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Abstract. We present a denoising method aimed at restoring images cedrinyt additive noise based on
the assumption that the distribution of the noise processxasvk. The proposed variational model uses Total
Variation (TV) regularization (chosen simply for its poptitig; any other regularizer could be substituted as welt) bu
constrains the distribution of the residual to fit a givegé&imoise distribution. Theesidual distribution constraint
constitutes the key novelty behind our approach. The redtonage is efficiently computed by the constrained
minimization of an energy functional using an Alternatingdaiions Methods of Multipliers (ADMM) procedure.
Numerical examples show that the novel residual constrailgad improves the quality of the image restorations.
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1. Introduction. A real captured image may be distorted by many expected ot-une
pected factors among which random noise is a typical and oftevoidable example. Hence,
image denoising is a fundamental task in the field of imagegssing and a plethora of noise
removal approaches have been proposed throughout theelastefcades. Basically, there
are three standard noise models in imaging systems. Thesalditive noise, multiplicative
noise, and impulse noise. Typical image noise models ateducharacterized by the shape
of their probability density function which in the discretetting is represented by the noise
histogram. In this paper, we focus on the restoration of esamprrupted by additive noise,
which we assume to be sampled from a known a-priori distidbutNote that previous work
has been done to impose constraints on the histogram of shered image itself. In this
work, however, the focus is on the histogram of the residlialour knowledge, this is the
first attempt to impose such constraints.

Representing gray-scale two-dimensional images by r@aled functions defined on a
rectangular domaif2 C R?, the available observed noise-contaminated imagis related
to the unknown noise-free imageby the following degradation model

(1.2) w(z) = u(z) + n(z), r e,

wheren is an unknown realization of the random noise process, whiechssume to be iden-
tically distributed with known probability density funoti. The goal of a denoising algorithm

is to obtain an estimate of the unknown noise-free image This, from (L.1), allows us to
define theresidualasn = ug — u which represents an estimate of the unknown noise real-
izationn. In principle, the greater the a priori information avaliabn the noise-free image
and the noise is, the better the chance for a successfulsieggirocess will be. More gen-
eral, in image restoration it is often beneficial to imposewn properties of the noise-free
image such as smoothnegd)] and nonnegativity I5] during the solution process. On the
other hand, most image restoration methods find the appetidmu of 4 by using the a
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priori information on the mean and the variance of the ndlsa, is, they mainly exploit only
the norm of the residual. Among these methods, many incuttie discrepancy principle,
the generalized cross validation, the Truncated Singuéure/Decompositionl|g], or the L-
curve method?, 5], exploit this limited amount of residual information inethegularization
parameter choice.

One aspect generally missing from state-of-the-art imag®iging algorithms is a full
exploitation of all the available a-priori information olnet noise. The main purpose of this
work is to go beyond the use of the residual norm and to propasew method that takes
advantage of a higher amount of information present in tiepmments of the residual vector
since in many cases the noise distribution is knbwn

This concept is better illustrated in Figutel. Three synthetic examples of additive
image noise all with the same meanr= 127.5 and standard deviation = 27.5 are depicted
in the first row, nevertheless the first noise example is cetapl different from the other
two. In particular, the first is a simple step function, thems® and the third are specific
realizations of Gaussian and uniform noise distributiaespectively. In the second row,
the associated histograms are shown which reflect the vdifiatence we can notice in
the illustrations. Even if the second and the third illustras appear visually similar, the
associated histograms are significantly different fromheatbier. Therefore, by exploiting
the complete information on the noise distribution, we expge obtain a residual which
better fits the probabilistic model of the noise process, asdh consequence, we expect an
improvement in the restored image.

To the best of our knowledge, no previous attempt has beerm taoaelxplicitly favor a
target distributiorfor the residuaburing the denoising process. The histogram of the residual
has been proposed for choosing the regularization paranmefg2] to make the residuals
as close as possible to white noise. If][a novel fidelity functional was proposed in a
variational framework in order to enforce whiteness of tesidual. The histograraf the
image itselfhas been recently proposed 4] for image restoration, however it is based on
the strong assumption that the histogram of the originageria known.

While our formulation is quite different due to our focus om tkesidual, it can never-
theless be related on a conceptual level with numerous rmetihat have been proposed for
image contrast enhancement or segmentation problems waheédbased on the modification
of the histogram of an input image toward a target histogréhe simplest such method is
histogram linear stretching.}]. Sapiro and Caselles ir2f] proposed histogram modifica-
tion via image evolution equations and R. Chan et al8jnpfoposed a general variational
framework for histogram modification.

Over the last two decades, a variety of PDE-based and \ar&timethods have been
developed to deal with the image denoising problem. A gowikwecan be found in4]. In
these approaches, the use of variational methads)| 13, 18, 21, 26] and nonlinear partial
differential equations (PDES} |6, 11, 19, 27] have significantly grown.

Our idea is to develop a variational denoising model whi¢hgrates soft or hard con-
straints to fit the distribution of the noise.

The paper is organized as follows. In Sectbthe variational approach to image de-
noising is illustrated. Sectio8 describes how we defined the novel constraints based on
the residual cumulative density function. In Sectibthe ADMM optimization technique is
proposed to solve the constrained variational model. Ini@e6é preliminary experimental
results are presented and conclusions are drawn in Séttion

ITechnically, the distribution of the "noise process” is wmowith the actual noise being a realization of this
process. If the process is spatially ergodic, then the giiata of the realized noise can be expected to resemble the
distribution of the noise process itself.
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FIG. 1.1. Top row: step image (left), realization of Gaussian (cengrd uniform (right) noise distributions;
bottom row: associated histograms.

2. The variational approach to image denoising.Variational approaches for image
denoising commonly rely on the following energy function@himization:

(2.1) min {J(u) = R(u) + A\F(up —u) }.

The energy functional minimized in .1) is thus the sum of a regularization tef@rand
a so-called fidelity tern# with the regularization parametar> 0 controlling the trade-off
between "regularity” of the solution and fidelity of the solution to the observed data In
particular, the regularization functional ifi.() encodes prior information on the smoothness
of the unknown noise-free imagewhile the fidelity functional is based on the assumption
on the residuak = uy — u, that is, on the additive noisein (1.1).

A standard choice for the fidelity term is

(2.2) Flug —u) = 1/(uo —u)’dz,
2 Jo
which indirectly encodes the prior knowledge on the noisadrd deviatiom.

The type of the regularization functional i.() is important for the success of the de-
noising process. A very popular choice for it is the Totali®aon semi-norm since it has the
desirable property to allow for sharp edges in the solutidre popular Rudin-Osher-Fatemi
(ROF) denoising algorithn2[l] considers the T\E? functional,

(2.3) muin{/Q|Vu|dx+% /Q(uo —U)ng;} .

This model yields very satisfactory results for removin@ga noise while preserving edges
and contours of objects.

The unconstrained TY:? model in €.3) can be equivalently reformulated as the follow-
ing constrained optimization problem:

min/ |Vulde ,
ueV Jq
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with the admissible set defined as
V= {u: |luo —uH% < \Q|02} ,

where|Q)| is the area of the image domain.

Instead of the standarfl; fidelity term in 2.3), in order to explicitly exploit the as-
sumption that the noise distribution is known, we introdag®velresidual fidelity ternthat
enforces the similarity between the residual distributiod the target noise distribution, thus
obtaining the penalty formulation,

2.4) min {/Q V| dO + %/}R)\(z) (P(2) — Pu(2))’dz }

where P denotes the known noise distribution inh1) and P, is the distribution function of
the residuah = ug — .

For instance, if the noise is known to be zero-mean Gausstarawertain standard devi-
ation, P will be the associated cumulative distribution functioret&ils on these distributions
will be provided in Sectior.

In this paper, we propose a hard-constrained version of dhiational model in Z.4)
aimed at forcing explicitly the constraints on the noisdribation function of the residual.
We chose the TV regularization simply for its popularity;yasther regularizers could be
substituted as well. The proposed model is

(2.5) min/ |Vu|dz ,
ueH Jq

where the new admissible sgt contains solutionsg: such that the corresponding residu-
al ug — u has a distribution close to the theoretical noise distidoufunction. We will char-
acterize the set and, accordingly, we will present an efficient minimizatadgorithm based
on the Alternating Directions Method of Multipliers (ADMMptimization technique. The
ADMM method and its variants are largely used to solve mimatibn problems in image
processing. We refer the reader &) for a general dissertation on optimization techniques
such as ADMM methods or others and their applications to anqagcessing.

Let us remark how the proposed residual fidelity term 2ndY and the related con-
straintu € H can be seen as an infinite dimensional extension of the ctdggies in 2.2).
Instead of constraining the mean and variance of the relsichlig we force the entire distri-
bution P, (z) (i.e., for any real intensity € R) toward the known noise distributioR. As
such, the proposea@sidual distribution ternis infinitely more constraining than the classical
mean and variance penalties.

3. Continuous distribution constraints. In this section we present a few preliminary
equations that will be exploited in the following sectionsem we develop models that con-
strain (either in the form of a penalty or in the form of a haowhstraint) the distribution of
the residual of the reconstruction. The basic idea, whidhbeiexplained in more detail in
the following sections, is to force the residual to exhilitre of the known a-priori proper-
ties of the distribution of the additive noise embedded andhiginal observed image. Since
our models are developed in the variational framework, wienged to address constraints
on the distribution of the residual in this framework as wélere we present the necessary
preliminaries. Note that we will focus our attention on themulative distribution function
rather than the standard probability distribution functas it exhibits an extra degree of reg-
ularity while still containing the same amount of infornmattiabout the global distribution of
the values of a given function.
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Letp(z,t) denote the probability density function (pdf),

(3.1) p(z,t) = |Q1|/Qc5(z — f(x,t)) dx ,

whered represents the standard Dirac measure. Then, Rjiy,t), we denote the time-
varying cumulative distribution function (cdf) of a timewying function f(x,t) of a 2D
space variable € 2 as

(3.2) Pi(z,t) = ﬁ/ﬁH(z — f(z,t)) dx

where) C R? is a fixed, compact domain and: R — {0, 1} represents the standard
Heaviside function. The time derivative &% is

e _
B = G i de = S TACE

whered represents the standard Dirac measure.
Now consider a weighted penalty terifi. (f(t)) that measures the difference be-
tweenPy(z,t) and a given target cdP(z),

(3.3) cdf / )\ Pf(Z t)) dz

where the intervalD C R contains the range of values @gfand where the weighting pa-
rameterA > 0 is allowed to vary within this interval. We may interpret bua term as a
weighted fidelity term between the target cdf and the actdibtthe functionf. Note that

in the upcoming sections we will be utilizing such a term boplaed to the residual rather
than the reconstructed image, and therefore the fungtimesented here in these preliminary
equations serves as a placeholder for the difference bettheaeconstructed image and the
observed noisy image. As such, the interpretation of thia fidelity term is to be under-
stood in the sense of the residual having a similar distidbuas the additive noise within the
observed image. As the functighvaries in time, the cdf penalty varies as follows:

c(iit Fear (S /A (th))%(z,t)dz
- e [ - ) ([ o6 s 200 0 a:
= [ D ([ NP~ )i - f(ant) dz) da
- ﬁ /Q afg;’t)k(f) (P(f) = Py(f.1)) da

As such, the gradient of .4 is given by

1
(3.4) Dg,,

;= @/\(f)(f’(f) - Py(f)) -

Finally, it is worth noting that in the continuum (where o@ariational models are devel-
oped), standard a-priori noise distributions (such as taes&ian) are often supported over
unbounded intervals (including the caBe= R) whereas in the discretized and quantized
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observed image, the range of the image values as well as th@/adoise is truncated. As
such, the residual will also be bounded. In this case, it makase to consider a target dis-
tribution supported over a finite interval. We will present a Monte Carlo based approach to
develop such bounded noise models in a later section.

We notice that the distribution penalty i8.8) is the fidelity functional proposed ir2 (4)
with the generic functiory replaced by the residual = u, — u and with P denoting the
known cumulative distribution of noise.

The admissible sé& which defines the hard constraint for the proposed variatiprob-
lem (2.5) is defined as follows:

(3.5) H={u: Py_u(z)=P(z) Vz€D}.

In fact, if a residuaky — u represents a realization of a noise with known distribufit{n),
its cumulative distribution functio®,,, ., (z) will fit perfectly P(z).

4. Discrete distribution constraints. In this section we illustrate how the distribution
constraints on the residual= u¢ — u can be applied in the case of discretized and quantized
images. Without loss of generality, we will consider squése d images.

In the following, we will define the discrete counterpart lo¢ tprobability density func-
tion (3.1) and of the cumulative distribution functio.@). To this purpose, first we need to
quantize the range of possible image values D by introducing a partition of) into @
(non-overlapping) intervals, calldans defined a$; := [z;_1, 2i], zi-1 < z;,i = 1,...,Q,
as illustrated in Figurd.1

FIG. 4.1. Partition of the image range into bins.

Thenormalized histogram,, € R? of the residuath is defined as

d
1
hola) = 5 > I, (niy) » 4=1,2,...,Q

4,j=1

wheren, ; denotes the value of at pixel (z, j) andIs(-) denotes the indicator function of
the setS, i.e., the function having valukinside the set and0 outside.
Summing up, we get theormalized cumulative histogram

We can defingheoretical histogramalso in this discrete and quantized setting. Given
the known noise probability density functigrand cumulative distribution functioff and a
range partition, we define thiheoretical normalized histografor the residual as

hlg) = plzg) — Pl2q-1), a=12,...,Q,
and thetheoretical normalized cumulative histograthas

Hlg) = Y _hli), q=1,2,...,Q.

i=1
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FIG. 4.2. First row: pair of (50 x 50 pixels) different realizations from a standard identigadlistributed
AWGN (first two columns) and AWUN (last two columns) procssspnd and third rows: associated normalized
histograms and cumulative histograms; fourth row: theicadthistograms.

The noise models we consider are the additive white Gaussiese (AWGN) and the
additive white uniform noise (AWUN), whose probability da@gsunctions are, respectively,

2
(4.1) pa(z) = 217m exp (_; (Z ; M) )

and
~ forfa—p < V3
———  for |z — pu| < V30,
pu(z)=q 2V3o
0 otherwise,

wherep ando denote the mean and the standard deviation. To highlighdiifference be-
tween the discrete and the continuous case, we show in Fgifeur images (50< 50 pix-
els) which represent different realizations from a staddae., zero-mean and unit-variance)
AWGN and AWUN (first row), the associated normalized histoggdsecond row), normal-
ized cumulative histograms (third row), and theoreticatdgrams (fourth row). We notice
that for both the AWGN and the AWUN, the two realizations yieldtq different histograms
and (though much less visible in the figures) cumulativeolgistms. Hence, in contrast with
the continuous case, the distribution constraint can natrbequality constraint as ir3.6).
Instead, we must constrain the histograms to reside withianal around the theoretical his-
tograms.
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FiG. 4.3. Upper and lower limits of the box-constraints on the resichiatogram (top row) and cumulative
histogram (bottom row) for standard AWGN (left column) atahdard AWUN (right column) obtained for image
dimensionsl = 5, 10, 20, 50. We depict in red the theoretical histograms and cumuldtiggograms.

We are ready to describe, in the discrete setting, the aibi@ssetH which defines the
hard constraint for the proposed variational probléng)(as

4.2) H= {ueRdZ: Hyli] < Huy—uli] < Hyli] Vi:l,...,Q}

whereH;, and Hy; are the lower and upper limits, respectively, of the bandiadcthe theo-
retical histograms.

For the computation of thél;, and Hy; limits, we propose the following simple Monte
Carlo approach. Given a target probability density furcfar the noise and a selected image
dimensiond, we generate a large numberdfx d different noise realizations by sampling
from the target distribution. For each realization, we categhe normalized histogram and
the cumulative histogram. Finally, we compute the minimunt the maximum values within
all the realizations for all the histogram bins. In Figdr8we report the results for the AWGN
and AWUN distributions obtained by using four different ireadimensiong = 5, 10, 20, 50.
First, we notice that the bands for the cumulative histograne narrower than those for the
histograms. This means that the random fluctuations of theutative histogram values
over different realizations are smaller than those for tiséogram values. For this reason,
we choose to constrain the distribution of the residual bgmseof the cumulative histogram.
Second, the size of the bands gets smaller as the image dan@riscreases. In other words,
the bigger the image dimensialis, the narrower the band of the distribution constraint wil
be. The histograms converge to the theoretical on@gesds to infinity.



ETNA
Kent State University
http://etna.math.kent.edu

72 A. LANZA, S. MORIGI, F. SGALLARI, AND A. J. YEZZI

5. ADMM for the constrained minimization problem. To solve the proposed con-
strained minimization problem ir2(5) with the admissible sek defined in ¢.2), we adapt
the well known ADMM optimization techniqued] to our framework. We first introduce two
auxiliary variableg andr to reformulate the minimization problem into the equivalemm,

d2
u* + argmin ti |2
LY
(5.1) st.: t=Du, r=uyg—u,

where the auxiliary variabléis introduced to transfer the discrete gradient operataut
of the non-differentiable terrfi - |2 and the variable plays the role of the residuab — u
within the distribution constraint so that the constrainhow imposed on instead ofu.

To solve 6.1), we define the augmented Lagrangian functional and sedtat®nary
points

a2
‘C(uatvr;)\ta)‘r) = Z”tl ||2
1=1
Bt 2
—{ A, t=Du) + o |t = Dul;
BT 2
(A r=(uo—u)) + o7 = (wo—u)l,

whereB, > 0,3, > 0 are the scalar penalty parameters apde R24", ), € R% are the
vectors of Lagrangian multipliers.

Starting atu = u*, \; = \¥, A\, = \F, the ADMM iterative scheme applied to the
solution of 6.1) reads as follows:

(5.2) thtt « argmin L(u® t, 7% \F AR

t
(5.3) s — argmin L(u®, t"T1 r AEOAF)
(5.4) uFtl — argmin L(u, tFTL PR AR AR

/\f-H )\éz _ 'YBt (tk+1 _ Duk-i—l)
(_ )
PLan A — Ay B (rE T = (ug — ubh))
wherey is a relaxation parameter chosen in the intet@al/5 + 1)/2) as analyzed in12].
The two minimization sub-problem$.Q) and 6.4) for t andu can be easily solved by?

two-dimensional shrinkage operations and by the fastisolaf ad? x d? linear system],
respectively. More attention must be payed to the sub-prolf.3) for » that, when made

explicit, reads as
1
T — (UO — Uk + B’r‘)\r)

wherePy|-] denotes the Euclidean projection onto the distribution?setefined in 4.2).
Computing the solution ofy(5) is not as straightforward as for the sub-problefm)(and
(5.4), due to the characteristics of the $&bnto which we project. However, from the defini-
tions of the distribution set in4(2), we notice that the complicated constraint on the auxiliar

2

(5.5) rFtl «  argmin
reH

. 1

2 T
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variabler can be turned into a simple box-constraint on its cumuldtiseogram (r), that
is, H (r) must belong to the set,

(5.6) B={H(r) eR®: A, < H(r) < Hy },

where H, Hy represent the lower and upper limits of the band arofihd This simpler
set allows us to solve the overall optimization problem gshbMM with a new auxiliary
variablev = H(r). In particular, the minimization problem i& (1) is rewritten as
d2
u* < argmin Z ;]2

u,t,r,veEB i—1

(5.7) st.: t=Du,r=up—u, v=H(r).

The augmented Lagrangian functional associated With {s
d
E(U, t7 r,vs >\ta )‘7"3 )‘U) - Z || tl ||2

— (X, t—Du) + %nt—Dung

O (g =)+ 2 g ) |

(58) ~ v HE)) + 2 o HE) B

whereg,, B, B, > 0 are the scalar penalty parameters and R2%°, )\, € RY, )\, € R?
are the vectors of Lagrangian multipliers.
Solving 6.7) is thus equivalent to search for the solutions of the sapdliet problem,

Find (z*;\*) € X x A
st L(xz*5 ) < L™ N") < Lx; )
V(z;)) € X xA,
with £ defined in 6.8) and where, for simplicity of notation, we set = (u,t,r,v),
A=A A Ay), X = RT x R24 x RT x RQ, andA = R2° x R x R,

Starting atu = u®, Ay = AF, A = A0, = /\k the ADMM iterative scheme applied to
the solution of §.7) reads as foIIows

(5.9) thtl  argmin L(uF ¢, R 0F NE AR AR
¢
(5.10) rEHl argmm L(uk L /\f,)\f,)\ﬁ)
(5.11) Pl argmin L(uF T R s AEONE AR
(5.12) uFtl < argmin L(u, tRTL PR LR AR AR
)\erl Aiﬂ _ ’Yﬂt (tk+1 _ Duk+1)
(513) e e [ A =B (- - b))
Ak AE — B, (VR — H(rkt1))

In the following subsections, we show how to solve the folr-ptoblems %.9)—(5.12)
and then we present the iterative ADMM-based minimizatigo@thm.
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5.1. Solving the sub-problem fort. Given the definition of the augmented Lagrangian
functional in £.8), the minimization sub-problem farin (5.9) can be written as

dz
1 argmin ¢ > [ #illa — (Af,t— Du”) + % |t — Du® |3
teR2d? i—1
1
d? 3
(5.14) = argmin ¢ > | ti 2 = (A, t) + 5|t — Du" |3
teR2d? i—1
1
d? 3
(5.15) = argmin §j<um—u@»n+tn—mwﬁ>
teR2d? i=1 2

Note that in 6.14), we have omitted the constant terms while 5116 we have written the
functional to be minimized in an explicit component-wisenfio The minimization in$.15
is equivalent to the? two-dimensional problems

. B 2
thtl argmm{ Itz — ()\fﬂ-, ti)+ = ||t — D H2

t
tieRQ 2
2
Li=1,...,d%
2

1.,
(5.17) qF = D+ N =1, d?,
e

1
(5.16) = argmin{ ltille + 22 [ ¢ - (Diuk + B—Afﬂ;)
t

tiERQ 2

Following [9] and setting

the solution of 6.16) is given explicitly by thed? two-dimensional shrinkages

1 k
(5.18) tf+1:max{||qf||2—,0} qk’ L i=1,...,d%.
B g7 [l2

where0 - (0/0) = 0 is assumed. We notice that the computational cosbdff—(5.18) is
linear with respect to the number of pixels.

5.2. Solving the sub-problem forr. The minimization sub-problem forin (5.10 can
be rewritten as

Br

rFHl « argmin { — <)\’f,r — (ug — uk)> + —||r— (up — uk) I3
reRd? 2

# Ok = HO) + 0 - ) 1

= argmin { — (Af,r} + % |7 — (uo —uk) ||§
reRd?
2
(5.19) + % ‘H(r) - (vk - éA’;) i } .

In order to compute the gradient of the objective functiof5ri9, we can exploit the
result we obtained for the continuous case3n), whereH (r) is the discrete counterpart of
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the cumulative distribution functio#; (f), while the constant vectar® — B%)\,’lj plays the
role of the target cdP( f). Stationary points of.19 are thus obtained by

N B o+ )+ 2 (o - - ) ) =0,

The gradient vanishes fervalues obtained by a few steps of this simple fixed-poimatten

(5.20) r= BTQW+5A ﬂ—§;< _Eﬁk (0).

5.3. Solving the sub-problem forv. The minimization sub-problem farin (5.11) is

4 e angin { = (A0 B + - HGH I |

veB
1 2
o= (ree )| } |

The solution of §.21) is thus given by a simple Euclidean projection of the vector
H(r*1) + -\ onto the box-constraints defined by the Ben (5.6),

(5.21) = argmin { By
veEB 2

Pt = Py {H(r]ﬁl) + ﬁlkf} .

This projection can be obtained in a straightforward mamyecomputing the following)
component-wise projections, one for each histogram bin,

62 ot = i fana { (CHS0) 0 50 ) L (i} (o
i=1,....Q.

The computational complexity of this sub-problem is clgdiriear in the number of bing.

5.4. Solving the sub-problem foru. The minimization sub-problem farin (5.12 can
be rewritten as

uF T« argmin { — (NP Du) = (AR (ug — )

u€R?
I Dl B = - ) 1
= argmin{ + (X Du) — (NEw)
u€Rd?
529 N Dl I - -1 )

The problem %.23) is a quadratic optimization problem whose optimality dtiods are

T 5r> k1 _ T<k+1_1 k) »37"< _ 1k>
(5.24) O)D+& u DT (¢ M) G (ot A

Under periodic boundary conditions far the coefficient matriX>” D + 2= T is block circu-
lant with circulant blocks and thus it is diagonalizable hg 2D discrete Fourier transform
(FFT implementation). Therefore;.24) can be solved by one forward FFT and one inverse
FFT, each at a cost @9(d? log d).
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5.5. ADMM iterative scheme. To solve the proposed constrained minimization prob-
lem (5.7), we use the ADMM iterative scheme reported in Algorittimin general, choosing
good values for thg penalty parameters in ADMM-based optimization is a diffieund sen-
sitive problem. Some criteria for the automatic tuning afsh parameters along iterations
have been proposed in the literature; see, e3hard the references therein. In this work, as
will be detailed in the next experimental section, we prefeéito hand-tune these parameters.

Algorithm 1 ADMM for the proposed distribution constrained problemy.

Input: wug, By >0,8.>0,6,>0
Output: approximate solutiom* of (5.7)

1. Initialize: u° = ug, 7% = 0,\? = 0,\2 =0, )0 = 0;
2. For k=0,1,2,... until convergence:
1) computet**! according t0%.17)—(5.19
2) computer®+1 according t0$.20
3) computev*+! according to .22
4) computeu**! by solving 6.24
7) computeFTl Ak Ak by (5,13
End For

6. Computed examples.In this section we demonstrate the usefulness of the propose
constraint on the distribution of the residual in image dsing by illustrating the perfor-
mance of the proposed algorithm on both real and syntheticri2iges corrupted by additive
zero-mean white noise with known distribution. Additiveiseis a good model for the ther-
mal noise within photoelectric sensors and the term "whiteise identifies a noise which
is spatially uncorrelated: the noise for each pixel is iretefent and identically distributed.
The additive zero-mean white noise models we considerethar&aussian noise (AWGN)
defined in ¢.1) and the uniform noise (AWUN) in a given intervako+/3, ov/3] whose
probability density function is given irdj. Even if uniform noise is not often encountered in
real-world imaging systems, it provides a useful comparisgh Gaussian noise.

We compare the proposed algorithm, referred to as TV-CDi, thve well-known Rudin-
Osher-Fatemi (ROF) modeR]] based on the minimization of the TX, functional @.3).
The TV-L, approach is implemented by the Alternating Direction MetaDM), a variant
of the classic augmented Lagrangian method for structupéichization which reformulates
a TV problem as a linear equality constrained problem. TheVAN algorithm is stable,
efficient, and, in particular, faster than most of the st#téhe-art denoising algorithms. The
package for ADMTVL, is freely availablé and described in detail ir2f)].

The regularization parameter of the T\-model is adjusted so that the solution is guar-
anteed to satisfy the discrepancy principle, that is, thi@mae of the residual is equal to the
variance of the noise. For the proposed TV-CDF model, we tisedDMM minimization
procedure illustrated in Sectidnwith the following parameters settingg = 10, 5, = 30,

2 http://www.caam.rice.edu/ ~ optimization/L1/ftvd/v4.0/
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RMSE values obtained by the compared denoising algorithmtiiseoimage®ar bar a, t est , skyscr aper
corrupted by zero-mean AWGN with standard deviation

barbara test skyscraper

o |TV-Ly TV-CDF|TV-Ly TV-CDF|TV-L, TV-CDF

10| 809 711 | 741 6.82 | 848 7.54

20 | 1251 1157 |11.00 10.34 | 13.85 12.72

30 | 15.13 14.56 | 13.55 13.02 | 17.80 16.72
TABLE 6.2

RMSE values obtained by the compared denoising algorithmtiseoimagedar bar a, t est , skyscr aper
corrupted by zero-mean AWUN with standard deviation

barbara test skyscraper
o |TV-Ly, TV-CDF|TV-L, TV-CDF|TV-L, TV-CDF
10 801 698 | 728 6.60 | 841 7.43
20 | 12.32 11.27 | 10.76 10.00 | 13.73 12.48
30 | 1493 14.17 | 13.21 1256 | 17.64 16.34

B, = 1,7 = 1. These parameters have been hand-tuned so as to guaratteafaergence
for all the considered experiments. The iterations of the &gorithms are stopped as soon
as the relative difference between two successive itessisfies the termination criterion
luf = w3/ [lut= 3 < 107°.

The accuracy of the methods is evaluated by the Root Meanr&djiaror (RMSE)

defined as
RMSE (u, @) := 4/ |[[u — a3 / d?2,

whereu € RY is the computed approximation of the desired noise-freg@nac R . This
quantity provides a quantitative measure of the qualityhef testored image. A small
RMSE value indicates that is an accurate approximation of we recall, however, that the
RMSE values are not always in agreement with visual pergepti

We consider the restoration of three different imagesarbara (d 512),
test (d = 256) andskyscraper (d = 256) which present interesting mixtures of tex-
tures, flat regions, and shaded areas. The noise-free nersfahe images are depicted in
Figure6.1(a), Figure6.2(a), and Figures.3(a), respectively.

Tables6.1and6.2show the quantitative results of the comparison for the tarsaered
noise types, i.e., AWGN and AWUN, respectively. In particuthe tables report the RMSE
values obtained by applying ROF (TA%) and our (TV-CDF) algorithm on the test images
corrupted by noise with different standard deviatiens- 10,20, 30. The bold numbers in
the tables indicate the better (lower) RMSE values obtaiedieen the two methods.

The results in Table6.1and6.2 demonstrate that the proposed TV-CDF model outper-
forms the TV4., approach in terms of obtained RMSE values on the three tegtamfor all
the considered noise levels.

The quantitative results shown in Tablgd and6.2 are validated by the visual inspec-
tion of the image restorations illustrated in Figu6e$-6.3for the AWGN corruption and in
Figure6.4for the AWUN corruption.
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The results for the first example, i.e., imadembara , test , andskyscraper
corrupted by zero-mean AWGN with standard deviation= 10 are illustrated in Fig-
ures6.1-6.3. In particular, the noise-free images are depicted in FEg6rl—6.3(a), the
noise-corrupted images are shown in Figusels6.3(b), the images restored by Th; and
by TV-CDF are given in Figure6.1-6.3(c) and Figure$.1-6.3(d), respectively. In the last
rows of Figures5.1-6.3, we show the normalized histograms of the residuals agsdoigth
the restored images depicted in Figuées-6.3(c) and Figure$.1-6.3(d).

The effect of the proposed constraint is evident from thiltes histograms. In fact, the
residual histograms obtained by the proposed TV-CDF method displayed in
Figures6.1-6.3(f) adhere more faithfully to the target Gaussian probgbdensity function
(red curve) than those reported in Figufe$-6.3(e) and computed by the T¥-» model.

The results for the second example, i.e., imdg@bara , test , andskyscraper
corrupted by zero-mean AWUN with standard deviatos 30, are illustrated in Figuré.4.

In particular, in Figures.4(a) we show the noise-corrupted images while in Figrég)—(e)
we show zoomed details of the noisy images, of the origin@efree images, of the im-
ages restored by TY~, and of the images restored by TV-CDF, respectively. Thizeex
iment demonstrates that the proposed constrained degagiproach is effective also for
non-Gaussian noise models.

The restoration results illustrated in the examples obthiny the TV-CDF method to-
gether with the results in Tabk 1 and Table5.2 allow us to conclude that by exploiting the
information present in the components of the residual vecguch as in this case the noise
distribution, we can go beyond the use of just the residuahrar the variance of the noise
model, thus providing better restorations.

A proof of convergence is beyond the scope of this paper alhti@investigated in future
work. However, in Figuré&.5we provide empirical evidence of the numerical convergearfice
the proposed algorithm for the example illustrated in Feguf. In particular, in Figures.5
the relative change of the approximate solution computeldas u* ||, /||u* 1|, is shown
as a function of the iteration couht The same convergent behavior can be observed for all
the other tested examples.

7. Conclusions. In this paper we have proposed a hard-constrained varationdel
aimed at denoising images corrupted by identically disted additive noise with known
probability density function. In particular, our model istained by enforcing explicitly the
constraints on the similarity between the residual distidn and the target noise distribu-
tion. The classical TV-seminorm term is considered but ahgroregularizer could be substi-
tuted as well. The constrained variational problem is efity solved by using the popular
ADMM procedure suitably adapted to our particular model. Wdge compared our model
with the well-known ROF model by applying them to a few imagstoration examples. The
experiments show that the TV-CDF based method outperfdim3V-L, based method for
preserving better contrast and more details in the derpfgiocess. Robust preliminary es-
timation of the noise distribution, i.e., of the target desl histogram to be enforced within
our approach, will be a matter of future work.
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(b) noisy image

(c) TV-Ly: restored image (d) TV-CDF: restored image
0.05 0.05
0.04 1 0.04

-20

0
z (gray level) z (gray level)

(e) TV-L,: residual pdf (f) TV-CDF: residual pdf

FIG. 6.1.Restoration results obar bar a image corrupted by zero-mean AWGN with standard deviatien 10.
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(c) TV-Lo: restored image
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(e) TV-Ls: residual pdf
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0.05
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FIG. 6.2.Restoration results onest image corrupted by zero-mean AWGN with standard deviatien 10.
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(e) TV-L,: residual pdf (f) TV-CDF: residual pdf

FiIG. 6.3.Restoration results oskyscr aper image corrupted by zero-mean AWGN with standard deviation
o = 10.
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g

i
i
(b) noisy images (zoomed details)

(e) images restored by TV-CDF (zoomed details)

FIG. 6.4.Restoration results ohar bar a, t est andskyscr aper images corrupted by zero-mean AWUN
with standard deviatiow = 30.
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FIG. 6.5.Plot of the relative change of the computed approximatet®ulas a function of iterations count for
the example illustrated in Figuré.1
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