CT'C, we directly construct the projection 6f rather than the projection @’ C
used for the eigenvalue problem. In this way, we compute apmations ofo; directly
from the singular values of the projection Gfrather than using the theoretically equivalent
process of computing approximationsaf from the projection of27'C'. By computingo;
directly, we avoid the pitfall of a loss of accuracy assamiarith computings? if o is tiny.
On the other hand, the potential difficulty with the accuraéyhe computed left singular
vector in this case is intrinsic to the approachdfC. An efficient implementation of the
inverse-free preconditioned Krylov subspace method d#pen the construction of a pre-
conditioner derived from an incomplefeD L™ factorization ofC”C' — pI. Constructing
a preconditioner foC”'C has been discussed extensively in the literature in theezbof
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solving least squares problems (sée§, 9, 16, 31, 35, 43]), and one method well suited
for our problem is the robust incomplete factorization (R&F [8, 9]. For the shifted ma-
trix CTC — pul, however, there is no known effective method for computirigcaorization
without formingC7 C first. It turns out that the robust incomplete factorizat{&hF) can be
easily adapted to construct &D LT factorization of the shifted matri€’” C' — pI without
forming CT'C. Our numerical results demonstrate that the RIF precamditiin combina-
tion with the inverse-free preconditioned Krylov subspagethod leads to a very efficient
preconditioned algorithm for the singular value problenuniérical tests also exhibit that
this method is particularly competitive for computing a fefithe smallest singular values of
non-square matrices.

The paper is organized as follows. Sectidevelops the inverse-free preconditioned
Krylov subspace method for the singular value problem. i8e@ presents the robust in-
complete factorization (RIF) preconditioner fof C — puI. Section4 briefly describes a
MATLAB implementation callecsvdifp  that we have developed. Sectibipresents some
numerical examples comparing our method with severaliegigirograms for the singular
value problem. We conclude in Sectiénwith some remarks. We consider real matrices
throughout, but all results can be generalized to complexices in a trivial way.

Throughout,|| - || denotes the 2-norm for both vectors and matrides||; denotes the
1-norm.|| - ||max denotes the max norm, i.e., the largest entry of the mati@bsolute values.
(z,y) := 2Ty is the Euclidean inner product, and for a symmetric posiigfinite matrixA,
(z,y) 4 := zT Ay is the A-inner product.

2. Theinverse-free preconditioned Krylov subspace methadWe compute the singu-
lar values ofC' by computing the eigenvalues df = CT'C. To address the problem of slow
convergence caused by the reduced spectral gai af the Lanczos algorithm, we apply
the inverse-free preconditioned Krylov subspace prajacthethod of 20], whose speed of
convergence can be accelerated by preconditioning using secomplete factorizations. We
first describe this basic method for the eigenvalue probre8eiction2.1. We then develop a
corresponding algorithm for the singular value problemeégatn?2.2.

2.1. The generalized eigenvalue problemConsider the problem of computing the
smallest eigenvalue of the generalized eigenvalue profde, B), i.e., Ax = ABz. Note
that we need to discuss the generalized eigenvalue probdéeendven though the singular
value problem will be formulated as a standard eigenvaloklpm for C*C' because our
preconditioning scheme will actually transform it to an eglent generalized eigenvalue
problem.

In an iterative process, assume thatis an approximate eigenvector at step\Ve con-
struct a new approximation,; by the Rayleigh-Ritz projection qfA, B) onto the Krylov
subspace

Kin(A = prB,zy) = span{zy, (A — pp B)x, ..., (A — ppB)"x1 },
where

foxk

pr = plon) i= Jrp
is the Rayleigh quotient anch is a parameter to be chosen. Specifically, Zgt be the
matrix consisting of the basis vectors &f,,(A — ppB,zx). We then form the matrices
Ay = ZL(A - ppB)Z,, andB,,, = Z% BZ,, and find the smallest eigenvalye and a

m

corresponding eigenvectarfor (A,,, B,,). Then the new approximate eigenvector is

(2.1) Tpy1 = Zmh,
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and, correspondingly, the Rayleigh quotient

(2.2) Pk+1 = Pk + K1

is a new approximate eigenvalue. This is the basic procabke @fiverse-free Krylov subspace
method; seed0] or Algorithm 2.2 below for a formal description. The construction of the
basis vector,, for K,,(A — pxB, z1) is accomplished using either the Lanczos method or
the Arnoldi method with thé3-inner product; see?[)] for a more detailed discussion.

Itis shown in RO, Theorem 3.2] thap;, always converges to an eigenvalue andcon-
verges into the direction of an eigenvector. Furthermdrefollowing theorem characterizes
the speed of convergence.

THEOREMZ2.1 ([20, Theorems 3.2 and 3.4])et A and B be symmetric wittB3 positive
definite, and let\; < X2 < --- < ), be the eigenvalues d¢f4, B). Let (px, i) be the
approximate eigenpair at stépof the inverse-free Krylov subspace method define@ 4y
and (2.2), and assume that; < pg < X2. Thenp, converges to\;. Furthermore, if
w1 < pe < --- < u, are the eigenvalues of — p; B, then

1
B 2
(23) g1 — M < (k= M)em + 200k — M) e, <|L2> + 0 ((ox —M)?),
where
€Em = min max |p(,uz)|

PEPm,p(p1)=1 i#l

andP,, denotes the set of all polynomials of degree not greater than

This theorem demonstrates thatconverges at least with the rate«df, which is deter-
mined by the spectral distribution of — p; B. It is also shown in20, Corollary 3.5] that,
asymptotically, the eigenvalues &t p;, B in this bound can be replaced by thosedof A\, B
to simplify it. Namely, lettingd = v < 72 < --- < ~,, be the eigenvalues of — \| B, we
have

2m m %
(2.4) =AMy <1 — ﬂ) +4 (1 — ﬂ) <B||> (pr—=A1)%+O0(pr=1),

pE— A L+V9 L+% P
where
= JeT T2
Tn — 71 Tn

By (2.4) (or Theorem2.1), convergence of the inverse-free Krylov subspace method
can be accelerated by increasing the relative gap betwgamd~, (or u; andus). This
can be achieved by a congruent equivalent transformatibichais called preconditioning.
Specifically, we can compute dnD L” factorization ofA — X\, B that is scaled such that

(2.5) LY A—-\B)L™ T =D =diag(1,...,1,0).
We then consider the preconditioned problem
(2.6) (A,B):= (L7'AL~T, L7'BL™T),

which has exactly the same eigenvalues as the péAciB). However, applying our algo-
rithm to (A, B), the speed of convergence depends on the spectral gap of

A-MB=L"'YA-\B)LT=D,



ETNA
Kent State University
http://etna.math.kent.edu

202 Q. LIANG AND Q. YE

which has exactly two eigenvalues, namely = 0 andy, = --- = v, = 1. Then
¢ =1, andpry1 — M = O ((pr, — A1)?), which implies quadratic convergence gf*).
In general, one may use a step-dependent preconditioneproputing the factorization
A~ ppB = LDy LT. Then, using 2.3), we also obtain quadratic convergencepdf);
see (] for details.

The preconditioning strategies discussed above are iieatisns where the fulL DL”
factorization is computed. A practical way of implementthgs is to compute an incomplete
factorization ofA — B as an approximation, wheyeis an approximation ok;. With such
a matrixL, we may expect the eigenvaluesdf A\ B = L~1(A— X\, B)L~" to be clustered
around two points. Theth ~ 1, which results in accelerated convergence hy)( see B6]
for an analysis. We can also construct a preconditidnefrom an incomplete. DL” fac-
torization of A — py B at each step to redueg, and hence to accelerate convergence. This
is a more costly approach, but it can be used to update a mitiomer when it appears
ineffective.

As in the preconditioned conjugate gradient method foirsystems, the precondition-
ing transformation4.6) can be carried out implicitly. Indeed, all we need is to ¢ond, at
the iterationk, a basis for the transformed Krylov subspace

L™K (Hy, LT 2) = Koo (LT L™ Hy,, 21.),

whereH;, = A—p,BandH;, = A—p,B = L~ H,L~". This is achieved by using matrix-
vector multiplications withZ, ~7 L~=! H;,, and the only operation involving the precondition-
ing transformation id.~7' L~!; see P0] for details. For completeness, we state the following
preconditioned algorithm from2D, Algorithm 4] (with a possibly step-dependent precon-
ditioner L as discussed above and a construction éf-arthonormal basis of the Krylov
subspace).

ALGORITHM 2.2. Inverse free preconditioned Krylov subspace method foB3).

1 Inputm and an initial approximate eigenvectey with ||zg|| = 1;
2 po = p(xo);
3 Fork=0,1,2,...untl convergence
4 construct a preconditionér,
5 construct a3-orthonormal basi$zg, 21, . . ., 2z, } for
K (L=TL=YA — pyB), z);
6 form A, = ZL(A — pp B)Z,,, whereZ,, = [z0, 21, - - -, Zm)];
7 find the smallest eigenvalyg and an eigenvectdr of A,,,;
8 P41 = pr + p1 @andxy 1 = Zp,h.
9 End

The above algorithm computes the smallest eigenvalue dmyfind additional eigen-
values, we need to use a deflation procedure. A natural deflptiocess discussed 87
is to shift the eigenvalues that have been computed and ey the algorithm. Specifi-
cally, assume that\;, v;) (for 1 < i < ¢) are/ eigenpairs that have been computed, and let
Vo = [v1,...,v] satisfyV,/ BV, = I. ThenAV, = BV;A,, whereA, = diag{\1,..., \¢}.
If Aer1 < Aego < ... < )\, are the remaining eigenvalues @f, B), then )\, is the
smallest eigenvalue of

(2.7) (A, B) := (A + (BV,)%(BV,)T, B),

whereX = diag{« — \;} and« is any value chosen to be greater than,. Therefore\,;
can be computed by applying the inverse-free preconditidfe/lov subspace algorithm
to (A, B). For the singular value problem fér to be discussed in the next section, we apply
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the inverse-free preconditioned Krylov subspacd te C'7'C implicitly by applying the pro-
jection onC. However, the deflatior?(7) changes the structure @' C + (BV,)%(BV,)7,
for which an implicit projection is difficult to constructn ithis setting, it is more desirable to
work with (A, B) directly.

An alternative approach is to project the Krylov subspacthéa3-orthogonal comple-
ment ofV,; := span{vy,...,v,}. Namely, we apply projections directly dual, B) but re-
place the Krylov subspadé,, (A—pi B, x1,) or in the preconditioned algorithm, the subspace
K (L=TL=Y(A — pi B), 21, respectively, by the projected subspace

(2.8) Kon(I = ViV B)(A — ppB),z1) or Kp((I —ViVEB)L™TL™Y (A - pi.B), x1).

This enforces that all approximate eigenvectors obtainetaheB-orthogonal complement
of V, and hence their convergence to an eigenvector corresgpimione out of the eigen-
values{\sy1,...,\,} provided the iteration converges. This deflation approaah the
advantage of not changing the matrix= C7'C for the singular value problem. However,
its convergence property is not understood as the exigtiegry (Theoren?.1) is not readily
applicable to the setting of projected Krylov subspacesvéil@r, our numerical experiments
show that this deflation strategy works as intended.

2.2. The singular value problem forC. We consider the singular value problem for
anm xn matrixC. We apply Algorithn2.2to the eigenvalue problesh = C7C andB = I.
However, a direct application involves computing the eigéue p;. of the projection prob-
lem involving A,,,, which converges to?. One potential difficulty associated with this ap-
proach is thap;, computed in this way may have a larger errosifis very small (relative
to ||C||). Specifically, if 55, is the computed Ritz value, it follows from the standard back
ward error analysis1g] that g, is the exact eigenvalue of a perturbed matdiy, + E,,
with | By, || = O(u)||As ||, whereu is the machine precision. Then

|61 = pi| < O(W)[| Al < O(u)[| 4] = O(w)||C|*

and

10 - ot
T o~ OWICI@)2,

wherex(C) = o, /01 is the condition number af’. In particular, the relative error

V7 S 7 G
N SO()m(m+m)~0()(C)/2

is proportional tox(C)2. Thus, very little relative accuracy may be expected(if’) is of
orderl//u. In contrast, a backward stable algorithm should produapanoximation ot
with absolute error of the order 6f(u)||C|| and the relative error of the order f(u)x(C').

We note that the above discussion is based on a worst casebhquuel. It is likely pessimistic
particularly in the bound off 4,, ||, but it does highlight the potential loss of accuracy when
one approximates; through computing?; see Examplé.1in Section5.

To achieve the desired backward stability, we propose tatcact a two-sided projec-
tion of C, from which we compute the approximate singular valuesctlireThis is similar to
the Lanczos bidiagonalization algorithm, where a bidiag@nojection matrix is constructed
whose singular values directly approximate the singuléwesaof C'. Algorithmically, we
construct an orthonormal badis, 21, . . ., 2m } for K, (LT L=Y(A — py 1), zx) and simul-
taneously an orthonormal badigo, y1, - . ., ym | for spaqCzy, Cz1,...,Czy} as follows.

VB — Vil < O()C|
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First, fo,0 = ||Cz0||2, andyy = Cz/ fo,0. Then, fori =1,...,m, we generate; andy; by

fiizi =L TL™N(CTCzi—1 — prziz1) — foizo — friz1 — -+ — fi1,i%i-1,
(2.9)  giivi = Cz — go,iYo — 91.iY1 = — Gi—1,i¥i—1,

wheref;; = 2T L-TL~Y(CTCz_1 — przi-1), gji = yj Cz, and f;; andg, ; are cho-
sen so thatly;|| = ||z:]| = 1. Assumingdim(KC,,(L~TL=Y(A — pp1),2x)) = m + 1,
the recurrence for; does not breakdown, and the process leads to an orthonoasa b
{z0,21,...,2m . Itis easy to show that the recurrence §pidoes not breakdown either and
{Y0,Y1,--.,Ym} is orthonormal. Le¥,, = [yo,v1,-..,ym]. ThenCZ,, = Y,,G,,., where
G = [9]7—o- It follows that 2% (CTC) Zy, = GGy If o) is the smallest singular

value ofG,,, then(s\")?2 is the smallest eigenvalue of,, = ZZ(C”C)Z,,, i.e., the so

constructed valu(aa,(cl))2 is equal topy 1 in Algorithm 2.2
By computingo . directly, we avoid a possible loss of accuracy. Specificifly'" is
the computed singular value 6f,,, using the standard SVD algorithm suchsasl , then it

follows from backward stability tha’i,ﬁl) is the exact singular value @f,, + F,, for some
F,, with | F},,|| = O(u)||G |- Then

5 — oM < O)||Gnll < OW)|C],

and hence,

‘&(1) _ 0(1)|
% < O(u)k(C).
o
k

Thus, as Algorithn?.2 converges, i.e../pr = a,il) — o1, the approximate singular value

&,(j) can approximate with a relative accuracy of the order 6f(u)x(C').

To compute additional eigenvalues, we use a deflation basdteoprojected Krylov
subspaceq.8) and compute the direct projection 6f in the same way. We summarize
this process in the following algorithm, Algorithéh3, that computes thé + 1)st smallest
singular value when the firgtsingular values have already been computed.

ALGORITHM 2.3. Inverse free preconditioned Krylov subspace method for.SVD

1 Input:m; Vp = [v1,. .., v with CTCv; = o2v; andV, 'V, = I;

initial right singular vector, such that|zo|| = 1 andV,” ¢ = 0;

2 initialize: py = ||Col; G = [gi;] = 0 € RUPFDx(m+1);
3 Fork =0,1,2,...until convergence

4 construct a preconditiondr,

5 20 = xp, w = Czy, m' = m;

6 90,0 = |[w|| andyo = w/goo;

7 Fori=1:m

8 zi= I = VoVO L TL Y (CTw — przi_1)

9 Forj=0:i—1

10 2= 2 — (ZJTZZ)Z],

11 End

12 If [|2:]] # 0, z; = z;/]||2i||; otherwisen’ = i and break;
14 Forj=0:¢1—1

15 9ii =Yy, yi andy; = yi — g5,y
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16 End
17 gii = |lyill andy; = i/ gi i
18 End
19 compute the smallest singular valt),gz1 of G,, = [g,;j];’fj':o,
and a corresponding unit right singular veckor
20 prrr = (00 )% 2rgr = [20, 21, 2o

21 End

We make some remarks concerning AlgoritBr. The presented algorithm has defla-
tion included, wherée singular values and right singular vectors are given astipihen
none is given, it computes the smallest singular valuby settingl = 0 andV, to the empty
matrix. At line 4, a preconditioner needs to be constructethshatLDL” ~ CTC — ul
for i equal top, or afixed initial value. An algorithm based on RIF to computérecomplete
factor L implicitly from C will be discussed in the next section. As stated, differeatpn-
ditioners may be used for different iteration steps, bugficiency reasons, we usually use
the same preconditioner. Line 9 implements the deflation@edonditioning techniques
implicitly. The for loop at lines 7—18 constructs an orthonormal bdsis z1, . . ., 2,/ } for
the Krylov subspace and simultaneously an orthonormakHlasi 1, . . ., ¥/} such that
CZyy = Yy Gy, wherem/ = dim(K,,, (I — V,VF)LTL7Y(A — pxB),x1)) — 1. Then
G =Y,!,CZ,. Its smallest singular value and a corresponding rightusargrectorh are
computed to construct a new approximate right singularoreattlines 19-20.

The process is theoretically equivalent to Algoriti2 as applied tad = C7C and
B = 1. When no preconditioning is used, i.d., = I, the inverse-free Krylov subspace
method is simply the Lanczos method fdrwith a restart aftem iterations. When the
preconditioning is used, we effectively transform the dtd eigenvalue problem far” C
to the equivalent generalized eigenvalue problem(forB) = (L~'CcTCL~T, L-1L-T),
to which the inverse-free Krylov subspace method is applied

In theeigifp  implementation32] of the inverse-free preconditioned Krylov subspace
method for the eigenvalue problem, an LOBPCG-type (loagitymal preconditioned conju-
gate gradient]5, 27]) subspace enhancement was also included to further aatet®mnver-
gence. Note that, in the LOBPCG method, the steepest dasetinbd is modified by adding
the previous approximate eigenvectqr ; to the space spanned by the current approxima-
tion and its residualpan{xy, (A — pxB)x)} to construct a new approximate eigenvector. It
results in a conjugate gradient-like algorithm that hasgaiitant speedup in convergence
over the steepest descent method. This idea has also betinesgfp  [32] by adding the
previous approximate eigenvectoy_; to the Krylov subspack’,,, (A — pi B, ), which is
also found to accelerate convergence in many problems. édsxina cost of adding this vec-
tor is quite moderate, we also use this subspace enhancenmntimplementation for the
singular value problem. Algorithmically, we just need taladter thefor loop at lines 7-18
the construction of an additional basis vectgy ., by orthogonalizingr;, — z;_1 against
{20,271, ..,2m’ }. Note that we have used, — z;_; rather thanz;_, for orthogonaliza-
tion because orthogonalizing, | againstz, = z;, typically leads to a cancellation when
x, &~ x_1. 10 avoid possible cancellations, we implicitly compute trthogonalization of
T, — Tp_1 againstzg = xy through

_iLTiL h R
2 = |'d
i ] , where h [h] € {Rm“]

is the unit right singular vector of the projection matfi,,, and Z,, is the matrix of the

basis vectors at line 19 of the previous step (dtep 1) of Algorithm 2.3, i.e.,2x = Z,,/h

d= Zy
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andzy_1 = Z,e1, Wheree; = [1,0,...,0]T. Itis easy to check that
d= Zh— hilzm/el = — hilwk_l = hil(xk —Tp_1) — hlh; 1ZL’k
andx{d = 0. Therefore, a new basis vector that extends the subspalee:wit ;1 can
be obtained by orthogonalizingagainst z1, . .., z,,/ } as
Jmrstm412m41 = d — frmee121 — 0 = ot 4120 -

Moreover,Cd = CZ,,. [—%, iL]T, and thenC'z,,,» 1 can be computed without the explicit
multiplication byC' from

Cd — f1’m/+1021 — s — fm/,m/Hsz/
fm’+1,m’+1

sz’-‘rl = )

from whichy,,, .1 and an additional column @& are computed as ir2(9). However, with
possible cancellations in the last formul&z,,,- 1 may be computed with large errors and we
suggest to comput€'z,,,, 1 explicitly when high accuracy is needed.

The algorithm we have presented computes approximatelaingalues and simultane-
ously the corresponding right singular vectors only. Inleggions where singular triplets are
required, we can compute approximate left singular vedtors the right singular vectors
obtained. This is a limitation of the’” C formulation (L.1) and Algorithm2.3, where we
reduce the eigenvalue residuglof the approximate singular value and right singular vector

pair (o), z1,) (ith [lz¢]| = 1),
L T (1)\2
rp = ||C" Cxy — (0, ') k]|

From this residual, the errors of the approximate singmadme/o,il) and approximate right
singular vectorr;, can be bounded as (seE3[ p. 205])

2
7 . r,
L and sin Z(zp,v1) < —2,

NUNPHP, S
(a,(cl) + o1)gap gap

where we assume that is the singular value closest txf), v1 is a corresponding right

singular vector, angdap = min;«; |af€1) — o;]. When a corresponding left singular vector is
needed, it can be obtained as

(2.10) wp = Ok
e
k

provided thab,(:) # 0. Then the accuracy of the approximate singular tripzkéf), Wi, Tf)

can be assessed by
N H {wk} _U'(“l) [wk] ‘
Tk Tk

:
(2.11) re = -2

Cka — U,E,l)xk

Cxyp, — al(cnwk ]

It is easily checked that
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Therefore, for a tiny singular value, a small residyafor the pair(o,(cl), x) does not imply

a small residuat, for the singular triplet(a,(;),wk., x). Indeed, the constructed left sin-
gular vectorw, may not be a good approximation evenzif is a good approximate right
singular vector as indicated hy. This appears to be an intrinsic difficulty of ti&" C for-
mulation (L.1). Specifically, in the extreme case ©f = 0, a corresponding left singular
vector is any vector in the orthogonal complemenRgt”) (the range space @f), and it can
not be obtained from multiplying a right singular vector ©yor any vector in the subspace
CKm(CTC,z) = K (CCT, Cxy) € R(C). In this case, we need to considé€” on a
new random initial vector to compute a left singular vector.

An alternative formulation for the left singular vector istained by calculating the left
singular vectow of the projection matrixa,, at line 19 of Algorithm2.3and then forming

(212) Wy = [yO,yla"'7ym’]g'

It is easy to check that this is theoretically equivalentZd () if o,il) # 0. However, an

advantage of this formulation is that it is still defined ewghen o,gl) = 0 although the
quality of the approximation is not assured. Our numeriggleeiments indicate thaR(12

is in general similar to4.10) but may lead to a slightly better left singular vectors imo
problems. In our implementation, we useX]) to estimate the residual of singular triplets
to avoid the cost of computing it, but at termination, we &2 to compute a left singular
vector and then recompute its residual.

In the algorithm, we have used for the convergence test unless a left singular vector
is required. When this is indeed neededjs used for the convergence test. As discussed
above, however;; may never converge to if o,il) is extremely small. Therefore, in order
to properly terminate the iteration in such a situation, weppse to monitor the magnitude
of the computed singular value, and when an extremely snraukar value (i.e., of the
order of machine precision) is detected, the stoppingrasiteshould be switched to using.

By properly terminating the iteration accordingtg we can still obtain a sufficiently good
approximate singular value and a right singular vector.eAthat, we can then separately
apply the algorithm t@? to compute a left singular vector.

In the following algorithm, we present an extension of Aigun 2.3 by the subspace
enhancement steps and termination criteria discussecdalibalso includes the additional
step needed in computing the left singular vector when idgiired.

ALGORITHM 2.4. Inverse free preconditioned Krylov subspace method for 8MB
LOBPCG enhancement.

1-17 See lines 1-17 of Algorithéh 3.

18 Zmrg1 = dp;w = Cdy;

19 Forj =0:m’

20 Zmi41 = Zmi41 — (Z‘yrzm”rl)zj;

21 w=w — (ZfZ,,ﬂ-t,-l)CZj;

22 End

23 If || 241l # 0

24 Zm/4+1 = Z7rz/+1/||zm’+1||vw = w/”2m'+1”;ym’+1 = w;
25 Forj =0:m’

26 Jjm'+1 = ijil/m’H andy,y +1 = Ym/41 — Gjm/+1Yj5
27 End

28 gm 1,41 = [[Yn1ll @NAYmr 11 = Y11/ G 1m0 415
29 m'=m'+1;

30 End
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31 compute the smallest singular valq%zl of G,, = [gij];?fjf:o,
and a corresponding unit right singular veckor
32 dk—i—l - ZTYL/(h - 81/]11); Cdk+1 = OZm/(h - el/hl);
33 Pt = (03 0)2 21 = Zowh;
34 res = [|CTCxpt1 — pry12r41|l;
35 If singular tripletis desired andv,iﬂzl > u|C|?
36 res = res/ali:zl;
37 End
38 test convergence usings;
39 End
40 If singular tripletis desired
41 compute a left singular vectgrof G,,, andwg+1 = [Yo, Y1, - - - Ym’]9;
42 End

43 Output:(a,(vljl, Zk+1) Or, if singular tripletis required,(a,(:jl, Wit 1, Tht1)-

In Algorithm 2.4, lines 1-17 are identical to Algorithix3. In lines 18-30, the subspace
is expanded with, — z;_1 using the method mentioned earlier. In line 32 the orthotipaa
tion of ;1 — x, againstr,, is computed to be used in the next iteration. The algorithm,
by default, computes the singular value and the right sargeéctors. If singular triplets are
desired, in lines 35-37 an appropriate residual is compiadze used for testing conver-
gence. This is only for the purpose of terminating the iieratAt convergence, however, we
compute the left singular vectar, ., and the residual of the singular triplets explicitly.

Finally, we mention that the algorithm can be adapted tiyiem compute the largest
singular value. Namely, to compute the largest singulavesabfC', we just need to modify
line 19 in Algorithm2.3 and line 31 in Algorithn2.4 to calculate the largest singular value
of G,,, and a corresponding right singular vector, and the restefthorithm remains the
same. It is easy to see that the convergence theo3Ghektends to this case. We also note
that the above algorithm is based on a vector iteration forpeding a single singular value. A
block matrix iteration version of the inverse-free predtinded Krylov subspace method has
been developed ir8p] to compute multiple eigenvalues or extremely clusterggmialues.

It can be adapted as in Algorithth3to the task of computing multiple or extremely clustered
singular values. Here, we omit a formal statement of therélyno; see B6).

3. Preconditioning by robust incomplete factorizations (RF). In this section, we
discuss how to construct a preconditiongr i.e., an approximatd.DL” factorization
CTC —pul =LDLT, where,/j: is an approximation of the singular value to be computed
andD is a diagonal matrix of or +1. This generally requires forming the mata¥ C — 1.1,
which may be much denser thahand hence leads to a dender In addition, forming the
matrix is associated with a potential loss of informatioreény ill-conditioned cases although
this appears not to pose a problem when only an approximeiigrization is sought43].

For computing the smallest singular valye= 0 is a natural first choice for the shift.
In this case, we need an incomplete factorization of a symiengositive semidefinite ma-
trix, for which numerous techniques have been developee;[@efor a survey. Indeed,
if 4 = 0, the problem is the same as constructing a preconditionethi® linear least
squares problem. One method that has been well studiediischvaplete) R factorization;
see b, 16, 31, 35, 43]. The incompletel R factorization methods, such as the incomplete
modified Gram-Schmidt method or the incomplete Givensimtahethod, can be used here
to construct a preconditioner for computing the smallasg@iar values that are close to 0.
While these methods are effective and often result in a musterfaonvergence, they tend
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to have high intermediate storage requirements in our eqees; seed| as well. More-
over, they can not deal with the cage# 0. On the other hand, Benzi and Tuma propose a
method for constructing a preconditioner f6f C in [9] called robust incomplete factoriza-
tion (RIF). This method can be easily adapted to the comioutatf an incompletel, DL”
factorization forC* C' — uI and is found to have more moderate fill-ins. We discuss now the
RIF preconditioner for the SVD algorithm.

Let A € R™*™ be a sparse symmetric positive definite matrix. The idea &f iRlto
obtain the factorizatio®d = L™ DL by applying anA-orthogonalization process to the unit
basis vectorgy, es, ... e, (i.€., 1 = [e1,ea,...,e,]). It will become a Gram-Schmidt pro-
cess for the unit basis vectors with respect to the innerymo@:, y) , := =7 Ay, i.e., for
1=1,2,...,n,

i—1

(31) Z; = €4 —ZMZJ‘.

(25, 25) 4

This is the classical Gram-Schmidt (CGS) process. The spording modified Gram-
Schmidt (MGS) process can be implemented by updating this kastor z; initialized as
z; = ¢; (1 <i < n) by the following nested loop: fof = 1,2, ..., n, orthogonalize each;
(fori=j+1,...,n)againstz; by

(3.2) (zi2)

Zi = 2 — Zj.

(2j,2j)a
This updating process allows discardingto free the memory once it is orthogonalized
againstalk; (fori=j+1,...,n). Let

lj = LA i i >,

and set;; = 0if ¢ < j. ThenL = [l;;] is a unit lower triangular matrix, and this process re-
sults in anA-orthogonal matrixZ = [z1, 29, . .., 2z,] such thal = ZL”. ThenZTAZ = D
impliesA = LDL™, whereD = diagd;, ds, . .., d,] andd; = (z;, z;) 4.

Clearly, by 8.1), z; € sparfey,es,...,e;}, andZ is upper triangular. Since CGS.()
and MGS 8.2) are theoretically equivalent3(2) can be formulated as

<ei7 Zj)A

(2j,2) 4

Zi = 2 — liij, with lij =
which is computationally more efficient (sed)[for a problem likeA = CTC. In addition,
as A is sparsee;, zj) , = el Az; may be structurally zero for many j resulting in a
sparse matrix. The A-orthogonalization process can efficiently exploé property;; = 0
by skipping the corresponding orthogonalization step.tharmore, one may also drop the
entry /;; and skip the orthogonalization if; is sufficiently small. This would result in an
incomplete factorization called robust incomplete faigttion (RIF).

RIF has also been used i#] o efficiently construct preconditioners far” C for a full
rank matrixC' € R™*" arising from the normal equation for the least squares prmblAn
advantage of RIF fo07'C is that theC” C-orthogonalization process can be carried out
usingC only as

<OZ¢, CZ]>

(33) Zi = Z; — lm‘Zj, with lij = <CZ CZ>7
7 J
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forj=1,2,...,nandi =j+1,...,n, where(-,-) is the Euclidean inner product. In this
setting, the following CGS formulation af;

<C€1‘, CZJ>

zi = 2z = lijzj,  with ly; = (Czj,Czj)
7 J

is preferred over the MGS formulation because of the needrtgpateC' z; in MGS (3.3) each
time z; is updated, whereas ontye; (thei-th column ofC) is needed in CGS. Since we are
only interested in an incomplete factorization by applyendropping threshold for; and!;;,
the difference in stability between CGS and MGS is not sigaift. Also, the computation
of [;; requires formingC'z; once for eachy;, which involves sparse-sparse matrix-vector
multiplications and can be efficiently computed as a lineanlsination of a few columns
of C; see P]. We also observe that the inner productd;ininvolve two sparse vectors as
well.

If we multiply both sides of .3) by C, it is possible to get around the computation
of w; := Cz; as a matrix-vector multiplication in MGS3(3) by computing it through the
updating formula

(wi, wy)

(34) W; = W; — lz-jwj, with lij = R
(wj, w;)

which maintains the MGS form. However, since the malrig all we need, itis not necessary
in this formula to compute; anymore. Indeed, sinae; is initialized asCe;, (3.4) is just the
modified Gram-Schmidt process in the Euclidean inner prodpiglied to the columns af,
and it becomes the MGS method for té? factorization ofC. However, withw; initialized
asCe; andz; initialized ase;, the generated sequenegis expected to be much denser than
the corresponding;, which appears to be the case in our experiments. This mayelaain
motivation of using the A-orthogonalization in RIF.

We observe that the same process can be extended to ourmrobleonstructing an
LDLT factorization forA := CTC — puI with a shifty ~ 2. The corresponding orthogo-
nalization process is

<CB7;, CZ]> - ,LL<67;, Zj>
<Czja CZJ) - /1’<Zj7 Zj> ’

Zi = 2 — ZT;ij, with lZJ =

forj =1,2,...,nandi = j+1,...,n. Now, if u < 0%, thenCT C — uI is positive definite,
and with the divisor ifl;; being nonzero, the process is well defined.

If u = o2, thenCTC — ul is positive semidefinite and the process may encounter a zero
division if (Czj, Cz;)—u(z;, z;) = 0 for somej. However, in this caséC"C — ul)z; = 0,
and then(C'z;, Cz;) — p(z;, zj) = 0 for anyi. Then we do not need to carry out the or-
thogonalization against;. Continuing the process, we still obtain, 25, . .. , z, such that
(Cz;,Cz) — (24, 2) = 0 but Z'AZ = D will have zeros in the diagonal. However, this
does not cause any problem as we still ha®eC' — I = LDL™, and by using a scaled
L, we haveD with 0 and1 as diagonal elements. This is precisely the factorizateEeded:;
see 2.5).

If u > o, thenCTC — pl is indefinite and the process may breakdown with the occur-
rence of(Cz;, Cz;) — u{z;, z;) = 0 but (CTC — ul)z; # 0 for somej. In practice, the exact
breakdown is unlikely, but we may encounter a near breakddw, C'z;) — p(z;, z;) ~ 0,
which may cause an instability in the process. However,esime are only interested in an
incomplete factorization which incur a perturbation tlghwropping small elements, we
propose to modify the pivot by simply setting'z;, C'z;) — u(z;, z;) to some nonzero scalar
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such as the dropping threshold and skip the orthogonalizagainst:;. This perturbation
is consistent with the dropping strategy in the incompletedrization and would amount
to a perturbation ta; of the order of magnitude of the dropping threshold. In ansecit
only affects the quality of the preconditioner and henceiefficy of the overall algorithm,
but it does not reduce the accuracy of the singular value atedpby our method. In our
experiences, the algorithm handles modest indefinitenexsswell, but the quality of the
preconditioner deteriorates as the matrix indefinitenes®ases.

The incompletel DL factorization provided by RIF needs to be scaled so Ihéias
diagonals equal t6, 1 for its use as a preconditioner for the singular value probl&his
can be achieved by multiplying by D'/2 on the right. The following is the RIF algorithm
as adapted fromf] with the columns ofl. scaled.

ALGORITHM 3.1. Robust Incomplete Factorization 6f'C' — pl1.

1 Input:n; (drop threshold ford) andn, (drop threshold fot?);

2 initialization: Z = (21,22, ...,2,| = I, L = [l;;] = I € R™*"™;
3 Forj=1ton

4 dj = (Cz;, Cz5) — (25, 25);

S Lij = /1ds1;

6 If ljj > max{771||C'ej||1,u}

7 Fori=j+1ton

8 pij = (Cz;,Cei) — iz, €4);

9 If [pi;|/1j; > max{m|/Ce;|1,u}

10 Zi = Z2; — Zm Zj andlij = Sgr(pjj) '])ij/lj]‘;
11 If |2;(€)| < m2l|z]]1 for any?, setz;(¢) = 0;
12 End

13 End

14 Else

15 ljj = max{m”C’ejH, 11}

16 End

17 End

We present some remarks concerning AlgoritBri At line 6, we test the divisot;;
for near-breakdown. If a near-breakdown occurs, welgeto the breakdown threshold
max{n||Ce;[/1,u} at line 15 and skip the orthogonalization process. Here, ote that
the threshold is chosen to be relative to the nor'ef asC'z; is constructed from it through
orthogonalization and is added to the definition of the threshold to deal with thesfims
situation ofC'e; = 0. We skip the orthogonalization ef if /;; is below the given threshold
max{n ||Ce;[l1,u}. In that case/;; is set to 0. To further improve the efficiency of the
algorithm, we also apply a dropping rule tpat line 11 by setting all entries of that are
below the threshold|z;||; to 0. This will maintainZ as sparse as possible and improve
the efficiency of the algorithm. In our experiments, the dualf the constructed precon-
ditioner appears to depend more on the magnitude, dhan that ofn;. Sons is chosen
to be much smaller tham,. In our implementation, we set, = 102 andn, = 10~% as
the default values. Finally, on output, the algorithm proskian approximate factorization
CTC — ul =~ LDL™ with D having only0, +1 as diagonal elements.

4. Robust implementation. One advantage of the inverse-free preconditioned Krylov
subspace method is its simplicity of the implementatiorhwvilite number of inner iterations
being the only parameter to select. We have implementedrifhgo 2.3 in combination
with the RIF preconditioner (Algorithn3.1) in a black-box MATLAB implementation for
the singular value problem. The program cakedifp is used in our numerical tests.
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Our programsvdifp  is based on the MATLAB prograreigifp ~ [32], which im-
plements the inverse-free preconditioned Krylov subspaethod with several algorithmic
enhancements for the generalized eigenvalue problem. Weiheorporated many features
of eigifp  into our implementation, but the core iteration involves tonstruction of the
projection ofC' as outlined in Algorithn2.3. Noting that for Algorithm2.3, the only required
user input ism (the inner iteration) and a preconditioner, we have adofitecdame strategy
used ineigifp  in determiningm; see B2]. Namely,m can be either specified by the user
or, by default, adaptively determined by the program adagrtb its effect on the rate of
convergence. Note that experiments have shown that an alptatue ofm is larger if the
problem is more difficult, while it is smaller if the problers éasier (e.g., with a good pre-
conditioner). On the other hand, to determine a precomnditiove first need an approximate
singular value as a shift for the RIF preconditioner. Heifiedint strategies will be used
depending on whether computing the largest or the smallegtlar values is the goal.

For computing the smallest singular value, we assOnsa good initial approximate
singular value, and, usingas the shift, we compute a preconditioner by AlgoritBrhand
carry out a preconditioned iteration.

For computing the largest singular value, the standard 2@nbidiagonalization algo-
rithm [17] should work well because the spectral separation is tyigidaubled through the
CTC formulation (L.1), i.e.

2
Op — On—1 On —0On—10n+ On—1 —~ 20n — On-—1
2 ~ ’

2
— 0y Op—1— 01 Op—1+01 Op—1— 01

However, for problems with clustered largest singular gajithe preconditioning approach
can still be very beneficial. One difficulty then is that they@o good approximate singular
value readily available initially, and no preconditionande derived. Following the strategy
in eigifp  [32], we start the iteration with no preconditioning, and whesuiciently good
approximate singular value has been found as determined by the residual, we compute a
preconditioner foC” C — uI by Algorithm 3.1with the shifty, = o2 +r,, and then continue
the iteration with preconditioning, wherg is the residual and hengeis an upper bound for
the true singular value. This typically leads to acceletatenvergence.

In both cases, the program monitors the approximate singalae obtained and the
convergence rate and may update the preconditioner usingaated approximate singular
value as the shift if a significant deviation of the singulafue from the shift is detected.
The same strategy is followed when computing several samgudlues with deflation. The
program can be run with no required user input. However,sio allows various optional
parameters, which the user may supply to improve performaritese include the inner
iterationm, the RIF thresholds, an initial approximate singular valwbkich can be used to
compute a preconditioner), or a preconditioner itself, agothers.

5. Numerical examples.In this section, we present some numerical examples to demon
strate the capability and efficiency of the preconditiome@ise-free Krylov subspace method
for the singular value problem. We compare our MATLAB impkamtationsvdifp ~ with
several existing programs (i.erlba  of Baglama and ReicheB], jdsvd of Hochsten-
bach P1, 22], lansvd of Larson R9], andsvds of MATLAB, which is based on ARPACK
[30] of Lehoucq, Sorenson, and Yang). The progridiva  [3] implements an augmented
implicitly restarted Lanczos bidiagonalization algonthThe progranjdsvd [21, 22] im-
plements a Jacobi-Davidson method on the augmented matmufation. (Note that a pro-
gram based on the Jacobi-Davidson methodf6¢' has also been developed recenfig][)

The coddansvd [29] implements the Lanczos bidiagonalization algorithm for! from
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the QR factorization ofC' = QR for computing the smallest singular value. The MAT-
LAB programsvds implements ARPACK 30] and uses the inverse aff (or M — pl) in
the formulation {.2) for computing the smallest singular value. We note thatifp and
jdsvd compute one singular value at a time, whilba , lansvd , andsvds can com-
pute several singular values simultaneously. On the otlved Svdifp andjdsvd can use
preconditioners to accelerate convergence, wihi@ , lansvd , andsvds have to use
the shift-and-invert approach.

In the first three examples, we test the programs on comptit@gmallest singular
value, while in the fourth example we demonstrate the cdipabf svdifp  in computing
several of the largest singular values using deflation.hlexecutions were carried out using
MATLAB version 8.0.0.783 from MathWorks on a PC with an Intglad-core i7-2670QM
with 2.20GHz and 12 GB of RAM running Ubuntu Linux 12.04. Thachine epsilon is
u~2.2-10716. The performance parameters we consider for comparis@ntharresid-
ual of the approximate singular triplet obtained, the nundfenatrix-vector multiplications
where applicable, and the CPU time. The CPU time is gathertdom-screen outputs sup-
pressed. For the methods that require some factorizatidgheofmatrix, we also consider
the number of non-zeros in the factors, which indicates teenory requirements and their
potential limitations.

We first present an example that tests the capabiligvdifp  to compute tiny singular
values accurately. We also show that apply@igifp  directly to the eigenvalue problem
for CTC may result in a loss of accuracy for the computed singulawezaHere, in using
eigifp , the matrix-vector multiplicatiod@” C'z is obtained by computing'z first and then
multiplying by C”'. Even thoughC” C is not explicitly formed, the singular value is obtained
from the projection of>”'C, potentially resulting in a loss of accuracy; see the disiamsin
Section2.

ExamPLE 5.1. We consider the following matrix
T : D mxn
C=U0%V", WIthE—{O] eR ,

whereD = diag(1,1/2%,...,1/n*) andU andV are random orthogonal matrices generated
by U=orth(rand(m,m)) andV=orth(rand(n,n)) in MATLAB. We test and com-
pare the accuracy of the smallest singular value computesi/bjp andeigifp  with

n = 100 andm = 100 or m = 200. In either case, the exact smallest singular valu€’'of
is oy = 1078, and the second smallest singular value is approximatélyl - 108, The
convergence is tested using the criterj@it’ Cv; — ofv1 || < 7||C||?, and to achieve the best
accuracy possible, we use a very small threshpold 10~ and run the iteration until the
residual stagnates. Both methods are run without predonitiy and with the number of
inner iteration set to 20.

Table5.1lists the best smallest singular values and their resichriEned. Fosvdifp
with x(C) = 10%, the residual deceases to abaQt'® and the computed value ef, has
a relative error of the order afd—!° ~ ux(C). This is the best accuracy one may expect
from a backward stable method. On the other hancifgifp , the residual decreases and
then stagnates at aroum@—'6. The relative error of the computed singular values ogetlla
around10~*, and no better approximation can be obtained. The singulaewmputed by
applyingeigifp  directly lost about 5 digits of accuracy in this case.

It is interesting to observe that with a good preconditignieigifp  appears to be
able to computer; accurately. Note that' is a dense matrix and the default preconditioner
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TABLE 5.1
Example5.1. o1: computed smallest singular value bydifp  andeigifo , Res:||CTCvy — o?v1].

m = 100 m = 200
o1 Res o1 Res
svdifp 1.0000000008e-08 1e-201.00000000001e-08 2e-20
eigifp 1.0001e-08 8e-17 1.00008e-8 8e-17
TABLE 5.2
Test matrices used for Exampegand5.3.
No. | Matrix Size Non-zeros o, k(C) source
Square Matrix

1| dw2048 2048 x 2048 10114 4.68e-4 2.03e3 Matrix Market

2 | fidap004 1601 x 1601 31837 6.57e-4 2.39e3 Matrix Market

3 hor131 434 x 434 41832 1.53e-5 4.31e4 Matrix Market

4 | jagmeshl 936 x 936 6264 5.63e-3 1.23e3 Matrix Market

5 Ishp 3025 x 3025 20833 1.03e-4 6.78e4 Matrix Market

6 | pde2961 2961 x 2961 14585 1.62e-2 6.42e2 Matrix Market

7 pores3 532 x 532 3474 2.67e-1 5.61e5 Matrix Market

8 | sherman 1000 x 1000 3750 3.23e-4 1.56e4 Matrix Market

Rectangular Matrix

9 | well1l033 1033 x 320 4372 1.09e-2 1.66e2 Matrix Market
10 | well1850 1850 x 712 8755 1.61e-2 1.11e2 Matrix Market
11 | Ipi_cplexl 5224 x 3005 10947 6.39e-2 3.13e3 UFLSMC
12 qiulp 1900 x 1192 4492 7.57e-1 4.08el UFLSMC
13 ge 10099 x 16369 44825 1.08e-3 1.28e7 UFLSMC
14 p010 10099 x 19090 118000 1.50e-1 1.18e2 UFLSMC
15 | Ip_ganges 1309 x 1706 6937 1.87e-4 2.13e4 UFLSMC
16 cepl 1521 x 4769 8233 1.00e0 1.49%e1 UFLSMC
17 gen2 1121 x 3264 81855 1.41e0 3.35el UFLSMC
18 | Maragal5 3320 x 4654 93091 7.11e-46 2.30e46  UFLSMC
19 | Ip_ship12s 1151 x 2869 8284 0 - UFLSMC

constructed beigifp s the (completeL. DL factorization. However, if we use a precon-
ditioner that is constructed from” A by artificially dropping the entries of that are smaller
than10~2, then a similar loss of accuracy occurs.

Next, we test and compavdifp  with several existing programs for the SVD on
computing the smallest singular value for a set of test moisl The test matrices consist of
both square and non-square matrices taken from the Matrikéi§l 1] and the University
of Florida Sparse Matrix CollectioriLp]. They are listed in Tabl&.2 together with some
basic information on the matrices (the smallest singularesaare computed by MATLAB’s
svd(full(A)) ).

Since these programs may have very different approachesarmdifferent assump-
tions on computing resources, we carry out the tests in tfferdnt settings. We first con-
sider those programs in Examg@e2 that do not use any exact factorization for the inverse,
i.e.,svdifp ,jdsvd , andirlba . Sincesvdifp andjdsvd can be implemented with
or without preconditioning, we test them first with precdiatiing and then without precon-
ditioning together withirlba . In the second test (Exampte3), we considersvds and
lansvd , where theLU factorization of M and the QR factorization af' are respectively
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TABLE 5.3
Example5.2 with preconditioning. CPU: CPU time, MV: # of matrix-vectawiltiplications, nnz: number of
non-zeros of the preconditioner, R&§Cv1 — orur; CTuy — orv1]]|/]|1C|l1-

svdifp jdsvd
No CPU MV nnz Res CPU MV nnz Res
Square Matrix

1] 0.6 179 25564 9e-7 0.4 136 49019 2e-11

2| 15 223 91593 1le-7 0.9 102 179673 2e-8

3| 0.6 3545 15719 b5e-7 0.1 148 11740 3e-10

4| 04 289 33065 6e-7 0.7 146 67112 6e-10

5| 7.3 1103 170276 8e-7 1.7 100 425650 6e-10

6| 19 113 69291 3e-8 0.3 126 89000 2e-9

7| 0.04 25 4870 3e-13 0.09 96 46461 3e-7

8| 0.2 355 13695 3e-7 0.1 84 11630 2e-7

Rectangular Matrix

9| 0.03 91 2235 2e-10 2.8 750 59291 1e-7
10| 0.08 69 6325 7e-8 9.6 426 312083 1le-7
11| 04 69 8995 2e-7 9.0 320 49318 2e-7
12| 0.2 91 13620 1le-8 1.2 350 94671 3e-7
13| 10.4 91 110017 b5e-7 1689. 20052 141008 1e-4
14 | 13.1 157 138793 2e-7 474, 438 11276604 1le-7
15| 0.3 91 18573 9e-9 10.6 358 421304 2e-13
16| 2.0 113 106822 3e-8 1.1 266 41793 6e-7
17| 4.3 267 297609 9e-7 36023. 36846 8055182 1e-3
18 | 28.0 24 997991 3e22 9002. 3744 8666363 7e-7
19| 0.08 24 6868 7el2 0.5 136 65642 4e-8

aFor this matrix,c1 =7.11e-46 according to MATLAB'svd . AlthoughRes =3e-2, the residual defined by
|CTCv1 — o2v?| is 3e-24, while the computed singular value is 2e-25. Theusimyalues returned bigisvd
for this matrix is 3e-5. Also note that 113 singular valueshi$ matrix are smaller than the machine precision and
the second smallest is 1.7e-31.

bFor this matrix,c1 = 0 according to MATLAB’ssvd . AlthoughRes = 6e-2, the residual defined by
|CTCv1 — o2v?| is 2e-25, while the computed singular value is 4e-27. Theusimyalues returned bigisvd
for this matrix is 6e-7. Also note that 35 singular values analter than the machine precision. The second smallest
singular value is 0 as well and the third one is 1.3e-18.

computed for the shift-and-invert. To facilitate a compari, we considesvdifp  using

the R factor from the@QR factorization ofC' as a preconditioner. Namely, if a complete
factorization is possiblesvdifp may also take advantage of it by using a more effective
preconditioner although this is not the best way to use thgrnam.

EXAMPLE 5.2. We consider the performancesafifp , jdsvd , andirlba  in com-
puting the smallest singular value of the matrices in Tébke For matrices withn < n, we
consider their transposed instead. We set the initial véat@ll three methods to be the same
random vector generated bgndn(n,1) . We also select the parameters in the three codes
so that each method carries out about the same number oknaatior multiplications in
each inner iteration. Specifically, fevdifp , we set the number of inner iterationsto 10.

In jdsvd , the maximum number of steps of the inner linear solver isos&0, which is also
its default value. We use the default settinggdsivd for all other parameters. In partic-
ular, the refined extraction of the Ritz vector is used thhmug, and the dimension of the
search subspace varies betwé&érand20. Inirlba , we setk = 1 (the number of desired
singular values) anddjust = 8 (the number of initial vectors added to theestart vectors
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to form an initial subspace). They are chosen so that thertiioe of the initial subspace is
consistent with the default choices:= 6, adjust = 3. All other parameters iirlba  are

set to their default values. Thétba applies 10 bidiagonalization steps after each restart.
Based on these settings, all three methods carry out appabeiy 22 matrix-vector multipli-
cations (byC or CT) in each outer iteration. We set the maximum number of otgeations

to 10000 for all, and, unless stated otherwise, the stopgpiteyion is

(51) Res := H[Cvl — 0O1U1; CTul — 01’01”|/“CH1 < 1076,

where(oy, u1,v1) is the approximate singular triplet obtained at step

We first comparavdifp  andjdsvd , both of which allow using preconditioning to ac-
celerate convergence. svdifp , the default RIF preconditioner is used, i.e., an incongplet
factorization ofC”'C is constructed by Algorithn3.1 with the default choices of thresholds
n = 1072 andn, = 1078, Injdsvd , a preconditioner is needed for solving a correc-
tion equation in the inner iteration, and we use the routirate _prec _jdsvd.m that
accompaniefdsvd to construct a preconditioner far/. Specifically, for square matrices,
we compute the ILU factorization af', from which a preconditioner fo#/ is constructed.
For non-square matrices, we compute the ILU factorization/obut because of the singu-
larity of M, breakdown often occurs, in which case the ILU factorizatiba shifted matrix
M — ul is used wherer = 2P - 1072|| M ||max @andp is the first non-negative integer that
stops the breakdown. The dropping threshold for all ILUdaeations is10~2. In addition,
jdsvd uses BICGSTAB41] as the inner linear solver when a preconditioner is present

In Table 5.3 the results of this test are presented. In the tabhez, is the number of
non-zeros in the preconditionek for svdifp  and bothZ andU for jdsvd ). In the MV
column, we list the number of matrix-vector multiplicat®hy eitherC' or C*. Res is the
relative residual of the approximate singular tripketlj.

We observe thasvdifp  achieves satisfactory convergence withii00 iterations in
all problems. For matrices 18 and 19, the singular valuesaiemely small and there-
fore the residual of the singular triplet computed Byl1() is not expected to converge. For
these two problems, the termination criterion is switchedising the eigenvalue residual
|CTCvy — o%v;|| instead when a singular value of the order of the machinegoecis de-
tected (see the discussion on the left singular vectors aid@@e2), and then, even though
Res is fairly large, the computed singular values, which areegiin the footnotes, are ac-
tually very good approximations already. Therefore, whté limitation of not returning any
good left singular vector in such casewdifp  still produces good approximate singu-
lar values and right singular vectorfdsvd also achieve satisfactory convergence within
10000 iterations in all but problems 13 and 17. For those two pnoislethe preconditioned
linear solvers in the inner iterations @fsvd converge early in less than the maximum
10 iterations allowed, which is why the total matrix-vecioultiplications are less than the
maximum possible. Matrix 17 is also a difficult problem witB&lsingular values clustered
between 1.41421 and 1.41425. In terms of performance mezhdyMVand CPY jdsvd
outperforms the other methods slightly for square problenisle svdifp  does that for
non-square problems. In termsmfz, RIF in svdifp  has substantially less memory re-
quirement.

We next comparevdifp  andjdsvd without preconditioning. They are also com-
pared withirlba . When no preconditioner is presejidsvd uses MINRES as the inner
linear solver. Foirlba , we only report its results with a one-sided full reorthoajaration,
which is the default setting. We list the results of this te§table5.4. For problems 18 and 19
with extremely small singular values, the convergenceisesivitched to use the eigenvalue
residual||CT Cv; — o?v1 ||, but at termination, the residual of the singular triplethvthe left
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TABLE 5.4
Example 5.2 without preconditioning. CPU: CPU time, MV: # of matrix-tec multiplications,
Res:||[Cv1 — a1ur; CTuy — orv1]]|/]|1C)1-

svdifp jdsvd irlba
No. | CPU MV Res CPU MV Res CPU MV | Res
Square Matrix
1 2.2 8033 1e-06 2.1 7542 9e-7 2.8 13856 9e-7
2 49 18901 1e-06 6.0 21830 1le-6 21.9 104496 8e-7
3| 20.1 220002 5e-04 34.8 220038 1e-5 259 220018 2e-2
4 9.5 81227 1e-06 48 26308 9e-7 13.4 90350 1e-6
5| 27.3 69457 1e-06 20.7 62476 1le-6 59.8 220018 3e-2
6 3.5 9023 1e-06 3.0 9280 1le-6 6.1 23668 9e-7
71 21.1 220002 2e-03 35.7 220038 2e-5 27.2 220018 2e-2
8| 15.1 127185 9e-07 23.7 127134 1e-6 32.6 220018 3e-2
Rectangular Matrix

9 1.2 7153 1e-06 0.4 2284 6e-7 0.2 1206 7e-8
10 0.5 2467 8e-07 0.6 2262 1le-6 0.3 1888 8e-8
11 0.7 1697 1e-06 0.4 1074 6e-7 0.2 634 2e-7
12 0.3 1257 1e-06 0.7 2900 1le-6 0.2 1228 1le-7
13 | 500. 220002 1e-03  189. 220038 3e-5 167. 220018 2e-2
14| 18.4 6669 1e-06 2.0 1866 1le-6 2.8 2856 6e-8
15 0.1 553 1e-06 0.3 1008 1le-6 0.09 480 9e-8
16 0.1 245 2e-07 0.08 238 1le-7 0.02 62 9e-9
17 0.9 2269 8e-07 3.8 9918 9e-7  62. 220018 b5e-7
18 | 122. 228135 9e-06 116. 220038 2e-6 94. 220018 3e-3
19 0.6 2034 7e-1B 2.3 8136 6e-7 0.2 942 7e-8

aFor this matrix, the residual defined B¢ Cv1 —o2v? || is 2e-15, while the computed singular value is 1e-12.
The singular values returned [svd is 5e-10. The singular values returneditiga s 6e-7.

bFor this matrix, the residual defined B'7 Cv1 —o?0?|| is 3e-14, while the computed singular value is 9e-15.
The singular values returned [svd is 1e-14. The singular values returneditipa  is 4e-16.

singular vector computed by (12 has actually converged to a satisfactory level. Neverthe-
less, we list the computed singular values and the eigeavakiduals in the footnotes. We
note that, without preconditioningydifp  converges much more slowly than the ones with
preconditioning, and it appears that the additional iterst have resulted in a substantially
reduction of the singular triplet residual. We do not exphist to be the case in general.

It appears that all three methods are comparable in conveegsith each method out-
performing in some problems. For non-square matricks  has the best results outper-
forming in most problems. Note thavdifp  without preconditioning is simply the restarted
Lanczos method with the LOBPCG-type subspace enhance@arthe other handtlba
is also essentially the Lanczos method, but, with the intplstart, it uses a larger projection
subspace with the same number of matrix-vector multipbeoatin each restart. Therefore,
irlba  may be expected to outperforsudifp  without preconditioning in most cases. We
also note that the performancesMdifp  (Table5.4) is significantly improved by precondi-
tioning (Table5.3). Several difficult problems with slow convergence are sdlfairly easily
after preconditioning. With a drop toleranceldf—3, the RIF preconditioner appears to pro-
duce a good preconditioner that also has a relatively smatiber of fill-ins. Indeed, the
number of non-zeros i (Table5.3) is typically 2 to 3 times that of” (Table5.2).
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TABLE 5.5
Example5.3. CPU: CPU time, nnz: non-zeros & or L andU, Res:||[Cv; — o1u1; CTur — a1v1]||/]|C]l1-

svdifp svds lansvd
No CPU nnz Res CPU nnz Res CPU nnz Res
Square Matrix
1| 0.05 83918 1e-16 0.09 193650 4e-15 0.04 83918 2e-13
2] 01 249160 6e-17 0.1 259562 5e-16 0.09 249160 7e-14
3| 0.01 29165 2e-15 0.04 99351 5e-16 0.01 29165 3e-11
4| 0.01 35267 9e-13  0.05 69421 1e-15 0.02 35267 3e-10
5] 01 196083 4e-16 0.2 439407 4e-15 0.08 196083 3e-12
6| 0.06 142050 5e-15 0.1 279930 4e-14 0.06 142050 4e-13
71 0.01 8561 9e-13 0.03 52239 5e-17 0.01 8561 2e-15
8| 0.01 32816 2e-16 0.05 49971 3e-16 0.02 32816 2e-13
Rectangular Matrix
9| 0.01 2974 2e-13 - - - 0.01 2974 4de-11
10| 0.01 9209 1le-12 - - - 0.01 9209 2e-10
11| 0.8 1514019 1le-14 - - - 0.6 1514019 7e-16
12| 0.06 48470 2e-12 - - - 0.05 48470 2e-13
13| 04 313320 8e-11 - - - 0.3 313320 8e-15
14| 0.6 505993 8e-16 - - - 0.3 505993 2e-12
15| 0.02 30975 1le-17 - - - 0.02 30975 4de-14
16| 04 263226 9e-12 - - - 0.2 263226 8e-11
17 | 54.7 550793 1e-10 - - - 15.6 550793 1le-16
18 | 10.2 2046096 5e®2 - - - - - -
19| 2.3 7336 5e-17 - - - - - -

3For this matrix, the residual defined Bg'” Cvy —o?v?|| is 8e-17, while the computed singular value is 2e-17.
bFor this matrix, the residual defined Bg'” Cvy —o3v?|| is 3e-15, while the computed singular value is 3e-16.

ExamMpLE 5.3. In this example, we compasedifp  with svds andlansvd . For
computing the smallest singular valsds is based on applying ARPACK3[] to M !
or the shift-and-invert matrixA/ — uI)~!. lansvd computes the)R factorization by
R = gr(C,0) in MATLAB and then computes the largest singular valuerf! by the
Lanczos bidiagonalization algorithm. For comparison, welR = qr(C,0) as the pre-
conditioner forsvdifp . This approach runs into difficulty iR is singular or nearly singular.
Indeed,lansvd breaks down in such situations (problems 18 and 19). An ddganwith
svdifp is thatR is only used as a preconditioner and its accuracy only affibet speed of
convergence but not the accuracy of the computed singulaesaTherefore, we can simply
perturb the zero or nearly zero diagonal entrie®db deal with its singularity. For singular
or nearly singularR, it is important to use a column pivoting in thigR factorization but
MATLAB's R = ¢gr(C,0) employs a column approximate minimum degree permutation
to minimize fill-ins. For this test, if the resulting is nearly singular, we compute @R
factorization by[",R,e] = qr(C,0) , which appears to employ a column pivoting. We
then set the diagonal elementsithat are less than the threshqli|| R||; to the threshold
to construct a preconditioner fardifp

All three codes require no additional input parametersrothan the matrix, but we
set the initial vector to the same random vector for all ohthéNe run the programs until
convergence as determined by the algorithms themselvescoWipare the residudkes
defined by §.1), the CPU time, as well as the number of non-zeros used irattterizations
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TABLE 5.6
Example5.4: 5 largest singular values of matrip _ganges . oy: singular value,u: shift used
for preconditioning, MV: # of matrix-vector multiplications, Ré$Cv1 —a1u1; CTus —orv1]||/||C|l1-

preconditioning no preconditioning
Ok " MV Res MV Res

3.9908| 3.9926 91 3e-12 443 5e-11
3.9906| 3.9907 91 2e-14 289 9e-11
3.9895| 3.9900 91 1le-13 531 7e-11
3.9894| 3.9895 91 5e-13 641 4e-11
3.9892| 3.9893 91 4e-12 1103 6e-11

(nnz). Forsvdifp andlansvd , nnz is the number of non-zeros iR, and forsvds , itis
the total non-zeros i, andU of the LU-factorization of?.

The results are given in Tabe5. All three methods perform comparably for square
matrices.svds with the zero shift fails for all non-square matrices beeaafshe singularity
of M, which is marked by “-” in the table. Even using a small noozshift, svds usually
converges to the eigenvalllerather thansy. svdifp andlansvd can both solve non-
square problems with comparable performances. Howémesyd can fail for matrices
that are nearly rank deficient (problems 18 and 19, marked'ypecause of the inversion
of a singular or nearly singular matriz. On the other handsvdifp  does not suffer from
a similar problem becausR is slightly perturbed to be used as a preconditioner. Oleral
svdifp appears most robust in this setting.

Finally, we considesvdifp  for computing several of the largest singular values with
deflation. With the shifts chosen inside the spectrum now, ®instructs ad. DL factor-
ization for an indefinite matrix’” C' — pI. So, this also demonstrates the capability of RIF
to work with indefinite matrices.

ExampPLE 5.4. We considesvdifp  with and without preconditioning in computing
the 5 largest singular values of the matrix 15 (ganges ) in Table5.2. In both cases, we
set the termination threshold fo- 10719, and the number of outer iterations to 10000. To
compute the largest singular valsydifp  adaptively chooses a shift for preconditioning;
see Sectiod. When computing the next largest singular value, the medredérgest and the
second largest singular values of the projection matrixstrocted in computing the previous
largest singular value is used as the shift to compute an Ri€opditioner. Thersvdifp
proceeds with a deflated preconditioned iteration. Notetliesecond largest singular value
of the projection matrix is a lower bound of the singular eata be computed and the mean
value should provide a better estimate. The same proceslused for the additional singular
values.

We present the results with and without preconditioningfier5 largest singular values
in Table5.6. We list the number of matrix-vector multiplications (byor C”) used for each
singular value, the residu&des obtained, and in the preconditioned case, the ghifsed.
We note that both methods can compute the singular valuesotlyy while preconditioning
by RIF significantly accelerates the convergencswvdfifp . In particular, the shifted matrix
is indefinite now but with the modest indefiniteness in cormgut few extreme singular
values, RIF results in a very effective preconditioner.

6. Concluding remarks. We have presented an inverse-free preconditioned Krylov su
space algorithm for computing a few of the extreme singuddmes of a rectangular matrix.
The robust incomplete factorization (RIF) has been addptefficiently construct precondi-
tioners for the shifted matrig’” C' — pI. A preliminary MATLAB implementation has been
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developed and is demonstrated to be very competitive cagdparother existing programs
in both settings of using preconditioners or shift-andeimvA major disadvantage of our ap-
proach or theC'” C formulation in general appears to be the potential difficiritcomputing
left singular vectors corresponding to tiny singular valu€his is a problem that we plan to
further study. We also plan to refine the MATLAB progravdifp  and make it available
for download in the near future.
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