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Abstract. Efficient and effective algorithms are designed to compute the coordinates of nearly optimal points
for multivariate polynomial interpolation on a general geometry. “Nearly optimal” refers to the property that the set
of points has a Lebesgue constant near to the minimal Lebesgue constant with respect to multivariate polynomial
interpolation on a finite region. The proposed algorithms range from cheap ones that produce point configurations
with a reasonably low Lebesgue constant, to more expensive ones that can find point configurations for several
two-dimensional shapes which have the lowest Lebesgue constant in comparison to currently known results.
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1. Introduction. In several theoretical as well as computational mathematical prob-
lems, one wants to work with complicated multivariate functions. However, in a lot of cases
performing operations with these original functions is cumbersome and requires an unac-
ceptably high computational effort. A solution to this problem is to replace the original
complicated function by a function that can be handled much more easily, e.g., polynomial
functions. Within this space of simpler functions, we can look for the function that optimizes
one of several possible criteria. One example is the minmax criterion, but the computational
effort to find the function that minimizes the infinity norm error, is large. Instead an ap-
proximant can be found that is almost as good as the minmax approximant by interpolating
the original function in certain well-chosen points. Thesepoints are chosen in an optimal or
nearly optimal way with respect to minimizing the Lebesgue constant.

In this manuscript we develop several algorithms to computepoint configurations for
multivariate polynomial interpolation that have a low or even almost minimal Lebesgue con-
stant for a given geometry. We will refer to them as “good” points and nearly optimal points,
respectively. Interpolating in these points will yield good polynomial approximants for the
geometry, compared to the minmax polynomial approximant.

For the problem of approximating univariate functions by polynomials in a typical com-
pact set on the real line, i.e., an interval, both the theory and the corresponding software are
well-developed. We refer to Chebfun, a MATLAB toolbox, whose theoretical foundation and
several of its applications are described in the book by Trefethen [15]. If one transforms an
arbitrary compact interval to the inverval[−1, 1], it turns out that different types of Cheby-
shev points not only form nearly optimal point configurations, but that the computation of
the corresponding interpolant can be performed very efficiently (and accurately) by using the
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Fast Fourier Transform (FFT). The zero sets of other orthogonal polynomials, e.g., Legendre
polynomials, have similar approximating properties but they can not be represented explicitly
and the corresponding approximant cannot be computed equally efficient. For univariate ra-
tional interpolation, the so-called rational Chebyshev points are nearly optimal on the interval
[−1, 1] (see [17]).

The problem setting is more complicated in the multivariatecase, because the geometry
can take on more general forms (e.g., a polygon, a disk,. . .), in contrast to the univariate case
where the typical geometry is the interval. Moreover the degree structure of the polynomial
functions is more general. For a theoretical overview, we refer the interested reader to [1].

One of the criteria to determine the location of good points for polynomial approximation
in a geometry, is minimizing the Lebesgue constant, which isthe maximum of the Lebesgue
function.1 Points in some geometry are considered to be nearly optimal if the Lebesgue con-
stant with respect to that geometry is small, and they are optimal if the Lebesgue constant is
as small as possible. The Padua points seem to be the first known example of nearly optimal
points for total degree polynomial interpolation in two variables, with a Lebesgue constant in-
creasing like log square of the degree. The corresponding geometry is a square or a rectangle
(or another derived form). These Padua points have been discovered and extensively stud-
ied by the Padova-Verona research group on “Constructive Approximation and Applications”
(CAA-group) and their collaborators2.

For other geometries there are no explicit representationsknown for (nearly) optimal
points with respect to minimizing the Lebesgue constant. The CAA-group has developed
MATLAB software to compute such nearly optimal points for several geometries, e.g., the
disk and the simplex, not only for minimizing the Lebesgue constant but also for maximizing
the corresponding Vandermonde determinant (Fekete-points) [7]. Initializing the software
with reasonably nearly optimal points, it can also be used toderive point sets with a smaller
Lebesgue constant than the initial set. A disadvantage of the software is that it is rather slow
and therefore limited to a relatively small number of points.

In [3, 14] a faster, greedy algorithm is presented that uses built-inMatlab routines to
computeQR or LU factorizations to compute approximate Fekete and Leja points. The un-
derlying matrix is a Vandermonde matrix based on the total-degree product Chebyshev basis
of the smallest rectangle containing the compact domain. The method works for “moderate”
degrees.

On March 4, 2013, an extension of Chebfun was made available to work with functions
in two variables defined on a rectangle3. The package provides very fast approximation algo-
rithms by using FFT’s, but the geometry is limited to the rectangle.

In the recent paper [11] a method is developed to compute a “good” set of nodes for
multivariate polynomial interpolation based on a greedy optimization algorithm. In each
step of the greedy algorithm, a new node from a finite discretization of the domainΩ is
added to the current set of “good” nodes. The properties of the method, i.e., the nodes are
unstructured, the nodes are a sequence and are nested, and the geometries are arbitrary, are
the same as for the greedy adding algorithm that is describedin this paper. The resulting sets
of interpolation nodes have “good” properties with respectto the value of the corresponding
Lebesgue constant and Vandermonde determinant.

In this manuscript, we represent the polynomial functions using orthogonal bases with
respect to a discrete inner product where the mass points arelying within the considered
geometry. This leads to small condition numbers for the generalized Vandermonde matrices

1The corresponding definitions are given in Section2.
2http://www.math.unipd.it/ ˜ marcov/CAA.html
3http://www2.maths.ox.ac.uk/chebfun/chebfun2/

http://www.math.unipd.it/~marcov/CAA.html
http://www2.maths.ox.ac.uk/chebfun/chebfun2/
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involved in the computations that allow us to find nearly optimal point configurations that are
much larger compared to the point configurations obtained bycurrently known techniques.

Instead of solving the minmax problem (5.1), the algorithms of this manuscript tackle
different, but related, optimization problems that approximately solve the same problem. Al-
though the optima of these related problems do not coincide with the optima of the original
minmax problem, they can be solved much more efficiently, making it possible to minimize
the Lebesgue constant much more effectively. The first two algorithms of this manuscript
use a greedy approach to find a set of “good” interpolation points for a general geometry. In
contrast to existing methods, the greedy approach is not only used to generate a point set,
adding points one by one, but also to update the resulting point set. The greedy add method
is slower than the methods described in [3, 14], but this is due to the use of a more general
basis than the monomial basis. The other algorithm described in this paper solves a non-
linear weighted least squares optimization problem. By adapting the weights during several
iterations, we obtain point configurations that are almost optimal.

The manuscript is divided into the following sections. In Section 2 the definition of the
Lebesgue function and the Lebesgue constant is given. In Section 3, it is explained how a
good approximation of the Lebesgue constant can be computedin an efficient way. Section4
describes the representation that will be used for the multivariate polynomials given a certain
geometry. Section5 gives several algorithms to compute point configurations, ranging from
cheap ones that produce non-optimal point configurations with a reasonably low Lebesgue
constant, to more expensive ones that can find point configurations with an almost optimal
Lebesgue constant. In Section6 we show the results of applying these algorithms on several
geometries for different degrees.

2. Lebesgue constant.Let Ω be a compact subset ofRn. Consider the spacePn
δ of

polynomials inn variables having total degree≤ δ.4 This space has dimensionN with

(2.1) N =

(

δ + n

n

)

.

Consider a setX = {xk}N1 of N points inΩ and a basis{φk}N1 forPn
δ . LetVX = [φj(xi)]i,j

denote the generalized Vandermonde matrix for this basis inthe pointsX . Given a function
f ∈ C(Ω), we can approximate this function by computing the multivariate polynomial
interpolantp ∈ Pn

δ in the set of pointsX . Note that this interpolant is well defined and
unique iff the generalized Vandermonde matrixVX is nonsingular. If that is the case, the set
of pointsX is called unisolvent for the spacePn

δ .
DEFINITION 2.1 (Lebesgue function and Lebesgue constant).Given a compact setΩ ⊂

R
n and a set of pointsX = {xk}N1 ⊂ Ω that is unisolvent forPn

δ . TheLebesgue function
λX(y) is defined as

λX(y) =
N
∑

i=1

|li(y)|

with li(y) theith Lagrange polynomial, i.e.,

{

li ∈ Pn
δ

li (xj) = δi,j , for i, j = 1, 2, . . . , N.

4 More general subsets of polynomials can be considered, i.e., having another degree structure in comparison to
the total degree.
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TheLebesgue constantΛX is defined as the maximum of the Lebesgue functionλX(y) for
y ∈ Ω, i.e.,

ΛX = max
y∈Ω

λX(y).

The Lebesgue constant is a measure to compare the polynomialinterpolant with the best
polynomial approximant in the uniform norm. More precisely, for any functionf ∈ C(Ω),
let p denote the polynomial interpolant andp∗ the best polynomial approximant in uniform
norm, then

‖f − p‖∞ ≤ (1 + ΛX) ‖f − p∗‖∞ .

Hence, when the Lebesgue constantΛX is small, we can find an approximation of a function
f that is almost as good as the best polynomial approximationp∗, by just computing the
polynomial interpolantp, which is generally much easier to compute thanp∗.

The magnitude of the Lebesgue constantΛX depends heavily on the configuration of the
pointsX in the compact subsetΩ. Before we look for different algorithms to find point con-
figurations with a low Lebesgue constant, the next section investigates how we can efficiently
approximate the Lebesgue constantΛX .

3. Approximating the Lebesgue constantΛX . Computing the Lebesgue constant for
a regionΩ ⊂ R

n is not an easy problem. Following the same approach as in [7], we approxi-
mate the Lebesgue constant by taking the maximum over a finitesetY ⊂ Ω of K well-chosen
points

ΛX ≈ max
y∈Y

N
∑

i=1

|li(y)| .(3.1)

There are several possible candidates for the finite point set Y . We have chosen for point
meshes generated by the package DistMesh [13], mainly because of its flexibility to create
suitable meshes for many different geometries. As we explain in the following paragraphs,
for many geometries like the square and the disk there are better meshes available, i.e., they
give a better approximation of the maximum of a function withthe same number of points.
We emphasize that our algorithms can work with any choice ofY , and that our choice of
DistMesh mostly provides a straightforward way to use fairly good meshes for any geometry.

In our context, a discretizationY of a domainΩ should have two important properties.
The first is its quality of approximating the maximum of a function on the domain. The second
is the fact that the mesh is used by the algorithms of Sections5.1 and5.2, where points of
the output setX are extracted from the mesh. Since the output set should approximate an
optimal point configuration (with minimal Lebesgue constant), and experimentally, optimal
interpolation points are known to cluster near the boundary5, the meshY should be more
dense near the boundary.

In what follows, first we briefly explain how DistMesh works. Then we discuss (Weakly)
Admissible Meshes (WAM), why these meshes work well to approximate the maximum of
a function and how DistMesh seems to be an AM as well. We also give some comments on
the fact that the mesh is denser near the boundary. Finally, anumerical comparison of five
different meshes is presented.

5We believe that this is true for convex geometries, but not for the “non-convex” part of a boundary, e.g., the
non-convex part of the boundary of the L-shape. In Figure6.2we show a nearly optimal point configuration for the
L-shape, that exhibits a low density of points near the non-convex part of the geometry.
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FIG. 3.1.Example of a mesh generated by DistMesh for the L-shape consisting of3475 points.

DistMesh [13] is a simple Matlab tool that generates unstructured triangular and tetrahe-
dral meshes. The code is simple to use because the geometry isdefined as a signed distance
function, i.e., for each point this function returns the signed minimum distance between this
point and the boundary of the geometry. The sign is negative inside the domain while it is
positive outside the domain. The actual mesh generation uses the Delaunay triangulation rou-
tine in Matlab and tries to optimize the node locations by a force-based smoothing procedure.
Using a weight function, the desired edge length distribution is specified by the user. When
using DistMesh to generate a triangulation using a uniform weight function, it generates a
triangular mesh where the lengths of all the edges are nearlyequal as described in [13].

To give an idea of the meshes generated by DistMesh, Figure3.1 shows a mesh for the
L-shape consisting of3475 points. In the examples of Section6, we show the efficiency and
effectiveness of using DistMesh to generate the setY and give more details on the values of
the parameters used in the numerical experiments.

Admissible meshes and weakly admissible meshes were introduced in [8] by Calvi and
Levenberg as a tool to quantify the uniform approximation properties of discrete least squares
polynomial approximation. Given a geometryΩ, an admissible mesh (AM) is a sequence of
point setsA(δ) in function of the degreeδ, that satisfies

‖p‖Ω ≤ C(A(δ),Ω) ‖p‖A(δ), p ∈ Pn
δ ,(3.2)

where for a setS, ‖p‖S = maxx∈S p(x) and where the constantC(A(δ),Ω) is bounded
above for allδ (see [8, (2.9)]). If the constantC(A(δ),Ω) behaves like a polynomial inδ when
δ → ∞, then the sequence of point setsA(δ) is called a weakly admissible mesh (WAM).
Hence, ifC(A(δ),Ω) is small enough, (W)AMs are good discretizations of a geometry Ω
to approximate the maximum of a polynomial of degreeδ. In the numerical experiment
described later, we indicate that point sets computed by DistMesh are WAMs.
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The number of pointsK for a uniform AM behaves likeO(δ4) = O(N2) when the
degreeδ goes to infinity. Since the numberK of points increases very fast in function of
the degreeδ, for specific geometries AMs were constructed whereK behaves asO(N) [6].
See also [2, 4] on WAMs. These specific meshes have a higher density of points near the
boundary.

Choosing point sets with more points in the neighborhood of the boundary is advan-
tageous as can be seen as follows. When one has a nearly-optimal point set, e.g., on the
unit square geometry, moving one of these points in the neighborhood of the boundary has
a much larger influence on the Lebesgue function then moving apoint in the center of the
square. Hence, it seems better to increase the density of thepoints in the neighborhood of
the boundary of the geometry. Taking the same number of points as for a uniform AM, this
should not decrease the quality of the mesh, on the contrary.

In the following example, we compare five point sets on the unit square inR2 with
respect to their quality as an AM. Three of the five point sets are generated by methods that
can be used for general geometries: the uniform and non-uniform point sets generated by
DistMesh, and a uniform covering of the unit square. The other two are specific AMs for the
unit square: a non-uniform covering using Padua points and one using a tensor Chebyshev
grid. To measure the quality of an AM(A(δ)) the constantC(A(δ),Ω) as defined in (3.2) can
be estimated. The smaller this constant, the better. To compute a lower bound ofC(A(δ),Ω),
we can rewrite (3.2) to get

C(A(δ),Ω) ≥ ‖p‖Ω
‖p‖A(δ)

, 0 6= p ∈ Pn
δ .

We take100 random polynomialsp and use the maximum of all the fractions‖p‖Ω

‖p‖A(δ)
as a

lower bound forC(A(δ),Ω). The numerator is approximated by taking a finer discretiza-
tion of Ω thanA(δ). To compute an approximate upper bound, we use a similar method as
described in [5]6. For given function values in each of the points of the point set A(δ), we
consider the least squares approximating polynomial of degreeδ. We approximate the max-
imum of the value inΩ of this approximating polynomial by taking the maximum value in a
finer discretization ofΩ thanA(δ). The infinity norm of the operator going from the given
function values to the function values onΩ gives an upper bound forC(A(δ),Ω). By taking
the finer discretization instead ofΩ itself, an approximate upper bound is obtained.

We compare the values of the constantC(A(δ),Ω) whenΩ is the unit square inR2.
The lower and upper bounds for the constantC(A(δ),Ω) are shown in function ofδ in Fig-
ure 3.2. Each of the five point sets has approximately84 = 4096 points. The point set
having a higher point density near the boundary generated byDistMesh works better than
uniform point distributions having the same number of points. However, the specific admis-
sible meshes (Padua points, Chebyshev tensor grid) developed for the geometry of the square
are performing better to approximately maximize a given function. For a specific geometry
having (weakly) admissible meshes (WAMs), it seems to be better to use such a WAM.

A detailed comparison between the different choices of the point sets and developing the
corresponding theory is not within the scope of this paper.

6This method was suggested by one of the referees.
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FIG. 3.2.Lower and upper bounds (left, respectively right figure) forC(A(δ),Ω) in function of the degreeδ

To compute the approximation (3.1), we choose a basis{φk}N1 in Pn
δ . More details on

the choice of this basis will be given in Section4. From the definition of Lagrange polyno-
mials, we have the following expression for the basis polynomials:

[

φ1(y) · · · φN (y)
]

=
[

l1(y) · · · lN(y)
]







φ1(x1) · · · φN (x1)
...

...
φ1(xN ) · · · φN (xN )






,

or evaluated in each of theK pointsyj ∈ Y :







φ1(y1) · · · φN (y1)
...

...
φ1(yK) · · · φN (yK)






=







l1(y1) · · · lN(y1)
...

...
l1(yK) · · · lN (yK)













φ1(x1) · · · φN (x1)
...

...
φ1(xN ) · · · φN (xN )






.

We write this in a concise way as

VY = LVX .(3.3)

Note thatK is chosen such thatK ≫ N .
The matricesVX andVY are the basis polynomials evaluated in the points of the setsX

andY andVX is the generalized Vandermonde matrix of the previous section. If the point
setX is unisolvent, the matrixL of Lagrange polynomials can be computed by solving a
system of linear equations with coefficient matrixVX . Taking its matrix infinity norm results
in approximation (3.1) of the Lebesgue constant, i.e.,

ΛX ≈ ‖L‖∞ = ‖VY V
−1
X ‖∞.

The accuracy of the computation of‖L‖∞ depends on the condition number of the gen-
eralized Vandermonde matrixVX . For this number to be small, it is important to obtain a
good basis{φk}N1 for the geometryΩ considered, which we discuss in more detail in the
next section.

4. Obtaining a good basis for a specific geometry.In this section we discuss some of
the possible choices for the basis ofPn

δ that are used to compute the Lebesgue constantΛX .
First we mention the bases that have been used in [7] to obtain point configurations with a
low Lebesgue constant for the square, the simplex and the disk. Then we discuss orthonormal
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bases with respect to a discrete inner product, which can be computed by solving an inverse
eigenvalue problem [16]. We briefly describe the problem setting and mention some ofthe
approaches to solve the inverse eigenvalue problem. Finally we introduce a technique to
extend a basis, which will be used in Section5.1.

Since the choice of the basis determines the Vandermonde matrix VX of the system (3.3),
it has a large impact on the conditioning of the problem of computingΛX . The idea we pursue
in this paper is to use a basis for which the condition number of VX is small enough. The
precise meaning of “small enough” depends on how accurate the computed value ofΛX

needs to be. For example, for the algorithms of Section5, in practice it suffices to know only
a couple of correct significant decimal digits of the matrixL in (3.3), so thatcond(VX) may
be as large as1012.

Briani et al. [7] use three different orthonormal bases for the respective geometries con-
sidered. LetΩ ∈ R

n be a compact set, then we say that two polynomialsp, q ∈ Pn
δ are

orthogonal with respect toΩ and the weight functionw(x) if

〈p, q〉Ω :=

∫

Ω

p(x)q(x)w(x)dx = 0.

The three bases consist of product Chebyshev polynomials for the square, Dubiner polyno-
mials for the simplex and Koornwinder type II polynomials for the disk. These polynomials
are orthonormal with respect to the respective geometries and the respective weight functions
w(x) =

∏n

i=1(1− xi)
− 1

2 , w(x) = 1 andw(x) = 1.
Our approach is to consider a discrete inner product

(4.1) 〈p, q〉X =

N
∑

i=1

w2
i p(xi)q(xi),

with pointsX := {xi}N1 ⊂ R
n and weightswi ∈ R

+. An advantage of using an orthonormal
basis{φk}N1 with respect to this inner product is that, forwi = 1, the matrixVX is orthogonal.
Hence, numerical difficulties to computeΛX for a set of pointsX can be avoided by taking
an orthonormal basis with respect to (4.1) defined on the same point setX .

The problem of computing orthogonal multivariate polynomials with respect to (4.1)
has been studied in [16]. In this work the orthogonal polynomials are represented by the
recurrence coefficientsh(k)

i,j of the recurrence relation

(4.2) xkφj =

π
(k)
j
∑

i=1

h
(k)
i,j φi,

which gives an expression forφ
π
(k)
j

if the previous polynomialsφ1, . . . , φπ
(k)
j −1

are known.

The indexπ(k)
j depends onj andk and will be discussed later. The polynomials have to be

ordered along a term order, meaning thatφk(x) = akx
αk + . . .+ a1x

α1 and the monomials
xαk := x

αi,1

1 · . . . · xαi,n
n satisfy a term order:1 ≺ xβ for all β 6= 0 and if xαi ≺ xαj ,

thenxβxαi ≺ xβxαj for all β 6= 0. Here, we will restrict ourselves to graded term orders,
imposing the additional condition that, if

∑

k αi,k =: |αi| < |αj |, thenxαi ≺ xαj . An
example of a graded term order is thegraded lexicographical order, which forn = 3 looks
like

1 ≺ z ≺ y ≺ x ≺ z2 ≺ yz ≺ y2 ≺ xz ≺ xy ≺ x2 ≺ · · ·
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A matrix expression for (4.2) is

xk [ φ1 φ2 · · · φN̂
] = [ φ1 φ2 · · · φN ] Ĥk

with Ĥk(i, j) = h
(k)
i,j andĤk ∈ R

N×N̂ . HereN andN̂ are the dimensions of the spaces

Pn
δ andPn

δ−1, respectively. The elementh(k)

π
(k)
j ,j

associated with the leading basis polynomial

in (4.2) is called a pivot element of̂Hk and it is the last nonzero element in thej-th column.
The positions(π(k)

j , j) of the pivot elements follow from the monomial order and can be
determined at a negligible cost. E.g., for the graded lexicographical ordering andn = 3, the
matrixĤx has pivots at positions

(4, 1), (8, 2), (9, 3), (10, 4), (15, 5), (16, 5), . . .

If w =
[

w1 . . . wN

]T
is a vector with the weights andXk = diag(x1,k, . . . , xN,k)

is the diagonal matrix with thek-th coordinates of the pointsxi ∈ X , then the recurrence
matricesĤk can be found from the inverse eigenvalue problem

(4.3) QTQ = I, QTw = ‖w‖2e1, and Hk = QTXkQ, k = 1, . . . , n,

where the matriceŝHk are embedded in theHk ∈ R
N×N as follows

Hk =
[

Ĥk ×
]

.

The basic idea is to apply orthogonal transformations tow andXk to make zeros inw while
at the same time assuring that the matricesHk have the correct pivot element structure, which
is determined by the monomial order. If the pivot elements inthe matricesHk are positive,
then the process has a unique outcome.

We have implemented two methods to solve (4.3), where the user can supply any graded
term order. The first method adds one points at a time. In each step, it uses Givens transfor-
mations to make one weight inw zero and to bring the matricesHk to the desired structure.
The algorithm is explained in [16] for the bivariate case. The second method uses House-
holder transformations. A first Householder is applied tow to make all the zeros at once.
Subsequent Householders then bringHk to the desired structure.

Although the method with Householder transformations has ahigher flopcount than the
method with Givens transformations, it becomes faster for large problems, because the opera-
tions are less granular. By using more matrix vector products instead of fine grain operations
on vectors, most of the work is done using BLAS-2 routines (see [9, Chapter 1]). We will
therefore prefer the second method for large problems, but the first method remains useful,
because it allows to add points to an existing inner product.

As noted in [16], there is some freedom in the algorithms concerning which pivot is
used to construct the Givens or Householder transformation. Several criteria to choose the
pivot have been implemented, so the reader can experiment with them. We have adopted
the approach to construct the orthogonal transformation from the vector with the highest2-
norm, since this seemed the most accurate in numerical tests. Numerical tests also pointed
out to use a similar approach to evaluate the orthonormal polynomials using the recurrence
relations (4.2): if l = π

(k1)
j1

= . . . = π
(km)
jm

, so there arem pivot elements in thel-th row
of respective matricesHki

, thenφl is computed from (4.2) for thát ki associated with the

biggest pivoth(ki)
l,ji

. 7

7Note that choosing the biggest pivot is similar to the optimal pivoting strategy for Gaussian elimination.
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The last part of this section is devoted to explain a simple technique that extends a basis.
In Section5.1, we motivate this technique and give some numerical resultsthat show its
use. Suppose we have a basis{φk}N1 for Pn

δ asociated with a graded term order, which is
a good representation on a certain domainΩ ∈ R

n. We extend this basis with polynomials
φN+1, φN+2, . . . , φN+m by taking products of the orginal basis

φi = φki
· φli , i = N + 1, . . . , N +m,

where the indiceski andli satisfy
(i) αi = αki

+αli ,
(ii) |αli | = |αN+1| − 1,

(iii) ki is as low as possible.
Condition (i) follows directly from the definition of the monomial order and condition (ii)
implies that we take the total degree of one of the factors to be one less than the total degree
of the first polynomial that extends the basis. From (i) and (ii), the total degree ofφki

is fixed,
and condition (iii) then determines the values ofki andli.

Such an extension of a good basis on a domain will usually be less good than the original
basis, and it is clear that it will deteriorate asm grows larger. However, the main advantage
is that it can be evaluated very cheaply in points where the original basis has been evaluated.
In Section5.1 it is explained how this technique can be used to decrease computation time,
while at the same time maintaining a high enough level of robustness.

5. Computing nearly optimal interpolation points. As explained in Section2, we get
a good polynomial approximation of the minmax polynomial approximant by interpolation
in pointsX with a small Lebesgue constantΛX . To obtain such a setX , we want to solve
the following minmax optimization problem

(5.1) min
X⊂Ω

ΛX = min
X⊂Ω

max
y∈Ω

λX(y).

If we approximate the Lebesgue constant as in Section3 by ΛX ≈ ‖L‖∞, we get the opti-
mization problem

min
X⊂Ω

‖L‖∞
subject toVY = LVX ,

(5.2)

whereX = {xi}N1 andY = {yi}K1 .
This is a minmax optimization problem with constraints because the pointsxi have to lie

in the regionΩ. Minmax optimization problems are notoriously difficult tosolve. In addition
the objective functionΛX is not everywhere differentiable, and the number of variables grows
fast when increasing the degreeδ and/or the number of dimensionsn. E.g., forn = 2 and
δ = 20, the dimensionN of the vector spacePn

δ is 231. Hence, the number of real variables
is the number of components of theN pointsxk, i.e.,462.

In [7], Briani et al. describe a collection of MATLAB scripts to solve the optimization
problem (5.2) using the MATLAB Optimization Toolbox. They considern = 2 andΩ equal
to the square, the disk and the simplex, and their results include nearly optimal point configu-
rations for these geometries up to a total degree ofδ = 20. There is no certainty that the real
optimum is reached, but the Lebesgue constants found are thesmallest at the point of their
writing.

In the next subsections, we present alternative methods to find a point setX with a
low Lebesgue constant. These methods work for very general geometries, can be used for
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larger point sets and are faster compared to current techniques. The first algorithm uses a
relaxed optimization criterion and creates a point configuration with a relatively low Lebesgue
constant in an efficient, non-iterative way. The second algorithm iterates over the point set one
point at a time, using the same criterion. The third and fourth algorithm are more advanced
optimization algorithms that solve a similar but easier problem than (5.2) leading to point
configurations with a nearly optimal Lebesgue constant.

5.1. Greedy algorithm by adding points. Evaluating the objective function‖L‖∞ of
the optimization algorithm (5.2) requires the evaluation of the basis in the pointsX and the
solution of a system of linear equations. Since the objective function is not differentiable on
Ω and the number of variables can become very high, the convergence to a local minimum
using standard MATLAB Optimization tools can take a lot of iterations, and consequently a
lot of objective function evaluations.

In this section, we develop a “greedy” algorithm to generatea point configuration for any
geometryΩ with a reasonably low Lebesgue constantΛX , with only a small computational
effort. The algorithm is based on two ideas:

1. In each step, one point of the regionΩ is added, while the other points remain where
they are.

2. This point is added there where the Lebesgue function reaches its maximum.
We will refer to the algorithm as the Greedy Add algorithm.

Criterion2 is reasonable in the sense that it guarantees that the updated Lebesgue con-
stant has the value1 in the new point. This point can be approximated by taking it from the
setY ⊂ Ω, where the Lebesgue function reaches a maximum. Note that the new point could
also be chosen to minimize the Lebesgue constant as a function of only one point, but this
would be much more costly. Instead, we use a greedy approach where the next point is picked
based on the mentioned relaxed criterion. Numerical experiments will show that, although
the point configurations obtained are clearly not optimal, they exhibit a structure in the do-
mainΩ similar to (nearly) optimal configurations, and their Lebesgue constant is reasonably
low.

Obviously, the first point can be chosen freely. Since the Lebesgue function for one point
is a constant, the same holds for the second point. However, one must be careful to keep the
set of two points unisolvent. E.g., consider the term order1 ≺ x ≺ y ≺ x2 ≺ . . . The
Vandermonde matrix for two points(x1, y1) and(x2, y2) is

[

1 x1

1 x2

]

.

Hence the first two points can be chosen freely, but they must have different first coordinates.
Theoretically, it is possible that at some step, after adding the next point, the configura-

tion is not unisolvent anymore. As a result, the Lebesgue constant reaches infinity, leaving
the next point undefined. We give an example whereΩ is the unit disk, with the same term
order as just described. Suppose that the first two points are(−1, 0) and(0, 0). The Lebesgue
function depends onx only and a small calculation shows that it reaches it’s maximum in the
disk at(1, 0). If this point is included in the point setY , then the resulting point configuration
of 3 points will not be unisolvent causing the method to fail.Since all points are collinear,
the Vandermonde matrix is singular. If both points are chosen randomly, we believe that the
probability for such an event to occur is zero.
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Suppose that we want to generate a configuration ofN points, whereN is the dimen-
sion (2.1) of the spacePn

δ .8 For now assume that there is a suitable basis forPn
δ on the

geometryΩ, e.g., product Chebyshev polynomials on the square[−1, 1]2. If that is the case,
the Greedy Add algorithm can be formulated as Algorithm1. Since the gridY consist ofK
points, the matrixVY is of dimensionK ×N . Furthermore,V (k)

Y is theK × k matrix with

the firstk columns ofVY andV (k)
X is thek × k (generalized) Vandermonde matrix for the

first k basis polynomials and the points inX . In stepk, the matrixL isK × (k− 1) and each
columns contains one of the Lagrange polynomials for the points inX evaluated inY . The
indexi selects the point inY where the Lebesgue function is maximal.

Algorithm 1 Greedy Add algorithm
Input: N , Y , basis
Output: X

X ← {2 random pointsx1 andx2}
VY ← evaluate basis functions in gridY ∈ Ω
for k = 3, . . . , N do

V
(k−1)
X ← evaluate basis functions inX

L← V
(k−1)
Y = LV

(k−1)
X

i← index of row ofL with largest one norm
xk ← Y (i)
X ← X ∪ {xk}

end for

Two remarks have to be made. First, the computation ofL can be accelerated using the
Sherman-Morrison-Woodbury formula ([9, p. 50]). Indeed, in stepk the matricesV (k−1)

X and

V
(k−1)
Y are the same as in the previous step, except for the their lastcolumns and the last

row of V (k−1)
X . The matrix of the system is therefore a rank-2 update of the system in the

previous step. Making use of this fact improves the efficiency of one step fromO
(

Kk2
)

flop
to O(Kk). There should be aO(k3) term as well, but we get rid of it by updating the QR

factorization ofV (k−1)
X ([9, Section 12.5]).

Second, given a geometryΩ, it is not always apparent which basis to use, if the Vander-
monde matrices in the algorithm have to remain well conditioned. As an example, we carry
out Algorithm1 on the L-shape using product Chebyshev polynomials for a degreeδ = 30

orN = 496, and we plot the condition number ofV (k)
X in Figure5.1. The condition number

keeps growing steadily until at some point it becomes so large that the Lebesgue function
evaluations possibly have no correct significant digits left.

A solution to this problem is using polynomials orthogonal with respect to a discrete
inner product (4.1) with the current points in stepk. In this way, the Vandermonde matrix
is always perfectly conditioned. This solution involves solving the inverse eigenvalue prob-
lem (4.3) of sizek in every step, after finding the next point, and evaluating the new set of
orthogonal polynomials in the pointsY . The inverse eigenvalue problem can be updated one
point at the time using the Givens implementation (see Section 4), at a cost ofO(k2) flops
per step. Hence, the expensive part of the process is evalutating the new basis functions in the
pointsY at a cost ofO(Kk2) flops per step.

To avoid the costly procedure of updating the basis in each step, we try to extend the

8Note that all the algorithms work for any value ofN , but for notational convenience we work with spaces of
total degree.
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FIG. 5.1. The condition number of the Vandermonde matrixV
(k)
X

using Algorithm1 for the L-shapeΩ =
[−1, 1]× [−1, 0] ∩ [−1, 0]× [0, 1], with product Chebyshev polynomials as basis.

current basis with products of the original basis functions, as explained in Section4. We
keep track of the reciprocal condition number ofV

(k)
X , which is cheap to compute9, and only

if V
(k)
X becomes too badly conditioned we compute a new orthogonal basis. In Figure5.2

we plot again the condition number ofV (k)
X for the L-shape, now using the adaptations just

described. The condition number grows steadily, but once itbecomes too large, the basis
is updated. ForN = 496, only 2 costly basis updates have been carried out, which is a
significant improvement.

Each time the basis is updated, we recompute the matrixL by solving a regular linear
system. Note that this is not strictly necessary, since the Lagrange polynomials are indepen-
dent of the basis that is used, so it is possible to continue updatingL via low rank updates.
However, it might be useful to avoid inaccuracies in the matrix L obtained by the subsequent
low rank updates. A stability analysis of these updates is not covered in this paper.

Since the implementation of the adapted Greedy Add Algorithm is a bit too technical to
be included in this paper, we refer to the documention in the code. In Figure5.3 the value
of the Lebesgue constant is plotted for each iteration of theadapted algorithm, for several
pairs of random starting points and for several sizes of the grid Y . Observe that the Lebesgue
constant fluctuates a lot, and that the final valueΛN can be a lot larger than the previous
value. This shows that the obtained point configurations areby no means optimal, but they
can serve as a starting point for the algorithms in the following sections. In addition, observe
that the choice of the starting points influences the obtained Lebesgue constants, as does the
size of the gridY .

The resulting point configuration is shown in Figure5.4 for one paricular choice of the
starting points and the size of the grid, for both the square and the L-shape. In Section6
we obtain point configurations with nearly optimal Lebesgueconstants, which are shown in
Figure6.2. We observe that the structure in these optimal point configurations is already
present in the point configurations obtained by the Greedy Add Algorithm.

5.2. Greedy algorithm by updating points. In this section we develop the Greedy Up-
date Algorithm, implementing a straighforward approach toimprove the point configuration
X = {xk}N1 obtained by the Greedy Add Algorithm of the previous section. The idea is iter-

9MATLAB’s RCOND gives an approximation of the reciprocal condition numbercond(V (k)
X

)−1.
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FIG. 5.2. The condition number of the Vandermonde matrixV
(k)
X

using the adapted version of Algorithm1
for the L-shape, with orthogonal polynomial updates and basis extention.
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FIG. 5.3.The Lebesgue constantΛk after adding the firstk points with the adapted Greedy Add Algorithm as
a function ofk, for several random choices of the first two points (left) andfor several sizes of the gridY (right).
The geometryΩ is the square andδ = 20, soN = 231. The gridsize for the left plot is21322.

ate over all the points, remove each point fromX and immediately add a new point according
to the same greedy criterion. By iterating several times over all the points, the Lebesgue
constant typically stabilizes at a reasonably low value.

The algorithm is described schematically in Algorithm2. The input variables are a point
configurationX , e.g., obtained by the Greedy Add Algorithm, a gridY ∈ Ω and the variables
needed to evaluate the basis that is used. One possibility isan basis orthogonal with respect
to X . We have observed that if the input point configurationX has a low enough Lebesgue
constant, then this basis will remain good enough for all theiterations. We have added the
functionality that the basis is updated if the Vandermonde matrix V (N−1)

X becomes too badly
conditioned.

Similar to the Greedy Add Algorithm, the computation ofL in each step can be accel-
erated by using low rank updates. Indeed, the matrixV

(N−1)
X in stepk + 1 is identical to

V
(N−1)
X in stepk, except for itsk-th row. They are the same basis polynomials (columns)

evaluated in the same points (rows) except for one. Hence, the matrix of the system is a rank-
1 update of the system in the previous step and we can again reduce the amount of work in
one step fromO

(

KN2
)

toO(KN) flop. The QR factorization ofV N−1
X is updated as well.
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FIG. 5.4.Point configurationsX of N = 231 points (δ = 20) obtained by the Greedy Add Algorithm for the

square on the left, and the L-shape on the right.

Algorithm 2 Greedy Update Algorithm
Input: X , Y , basis
Output: X

VY ← evaluate basis functions in gridY ∈ Ω
while stopping criterion is not satisfieddo

for k = 1, 2, . . . , N do
X ← X \ {xk}
V

(N−1)
X ← evaluate basis functions inX

L← V
(N−1)
Y = LV

(N−1)
X

i← index of row ofL with largest one norm
xk ← Y (i)
X ← X ∪ {xk}

end for
end while

Figure5.5 is an extension of Figure5.3, where the value of the Lebesgue constant is
plotted for each iteration of the adapted Greedy Add Algorithm and the Greedy Update Al-
gorithm, for several pairs of random starting points and forseveral sizes of the gridY . The
Greedy Update Algorithm runs for10 iterations over all the points. We observe that usually
the Lebesgue constant stabilizes after a couple of runs and that the value of the final Lebesgue
constant depends on the particular choice of the starting points and on the size of the grid.

5.3. Algorithm based on approximating the infinity norm. The infinity norm in (5.2)
is notoriously difficult to optimize using numerical optimization techniques because it com-
bines two of the most exacting objective function properties: taking the maximum over a set
and summing (nonsmooth) absolute values. For many initial point setsX , the Lebesgue con-
stant will be quite large and it may suffice to solve a neighbouring problem approximating
(5.2) in order to obtain a substantial reduction of the Lebesgue constant.

5.3.1. Unweighted least squares problem.One approach could be to replace the infin-
ity norm by the (squared) Frobenius norm since

1√
KN
‖L‖F ≤ ‖L‖∞ ≤

√
N‖L‖F.(5.3)
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FIG. 5.5. The Lebesgue constantΛk at each iteration of the adapted Greedy Add Algorithm and theGreedy
Update Algorithm, for several random choices of the first twopoints (left) and for several sizes of the gridY (right).
The geometryΩ is the square andδ = 20, soN = 231. The gridsize for the left plot is21322.

For example, forn = 2 andδ = 20 we haveN = 231 and hence‖L‖F bounds‖L‖∞ from
above by about a factor of 15. In practice, the two norms are often even closer than the bound
(5.3) suggests. The objective is now to solve the optimization problem

min
X⊂Ω

1

2
‖L‖2F

subject toVY = LVX .
(5.4)

By eliminating the (linear) constraint in (5.4), we obtain a nonlinear least squares (NLS)
problem inX ⊂ Ω. There are several algorithms for solving NLS problems, many of which
can be adapted for solutions restricted to a domainΩ. In our experiments, we use a projected
Gauss-Newton dogleg trust-region method, which is a straightforward generalization of the
bound-constrained projected Newton algorithm of [10] to a larger class of geometries. To
define a geometryΩ, the user is asked to implement a function which projects points outside
of the geometry onto its boundary.

Given a current iterate, the Gauss–Newton dogleg trust-region method computes two
additive steps. The first is the Cauchy steppCP, which is approximated as a scaled steepest
descent direction−g := df(z)

dz , wherez := vec(X)10 and the objective functionf(z) is

defined as12‖L‖2F. Here, the pointsX are stored as[x(j)
i ]i,j , wherex(j)

i is thejth component
of theith point. The second is the Gauss–Newton step

pGN := −red(JT J)†g,(5.5)

where the JacobianJ is defined asdvec(L)
dzT , and red(·) “reduces” the Hessian approximation

JTJ by setting those rows and columns corresponding to the active set equal to those of the
identity matrix of the same size asJTJ . The active set is defined as the set of indicesi for
which the variableszi are on the boundary of the geometry. For more details on the reduction
of the Hessian; see [10]. SinceJ is tall and skinny, its GramianJT J is a relatively small
square matrix of orderNn. Furthermore, it is a positive (semi-)definite approximation of
the objective function’s Hessian and hence may be expected to deliver a high-quality descent
directionpGN for a relatively low computational cost. Importantly, we will see that comput-
ing the two descent directions can be done with an amount of computational effort that is
independent of the number of mesh pointsK.

10If X is stored in MATLAB as aN × n matrix, then vec(X) := X(:) is theNn× 1 vectorization ofX.
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To compute the aforementioned descent directions, let

W (i) :=

[

∂(VX)T1:

∂x
(i)
1

· · · ∂(VX)TN :

∂x
(i)
N

]T

be a compact representation of the derivative ofVX with respect to theith component of the
pointsX . Furthermore, let

W :=
[

W (1)T · · · W (N)T
]T

,

then after some straightforward computation we find that

−g = −JT vec(L) =
[(

1n×1 ⊗ (V −T
X (V T

Y VY )V
−1
X )

)

∗W
]

1N×1

and

JTJ =
(

1n×n ⊗ (V −T
X (V T

Y VY )V
−1
X )

)

∗
(

WV −1
X V −T

X WT
)

,

where1m×n is anm × n matrix of ones,⊗ and∗ are the Kronecker and Hadamard (or ele-
mentwise) product, respectively. Notice that the only computation involving vectors of length
K is the termV T

Y VY , which need only be computed once and can be done on beforehand.
Consequently, the cost per Gauss–Newton iteration is dominated by the cost of solving (5.5),
which requiresO(N3n3) flop.

Once the Cauchy and the Gauss–Newton steps are computed, theprojected Gauss-Newton
dogleg trust-region algorithm proceeds to project them in such a way that the sum of the cur-
rent iteratezk and these steps does not exceed the boundary of the geometry.In other words,
using the user-defined projection function proj(·), the steps are corrected as

p← proj(zk + p)− zk.

The dogleg trust-region algorithm then searches for a step which improves the objective func-
tion in (a subspace of) the plane spanned by the projected Cauchy and Gauss–Newton steps.
For more details on dogleg trust-region; see, e.g., [12].

5.3.2. Weighted least squares problem.Because the Frobenius norm is only a crude
approximation for the infinity norm, we introduce a diagonalweighting matrixDw = diag(dw(i))
in the least squares optimization problem (5.4):

min
X∈Ω

1

2
‖DwL‖2F

subject toVY = LVX .
(5.6)

This problem is solved in an approximate way by performing a small number of Gauss-
Newton dogleg trust-region iteration steps11. Based on this new approximate solution, the
weightsdw(i) are adapted. More weight is put on the pointsyi ∈ Y ⊂ Ω where the Lebesgue
function is large. Solving the least squares problem with the adapted weights (5.6), generi-
cally pushes the Lebesgue function down in those subregionswhere more weight was placed.

To obtain an efficient and effective algorithm, it is crucialto design a good heuristic for
this adaptation of the weights. By trial and error, the following heuristic came out as a good
choice and was implemented. The number of pointsyi of the setY is chosen approximately

11In our implementation, the number of iterations is taken equal to two.
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equal to one hundred times the number of pointsxi of X . In total there are one hundred
outer iterations each with another adapted weight matrixDw. Initially the weights are all
equal to one. After each outer iterationk the Lebesgue function is computed in all pointsyi

and the firstny(k) largest values are considered. The weight of each of the corresponding
points is increased by a fixed amountδw, taken equal to0.4 in our implementation. Note that
the numberny(k) of pointsyi whose weight is increased, depends on the index of the outer
iteration. The formula for this number is

ny(k) = max{10, N − ⌊N
60

k⌋}

with ⌊r⌋ the largest integer number less than or equal to the real number r. Hence, in each
subsequent iteration, less points are receiving a higher weight until this number is equal to10
after which it remains constant.

6. Numerical experiments. The algorithms were implemented in MATLAB R2012a
and can be obtained from the corresponding author. The experiments were executed on a
Linux machine with2 Intel Xeon Processors E5645 and48 GByte of RAM.

6.1. Experiment 1: nearly-optimal point configurations for the square, simplex,
disk and L-shape. For each of the geometries, the square, simplex, disk and L-shape, a
nearly optimal point configurationX is computed for each of the total degreesδ = 3, 4, . . . , 30.
To derive these points, the different optimization algorithms of Section5 are used subse-
quently.

First, the Greedy Add Algorithm of Section5.1 is used to obtain an initial configuration
X1 with a reasonably small Lebesgue constant. The point setY1 from which these initial
points are taken, is generated by DistMesh with the parameter determined such that approx-
imately 100N points are contained in set theY1 whereN is the number of points ofX1.
This initial configuration is then improved by performing2 iterations of the Greedy Update
Algorithm of Section5.2, using the same pointsY1 as in the first phase. This improved point
configurationX2 is the initialization of the final phase where the weighted least squares op-
timization algorithm from Section5.3.2is used. For the disk, the same point setY1 is used
in this final phase. For the polygon-geometries, we generatea triangular mesh based on the
points ofX2 together with the edge points of the polygon (square, simplex, L-shape). Each
triangle is then divided in a number of subtriangles such that the side lenghts are10 times
smaller. This results in a point setY2 that contains approximately100N points. Performing
100 outer iterations of the weighted least squares algorithm results in the nearly optimal point
configurationX = X3.

In Figure6.1 the estimated Lebesgue constant of the resulting setX = X3 is shown for
the square, simplex, L-shape and disk, respectively. The estimation of the Lebesgue constant
is done by sampling the Lebesgue function on a point set generated asY2 based on the point
setX3 for degree30 and with a multiplication factor1000 instead of100. In the subfigures
also the results obtained by the CAA-group [7] are given when available.

The optimization problem that is solved, is not an easy one. For some degrees the com-
puted minimal Lebesgue constant appears closer to the global optimum than for others. Like
for many optimization problems, it is often difficult to reach global optimality. The plots
show that it seems more difficult to compute nearly-optimal point sets for the simplex and
L-shape than for the square and the disk.

These values of the minimal Lebesgue constant are the best that have been computed so
far. For the square a non smooth behavior of the results of theCAA-group is clear from the



ETNA
Kent State University 

http://etna.math.kent.edu

OPTIMAL POINT CONFIGURATIONS FOR INTERPOLATION 59

0 5 10 15 20 25 30
2

3

4

5

6

7

8

9

10

degree

Le
be

sg
ue

 c
on

st
an

t

square

 

 
LC
LC (CAA)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

degree

Le
be

sg
ue

 c
on

st
an

t

simplex

 

 
LC
LC (CAA)

0 5 10 15 20 25 30
2

4

6

8

10

12

14

degree

Le
be

sg
ue

 c
on

st
an

t

L−shape

 

 
LC

0 5 10 15 20 25 30
2

4

6

8

10

12

14

16

18

degree

Le
be

sg
ue

 c
on

st
an

t

disk

 

 
LC
LC (CAA)

FIG. 6.1.Lebesgue constant in function of the degree for the square, simplex, L-shape and disk
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FIG. 6.2.Nearly optimal point configurations of degree30 for the square, simplex, L-shape and disk
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graph12. The graph showing our results for the square has a smoother behavior and for the
disk it is clear that the growth as indicated by the results ofthe CAA group is a side-effect
of their optimization procedure and not the real growth of the (nearly-)optimal Lebesgue
constant.

In Figure6.2 the corresponding nearly optimal point configurations for degree30 are
given. We have no formal way to compare the computed points with optimal ones because
these optimal sets are not known. However, the shape of the Lebesgue function gives a good
indication of the quality of the “good” points. When solvingthe minmax optimization prob-
lem, the points are subsequently moved in order to lower the highest local maximum of the
Lebesgue function, while at the same time trying to keep the Lebesgue function low enough
everywhere else. Intuitively, we expect that for the optimal point set, all the local maxima
of the Lebesgue function will have the same function value. Conversely, when all the local
maxima of the Lebesgue function have (almost) the same function value, the corresponding
point set could be considered as a (nearly-)optimal one.

In Figure6.3 the Lebesgue function for the Padua points (Lebesgue constant ≈ 9.2)
and the Lebesgue function for “our” nearly-optimal point configuration (Lebesgue constant
≈ 7.3) on the square for degree20 is shown indicating the difference in behavior of the local
maxima. Note that the figure for the Padua points shows that the density of these points is not
high enough in the neighborhood of the boundary. In Figure6.4the time for each of the three
phases of the algorithm is presented. The lower curve is the time (in seconds) in function of
the degree for the Greedy Add Algorithm. The middle curve shows the time for the Greedy
Update Algorithm. The upper curve presents the time for the weighted least squares phase.

Compared to the algorithms of [7], to obtain a comparable Lebesgue constant the com-
bined algorithm of this paper needs less computing time.

6.2. Experiment 2: nearly optimal point set for degree60 on the square. This exper-
iment shows that much larger nearly optimal point sets can begenerated compared to existing
techniques. For degreeδ = 60, the number of points isN = 1891 which is more than8 times
larger than for degreeδ = 20. For this experiment, we run only the two first phases of our
combined optimization scheme, i.e., greedy adding and greedy updating, with10 instead of2
iterations for the greedy update step. The greedy add step takes2.16 hours, while the greedy
update step takes23.38 hours. In Figure6.5, the estimated Lebesgue constant is shown for
each of the10 iterations of the greedy update step as well as the resultingnearly optimal point
configuration having an estimated Lebesgue constant of75 which was reached in iteration5.

7. Conclusion. In this paper several optimization algorithms were designed to compute
nearly optimal point configurations for different geometries. These algorithms can be com-
bined to derive an efficient and effective algorithm where one algorithm uses the output of
the previous one as an initialization. By choosing a representation of the multivariate polyno-
mials in terms of an orthogonal basis with respect to a discrete inner product for a geometry,
numerical problems are avoided for larger point sets. Also the efficiency is at least one order
of magnitude better compared to existing techniques.

In future research several topics can be studied:
• The different algorithms of Section5 can be combined in many ways with different

heuristics for the number of iterations in the greedy algorithm for updating and the
inner and outer iteration of the weighted least squares algorithm. Also different point
setsY can be used in each of the algorithms.

12We have asked the authors of the corresponding paper if therehad occurred a typo in presenting their results,
but this didn’t seem to be the case.
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FIG. 6.3.Comparison of the Lebesgue function for the square and degree20 for the Padua points (above) and
the nearly-optimal point set that we found (below)

• It is not clear to us if the weighted least squares algorithm that has been developed
to approximately solve the minmax optimization problem is known in the literature.
At this point it uses a crude heuristic and more investigation is necessary to make
this approach more robust. The generalization of this approach to other minmax
optimization problems can be studied.
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FIG. 6.5. left: Lebesgue constant after each of the10 iterations of the greedy update step for degree60 on the
square; right: resulting nearly optimal point configuration
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