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APPROXIMATING OPTIMAL POINT CONFIGURATIONS FOR MULTIVARI  ATE
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Abstract. Efficient and effective algorithms are designed to complecbordinates of nearly optimal points
for multivariate polynomial interpolation on a general gesiry. “Nearly optimal” refers to the property that the set
of points has a Lebesgue constant near to the minimal Lebesgustant with respect to multivariate polynomial
interpolation on a finite region. The proposed algorithmegyeafrom cheap ones that produce point configurations
with a reasonably low Lebesgue constant, to more expensies that can find point configurations for several
two-dimensional shapes which have the lowest Lebesguéartria comparison to currently known results.
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1. Introduction. In several theoretical as well as computational mathemlagioob-
lems, one wants to work with complicated multivariate fumes. However, in a lot of cases
performing operations with these original functions is t@rsome and requires an unac-
ceptably high computational effort. A solution to this pler is to replace the original
complicated function by a function that can be handled muoheneasily, e.g., polynomial
functions. Within this space of simpler functions, we caokiéor the function that optimizes
one of several possible criteria. One example is the minmigerion, but the computational
effort to find the function that minimizes the infinity normrer, is large. Instead an ap-
proximant can be found that is almost as good as the minmavogippant by interpolating
the original function in certain well-chosen points. Thesints are chosen in an optimal or
nearly optimal way with respect to minimizing the Lebesgaestant.

In this manuscript we develop several algorithms to compeiat configurations for
multivariate polynomial interpolation that have a low oeawalmost minimal Lebesgue con-
stant for a given geometry. We will refer to them as “good’msiand nearly optimal points,
respectively. Interpolating in these points will yield gbpolynomial approximants for the
geometry, compared to the minmax polynomial approximant.

For the problem of approximating univariate functions byypomials in a typical com-
pact set on the real line, i.e., an interval, both the thean/the corresponding software are
well-developed. We refer to Chebfun, a MATLAB toolbox, wiedkeoretical foundation and
several of its applications are described in the book byelhein [L5]. If one transforms an
arbitrary compact interval to the inverviat1, 1], it turns out that different types of Cheby-
shev points not only form nearly optimal point configuraipbut that the computation of
the corresponding interpolant can be performed very effiigand accurately) by using the
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Fast Fourier Transform (FFT). The zero sets of other orthagpolynomials, e.g., Legendre
polynomials, have similar approximating properties beytban not be represented explicitly
and the corresponding approximant cannot be computedlgeifitient. For univariate ra-
tional interpolation, the so-called rational Chebyshewisoare nearly optimal on the interval
[~1,1] (see [L7).

The problem setting is more complicated in the multivar@se, because the geometry
can take on more general forms (e.g., a polygon, a disk,in contrast to the univariate case
where the typical geometry is the interval. Moreover therdegtructure of the polynomial
functions is more general. For a theoretical overview, vierrine interested reader td][

One of the criteria to determine the location of good poiatgblynomial approximation
in a geometry, is minimizing the Lebesgue constant, whi¢thesmaximum of the Lebesgue
function! Points in some geometry are considered to be nearly optfrtted Lebesgue con-
stant with respect to that geometry is small, and they arenaptf the Lebesgue constant is
as small as possible. The Padua points seem to be the firshlkeample of nearly optimal
points for total degree polynomial interpolation in twoiednles, with a Lebesgue constant in-
creasing like log square of the degree. The correspondioggey is a square or a rectangle
(or another derived form). These Padua points have beeowdised and extensively stud-
ied by the Padova-Veronaresearch group on “Constructiygéyimation and Applications”
(CAA-group) and their collaboratots

For other geometries there are no explicit representationg/n for (nearly) optimal
points with respect to minimizing the Lebesgue constante TAA-group has developed
MATLAB software to compute such nearly optimal points foveel geometries, e.g., the
disk and the simplex, not only for minimizing the Lebesguestant but also for maximizing
the corresponding Vandermonde determinant (Feketeg)dirjt Initializing the software
with reasonably nearly optimal points, it can also be usedktive point sets with a smaller
Lebesgue constant than the initial set. A disadvantageso$dfftware is that it is rather slow
and therefore limited to a relatively small number of paints

In [3, 14] a faster, greedy algorithm is presented that uses buiMdtiab routines to
compute@ R or LU factorizations to compute approximate Fekete and Lejatpoirhe un-
derlying matrix is a Vandermonde matrix based on the to¢grde product Chebyshev basis
of the smallest rectangle containing the compact domaie.méthod works for “moderate”
degrees.

On March 4, 2013, an extension of Chebfun was made availabl®tk with functions
in two variables defined on a rectangl@he package provides very fast approximation algo-
rithms by using FFT’s, but the geometry is limited to the amgfle.

In the recent paperlfl] a method is developed to compute a “good” set of nodes for
multivariate polynomial interpolation based on a greedtimization algorithm. In each
step of the greedy algorithm, a new node from a finite diszaétin of the domainf? is
added to the current set of “good” nodes. The propertiesefiikthod, i.e., the nodes are
unstructured, the nodes are a sequence and are nestedeagebthetries are arbitrary, are
the same as for the greedy adding algorithm that is deschilthis paper. The resulting sets
of interpolation nodes have “good” properties with respgedhe value of the corresponding
Lebesgue constant and Vandermonde determinant.

In this manuscript, we represent the polynomial functiosisg orthogonal bases with
respect to a discrete inner product where the mass pointlyiagewithin the considered
geometry. This leads to small condition numbers for the gized Vandermonde matrices

1The corresponding definitions are given in Section
Zhttp://www.math.unipd.it/ ~marcov/CAA.html
Shttp://www2.maths.ox.ac.uk/chebfun/chebfun2/
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involved in the computations that allow us to find nearly oyt point configurations that are
much larger compared to the point configurations obtaineclibgently known techniques.

Instead of solving the minmax probler.{), the algorithms of this manuscript tackle
different, but related, optimization problems that apjpma¢ely solve the same problem. Al-
though the optima of these related problems do not coincitltetive optima of the original
minmax problem, they can be solved much more efficiently,intgak possible to minimize
the Lebesgue constant much more effectively. The first twor&hms of this manuscript
use a greedy approach to find a set of “good” interpolationtsdbr a general geometry. In
contrast to existing methods, the greedy approach is ngtus#d to generate a point set,
adding points one by one, but also to update the resultingt get. The greedy add method
is slower than the methods described3n14], but this is due to the use of a more general
basis than the monomial basis. The other algorithm destiiibé¢his paper solves a non-
linear weighted least squares optimization problem. Byp#dg the weights during several
iterations, we obtain point configurations that are almpsineal.

The manuscript is divided into the following sections. Ircten 2 the definition of the
Lebesgue function and the Lebesgue constant is given. Itio8e3; it is explained how a
good approximation of the Lebesgue constant can be compuéadefficient way. SectioA
describes the representation that will be used for the wauiéite polynomials given a certain
geometry. Sectiob gives several algorithms to compute point configuratioasging from
cheap ones that produce non-optimal point configuratiotis avreasonably low Lebesgue
constant, to more expensive ones that can find point confignsawith an almost optimal
Lebesgue constant. In Secti6nve show the results of applying these algorithms on several
geometries for different degrees.

2. Lebesgue constantLet €2 be a compact subset &". Consider the spac®;’ of
polynomials inn variables having total degree §.* This space has dimensiovi with

2.1) N= <5+”>.

n

ConsideraseX = {z}}{ of N pointsinQ and a basig¢ }{' for Py'. LetVx = [¢; ()], ;
denote the generalized Vandermonde matrix for this bagiseipointsX. Given a function
f € C(Q), we can approximate this function by computing the multater polynomial
interpolantp € Py in the set of pointsX. Note that this interpolant is well defined and
unique iff the generalized Vandermonde matrix is nonsingular. If that is the case, the set
of points X is called unisolvent for the spad¥’.

DEFINITION 2.1 (Lebesgue function and Lebesgue constaiyen a compact sé? C
R™ and a set of points¥ = {x;}{¥ C Q thatis unisolvent fofP?. TheLebesgue function
Ax (y) is defined as

with [;(y) theith Lagrange polynomial, i.e.,
l; € /sz
Zi($j):5i,j; fOfi,jZl,Q,...,N.

4 More general subsets of polynomials can be consideredhaeing another degree structure in comparison to
the total degree.
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ThelLebesgue constarty is defined as the maximum of the Lebesgue functipfy) for
y € Q,ie,

Ax = A .
X = max x(y)

The Lebesgue constant is a measure to compare the polynateigolant with the best
polynomial approximant in the uniform norm. More precisdébr any functionf € C(Q),
let p denote the polynomial interpolant apd the best polynomial approximant in uniform
norm, then

If =plloe <@+ Ax) If =Pl -

Hence, when the Lebesgue constartis small, we can find an approximation of a function
f that is almost as good as the best polynomial approximatiorby just computing the
polynomial interpolanp, which is generally much easier to compute than

The magnitude of the Lebesgue constartdepends heavily on the configuration of the
points X in the compact subsét. Before we look for different algorithms to find point con-
figurations with a low Lebesgue constant, the next sectioesitigates how we can efficiently
approximate the Lebesgue constant.

3. Approximating the Lebesgue constant\ x. Computing the Lebesgue constant for
aregionQ2 C R" is not an easy problem. Following the same approach a§,iwg approxi-
mate the Lebesgue constant by taking the maximum over agietiié C 2 of K well-chosen
points

N
(3.1) Ax =~ max ; i (y)] -

There are several possible candidates for the finite point sé/e have chosen for point
meshes generated by the package DistMé&sh mainly because of its flexibility to create
suitable meshes for many different geometries. As we exjtathe following paragraphs,
for many geometries like the square and the disk there aterbmeshes available, i.e., they
give a better approximation of the maximum of a function wite same number of points.
We emphasize that our algorithms can work with any choic& p&nd that our choice of
DistMesh mostly provides a straightforward way to use yagdod meshes for any geometry.

In our context, a discretizatiori of a domain(2 should have two important properties.
The firstis its quality of approximating the maximum of a ftinn on the domain. The second
is the fact that the mesh is used by the algorithms of Seciohand5.2, where points of
the output sefX are extracted from the mesh. Since the output set shouldxippate an
optimal point configuration (with minimal Lebesgue consfaand experimentally, optimal
interpolation points are known to cluster near the bounyahe meshy” should be more
dense near the boundary.

In what follows, first we briefly explain how DistMesh workshé&n we discuss (Weakly)
Admissible Meshes (WAM), why these meshes work well to agipnate the maximum of
a function and how DistMesh seems to be an AM as well. We alg® gpme comments on
the fact that the mesh is denser near the boundary. Finatlyngerical comparison of five
different meshes is presented.

5We believe that this is true for convex geometries, but notte “non-convex” part of a boundary, e.g., the
non-convex part of the boundary of the L-shape. In FiguBave show a nearly optimal point configuration for the
L-shape, that exhibits a low density of points near the nmmsex part of the geometry.
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FiG. 3.1.Example of a mesh generated by DistMesh for the L-shapestmsof3475 points.

DistMesh [L3] is a simple Matlab tool that generates unstructured tuidargand tetrahe-
dral meshes. The code is simple to use because the geomeéfyrisd as a signed distance
function, i.e., for each point this function returns thengigd minimum distance between this
point and the boundary of the geometry. The sign is negatisielé the domain while it is
positive outside the domain. The actual mesh generatiantbeeDelaunay triangulation rou-
tine in Matlab and tries to optimize the node locations byradebased smoothing procedure.
Using a weight function, the desired edge length distrdouis specified by the user. When
using DistMesh to generate a triangulation using a uniforigivt function, it generates a
triangular mesh where the lengths of all the edges are nequsl as described i1 §.

To give an idea of the meshes generated by DistMesh, Figjirehows a mesh for the
L-shape consisting af475 points. In the examples of Sectiénwe show the efficiency and
effectiveness of using DistMesh to generate thé'sand give more details on the values of
the parameters used in the numerical experiments.

Admissible meshes and weakly admissible meshes were utteatin B] by Calvi and
Levenberg as a tool to quantify the uniform approximaticoparties of discrete least squares
polynomial approximation. Given a geomefy an admissible mesh (AM) is a sequence of
point setsA(d) in function of the degreé, that satisfies

(3.2) Iplle < C(A(0), ) [Ipllaw), pe€PF,

where for a sefS, ||p|ls = maxgzes p(x) and where the constait(A(J),2) is bounded
above for alb (see B, (2.9)]). Ifthe constant’( A(d), 2) behaves like a polynomial inwhen

4 — oo, then the sequence of point set$)) is called a weakly admissible mesh (WAM).
Hence, ifC(A(9), ) is small enough, (W)AMs are good discretizations of a geoyn@t
to approximate the maximum of a polynomial of degfeeln the numerical experiment
described later, we indicate that point sets computed biMeish are WAMS.



ETNA
Kent State University
http://etna.math.kent.edu

46 M.VAN BAREL, M. HUMET, AND L. SORBER

The number of points for a uniform AM behaves likeD(5*) = O(N?) when the
degree) goes to infinity. Since the numbéf of points increases very fast in function of
the degre@, for specific geometries AMs were constructed whEréehaves a®(N) [6].
See also?, 4 on WAMs. These specific meshes have a higher density of poiear the
boundary.

Choosing point sets with more points in the neighborhoocheftioundary is advan-
tageous as can be seen as follows. When one has a nearlyabptint set, e.g., on the
unit square geometry, moving one of these points in the heidiood of the boundary has
a much larger influence on the Lebesgue function then movipgirt in the center of the
square. Hence, it seems better to increase the density gioihés in the neighborhood of
the boundary of the geometry. Taking the same number of pamfor a uniform AM, this
should not decrease the quality of the mesh, on the contrary.

In the following example, we compare five point sets on the aquare inR? with
respect to their quality as an AM. Three of the five point se¢sgeenerated by methods that
can be used for general geometries: the uniform and nomumipoint sets generated by
DistMesh, and a uniform covering of the unit square. Themtle are specific AMs for the
unit square: a non-uniform covering using Padua points aredusing a tensor Chebyshev
grid. To measure the quality of an AML(¢)) the constan€'(A(d), 2) as defined in%.2) can
be estimated. The smaller this constant, the better. To atewgower bound of'(A(), ©2),
we can rewrite §.2) to get

c(A@),a) > Ple g, epn
A(9)
ol

We take100 random polynomialg and use the maximum of all the fractio‘p"!‘;& as a

lower bound forC'(A(d),£2). The numerator is approximated by taking a finer discretiza-
tion of Q2 than A(). To compute an approximate upper bound, we use a similarcdeth
described in§]°. For given function values in each of the points of the pogtt4(5), we
consider the least squares approximating polynomial ofesey We approximate the max-
imum of the value im of this approximating polynomial by taking the maximum aia a
finer discretization of) than A(d). The infinity norm of the operator going from the given
function values to the function values éngives an upper bound far(A(9), 2). By taking

the finer discretization instead Ofitself, an approximate upper bound is obtained.

We compare the values of the constait4 (), 2) when( is the unit square ifiR2.
The lower and upper bounds for the constaiiA(d), 2) are shown in function of in Fig-
ure 3.2 Each of the five point sets has approximatgly= 4096 points. The point set
having a higher point density near the boundary generatedistyesh works better than
uniform point distributions having the same number of paitiowever, the specific admis-
sible meshes (Padua points, Chebyshev tensor grid) dedfopthe geometry of the square
are performing better to approximately maximize a givercfiom. For a specific geometry
having (weakly) admissible meshes (WAMs), it seems to bebti use such a WAM.

A detailed comparison between the different choices of thetsets and developing the
corresponding theory is not within the scope of this paper.

6This method was suggested by one of the referees.
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—e—uniform covering —e—uniform covering
—e—uniform triangularization 5oF | —® uniform triangularization
—e-weighted triangularization —e—weighted triangularization

Al Padua points a0l Padua points p
—e-Chebyshev tensor grid —e—Chebyshev tensor grid

1.5r
18 0 . . .
5 10 15 20 25 5 10 15 20 25
degree degree

FiG. 3.2.Lower and upper bounds (left, respectively right figure)dqrA(5), 2) in function of the degreé

To compute the approximatioB.(l), we choose a basisy;. }I¥ in PZ*. More details on
the choice of this basis will be given in SectidnFrom the definition of Lagrange polyno-
mials, we have the following expression for the basis potgiads:

¢1(331) ¢N(~’L'1)
[01(y) -+ on(y)] =[Lly) - In(y)] : : :
¢1(xn) - On(xN)

or evaluated in each of the pointsy, € Y

o1(y1) - On(y1) h(y) - In(yy) p1(x1) -+ on(1)

o) - on(wr)] e o Inwe)] lei@y) o el

We write this in a concise way as
(3.3) VW =LVy.

Note thatK is chosen such thdt > N.

The matriced’x andVy are the basis polynomials evaluated in the points of theXets
andY andVx is the generalized Vandermonde matrix of the previous aectif the point
set X is unisolvent, the matrix. of Lagrange polynomials can be computed by solving a
system of linear equations with coefficient matvix. Taking its matrix infinity norm results
in approximation 8.1) of the Lebesgue constant, i.e.,

Ax ~ Ll = IV Vy Hloo-

The accuracy of the computation |pE || . depends on the condition number of the gen-
eralized Vandermonde matriXy. For this number to be small, it is important to obtain a
good basis{¢, }V for the geometry) considered, which we discuss in more detail in the
next section.

4. Obtaining a good basis for a specific geometryin this section we discuss some of
the possible choices for the basisR¥ that are used to compute the Lebesgue congtgnt
First we mention the bases that have been used]ito[obtain point configurations with a
low Lebesgue constant for the square, the simplex and thke ™igen we discuss orthonormal
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bases with respect to a discrete inner product, which camimpated by solving an inverse
eigenvalue problemlg]. We briefly describe the problem setting and mention somhef
approaches to solve the inverse eigenvalue problem. #imalintroduce a technique to
extend a basis, which will be used in Sect®n.

Since the choice of the basis determines the Vandermondixrivat of the systemg.3),
it has a large impact on the conditioning of the problem of patimgA x. The idea we pursue
in this paper is to use a basis for which the condition numiérsois small enough. The
precise meaning of “small enough” depends on how accurateomputed value o x
needs to be. For example, for the algorithms of Sediian practice it suffices to know only
a couple of correct significant decimal digits of the mattiin (3.3), so thatcond(Vx ) may
be as large as0'2.

Briani et al. [7] use three different orthonormal bases for the respectasrgptries con-
sidered. Let? € R™ be a compact set, then we say that two polynomjials € P} are
orthogonal with respect t@ and the weight functiom () if

(r, @) = /Qp(a:)q(m)w(m)da: =0.

The three bases consist of product Chebyshev polynomiathéosquare, Dubiner polyno-
mials for the simplex and Koornwinder type Il polynomials the disk. These polynomials
are orthonormal with respect to the respective geometnidstee respective weight functions
w(®) =T, (1 —2;)" 7, w(x) = 1 andw(z) = 1.

Our approach is to consider a discrete inner product

N

(4.1) p.a)x = > wip(@)a(:),

i=1

with pointsX := {z;}?¥ C R™ and weightsv; € R*. An advantage of using an orthonormal
basis{qsk}{v with respect to this inner product is that, foy = 1, the matrix\’y is orthogonal.
Hence, numerical difficulties to computey for a set of pointsX can be avoided by taking
an orthonormal basis with respect ta1) defined on the same point skt

The problem of computing orthogonal multivariate polynatsiwith respect to4.1)
has been studied irilf]. In this work the orthogonal polynomials are representgdhe
recurrence coefficienfsz(? of the recurrence relation

(k)

J

(4.2) wkdy = Y Wi,

i=1

T

which gives an expression for . if the previous polynomialgs, ..., ¢ ), are known.
J J

The indeX7r§k) depends o andk and will be discussed later. The polynomials have to be
ordered along a term order, meaning thatx) = apx>* + ... + a;x** and the monomials

= g . an' satisfy a term orderl < 2P forall 3 # 0 and if ¢ < x,
thenaPz>: < Pz for all 3 # 0. Here, we will restrict ourselves to graded term orders,
imposing the additional condition that, }f, o, =: |ay| < |y, thenz® < 2. An

example of a graded term order is theded lexicographical ordemwhich forn = 3 looks
like

l<z<y<z<22<yz=<y’<zz<azy<az’<--
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A matrix expression for4.2) is
TR [P G2 - Pyl =11 ¢ - on | Hy

with Hy,(i, ) = h(k) andH, € R¥N*N. Here N and N are the dimensions of the spaces
Pg andPs_,, respectwely The element”) Lo _associated with the leading basis polynomial

in (4.2 is called a pivot element off;, and it is the last nonzero element in tfih column.
The p03|t|ons(7r ,7) of the pivot elements follow from the monomial order and can b
determined at a negligible cost. E.g., for the graded leyiaphical ordering and = 3, the
matrix F,, has pivots at positions

(4,1),(8,2),(9,3), (10,4),(15,5), (16,5), ...

fw=[w ... wN]T is a vector with the weights andl, = diag(z1 k, ..., TN k)
is the diagonal matrix with thé-th coordinates of the points; € X, then the recurrence
matricesH, can be found from the inverse eigenvalue problem

(43) QTQ=1 QTw=|w|e, and Hy,=QTX,Q, k=1,...,n,

where the matrice#/,, are embedded in the,, € RV*Y as follows

Hy = [H, x].

The basic idea is to apply orthogonal transformations tand X, to make zeros inv while

at the same time assuring that the matrifigshave the correct pivot element structure, which
is determined by the monomial order. If the pivot elementhamatricesH,, are positive,
then the process has a unique outcome.

We have implemented two methods to sole3), where the user can supply any graded
term order. The first method adds one points at a time. In éaph i uses Givens transfor-
mations to make one weight i zero and to bring the matricd$; to the desired structure.
The algorithm is explained inlp] for the bivariate case. The second method uses House-
holder transformations. A first Householder is appliedddo make all the zeros at once.
Subsequent Householders then brifigto the desired structure.

Although the method with Householder transformations hlagher flopcount than the
method with Givens transformations, it becomes fasterdiad problems, because the opera-
tions are less granular. By using more matrix vector praglinstead of fine grain operations
on vectors, most of the work is done using BLAS-2 routineg (8¢ Chapter 1]). We will
therefore prefer the second method for large problems,Haeutitst method remains useful,
because it allows to add points to an existing inner product.

As noted in [L€], there is some freedom in the algorithms concerning whiebtgs
used to construct the Givens or Householder transformatimveral criteria to choose the
pivot have been implemented, so the reader can experimémtthem. We have adopted
the approach to construct the orthogonal transformatiom fihe vector with the highe&t
norm, since this seemed the most accurate in numerical testisierical tests also pointed

out to use a similar approach to evaluate the orthonormahpohials using the recurrence
relations ¢.2): if | = ](fl) =. j(k =) so there aren pivot elements in thé-th row

of respective matrice#fy, thenqsl is computed from4.2) for that k; associated with the
biggest p|vothl(f“ji). 7

“Note that choosing the biggest pivot is similar to the optipieoting strategy for Gaussian elimination.



ETNA
Kent State University
http://etna.math.kent.edu

50 M.VAN BAREL, M. HUMET, AND L. SORBER

The last part of this section is devoted to explain a simpthn@&ue that extends a basis.
In Section5.1, we motivate this technique and give some numerical resldts show its
use. Suppose we have a bais, }4' for P asociated with a graded term order, which is
a good representation on a certain donfaig R". We extend this basis with polynomials
ON+1, PN+2, - - -, ON+m DY taking products of the orginal basis

d)i:d)ki'ﬁbl” Z:N+1,,N+m7

where the indiceg; andi; satisfy

() a;i =y, +ay,

(i) ou,| = |onia| =1,
(i) k; is as low as possible.
Condition (i) follows directly from the definition of the momial order and condition (ii)
implies that we take the total degree of one of the factorstor®e less than the total degree
of the first polynomial that extends the basis. From (i) ai)dt(ie total degree oy, is fixed,
and condition (iii) then determines the valuesipaindi;.

Such an extension of a good basis on a domain will usuallyssedeod than the original
basis, and it is clear that it will deteriorate msgrows larger. However, the main advantage
is that it can be evaluated very cheaply in points where thggral basis has been evaluated.
In Section5.1it is explained how this technique can be used to decreaspwation time,
while at the same time maintaining a high enough level of stiess.

5. Computing nearly optimal interpolation points. As explained in Sectiog, we get
a good polynomial approximation of the minmax polynomigbagximant by interpolation
in points X with a small Lebesgue constafty. To obtain such a seX’, we want to solve
the following minmax optimization problem

5.1 in Ax = mi A :
G iy o = iy e )

If we approximate the Lebesgue constant as in Se@ibpAx ~ |||, we get the opti-
mization problem

min [|L]
(5.2) XCQ
subjecttoly = L Vx,

whereX = {z;} andY = {y, }¥.

This is a minmax optimization problem with constraints hessathe pointg; have to lie
in the regior). Minmax optimization problems are notoriously difficultgolve. In addition
the objective function x is not everywhere differentiable, and the number of vagalgkrows
fast when increasing the degréand/or the number of dimensions E.g., forn = 2 and
0 = 20, the dimensionV of the vector spac®y’ is 231. Hence, the number of real variables
is the number of components of tAepointsxy, i.e.,462.

In [7], Briani et al. describe a collection of MATLAB scripts tolge the optimization
problem 6.2) using the MATLAB Optimization Toolbox. They consider= 2 and{2 equal
to the square, the disk and the simplex, and their resultisdemearly optimal point configu-
rations for these geometries up to a total degree-6f20. There is no certainty that the real
optimum is reached, but the Lebesgue constants found amartallest at the point of their
writing.

In the next subsections, we present alternative methodsidoafipoint setX with a
low Lebesgue constant. These methods work for very generhgtries, can be used for



ETNA
Kent State University
http://etna.math.kent.edu

OPTIMAL POINT CONFIGURATIONS FOR INTERPOLATION 51

larger point sets and are faster compared to current tegbgsigThe first algorithm uses a
relaxed optimization criterion and creates a point con&gjan with a relatively low Lebesgue
constantin an efficient, non-iterative way. The secondrétlym iterates over the point set one
point at a time, using the same criterion. The third and foatjorithm are more advanced
optimization algorithms that solve a similar but easierbpemn than §.2) leading to point
configurations with a nearly optimal Lebesgue constant.

5.1. Greedy algorithm by adding points. Evaluating the objective functiofiL|| - of
the optimization algorithm%.2) requires the evaluation of the basis in the poikitand the
solution of a system of linear equations. Since the objedtwction is not differentiable on
Q) and the number of variables can become very high, the coameegto a local minimum
using standard MATLAB Optimization tools can take a lot @frétions, and consequently a
lot of objective function evaluations.

In this section, we develop a “greedy” algorithm to genesgpeint configuration for any
geometryQ) with a reasonably low Lebesgue constant, with only a small computational
effort. The algorithm is based on two ideas:

1. In each step, one point of the regi@ns added, while the other points remain where
they are.
2. This point is added there where the Lebesgue functioressits maximum.
We will refer to the algorithm as the Greedy Add algorithm.

Criterion 2 is reasonable in the sense that it guarantees that the dpdstvesgue con-
stant has the valukin the new point. This point can be approximated by takingatrf the
setY C (2, where the Lebesgue function reaches a maximum. Note thaiev point could
also be chosen to minimize the Lebesgue constant as a faradtionly one point, but this
would be much more costly. Instead, we use a greedy apprdaetewhe next pointis picked
based on the mentioned relaxed criterion. Numerical erperts will show that, although
the point configurations obtained are clearly not optimfaytexhibit a structure in the do-
main {2 similar to (nearly) optimal configurations, and their Letpes constant is reasonably
low.

Obviously, the first point can be chosen freely. Since theelsghe function for one point
is a constant, the same holds for the second point. Howenenruist be careful to keep the
set of two points unisolvent. E.g., consider the term oidex = < y < 22 < ... The
Vandermonde matrix for two points:1, y1) and(xz, y2) is

1 X1

|:1 x2:| ’
Hence the first two points can be chosen freely, but they mawa Hifferent first coordinates.

Theoretically, it is possible that at some step, after agittie next point, the configura-

tion is not unisolvent anymore. As a result, the Lebesguetenn reaches infinity, leaving
the next point undefined. We give an example wheiis the unit disk, with the same term
order as just described. Suppose that the first two points-ared) and(0, 0). The Lebesgue
function depends om only and a small calculation shows that it reaches it's maxmn the
disk at(1, 0). If this pointis included in the point s&f, then the resulting point configuration
of 3 points will not be unisolvent causing the method to f&ince all points are collinear,
the Vandermonde matrix is singular. If both points are chasadomly, we believe that the
probability for such an event to occur is zero.
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Suppose that we want to generate a configuratiolV gfoints, whereV is the dimen-
sion @.1) of the spaceP.2 For now assume that there is a suitable basisHpron the
geometry(), e.g., product Chebyshev polynomials on the sq{iaie 1]2. If that is the case,
the Greedy Add algorithm can be formulated as AlgorithnSince the grid” consist of K
points, the matri¥/y- is of dimensionk” x V. FurthermoreViﬁk) is the K x k matrix with

the firstk columns ofly and V)((k) is thek x k (generalized) Vandermonde matrix for the
first k basis polynomials and the pointsi. In stepk, the matrixL is K x (k — 1) and each
columns contains one of the Lagrange polynomials for thatpan X evaluated inY”. The
index: selects the point it where the Lebesgue function is maximal.

Algorithm 1 Greedy Add algorithm
Input: N,Y, basis
Output: X
X <+ {2 random pointse; andx,}
Vy <+ evaluate basis functions in grid € Q
fork=3,...,Ndo
V¥~ + evaluate basis functions ik
L VY = pyEh
1 < index of row of L with largest one norm
X+ XU {:Bk}
end for

Two remarks have to be made. First, the computatioh o&n be accelerated using the
Sherman-Morrison-Woodbury formula(p. 50]). Indeed, in step the matriceﬂf)((k’l) and
V&‘” are the same as in the previous step, except for the theicdtstinns and the last

row of V)((k’l). The matrix of the system is therefore a rank-2 update of yistem in the
previous step. Making use of this fact improves the efficyesfmne step fronO (Kk:Q) flop

to O(K k). There should be &(k?) term as well, but we get rid of it by updating the QR
factorization oﬂ/)((k_l) ([9, Section 12.5]).

Second, given a geometfy, it is not always apparent which basis to use, if the Vander-
monde matrices in the algorithm have to remain well condéth As an example, we carry
out Algorithm1 on the L-shape using product Chebyshev polynomials for aeg@g= 30
or N = 496, and we plot the condition number Uﬁ(k) in Figure5.1 The condition number
keeps growing steadily until at some point it becomes sceldéingt the Lebesgue function
evaluations possibly have no correct significant digits lef

A solution to this problem is using polynomials orthogondiharespect to a discrete
inner product 4.1) with the current points in step. In this way, the Vandermonde matrix
is always perfectly conditioned. This solution involve$/gny the inverse eigenvalue prob-
lem @.3) of sizek in every step, after finding the next point, and evaluatirgribw set of
orthogonal polynomials in the poinis. The inverse eigenvalue problem can be updated one
point at the time using the Givens implementation (see Sed), at a cost ofO(k?) flops
per step. Hence, the expensive part of the process is etiagithhe new basis functions in the
pointsY at a cost ofD( K k?) flops per step.

To avoid the costly procedure of updating the basis in eagh, ste try to extend the

8Note that all the algorithms work for any value &f, but for notational convenience we work with spaces of
total degree.
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FiG. 5.1. The condition number of the Vandermonde mah‘}g“) using Algorithm1 for the L-shape =
[—1,1] x [-1,0] N [—1,0] x [0, 1], with product Chebyshev polynomials as basis.

current basis with products of the original basis functjcass explained in Sectiof. We
keep track of the reciprocal condition numbel’vg(f), which is cheap to comptuiteand only
if V)((k) becomes too badly conditioned we compute a new orthogoms#é.bn Figure5.2

we plot again the condition number vﬁﬁ for the L-shape, now using the adaptations just
described. The condition number grows steadily, but ont®domes too large, the basis
is updated. ForV = 496, only 2 costly basis updates have been carried out, which is a
significant improvement.

Each time the basis is updated, we recompute the méathiy solving a regular linear
system. Note that this is not strictly necessary, since #igrange polynomials are indepen-
dent of the basis that is used, so it is possible to contingtimg L via low rank updates.
However, it might be useful to avoid inaccuracies in the iratrobtained by the subsequent
low rank updates. A stability analysis of these updatesigaeered in this paper.

Since the implementation of the adapted Greedy Add Algoritha bit too technical to
be included in this paper, we refer to the documention in thaec In Figure5.3 the value
of the Lebesgue constant is plotted for each iteration ofatttegpted algorithm, for several
pairs of random starting points and for several sizes of tlte}j. Observe that the Lebesgue
constant fluctuates a lot, and that the final valuye can be a lot larger than the previous
value. This shows that the obtained point configurationsdgreo means optimal, but they
can serve as a starting point for the algorithms in the falgysections. In addition, observe
that the choice of the starting points influences the obthirebesgue constants, as does the
size of the gridy".

The resulting point configuration is shown in Figire for one paricular choice of the
starting points and the size of the grid, for both the squarkthe L-shape. In Sectio
we obtain point configurations with nearly optimal Lebesgaestants, which are shown in
Figure6.2. We observe that the structure in these optimal point corditans is already
present in the point configurations obtained by the Greedy Aldorithm.

5.2. Greedy algorithm by updating points. In this section we develop the Greedy Up-
date Algorithm, implementing a straighforward approachiprove the point configuration
X = {z;}}¥ obtained by the Greedy Add Algorithm of the previous sectibine idea is iter-

9MATLAB’s RCOND gives an approximation of the reciprocal cfition numbercond(V)((k))—l.
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FiG. 5.2. The condition number of the Vandermonde matfj%“) using the adapted version of Algorithin
for the L-shape, with orthogonal polynomial updates and$astention.
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F1G. 5.3.The Lebesgue constani, after adding the firsk points with the adapted Greedy Add Algorithm as
a function ofk, for several random choices of the first two points (left) &dseveral sizes of the gritl” (right).
The geometry? is the square and = 20, soN = 231. The gridsize for the left plot 81322.

ate over all the points, remove each point frdhand immediately add a new point according
to the same greedy criterion. By iterating several timeg @llethe points, the Lebesgue
constant typically stabilizes at a reasonably low value.

The algorithm is described schematically in Algorit@mThe input variables are a point
configurationX, e.g., obtained by the Greedy Add Algorithm, a drice 2 and the variables
needed to evaluate the basis that is used. One possibitty limsis orthogonal with respect
to X. We have observed that if the input point configuratiorhas a low enough Lebesgue
constant, then this basis will remain good enough for allitti&@tions. We have added the
functionality that the basis is updated if the VandermondﬁmV)((N’l) becomes too badly
conditioned.

Similar to the Greedy Add Algorithm, the computationiofn each step can be accel-
erated by using low rank updates. Indeed, the mdfﬁ%‘” in stepk + 1 is identical to

V)((N’l) in stepk, except for itsk-th row. They are the same basis polynomials (columns)
evaluated in the same points (rows) except for one. Heneendirix of the system is a rank-

1 update of the system in the previous step and we can againedde amount of work in
one step fronO (K N?) to O(K N) flop. The QR factorization oy ~* is updated as well.
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FiIG. 5.4.Point configurationsX of N = 231 points ¢ = 20) obtained by the Greedy Add Algorithm for the
square on the left, and the L-shape on the right.

Algorithm 2 Greedy Update Algorithm
Input: X, Y, basis
Output: X
Vy <« evaluate basis functions in grid € Q
while stopping criterion is not satisfietb
fork=1,2,...,Ndo
X X\ {x}
VN~V « evaluate basis functions ik
LN = vV
i < index of row of L with largest one norm
X+ XU {mk}
end for
end while

Figure5.5is an extension of Figurd.3 where the value of the Lebesgue constant is
plotted for each iteration of the adapted Greedy Add Al¢onitand the Greedy Update Al-
gorithm, for several pairs of random starting points andstvreral sizes of the grif. The
Greedy Update Algorithm runs fdi) iterations over all the points. We observe that usually
the Lebesgue constant stabilizes after a couple of runshanthe value of the final Lebesgue
constant depends on the particular choice of the startimgand on the size of the grid.

5.3. Algorithm based on approximating the infinity norm. The infinity normin 6.2
is notoriously difficult to optimize using numerical optimattion techniques because it com-
bines two of the most exacting objective function properttaking the maximum over a set
and summing (nonsmooth) absolute values. For many initieltisetsX, the Lebesgue con-
stant will be quite large and it may suffice to solve a neighbmmuproblem approximating
(5.2 in order to obtain a substantial reduction of the Lebesguisiant.

5.3.1. Unweighted least squares problemOne approach could be to replace the infin-
ity norm by the (squared) Frobenius norm since

(5.3) LllF < Lo < VN|L|.

1
\/KN|
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FIG. 5.5. The Lebesgue constant, at each iteration of the adapted Greedy Add Algorithm andGheedy
Update Algorithm, for several random choices of the first pamts (left) and for several sizes of the ghid(right).
The geometry? is the square and = 20, soN = 231. The gridsize for the left plot 81322.

For example, forn = 2 andd = 20 we haveN = 231 and hencé|L||r bounds|| L ||~ from
above by about a factor of 15. In practice, the two norms aenadven closer than the bound
(5.3 suggests. The objective is now to solve the optimizatiaibjam

(5.4) XcQ 2
subjecttoly = L V.

By eliminating the (linear) constraint irb(4), we obtain a nonlinear least squares (NLS)
problem inX C (). There are several algorithms for solving NLS problems, yra&frwhich
can be adapted for solutions restricted to a dorfaifn our experiments, we use a projected
Gauss-Newton dogleg trust-region method, which is a gitligvard generalization of the
bound-constrained projected Newton algorithm Bf][to a larger class of geometries. To
define a geometr§2, the user is asked to implement a function which projectatsa@utside
of the geometry onto its boundary.

Given a current iterate, the Gauss—Newton dogleg trustmegethod computes two
additive steps. The first is the Cauchy sjgf, which is approximated as a scaled steepest
descent direction-g := 4= wherez = ved X )Y and the objective functiorf(z) is

dz
defined as;||L||2. Here, the points¥ are stored ak:"]; ;, wherez!? is the;jth component

of theith point. The second is the Gauss—Newton step
(5.5) pon == —redJ"J)'g,

where the Jacobiat is defined asd"jz#, and red-) “reduces” the Hessian approximation
JTJ by setting those rows and columns corresponding to theeaséivequal to those of the
identity matrix of the same size a&".J. The active set is defined as the set of indicésr
which the variables; are on the boundary of the geometry. For more details on thection

of the Hessian; se€l()]. Since.J is tall and skinny, its Gramiad? J is a relatively small
square matrix of ordeNn. Furthermore, it is a positive (semi-)definite approxiroatdf
the objective function’s Hessian and hence may be expectééliver a high-quality descent
directionpg for a relatively low computational cost. Importantly, wellvgiee that comput-
ing the two descent directions can be done with an amount mjpatational effort that is
independent of the number of mesh poikits

101f X is stored in MATLAB as aV x n matrix, then ve¢X) := X (:) is the Nn x 1 vectorization ofX.
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To compute the aforementioned descent directions, let

T
wo - [0 0V,
a:cg” 8305\2,)

be a compact representation of the derivativégfwith respect to théth component of the
points X. Furthermore, let

W= [WOT ... W(N)T}T ,
then after some straightforward computation we find that
—g=—J"vedL) = [(Lux1® (Vi " (W W)V ) * W] Ly xa
and
TTT = (Lusn ® (Ve TR V) V) + WV TV TWT),

wherel,, «, IS anm x n matrix of ones® andx are the Kronecker and Hadamard (or ele-
mentwise) product, respectively. Notice that the only catapon involving vectors of length

K is the termV;X V-, which need only be computed once and can be done on befarehan
Consequently, the cost per Gauss—Newton iteration is datetiby the cost of solving(5),
which requireO(N3n?) flop.

Once the Cauchy and the Gauss—Newton steps are computpohjineted Gauss-Newton
dogleg trust-region algorithm proceeds to project thenuchsa way that the sum of the cur-
rent iteratez,, and these steps does not exceed the boundary of the geometityer words,
using the user-defined projection function grijthe steps are corrected as

p < Proj(zx + p) — zx.

The dogleg trust-region algorithm then searches for a stéphwimproves the objective func-
tion in (a subspace of) the plane spanned by the projectedn@and Gauss—Newton steps.
For more details on dogleg trust-region; see, eld). [

5.3.2. Weighted least squares problemBecause the Frobenius norm is only a crude
approximation for the infinity norm, we introduce a diagonelghting matrixD,, = diag(d,, (7))
in the least squares optimization problesrj:

min = | Du L2
(5.6) XeQ 2
subjecttoly = L V.

This problem is solved in an approximate way by performingralsnumber of Gauss-
Newton dogleg trust-region iteration stépsBased on this new approximate solution, the
weightsd,, (i) are adapted. More weight is put on the poigtss Y C Q where the Lebesgue
function is large. Solving the least squares problem withatapted weight$(6), generi-
cally pushes the Lebesgue function down in those subregibese more weight was placed.

To obtain an efficient and effective algorithm, it is crudialdesign a good heuristic for
this adaptation of the weights. By trial and error, the failog heuristic came out as a good
choice and was implemented. The number of pointef the setY” is chosen approximately

11In our implementation, the number of iterations is takenaktpi two.
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equal to one hundred times the number of pointof X. In total there are one hundred
outer iterations each with another adapted weight mdijx Initially the weights are all
equal to one. After each outer iteratibrihe Lebesgue function is computed in all poigts

and the firstn, (k) largest values are considered. The weight of each of thegponding
points is increased by a fixed amounpt, taken equal t0.4 in our implementation. Note that
the numben,, (k) of pointsy, whose weight is increased, depends on the index of the outer
iteration. The formula for this number is

ny (k) = max{10, N — L%kj}

with |r] the largest integer number less than or equal to the real eumliHence, in each
subsequent iteration, less points are receiving a highghentil this number is equal tt)
after which it remains constant.

6. Numerical experiments. The algorithms were implemented in MATLAB R2012a
and can be obtained from the corresponding author. The iexpets were executed on a
Linux machine with2 Intel Xeon Processors E5645 at®lGByte of RAM.

6.1. Experiment 1: nearly-optimal point configurations for the square, simplex,
disk and L-shape. For each of the geometries, the square, simplex, disk antapes a
nearly optimal point configuratioN is computed for each of the total degrées 3, 4, . . ., 30.
To derive these points, the different optimization aldoris of Sectiorb are used subse-
quently.

First, the Greedy Add Algorithm of Sectidnlis used to obtain an initial configuration
X7 with a reasonably small Lebesgue constant. The poink'sétom which these initial
points are taken, is generated by DistMesh with the parardetermined such that approx-
imately 100N points are contained in set th¢ where N is the number of points ok;.
This initial configuration is then improved by performidterations of the Greedy Update
Algorithm of Sectiornb.2, using the same poinig as in the first phase. This improved point
configurationX, is the initialization of the final phase where the weightexkstesquares op-
timization algorithm from Sectiob.3.2is used. For the disk, the same point Betis used
in this final phase. For the polygon-geometries, we genaraét@ngular mesh based on the
points of X, together with the edge points of the polygon (square, sirypleshape). Each
triangle is then divided in a number of subtriangles sucth tihe side lenghts ar&) times
smaller. This results in a point sk} that contains approximatel)0N points. Performing
100 outer iterations of the weighted least squares algoritisultgin the nearly optimal point
configurationX = X3.

In Figure6.1the estimated Lebesgue constant of the resulting(set X3 is shown for
the square, simplex, L-shape and disk, respectively. Ttimaison of the Lebesgue constant
is done by sampling the Lebesgue function on a point set geeteasy; based on the point
set X3 for degree30 and with a multiplication factot 000 instead of100. In the subfigures
also the results obtained by the CAA-group ére given when available.

The optimization problem that is solved, is not an easy ooe sbme degrees the com-
puted minimal Lebesgue constant appears closer to thelgipbmum than for others. Like
for many optimization problems, it is often difficult to rémglobal optimality. The plots
show that it seems more difficult to compute nearly-optin@hpsets for the simplex and
L-shape than for the square and the disk.

These values of the minimal Lebesgue constant are the lzdtdlie been computed so
far. For the square a non smooth behavior of the results o€ #¥-group is clear from the
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graph?. The graph showing our results for the square has a smoogevtor and for the

disk it is clear that the growth as indicated by the resultthhefCAA group is a side-effect
of their optimization procedure and not the real growth @& thearly-)optimal Lebesgue
constant.

In Figure 6.2 the corresponding nearly optimal point configurations fegree30 are
given. We have no formal way to compare the computed poirits eyptimal ones because
these optimal sets are not known. However, the shape of thedgeie function gives a good
indication of the quality of the “good” points. When solvitfte minmax optimization prob-
lem, the points are subsequently moved in order to lower idjeelst local maximum of the
Lebesgue function, while at the same time trying to keep tieelsgue function low enough
everywhere else. Intuitively, we expect that for the optip@int set, all the local maxima
of the Lebesgue function will have the same function valuenv@rsely, when all the local
maxima of the Lebesgue function have (almost) the sameiimealue, the corresponding
point set could be considered as a (nearly-)optimal one.

In Figure 6.3 the Lebesgue function for the Padua points (Lebesgue aunstd®.2)
and the Lebesgue function for “our” nearly-optimal poinhfiguration (Lebesgue constant
~ 7.3) on the square for degr@e is shown indicating the difference in behavior of the local
maxima. Note that the figure for the Padua points shows tlealehsity of these points is not
high enough in the neighborhood of the boundary. In Figud¢he time for each of the three
phases of the algorithm is presented. The lower curve it ([in seconds) in function of
the degree for the Greedy Add Algorithm. The middle curvenshthe time for the Greedy
Update Algorithm. The upper curve presents the time for thighited least squares phase.

Compared to the algorithms of]} to obtain a comparable Lebesgue constant the com-
bined algorithm of this paper needs less computing time.

6.2. Experiment 2: nearly optimal point set for degrees0 on the square. This exper-
iment shows that much larger nearly optimal point sets cageberated compared to existing
techniques. For degrée= 60, the number of points i = 1891 which is more tha® times
larger than for degre& = 20. For this experiment, we run only the two first phases of our
combined optimization scheme, i.e., greedy adding anddgrepdating, with1 0 instead o
iterations for the greedy update step. The greedy add step2a 6 hours, while the greedy
update step take®3.38 hours. In Figures.5, the estimated Lebesgue constant is shown for
each of thel( iterations of the greedy update step as well as the resulgagy optimal point
configuration having an estimated Lebesgue constari wfich was reached in iteratidn

7. Conclusion. In this paper several optimization algorithms were degigneeompute
nearly optimal point configurations for different geomesti These algorithms can be com-
bined to derive an efficient and effective algorithm where aigorithm uses the output of
the previous one as an initialization. By choosing a repriadion of the multivariate polyno-
mials in terms of an orthogonal basis with respect to a disénmer product for a geometry,
numerical problems are avoided for larger point sets. Atsoefficiency is at least one order
of magnitude better compared to existing techniques.

In future research several topics can be studied:

e The different algorithms of Sectidhcan be combined in many ways with different
heuristics for the number of iterations in the greedy alponifor updating and the
inner and outer iteration of the weighted least squaresi#hgo. Also different point
setsY can be used in each of the algorithms.

12\Ve have asked the authors of the corresponding paper if lieet@ccurred a typo in presenting their results,
but this didn’t seem to be the case.



ETNA
Kent State University
http://etna.math.kent.edu

61

OPTIMAL POINT CONFIGURATIONS FOR INTERPOLATION

FiG. 6.3.Comparison of the Lebesgue function for the square and d@gréor the Padua points (above) and
the nearly-optimal point set that we found (below)

e Itis not clear to us if the weighted least squares algorithat has been developed
to approximately solve the minmax optimization problemnswn in the literature.
At this point it uses a crude heuristic and more investigationecessary to make
this approach more robust. The generalization of this aagrdo other minmax

optimization problems can be studied.
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FI1G. 6.4.Time (in seconds) for the three phases (greedy add, greethteipveighted nonlinear least squares)
of the algorithm for the square
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FiG. 6.5.left: Lebesgue constant after each of ttieiterations of the greedy update step for degééeon the
square; right: resulting nearly optimal point configuratio
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