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Abstract. We present a denoising method aimed at restoring images corrupted by additive noise based on
the assumption that the distribution of the noise process is known. The proposed variational model uses Total
Variation (TV) regularization (chosen simply for its popularity; any other regularizer could be substituted as well) but
constrains the distribution of the residual to fit a given target noise distribution. Theresidual distribution constraint
constitutes the key novelty behind our approach. The restored image is efficiently computed by the constrained
minimization of an energy functional using an Alternating Directions Methods of Multipliers (ADMM) procedure.
Numerical examples show that the novel residual constraint indeed improves the quality of the image restorations.
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1. Introduction. A real captured image may be distorted by many expected or unex-
pected factors among which random noise is a typical and often unavoidable example. Hence,
image denoising is a fundamental task in the field of image processing and a plethora of noise
removal approaches have been proposed throughout the last few decades. Basically, there
are three standard noise models in imaging systems. These are additive noise, multiplicative
noise, and impulse noise. Typical image noise models are further characterized by the shape
of their probability density function which in the discretesetting is represented by the noise
histogram. In this paper, we focus on the restoration of images corrupted by additive noise,
which we assume to be sampled from a known a-priori distribution. Note that previous work
has been done to impose constraints on the histogram of the restored image itself. In this
work, however, the focus is on the histogram of the residual.To our knowledge, this is the
first attempt to impose such constraints.

Representing gray-scale two-dimensional images by real-valued functions defined on a
rectangular domainΩ ⊂ R

2, the available observed noise-contaminated imageu0 is related
to the unknown noise-free imagēu by the following degradation model

(1.1) u0(x) = ū(x) + n̄(x) , x ∈ Ω ,

wheren̄ is an unknown realization of the random noise process, whichwe assume to be iden-
tically distributed with known probability density function. The goal of a denoising algorithm
is to obtain an estimateu of the unknown noise-free imagēu. This, from (1.1), allows us to
define theresidualasn = u0 − u which represents an estimate of the unknown noise real-
ization n̄. In principle, the greater the a priori information available on the noise-free image
and the noise is, the better the chance for a successful denoising process will be. More gen-
eral, in image restoration it is often beneficial to impose known properties of the noise-free
image such as smoothness [20] and nonnegativity [15] during the solution process. On the
other hand, most image restoration methods find the approximation u of ū by using the a
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priori information on the mean and the variance of the noise,that is, they mainly exploit only
the norm of the residual. Among these methods, many including the discrepancy principle,
the generalized cross validation, the Truncated Singular Value Decomposition [16], or the L-
curve method [2, 5], exploit this limited amount of residual information in the regularization
parameter choice.

One aspect generally missing from state-of-the-art image denoising algorithms is a full
exploitation of all the available a-priori information on the noise. The main purpose of this
work is to go beyond the use of the residual norm and to proposea new method that takes
advantage of a higher amount of information present in the components of the residual vector
since in many cases the noise distribution is known1.

This concept is better illustrated in Figure1.1. Three synthetic examples of additive
image noise all with the same meanµ = 127.5 and standard deviationσ = 27.5 are depicted
in the first row, nevertheless the first noise example is completely different from the other
two. In particular, the first is a simple step function, the second and the third are specific
realizations of Gaussian and uniform noise distributions,respectively. In the second row,
the associated histograms are shown which reflect the visualdifference we can notice in
the illustrations. Even if the second and the third illustrations appear visually similar, the
associated histograms are significantly different from each other. Therefore, by exploiting
the complete information on the noise distribution, we expect to obtain a residual which
better fits the probabilistic model of the noise process, and, as a consequence, we expect an
improvement in the restored image.

To the best of our knowledge, no previous attempt has been made to explicitly favor a
target distributionfor the residualduring the denoising process. The histogram of the residual
has been proposed for choosing the regularization parameter in [22] to make the residuals
as close as possible to white noise. In [14] a novel fidelity functional was proposed in a
variational framework in order to enforce whiteness of the residual. The histogramof the
image itselfhas been recently proposed in [24] for image restoration, however it is based on
the strong assumption that the histogram of the original image is known.

While our formulation is quite different due to our focus on the residual, it can never-
theless be related on a conceptual level with numerous methods that have been proposed for
image contrast enhancement or segmentation problems whichare based on the modification
of the histogram of an input image toward a target histogram.The simplest such method is
histogram linear stretching [17]. Sapiro and Caselles in [23] proposed histogram modifica-
tion via image evolution equations and R. Chan et al. in [8] proposed a general variational
framework for histogram modification.

Over the last two decades, a variety of PDE-based and variational methods have been
developed to deal with the image denoising problem. A good review can be found in [4]. In
these approaches, the use of variational methods [7, 10, 13, 18, 21, 26] and nonlinear partial
differential equations (PDEs) [1, 6, 11, 19, 27] have significantly grown.

Our idea is to develop a variational denoising model which integrates soft or hard con-
straints to fit the distribution of the noise.

The paper is organized as follows. In Section2 the variational approach to image de-
noising is illustrated. Section3 describes how we defined the novel constraints based on
the residual cumulative density function. In Section5 the ADMM optimization technique is
proposed to solve the constrained variational model. In Section 6 preliminary experimental
results are presented and conclusions are drawn in Section7.

1Technically, the distribution of the ”noise process” is known with the actual noise being a realization of this
process. If the process is spatially ergodic, then the histogram of the realized noise can be expected to resemble the
distribution of the noise process itself.
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FIG. 1.1. Top row: step image (left), realization of Gaussian (center) and uniform (right) noise distributions;
bottom row: associated histograms.

2. The variational approach to image denoising.Variational approaches for image
denoising commonly rely on the following energy functionalminimization:

(2.1) min
u
{ J(u) = R(u) + λF(u0 − u) } .

The energy functionalJ minimized in (2.1) is thus the sum of a regularization termR and
a so-called fidelity termF with the regularization parameterλ > 0 controlling the trade-off
between ”regularity” of the solutionu and fidelity of the solution to the observed datau0. In
particular, the regularization functional in (2.1) encodes prior information on the smoothness
of the unknown noise-free imagēu while the fidelity functional is based on the assumption
on the residualn = u0 − u, that is, on the additive noisēn in (1.1).

A standard choice for the fidelity term is

F(u0 − u) =
1

2

∫

Ω

(u0 − u)2 dx ,(2.2)

which indirectly encodes the prior knowledge on the noise standard deviationσ.
The type of the regularization functional in (2.1) is important for the success of the de-

noising process. A very popular choice for it is the Total Variation semi-norm since it has the
desirable property to allow for sharp edges in the solution.The popular Rudin-Osher-Fatemi
(ROF) denoising algorithm [21] considers the TV-L2 functional,

(2.3) min
u

{ ∫

Ω

|∇u|dx+
λ

2

∫

Ω

(u0 − u)2dx

}

.

This model yields very satisfactory results for removing image noise while preserving edges
and contours of objects.

The unconstrained TV-L2 model in (2.3) can be equivalently reformulated as the follow-
ing constrained optimization problem:

min
u∈V

∫

Ω

|∇u|dx ,
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with the admissible set defined as

V =
{

u : ‖u0 − u‖22 ≤ |Ω|σ2
}

,

where|Ω| is the area of the image domain.
Instead of the standardL2 fidelity term in (2.3), in order to explicitly exploit the as-

sumption that the noise distribution is known, we introducea novelresidual fidelity termthat
enforces the similarity between the residual distributionand the target noise distribution, thus
obtaining the penalty formulation,

(2.4) min
u

{∫

Ω

|∇u| dΩ +
1

2

∫

R

λ(z)
(

P (z)− Pn(z)
)2
dz

}

whereP denotes the known noise distribution in (1.1) andPn is the distribution function of
the residualn = u0 − u.

For instance, if the noise is known to be zero-mean Gaussian with a certain standard devi-
ation,P will be the associated cumulative distribution function. Details on these distributions
will be provided in Section4.

In this paper, we propose a hard-constrained version of the variational model in (2.4)
aimed at forcing explicitly the constraints on the noise distribution function of the residual.
We chose the TV regularization simply for its popularity; any other regularizers could be
substituted as well. The proposed model is

(2.5) min
u∈H

∫

Ω

|∇u|dx ,

where the new admissible setH contains solutionsu such that the corresponding residu-
al u0 − u has a distribution close to the theoretical noise distribution function. We will char-
acterize the setH and, accordingly, we will present an efficient minimizationalgorithm based
on the Alternating Directions Method of Multipliers (ADMM)optimization technique. The
ADMM method and its variants are largely used to solve minimization problems in image
processing. We refer the reader to [3] for a general dissertation on optimization techniques
such as ADMM methods or others and their applications to image processing.

Let us remark how the proposed residual fidelity term in (2.4) and the related con-
straintu ∈ H can be seen as an infinite dimensional extension of the classical ones in (2.2).
Instead of constraining the mean and variance of the residual only, we force the entire distri-
butionPn(z) (i.e., for any real intensityz ∈ R) toward the known noise distributionP . As
such, the proposedresidual distribution termis infinitely more constraining than the classical
mean and variance penalties.

3. Continuous distribution constraints. In this section we present a few preliminary
equations that will be exploited in the following sections when we develop models that con-
strain (either in the form of a penalty or in the form of a hard constraint) the distribution of
the residual of the reconstruction. The basic idea, which will be explained in more detail in
the following sections, is to force the residual to exhibit some of the known a-priori proper-
ties of the distribution of the additive noise embedded in the original observed image. Since
our models are developed in the variational framework, we will need to address constraints
on the distribution of the residual in this framework as well. Here we present the necessary
preliminaries. Note that we will focus our attention on the cumulative distribution function
rather than the standard probability distribution function as it exhibits an extra degree of reg-
ularity while still containing the same amount of information about the global distribution of
the values of a given function.
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Let p(z, t) denote the probability density function (pdf),

(3.1) p(z, t) =
1

|Ω|

∫

Ω

δ
(

z − f(x, t)
)

dx ,

whereδ represents the standard Dirac measure. Then, withPf (z, t), we denote the time-
varying cumulative distribution function (cdf) of a time-varying functionf(x, t) of a 2D
space variablex ∈ Ω as

(3.2) Pf (z, t) =
1

|Ω|

∫

Ω

H
(

z − f(x, t)
)

dx

whereΩ ⊂ R
2 is a fixed, compact domain andH : R → {0, 1} represents the standard

Heaviside function. The time derivative ofPf is

∂Pf

∂t
= − 1

|Ω|

∫

Ω

Ḣ
(

z − f
)∂f

∂t
dx = − 1

|Ω|

∫

Ω

δ
(

z − f
)∂f

∂t
dx

whereδ represents the standard Dirac measure.
Now consider a weighted penalty termFcdf

(

f(t)
)

that measures the difference be-
tweenPf (z, t) and a given target cdf̄P (z),

(3.3) Fcdf

(

f(t)
)

=
1

2

∫

D

λ(z)
(

P̄ (z)− Pf (z, t)
)2
dz ,

where the intervalD ⊂ R contains the range of values off and where the weighting pa-
rameterλ > 0 is allowed to vary within this interval. We may interpret such a term as a
weighted fidelity term between the target cdf and the actual cdf of the functionf . Note that
in the upcoming sections we will be utilizing such a term but applied to the residual rather
than the reconstructed image, and therefore the functionf presented here in these preliminary
equations serves as a placeholder for the difference between the reconstructed image and the
observed noisy image. As such, the interpretation of this asa fidelity term is to be under-
stood in the sense of the residual having a similar distribution as the additive noise within the
observed image. As the functionf varies in time, the cdf penalty varies as follows:

d

dt
Fcdf

(

f(t)
)

= −
∫

D

λ(z)
(

P̄ (z)− Pf (z, t)
)∂Pf

∂t
(z, t) dz

=
1

|Ω|

∫

D

λ(z)
(

P̄ (z)− Pf (z, t)
)

(∫

Ω

δ
(

z − f(x, t)
)∂f(x, t)

∂t
dx

)

dz

=
1

|Ω|

∫

Ω

∂f(x, t)

∂t

(∫

D

λ(z)
(

P̄ (z)− Pf (z, t)
)

δ
(

z − f(x, t)
)

dz

)

dx

=
1

|Ω|

∫

Ω

∂f(x, t)

∂t
λ(f)

(

P̄ (f)− Pf (f, t)
)

dx .

As such, the gradient ofFcdf is given by

(3.4) DFcdf
=

1

|Ω|λ(f)
(

P̄ (f)− Pf (f)
)

.

Finally, it is worth noting that in the continuum (where our variational models are devel-
oped), standard a-priori noise distributions (such as the Gaussian) are often supported over
unbounded intervals (including the caseD = R) whereas in the discretized and quantized
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observed image, the range of the image values as well as the additive noise is truncated. As
such, the residual will also be bounded. In this case, it makes sense to consider a target dis-
tribution supported over a finite intervalD. We will present a Monte Carlo based approach to
develop such bounded noise models in a later section.

We notice that the distribution penalty in (3.3) is the fidelity functional proposed in (2.4)
with the generic functionf replaced by the residualn = u0 − u and withP denoting the
known cumulative distribution of noise.

The admissible setH which defines the hard constraint for the proposed variational prob-
lem (2.5) is defined as follows:

(3.5) H =
{

u : Pu0−u(z) = P̄ (z) ∀z ∈ D
}

.

In fact, if a residualu0 − u represents a realization of a noise with known distributionP̄ (z),
its cumulative distribution functionPu0−u(z) will fit perfectly P̄ (z).

4. Discrete distribution constraints. In this section we illustrate how the distribution
constraints on the residualn = u0−u can be applied in the case of discretized and quantized
images. Without loss of generality, we will consider squared× d images.

In the following, we will define the discrete counterpart of the probability density func-
tion (3.1) and of the cumulative distribution function (3.2). To this purpose, first we need to
quantize the range of possible image valuesz ∈ D by introducing a partition ofD into Q
(non-overlapping) intervals, calledbins, defined asbi := [zi−1, zi], zi−1 < zi, i = 1, . . . , Q,
as illustrated in Figure4.1.

FIG. 4.1.Partition of the image range into bins.

Thenormalized histogramhn ∈ R
Q of the residualn is defined as

hn[q] =
1

d2

d
∑

i,j=1

Ibq (ni,j) , q = 1, 2, . . . , Q

whereni,j denotes the value ofn at pixel (i, j) andIS(·) denotes the indicator function of
the setS, i.e., the function having value1 inside the setS and0 outside.

Summing up, we get thenormalized cumulative histogram,

Hn[q] =

q
∑

i=1

hn[i] , q = 1, 2, . . . , Q.

We can definetheoretical histogramsalso in this discrete and quantized setting. Given
the known noise probability density function̄p and cumulative distribution function̄P and a
range partition, we define thetheoretical normalized histogram̄h for the residual as

h̄[q] = p̄(zq)− p̄(zq−1) , q = 1, 2, . . . , Q ,

and thetheoretical normalized cumulative histogram̄H as

H̄[q] =

q
∑

i=1

h̄[i] , q = 1, 2, . . . , Q.
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FIG. 4.2. First row: pair of (50 × 50 pixels) different realizations from a standard identically distributed
AWGN (first two columns) and AWUN (last two columns) process;second and third rows: associated normalized
histograms and cumulative histograms; fourth row: theoretical histograms.

The noise models we consider are the additive white Gaussiannoise (AWGN) and the
additive white uniform noise (AWUN), whose probability density functions are, respectively,

(4.1) pG(z) =
1√
2πσ

exp

(

−1

2

(

z − µ

σ

)2
)

and

pU (z) =







1

2
√
3σ

for |z − µ| ≤
√
3σ,

0 otherwise,

whereµ andσ denote the mean and the standard deviation. To highlight thedifference be-
tween the discrete and the continuous case, we show in Figure4.2four images (50× 50 pix-
els) which represent different realizations from a standard (i.e., zero-mean and unit-variance)
AWGN and AWUN (first row), the associated normalized histograms (second row), normal-
ized cumulative histograms (third row), and theoretical histograms (fourth row). We notice
that for both the AWGN and the AWUN, the two realizations yield quite different histograms
and (though much less visible in the figures) cumulative histograms. Hence, in contrast with
the continuous case, the distribution constraint can not bean equality constraint as in (3.5).
Instead, we must constrain the histograms to reside within aband around the theoretical his-
tograms.
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FIG. 4.3. Upper and lower limits of the box-constraints on the residual histogram (top row) and cumulative
histogram (bottom row) for standard AWGN (left column) and standard AWUN (right column) obtained for image
dimensionsd = 5, 10, 20, 50. We depict in red the theoretical histograms and cumulativehistograms.

We are ready to describe, in the discrete setting, the admissible setH which defines the
hard constraint for the proposed variational problem (2.5) as

(4.2) H =
{

u ∈ R
d2

: H̄L[i] ≤ Hu0−u[i] ≤ H̄U [i] ∀i = 1, . . . , Q
}

whereH̄L andH̄U are the lower and upper limits, respectively, of the band around the theo-
retical histograms.

For the computation of thēHL andH̄U limits, we propose the following simple Monte
Carlo approach. Given a target probability density function for the noise and a selected image
dimensiond, we generate a large number ofd × d different noise realizations by sampling
from the target distribution. For each realization, we compute the normalized histogram and
the cumulative histogram. Finally, we compute the minimum and the maximum values within
all the realizations for all the histogram bins. In Figure4.3we report the results for the AWGN
and AWUN distributions obtained by using four different image dimensionsd = 5, 10, 20, 50.
First, we notice that the bands for the cumulative histograms are narrower than those for the
histograms. This means that the random fluctuations of the cumulative histogram values
over different realizations are smaller than those for the histogram values. For this reason,
we choose to constrain the distribution of the residual by means of the cumulative histogram.
Second, the size of the bands gets smaller as the image dimensiond increases. In other words,
the bigger the image dimensiond is, the narrower the band of the distribution constraint will
be. The histograms converge to the theoretical ones asd tends to infinity.
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5. ADMM for the constrained minimization problem. To solve the proposed con-
strained minimization problem in (2.5) with the admissible setH defined in (4.2), we adapt
the well known ADMM optimization technique [9] to our framework. We first introduce two
auxiliary variablest andr to reformulate the minimization problem into the equivalent form,

u∗ ← argmin
u,t,r∈H

d2

∑

i=1

‖ ti ‖2

s.t. : t = Du, r = u0 − u ,(5.1)

where the auxiliary variablet is introduced to transfer the discrete gradient operatorD out
of the non-differentiable term‖ · ‖2 and the variabler plays the role of the residualu0 − u
within the distribution constraint so that the constraint is now imposed onr instead ofu.

To solve (5.1), we define the augmented Lagrangian functional and seek itsstationary
points

L(u, t, r;λt, λr) =

d2

∑

i=1

‖ ti ‖2

−〈λt , t−Du 〉 + βt

2
‖ t−Du ‖22

−〈λr , r − (u0 − u) 〉 +
βr

2
‖ r − (u0 − u) ‖22 ,

whereβt > 0, βr > 0 are the scalar penalty parameters andλt ∈ R
2d2

, λr ∈ R
d2

are the
vectors of Lagrangian multipliers.

Starting atu = uk, λt = λk
t , λr = λk

r , the ADMM iterative scheme applied to the
solution of (5.1) reads as follows:

tk+1 ← argmin
t

L(uk, t, rk;λk
t , λ

k
r )(5.2)

rk+1 ← argmin
r

L(uk, tk+1, r;λk
t , λ

k
r )(5.3)

uk+1 ← argmin
u

L(u, tk+1, rk+1;λk
t , λ

k
r )(5.4)

(

λk+1
t

λk+1
r

)

←
(

λk
t − γ βt

(

tk+1 − Duk+1
)

λk
r − γ βr

(

rk+1 − (u0 − uk+1)
)

)

,

whereγ is a relaxation parameter chosen in the interval(0, (
√
5 + 1)/2) as analyzed in [12].

The two minimization sub-problems (5.2) and (5.4) for t andu can be easily solved byd2

two-dimensional shrinkage operations and by the fast solution of ad2 × d2 linear system [9],
respectively. More attention must be payed to the sub-problem (5.3) for r that, when made
explicit, reads as

(5.5) rk+1 ← argmin
r∈H

∥

∥

∥

∥

r −
(

u0 − uk +
1

βr

λr

)∥

∥

∥

∥

2

2

= PH

[

u0 − uk +
1

βr

λr

]

wherePH[·] denotes the Euclidean projection onto the distribution setH defined in (4.2).
Computing the solution of (5.5) is not as straightforward as for the sub-problems (5.2) and
(5.4), due to the characteristics of the setH onto which we project. However, from the defini-
tions of the distribution set in (4.2), we notice that the complicated constraint on the auxiliary
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variabler can be turned into a simple box-constraint on its cumulativehistogramH(r), that
is,H(r) must belong to the set,

(5.6) B =
{

H(r) ∈ R
Q : H̄L ≤ H(r) ≤ H̄U

}

,

whereH̄L, H̄U represent the lower and upper limits of the band aroundH̄. This simpler
set allows us to solve the overall optimization problem using ADMM with a new auxiliary
variablev = H(r). In particular, the minimization problem in (5.1) is rewritten as

u∗ ← argmin
u,t,r,v∈B

d2

∑

i=1

‖ ti ‖2

s.t. : t = Du, r = u0 − u, v = H(r) .(5.7)

The augmented Lagrangian functional associated with (5.7) is

L(u, t, r, v;λt, λr, λv) =

d2

∑

i=1

‖ ti ‖2

−〈λt , t−Du 〉 + βt

2
‖ t−Du ‖22

−〈λr , r − (u0 − u) 〉 + βr

2
‖ r − (u0 − u) ‖22

−〈λv , v −H(r) 〉 + βv

2
‖ v −H(r) ‖22 ,(5.8)

whereβt, βr, βv > 0 are the scalar penalty parameters andλt ∈ R
2d2

, λr ∈ R
d2

, λv ∈ R
Q

are the vectors of Lagrangian multipliers.
Solving (5.7) is thus equivalent to search for the solutions of the saddlepoint problem,

Find (x∗;λ∗) ∈ X × Λ

s.t. L(x∗;λ) ≤ L(x∗;λ∗) ≤ L(x;λ∗)

∀ (x;λ) ∈ X × Λ ,

with L defined in (5.8) and where, for simplicity of notation, we setx = (u, t, r, v),
λ = (λt, λr, λv), X = R

d2 × R
2d2 × R

d2 × R
Q, andΛ = R

2d2 × R
d2 × R

Q.
Starting atu = uk, λt = λk

t , λr = λk
r , λv = λk

v , the ADMM iterative scheme applied to
the solution of (5.7) reads as follows:

tk+1 ← argmin
t

L(uk, t, rk, vk;λk
t , λ

k
r , λ

k
v)(5.9)

rk+1 ← argmin
r

L(uk, tk+1, r, vk;λk
t , λ

k
r , λ

k
v)(5.10)

vk+1 ← argmin
v

L(uk, tk+1, rk+1, v;λk
t , λ

k
r , λ

k
v)(5.11)

uk+1 ← argmin
u

L(u, tk+1, rk+1, vk+1;λk
t , λ

k
r , λ

k
v)(5.12)







λk+1
t

λk+1
r

λk+1
v






←







λk
t − γ βt

(

tk+1 − Duk+1
)

λk
r − γ βr

(

rk+1 − (u0 − uk+1)
)

λk
v − γ βv

(

vk+1 − H(rk+1)
)






.(5.13)

In the following subsections, we show how to solve the four sub-problems (5.9)–(5.12)
and then we present the iterative ADMM-based minimization algorithm.
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5.1. Solving the sub-problem fort. Given the definition of the augmented Lagrangian
functional in (5.8), the minimization sub-problem fort in (5.9) can be written as

tk+1 ← argmin
t∈R2d2







d2

∑

i=1

‖ ti ‖2 − 〈λk
t , t−Duk 〉 + βt

2
‖ t−Duk ‖22







= argmin
t∈R2d2







d2

∑

i=1

‖ ti ‖2 − 〈λk
t , t 〉 +

βt

2
‖ t−Duk ‖22







(5.14)

= argmin
t∈R2d2







d2

∑

i=1

(

‖ ti ‖2 − 〈λk
t,i , ti 〉 +

βt

2
‖ ti −Diu

k ‖22
)







.(5.15)

Note that in (5.14), we have omitted the constant terms while in (5.15) we have written the
functional to be minimized in an explicit component-wise form. The minimization in (5.15)
is equivalent to thed2 two-dimensional problems

tk+1
i ← argmin

ti∈R2

{

‖ ti ‖2 − 〈λk
t,i , ti 〉 +

βt

2

∥

∥ ti −Diu
k
∥

∥

2

2

}

= argmin
ti∈R2

{

‖ ti ‖2 +
βt

2

∥

∥

∥

∥

ti −
(

Diu
k +

1

βt

λk
t,i

)

∥

∥

∥

∥

2

2

}

, i = 1, . . . , d2.(5.16)

Following [9] and setting

(5.17) qki := Diu
k +

1

βt

λk
t,i , i = 1, . . . , d2 ,

the solution of (5.16) is given explicitly by thed2 two-dimensional shrinkages

(5.18) tk+1
i = max

{

‖ qki ‖2 −
1

βt

, 0

}

qki
‖ qki ‖2

, i = 1, . . . , d2 .

where0 · (0/0) = 0 is assumed. We notice that the computational cost of (5.17)–(5.18) is
linear with respect to the number of pixelsd2.

5.2. Solving the sub-problem forr. The minimization sub-problem forr in (5.10) can
be rewritten as

rk+1 ← argmin
r∈Rd2

{

− 〈λk
r , r − (u0 − uk) 〉 +

βr

2
‖ r − (u0 − uk) ‖22

+ 〈λk
v , v

k −H(r) 〉 + βv

2
‖ vk −H(r) ‖22

}

= argmin
r∈Rd2

{

− 〈λk
r , r 〉 +

βr

2
‖ r − (u0 − uk) ‖22

+
βv

2

∥

∥

∥

∥

H(r)−
(

vk − 1

βv

λk
v

)∥

∥

∥

∥

2

2

}

.(5.19)

In order to compute the gradient of the objective function in(5.19), we can exploit the
result we obtained for the continuous case in (3.4), whereH(r) is the discrete counterpart of
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the cumulative distribution functionPf (f), while the constant vectorvk − 1

βv
λk
v plays the

role of the target cdfP (f). Stationary points of (5.19) are thus obtained by

−λk
r + βr(r − u0 + uk) +

βv

d2

(

vk − 1

βv

λk
v −H(r)

)

= 0 .

The gradient vanishes forr-values obtained by a few steps of this simple fixed-point iteration

(5.20) r =
1

βr

(

λk
r + βr(u0 − uk)− βv

d2

(

vk − 1

βv

λk
v −H(r)

))

.

5.3. Solving the sub-problem forv. The minimization sub-problem forv in (5.11) is

vk+1 ← argmin
v∈B

{

− 〈λk
v , v −H(rk+1) 〉 + βv

2
‖ v −H(rk+1) ‖22

}

= argmin
v∈B

{

βv

2

∥

∥

∥

∥

v −
(

H(rk+1) +
1

βv

λk
v

)∥

∥

∥

∥

2

2

}

.(5.21)

The solution of (5.21) is thus given by a simple Euclidean projection of the vector
H(rk+1) + 1

βv
λk
v onto the box-constraints defined by the setB in (5.6),

vk+1 = PB

[

H(rk+1) +
1

βv

λk
v

]

.

This projection can be obtained in a straightforward mannerby computing the followingQ
component-wise projections, one for each histogram bin,

vk+1
i = min

{

max

{(

(H(rk+1))i +
1

βv

λk
v,i

)

, (HL)i

}

, (HU )i

}

,

i = 1, . . . , Q .

(5.22)

The computational complexity of this sub-problem is clearly linear in the number of binsQ.

5.4. Solving the sub-problem foru. The minimization sub-problem foru in (5.12) can
be rewritten as

uk+1 ← argmin
u∈Rd2

{

− 〈λk
t , t

k+1 −Du 〉 − 〈λk
r , r

k − (u0 − u) 〉

+
βt

2
‖ tk+1 −Du ‖22 +

βr

2
‖ rk − (u0 − u) ‖22

}

= argmin
u∈Rd2

{

+ 〈λk
t , Du 〉 − 〈λk

r , u 〉

+
βt

2
‖ tk+1 −Du ‖22 +

βr

2
‖ rk − (u0 − u) ‖22

}

.(5.23)

The problem (5.23) is a quadratic optimization problem whose optimality conditions are

(5.24)

(

DTD +
βr

βt

I

)

uk+1 = DT

(

tk+1 − 1

βt

λk
t

)

+
βr

βt

(

u0 − rk +
1

βr

λk
r

)

.

Under periodic boundary conditions foru, the coefficient matrixDTD+ βr

βt
I is block circu-

lant with circulant blocks and thus it is diagonalizable by the 2D discrete Fourier transform
(FFT implementation). Therefore, (5.24) can be solved by one forward FFT and one inverse
FFT, each at a cost ofO(d2 log d).
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5.5. ADMM iterative scheme. To solve the proposed constrained minimization prob-
lem (5.7), we use the ADMM iterative scheme reported in Algorithm1. In general, choosing
good values for theβ penalty parameters in ADMM-based optimization is a difficult and sen-
sitive problem. Some criteria for the automatic tuning of these parameters along iterations
have been proposed in the literature; see, e.g., [3] and the references therein. In this work, as
will be detailed in the next experimental section, we preferred to hand-tune these parameters.

Algorithm 1 ADMM for the proposed distribution constrained problem (5.7).

Input : u0, βt > 0, βr > 0, βv > 0

Output : approximate solutionu∗ of (5.7)

1. Initialize: u0 = u0, r
0 = 0, λ0

t = 0, λ0
r = 0, λ0

v = 0;

2. For k = 0, 1, 2, . . . until convergence:

1) computetk+1 according to (5.17)–(5.18)

2) computerk+1 according to (5.20)

3) computevk+1 according to (5.22)

4) computeuk+1 by solving (5.24)

7) computeλk+1
t , λk+1

r , λk+1
v by (5.13)

End For

6. Computed examples.In this section we demonstrate the usefulness of the proposed
constraint on the distribution of the residual in image denoising by illustrating the perfor-
mance of the proposed algorithm on both real and synthetic 2Dimages corrupted by additive
zero-mean white noise with known distribution. Additive noise is a good model for the ther-
mal noise within photoelectric sensors and the term ”white”noise identifies a noise which
is spatially uncorrelated: the noise for each pixel is independent and identically distributed.
The additive zero-mean white noise models we considered arethe Gaussian noise (AWGN)
defined in (4.1) and the uniform noise (AWUN) in a given interval[−σ

√
3, σ
√
3] whose

probability density function is given in (4). Even if uniform noise is not often encountered in
real-world imaging systems, it provides a useful comparison with Gaussian noise.

We compare the proposed algorithm, referred to as TV-CDF, with the well-known Rudin-
Osher-Fatemi (ROF) model [21] based on the minimization of the TV-L2 functional (2.3).
The TV-L2 approach is implemented by the Alternating Direction Method (ADM), a variant
of the classic augmented Lagrangian method for structured optimization which reformulates
a TV problem as a linear equality constrained problem. The ADMTV algorithm is stable,
efficient, and, in particular, faster than most of the state-of-the-art denoising algorithms. The
package for ADMTV-L2 is freely available2 and described in detail in [25].

The regularization parameter of the TV-L2 model is adjusted so that the solution is guar-
anteed to satisfy the discrepancy principle, that is, the variance of the residual is equal to the
variance of the noise. For the proposed TV-CDF model, we usedthe ADMM minimization
procedure illustrated in Section5 with the following parameters settingβt = 10, βr = 30,

2 http://www.caam.rice.edu/ ˜ optimization/L1/ftvd/v4.0/

http://www.caam.rice.edu/~optimization/L1/ftvd/v4.0/
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TABLE 6.1
RMSE values obtained by the compared denoising algorithms on the imagesbarbara, test, skyscraper

corrupted by zero-mean AWGN with standard deviationσ.

barbara test skyscraper

σ TV-L2 TV-CDF TV-L2 TV-CDF TV-L2 TV-CDF

10 8.09 7.11 7.41 6.82 8.48 7.54
20 12.51 11.57 11.00 10.34 13.85 12.72
30 15.13 14.56 13.55 13.02 17.80 16.72

TABLE 6.2
RMSE values obtained by the compared denoising algorithms on the imagesbarbara, test, skyscraper

corrupted by zero-mean AWUN with standard deviationσ.

barbara test skyscraper

σ TV-L2 TV-CDF TV-L2 TV-CDF TV-L2 TV-CDF

10 8.01 6.98 7.28 6.60 8.41 7.43
20 12.32 11.27 10.76 10.00 13.73 12.48
30 14.93 14.17 13.21 12.56 17.64 16.34

βv = 1, γ = 1. These parameters have been hand-tuned so as to guarantee fast convergence
for all the considered experiments. The iterations of the two algorithms are stopped as soon
as the relative difference between two successive iteratessatisfies the termination criterion
‖uk − uk−1‖22 / ‖uk−1‖22 < 10−5.

The accuracy of the methods is evaluated by the Root Mean Squared Error (RMSE)
defined as

RMSE (u, ū) :=
√

‖u− ū‖22 / d 2 ,

whereu ∈R
d2

is the computed approximation of the desired noise-free imageū ∈R
d2

. This
quantity provides a quantitative measure of the quality of the restored imageu. A small
RMSE value indicates thatu is an accurate approximation ofū; we recall, however, that the
RMSE values are not always in agreement with visual perception.

We consider the restoration of three different images:barbara (d = 512),
test (d = 256) andskyscraper (d = 256) which present interesting mixtures of tex-
tures, flat regions, and shaded areas. The noise-free versions of the images are depicted in
Figure6.1(a), Figure6.2(a), and Figure6.3(a), respectively.

Tables6.1and6.2show the quantitative results of the comparison for the two considered
noise types, i.e., AWGN and AWUN, respectively. In particular, the tables report the RMSE
values obtained by applying ROF (TV-L2) and our (TV-CDF) algorithm on the test images
corrupted by noise with different standard deviationsσ = 10, 20, 30. The bold numbers in
the tables indicate the better (lower) RMSE values obtainedbetween the two methods.

The results in Tables6.1and6.2demonstrate that the proposed TV-CDF model outper-
forms the TV-L2 approach in terms of obtained RMSE values on the three test images for all
the considered noise levels.

The quantitative results shown in Tables6.1 and6.2 are validated by the visual inspec-
tion of the image restorations illustrated in Figures6.1–6.3 for the AWGN corruption and in
Figure6.4for the AWUN corruption.
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The results for the first example, i.e., imagesbarbara , test , and skyscraper
corrupted by zero-mean AWGN with standard deviationσ = 10 are illustrated in Fig-
ures6.1–6.3. In particular, the noise-free images are depicted in Figures 6.1–6.3(a), the
noise-corrupted images are shown in Figures6.1–6.3(b), the images restored by TV-L2 and
by TV-CDF are given in Figures6.1–6.3(c) and Figures6.1–6.3(d), respectively. In the last
rows of Figures6.1–6.3, we show the normalized histograms of the residuals associated with
the restored images depicted in Figures6.1–6.3(c) and Figures6.1–6.3(d).

The effect of the proposed constraint is evident from the residual histograms. In fact, the
residual histograms obtained by the proposed TV-CDF methodand displayed in
Figures6.1–6.3(f) adhere more faithfully to the target Gaussian probability density function
(red curve) than those reported in Figures6.1–6.3(e) and computed by the TV-L2 model.

The results for the second example, i.e., imagesbarbara , test , andskyscraper
corrupted by zero-mean AWUN with standard deviationσ = 30, are illustrated in Figure6.4.
In particular, in Figure6.4(a) we show the noise-corrupted images while in Figures6.4(b)–(e)
we show zoomed details of the noisy images, of the original noise-free images, of the im-
ages restored by TV-L2, and of the images restored by TV-CDF, respectively. This exper-
iment demonstrates that the proposed constrained denoising approach is effective also for
non-Gaussian noise models.

The restoration results illustrated in the examples obtained by the TV-CDF method to-
gether with the results in Table6.1and Table6.2allow us to conclude that by exploiting the
information present in the components of the residual vectors, such as in this case the noise
distribution, we can go beyond the use of just the residual norm or the variance of the noise
model, thus providing better restorations.

A proof of convergence is beyond the scope of this paper and will be investigated in future
work. However, in Figure6.5we provide empirical evidence of the numerical convergenceof
the proposed algorithm for the example illustrated in Figure 6.1. In particular, in Figure6.5
the relative change of the approximate solution computed as‖uk−uk−1‖2/‖uk−1‖2 is shown
as a function of the iteration countk. The same convergent behavior can be observed for all
the other tested examples.

7. Conclusions. In this paper we have proposed a hard-constrained variational model
aimed at denoising images corrupted by identically distributed additive noise with known
probability density function. In particular, our model is obtained by enforcing explicitly the
constraints on the similarity between the residual distribution and the target noise distribu-
tion. The classical TV-seminorm term is considered but any other regularizer could be substi-
tuted as well. The constrained variational problem is efficiently solved by using the popular
ADMM procedure suitably adapted to our particular model. Wehave compared our model
with the well-known ROF model by applying them to a few image restoration examples. The
experiments show that the TV-CDF based method outperforms the TV-L2 based method for
preserving better contrast and more details in the denoising process. Robust preliminary es-
timation of the noise distribution, i.e., of the target residual histogram to be enforced within
our approach, will be a matter of future work.
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(a) noise-free image (b) noisy image

(c) TV-L2: restored image (d) TV-CDF: restored image

(e) TV-L2: residual pdf (f) TV-CDF: residual pdf

FIG. 6.1.Restoration results onbarbara image corrupted by zero-mean AWGN with standard deviationσ = 10.
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(a) noise-free image (b) noisy image

(c) TV-L2: restored image (d) TV-CDF: restored image

(e) TV-L2: residual pdf (f) TV-CDF: residual pdf

FIG. 6.2.Restoration results ontest image corrupted by zero-mean AWGN with standard deviationσ = 10.
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(a) noise-free image (b) noisy image

(c) TV-L2: restored image (d) TV-CDF: restored image

(e) TV-L2: residual pdf (f) TV-CDF: residual pdf

FIG. 6.3.Restoration results onskyscraper image corrupted by zero-mean AWGN with standard deviation
σ = 10.
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(a) noisy images

(b) noisy images (zoomed details)

(c) original images (zoomed details)

(d) images restored by TV-L2 (zoomed details)

(e) images restored by TV-CDF (zoomed details)

FIG. 6.4.Restoration results onbarbara, test andskyscraper images corrupted by zero-mean AWUN
with standard deviationσ = 30.
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FIG. 6.5.Plot of the relative change of the computed approximate solution as a function of iterations count for
the example illustrated in Figure6.1.
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