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Abstract. The LSQR algorithm is a popular method for solving least-squares problems. For some matrices,
LSQR may require a prohibitively large number of iterations todetermine an approximate solution within a desired
accuracy. This paper develops a strategy that couples the LSQR algorithm with an implicitly restarted Golub-
Kahan bidiagonalization method to improve the convergence rate. The restart is carried out by first applying the
largest harmonic Ritz values as shifts and then using LSQR to compute the solution to the least-squares problem.
Theoretical results show how this method is connected to the augmented LSQR method of Baglama, Reichel, and
Richmond [Numer. Algorithms, 64 (2013), pp. 263–293] in which the Krylov subspaces are augmented with the
harmonic Ritz vectors corresponding to the smallest harmonic Ritz values. Computed examples show the proposed
method to be competitive with other methods.
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1. Introduction. In this paper, we investigate large-scale least-squares (LS) problems

(1.1) min
x∈Rn

‖b−Ax‖, A ∈ R
ℓ×n, b ∈ R

ℓ

where‖ · ‖ denotes the Euclidean vector norm. The matrixA is assumed to be sparse and too
large to use direct solvers efficiently. Therefore iterative methods, which can also take advan-
tage of the sparse structure ofA, are required in order to solve the LS problem. Whenℓ ≥ n
the preferred iterative method for solving LS problems is the LSQR Algorithm of Paige and
Saunders [31]. LSQR is a Krylov subspace method that is based on the Golub-Kahan (GK)
bidiagonalization, in which orthonormal bases for them-dimensional Krylov subspaces

(1.2)
Km(AAT , w1) = span{w1, AA

Tw1, . . . , (AA
T )m−1w1},

Km(ATA, p1) = span{p1, ATAp1, . . . , (A
TA)m−1p1}

are formed using the starting vectorsw1 = r0/‖r0‖ and p1 = ATw1/‖A
Tw1‖, respec-

tively, wherer0 = b−Ax0 for an initial guessx0 of the LS problem. Using the orthonor-
mal bases for the spaces in (1.2), the LSQR Algorithm computes an approximate solution
xm ∈ x0+Km(ATA, p1) and corresponding residualrm = b−Axm ∈ Km(AAT , w1) such
that ‖b − Axm‖ is minimized over all possible choices forxm. The LSQR algorithm is a
non-restarted method where the dimensionm is increased until an acceptable solution of the
LS problem is found. The theoretical foundation of LSQR yields a process that only requires
the storage of a few basis vectors for each Krylov subspace. In exact arithmetic, LSQR ter-
minates with the solution of the LS problem when linear dependence is established in (1.2).
For LS problems with a well-conditioned matrixA or a small effective condition number,
LSQR converges quickly yielding an approximation of the solution of the LS problem of
desired accuracy long before linear dependence is encountered in (1.2); see Bj̈orck [9] for
remarks. However, for LS problems with an ill-conditioned matrixA and a solution vectorx
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with many components in the direction of the singular vectors associated with the smallest
singular values, LSQR may require a prohibitively large number of iterations; see [9]. A
contributing reason is that in finite arithmetic, the storage of only a few basis vectors at a
time cannot maintain orthogonality among all previously non-stored basis vectors. Hence the
generated Krylov subspaces have difficulty obtaining good approximations to the smallest
singular triplets. The loss of orthogonality can be overcome by keeping previously computed
basis vectors and reorthogonalizing. However, asm becomes large, this can become a com-
putationally expensive, impractical storage requirement. One solution is to use a restarted
Krylov subspace method to solve the LS problem. Restarting Krylov subspace methods af-
term iterations, form << n, can maintain orthogonality with a modest storage requirement.
The restarted GMRES method of Saad and Schultz [34] is one of the most popular Krylov
subspace methods for solving the LS problem whenℓ = n. However, using the restarted GM-
RES method to solve the LS problem introduces another difficulty, stagnation and/or slow
convergence, [6, 39]. To overcome stagnation and/or slow convergence, restarted GMRES
is often combined with a preconditioner or the minimizationis over an augmented Krylov
subspace; see [1, 7, 19, 28, 29, 33] and references within.

If we implement a restarted LSQR method, i.e., restarting LSQR afterm iterations, we
can maintain strong orthogonality among the bases by keeping all the vectors in storage.
However, similar to GMRES, the restarted LSQR method can encounter stagnation and even
slower convergence than using LSQR without reorthogonalization (cf. [15] for details on
restarting the related LSMR algorithm). To overcome stagnation and/or slow convergence of
restarting LSQR, we propose to solve the LS problem implicitly over an improved Krylov
subspace, a form of preconditioning. We consider implicitly restarting the GK bidiagonal-
ization (and hence LSQR) with a starting vectorw+

1 , such thatw+
1 = φ(AAT )w1 for some

polynomialφ that is strong in the direction of the left singular vectors associated with the
smallest singular values. The Krylov subspacesKm(AAT , w+

1 ) andKm(ATA, p+1 ) will then
contain good approximations to the left and right singular vectors corresponding to the small-
est singular values, respectively. Also, with judiciouslychosen shifts (i.e., zeros ofφ(AAT ))
we can ensure thatKm(AAT , w+

1 ) will contain the LSQR residual vector at each iteration of
the restarted method. This is essential so that our restarted LSQR method produces a non-
increasing residual curve. Since the singular values ofA are not known prior to starting the
LSQR method, approximations must be found.

Implicitly restarted GK bidiagonalization methods [2, 3, 5, 21, 22, 24] have been used
very successfully in providing good approximations to the smallest and largest singular triplets
of a very large matrixA while using a small storage space and not many matrix-vectorprod-
ucts. In this paper, we describe an implicitly restarted GK bidiagonalization method which
selects a polynomial filter that produces good approximations of the singular vectors associ-
ated with the smallest singular values, thus improving the search spaces while simultaneously
computing approximate solutions to the LS problem. There are many methods for precon-
ditioning LSQR to improve convergence [8, 9, 10, 23, 33]. However, most methods require
constructions prior to approximating solutions to the LS problem adding to the storage and/or
computational time.

In [5], we solved the LS problem with an LSQR method over a Krylov subspace that was
explicitly augmented by approximate singular vectors ofA. Augmenting Krylov subspaces in
conjunction with solving the LS problem whenℓ = n with the restarted GMRES method was
first discussed by Morgan in [28]. Later, Morgan showed the mathematical equivalence be-
tween applying harmonic Ritz values as implicit shifts and augmenting the Krylov subspaces
by harmonic Ritz vectors to solve the LS problem whenℓ = n with restarted GMRES;
cf. [29]. Similarly, in Section5, we show that our proposed method of this paper, apply-
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ing harmonic Ritz values as implicit shifts to a restarted LSQR method to improve the Krylov
subspaces, is mathematically equivalent to the routine in [5] that obtains Krylov subspaces by
explicitly augmenting them with the harmonic Ritz vectors to improve convergence. There-
fore, the theorems from [5], which show improved convergence for LSQR using augmented
spaces, are applicable to this method. Applying the shifts implicitly is simple, and we in-
troduce a new strategy for choosing and applying the shifts,which, based on our heuristics,
further improves the convergence rates.

The paper is organized as follows: Section2 describes, in detail, an implicitly restarted
GK bidiagonalization method and the simplifications that can be utilized when using the
harmonic Ritz values as shifts. Section3 describes how LSQR can be successfully restarted
by using the implicitly restarted GK bidiagonalization algorithm with harmonic Ritz values as
shifts. The numerical issues of implicitly shifting via thebulgechasing method are discussed
in Section4 along with a new method for implicitly applying harmonic Ritz values as a
shift. Section5 gives the theoretical results of how the implicitly restarted LSQR algorithm
generates the same updated Krylov subspaces as the augmented LSQR algorithm from [5].
Section6 gives numerical experiments to show the competitiveness ofthe proposed method,
and Section7 gives concluding remarks.

Throughout this paper, we will denoteN (C) as the null space andR(C) as the range of
the matrixC.

2. Implicitly restarted Golub-Kahan bidiagonalization. The GK bidiagonalization
forms the basis for the LSQR algorithm discussed in Section3 and is needed to approxi-
mate a set of the smallest singular triplets ofA. DefineUn = [u1, u2, . . . , un] ∈ R

ℓ×n

andVn = [v1, v2, . . . , vn] ∈ R
n×n with orthonormal columns, as well as the diagonal ma-

trix Σn = diag[σ1, σ2, . . . , σn] ∈ R
n×n. Then

(2.1) AVn = UnΣn and ATUn = VnΣn

are singular value decompositions (SVD) ofA andAT, respectively, and

AVk = UkΣk and ATUk = VkΣk

for k << n are partial singular value decompositions (PSVD) ofA andAT, respectively. We
assume the singular values to be ordered from the smallest tothe largest one, i.e.,

0 < σ1 ≤ σ2 ≤ . . . ≤ σn,

since we are interested in the smallest singular values ofA.
The GK bidiagonalization was originally proposed in [16] as a method for transform-

ing a matrixA into upper bidiagonal form. However, for its connection to the LSQR algo-
rithm in solving(1.1), we consider the variant that transformsA to lower bidiagonal form
(cf. [31, bidiag 1]), described in Algorithm2.1. The lower bidiagonal algorithm was de-
scribed by Bj̈ork [11] as the more stable version of the GK bidiagonalization method and this
form fits nicely into our implicitly restarted method.

ALGORITHM 2.1. GK BIDIAGONALIZATION METHOD

Input: A ∈ R
ℓ×n or functions for evaluating matrix-vector products withA andAT ,

w1 ∈ R
ℓ : initial starting vector,

m : number of bidiagonalization steps.
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Output:Pm = [p1, . . . , pm] ∈ R
n×m : matrix with orthonormal columns,

Wm+1 = [w1, . . . , wm+1] ∈ R
ℓ×(m+1) : matrix with orthonormal columns,

Bm+1,m ∈ R
(m+1)×m : lower bidiagonal matrix,

pm+1 ∈ R
n : residual vector,

αm+1 ∈ R.

1. Computeβ1 := ‖w1‖; w1 := w1/β1; W1 := w1.
2. Computep1 := ATw1; α1 := ‖p1‖; p1 := p1/α1; P1 := p1.
3. for j = 1 : m

4. Computewj+1 := Apj − wjαj .
5. Reorthogonalization step:wj+1 := wj+1 −W(1:j)(W

T
(1:j)wj+1).

6. Computeβj+1 := ‖wj+1‖; wj+1 := wj+1/βj+1.
7. Computepj+1 := ATwj+1 − pjβj+1.
8. Reorthogonalization step:pj+1 := pj+1 − P(1:j)(P

T
(1:j)pj+1).

9. Computeαj+1 := ‖pj+1‖; pj+1 := pj+1/αj+1.
10. if j < m

11.Pj+1 := [Pj , pj+1].
12. endif

13. endfor

After m steps, Algorithm2.1determines matricesWm+1 andPm whose columns form
orthonormal bases for the Krylov subspacesKm+1(AA

T , w1) andKm(ATA, p1), respec-
tively, as well as the decompositions

(2.2)
ATWm+1 = PmBT

m+1,m + αm+1pm+1e
T
m+1

APm = Wm+1Bm+1,m

wherepTm+1Pm = 0, andem+1 is the(m+ 1)st axis vector. The matrix

(2.3) Bm+1,m =





















α1

β2 α2 0
β3

. ..

. .. αm

0 βm+1





















∈ R
(m+1)×m

is lower bidiagonal. We assume that Algorithm2.1 does not terminate early, that is,αj 6= 0
andβj 6= 0 for 1 ≤ j ≤ m + 1; see [5] for a discussion on how to handle early termina-
tion. To avoid loss of orthogonality in finite precision arithmetic in the basis vectorsWm+1

andPm, we reorthogonalize in lines 5 and 8 of the algorithm. The reorthogonalization steps
do not add significant computational cost whenm << n. For discussions and schemes on
reorthogonalization we refer the reader to [2, 5, 15, 25, 35] and references within. For the
numerical examples in Section6 we follow the same scheme used in [5].

It is well known that using a Krylov subspace to obtain acceptable approximations to
the smallest singular triplets ofA with equations (2.2) can require a prohibitively large value
of m. Therefore, a restarting strategy is required. The most effective restarting strategy is
to use an implicit restart technique. By implicitly restarting afterm << n steps of the GK
bidiagonalization, storage requirements can be kept relatively small and provide good approx-
imations to the desired singular vectors from the generatedKrylov subspaces. The following
section provides a detailed discussion on how to implicitlyrestart the GK bidiagonalization
method.
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2.1. Implicit restart formulas for the GK bidiagonalizatio n. Implicitly restarting a
GK bidiagonalization method was first discussed in [11] and used in [2, 3, 5, 21, 22, 24].
Starting with them-step GK bidiagonalization decomposition (2.2), the implicit restarting is
done by selecting a shiftµ and applying the shift via the Golub-Kahan SVD step [17, Al-
gorithm 8.6.1]. The algorithm given in [17] assumes an upper bidiagonal matrix is given.
We modify the algorithm for a lower bidiagonal matrix, and itis given as the bulgechasing
(lower bidiagonal) algorithm (cf. Algorithm2.2). Algorithm 2.2 uses the shiftµ and gen-
erates upper Hessenberg orthogonal matricesQL ∈ R

(m+1)×(m+1) andQR ∈ R
m×m such

thatB+
m+1,m = QT

LBm+1,mQR is lower bidiagonal. Multiplying the first equation of (2.2)
by QL from the right and the second equation of (2.2) by QR also from the right yields

(2.4)
ATWm+1QL = PmBT

m+1,mQL + αm+1pm+1e
T
m+1QL

APmQR = Wm+1Bm+1,mQR.

LetW+
m+1 = Wm+1QL, P+

m = PmQR, and

(2.5) p+m =
α+
mp+m + (αm+1qLm+1,m

)pm+1

‖α+
mp+m + (αm+1qLm+1,m

)pm+1‖
,

whereα+
m is the (m,m) diagonal entry ofB+

m+1,m andqLm+1,m
is the (m + 1,m) entry

of QL. Now setα+
m = ‖α+

mp+m + (αm+1qLm+1,m
)pm+1‖. Then we have after removing the

last column from both sides of the equations in (2.4) a valid(m−1)-step GK bidiagonalization
decomposition,

(2.6)
ATW+

m = P+
m−1B

+T
m,m−1 + α+

mp+meTm,

AP+
m−1 = W+

mB+
m,m−1.

The (m − 1)-step GK bidiagonalization decomposition (2.6) is the decomposition that we
would have obtained by applying(m − 1) steps of Algorithm2.1 with the starting vector
w+

1 = γ(AAT − µI)w1, i.e., a polynomial filter has been applied tow1. See [3, 11, 24]
for detailed discussions on polynomial filters in the context of implicitly restarting a GK
bidiagonalization method. Given a suitable choice of a shift µ, the polynomial filter helps
dampen unwanted singular vector components ofA from w1. Multiple shifts (p = m − k
shiftsµ1, µ2, . . . , µp) can be applied via this process yielding the following valid k-step GK
bidiagonalization decomposition,

(2.7)
ATW+

k+1 = P+
k B+T

k+1,k + α+
k+1p

+
k+1e

T
k+1

AP+
k = W+

k+1B
+
k+1,k

which would have been obtained by applyingk-steps of Algorithm2.1with the starting vector
w+

1 = γ̃
∏p

i=1(AA
T − µiI)w1. Using the vectorsp+k+1, w+

k+1 the(k + 1)st column vector
of W+

k+1, and the scalarα+
k+1, thek-step GK bidiagonalization decomposition (2.7) can be

extended to anm-step GK bidiagonalization decomposition (2.2) by starting at step 4 of
Algorithm 2.1and continuing forp more iterations.

ALGORITHM 2.2. BULGECHASING (LOWER BIDIAGONAL)

Input: Bm+1,m ∈ R
(m+1)×m lower bidiagonal matrix,

µ : implicit shift.

Output:QL ∈ R
(m+1)×(m+1) : upper Hessenberg matrix with orthonormal columns,

QR ∈ R
m×m : upper Hessenberg matrix with orthonormal columns,

B+
m+1,m = QT

LBm+1,mQR ∈ R
(m+1)×m : updated lower bidiagonal matrix.
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1. Determine the(m+ 1)× (m+ 1) Givens rotation matrixG(1, 2, θ1) such that
[

c s
−s c

] [

b21,1 − µ
b1,1 · b2,1

]

=

[

⋆
0

]

.

2. SetQT
L := G(1, 2, θ1); QR := Im; B+

m+1,m := G(1, 2, θ1)Bm+1,m.
3. for i = 1 : m− 1

4. Determine them×m Givens rotation matrixG(i, i+ 1, θi) such that

[

b+i,i b+i,i+1

]

[

c −s
s c

]

=
[

⋆ 0
]

.

5. UpdateQR := QRG(i, i+ 1, θi); B+
m+1,m := B+

m+1,mG(i, i+ 1, θi).
6. Determine the(m+ 1)× (m+ 1) Givens rotation matrixG(i+ 1, i+ 2, θi+1)

such that
[

c s
−s c

] [

b+i+1,i

b+i+2,i

]

=

[

⋆
0

]

.

7. UpdateQT
L := G(i+ 1, i+ 2, θi+1)Q

T
L; B+

m+1,m := G(i+ 1, i+ 2, θi+1)B
+
m+1,m.

8. endfor

2.2. Implicit restart with harmonic Ritz values as shifts. The dampening effect of the
polynomial filter,

∏p

i=1(AA
T − µiI), depends on the choice of shiftsµi. There are several

choices forµi that have been investigated in the literature in this context; see, e.g., Ritz
and harmonic Ritz values [24], refined Ritz values [21], refined harmonic Ritz values [22],
and Leja points [3]. We examine the choice of using harmonic Ritz values as shifts for our
implicitly restarted method. Harmonic Ritz values not onlyprovide good approximations
to the smallest singular values ofA, they have a much needed connection with the LSQR
algorithm described in Section3.

The harmonic Ritz valueŝθj of AAT are defined as the eigenvalues to the generalized
eigenvalue problem

(2.8) ((Bm,mBT
m,m) + α2

mβ2
m+1(Bm,mBT

m,m)−1emeTm)gj = θ̂jgj , 1 ≤ j ≤ m,

whereBm,m is them × m principal submatrix ofBm+1,m, andgj ∈ R
m\{0} is an eigen-

vector; see e.g., [27, 30] for properties and discussions of harmonic Ritz values. The eigen-
pairs{θ̂j , gj}mj=1 can be computed without forming the matrixBm,mBT

m,m from the SVD
of Bm+1,m,

(2.9)
Bm+1,mṼm =

[

Ũm ũm+1

]

[

Σ̃m

0

]

,

BT
m+1,m

[

Ũm ũm+1

]

= Ṽm

[

Σ̃m 0
]

,

where the matrices̃Vm = [ṽ1, ṽ2, . . . , ṽm] ∈ R
m×m andŨm = [ũ1, ũ2, . . . , ũm]∈R

(m+1)×m

have orthonormal columns,̃um+1 ∈ R
m+1 (the null vector) is a unit-length vector such that

ũT
m+1Ũm = 0, andΣ̃m = diag[σ̃1, σ̃2, . . . , σ̃m] ∈ R

m×m. We order them singular values
according to

(2.10) 0 < σ̃1 < σ̃2 < . . . < σ̃m.

The strict inequalities come from the assumption that the diagonal and sub-diagonal entries
of Bm+1,m are all nonzero [32, Lemma 7.7.1].
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We haveθ̂j = σ̃2
j [30]. The eigenvectorsgj are the columns of[Im βm+1B

−T
m,mem]Ũm;

see [5] for details. Furthermore, if̃σ2
j is used as a shift in Algorithm2.2, then the return

matrix B+
m+1,m has entriesα+

m = 0 andβ+
m+1 = ±σ̃j . The following theorem shows this

result.
THEOREM 2.3. Given a lower bidiagonal matrixBm+1,m (2.3) whereαj 6= 0 for

1 ≤ j ≤ m andβj 6= 0 for 2 ≤ j ≤ m+ 1. In Algorithm2.2, µ = σ̃2
j (cf. (2.10)) if and only

if the return matrixB+
m+1,m hasα+

m = 0 andβ+
m+1 = ±σ̃j . Furthermore, Algorithm2.2

returns the matricesQL andQR such thatQLem+1 = ±ũj andQRem = ±ṽj .

Proof. Compute the QR-factorization ofBm+1,mBT
m+1,m − µIm+1 = QR where

Q ∈ R
(m+1)×(m+1) is orthogonal andR ∈ R

(m+1)×(m+1) is upper triangular. An in-
spection of steps 1 and 2 in Algorithm2.2 shows that the first columns ofQL andQ are
equal. Therefore, via the implicit Q Theorem [17, Theorem 7.4.2] we haveQL = QD where
D = diag[1,±1, . . . ,±1] and

B+
m+1,mB+T

m+1,m = QT
LBm+1,mBT

m+1,mQL = DQTBm+1,mBT
m+1,mQD.

The matrixB+
m+1,mB+T

m+1,m is a symmetric tridiagonal matrix, and ifµ is an eigenvalue
of Bm+1,mBT

m+1,m then [17, Section 8.3.3]

QT
LBm+1,mBT

m+1,mQLem+1 = DQTBm+1,mBT
m+1,mQDem+1 = µem+1.

Therefore,

B+
m+1,mB+T

m+1,mem+1 = DQTBm+1,mBT
m+1,mQDem+1 = µem+1,

β+
m+1α

+
m = 0 and(β+

m+1)
2 = µ. Sinceσ̃2

j 6= 0 are eigenvalues ofBm+1,mBT
m+1,m, we

haveα+
m = 0 and β+

m+1 = ±σ̃j . One can see that the reverse holds by noticing that
Bm+1,mBT

m+1,m is unreduced, and ifµ is not an eigenvalue, thenB+
m+1,mB+T

m+1,m must
also be unreduced [32, Lemma 8.13.1]. Algorithm2.2returnsQR, QL, andB+

m+1,m satisfy-

ing Bm+1,mQR = QLB
+
m+1,m andBT

m+1,mQL = QRB
+T
m+1,m. Using the structure of the

last column ofB+
m+1,m we have

Bm+1,mQRem = QLB
+
m+1,mem = ±σ̃jQLem+1

BT
m+1,mQLem+1 = QRB

+T
m+1,mem+1 = ±σ̃jQRem.

The resultQLem+1 = ±ũj andQRem = ±ṽj follows from the SVD ofBm+1,m (2.9)
and the fact that the singular vectors of non-degenerate singular values are unique up to sign
difference [9].

Calling Algorithm2.2with Bm+1,m andµ = σ̃2
m returns the upper Hessenberg orthog-

onal matrices

QL = [QLm
,±ũm] ∈ R

(m+1)×(m+1), whereQLm
= [qL1

, . . . , qLm
] ∈ R

(m+1)×m,

QR = [QRm−1
,±ṽm] ∈ R

m×m, whereQRm−1
= [qR1

, . . . , qRm−1
] ∈ R

m×(m−1),

and the lower bidiagonal matrix,

(2.11) B+
m+1,m =















 B+
m,m−1



0

0 ±σ̃m













∈ R
(m+1)×m.
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The singular values ofB+
m,m−1 are

0 < σ̃1 < σ̃2 < . . . < σ̃m−1

and the SVD ofB+
m,m−1 is

B+
m,m−1Q

T
Rm−1

Ṽm−1 = QT
Lm

Ũm−1Σ̃m−1,

B+T
m,m−1Q

T
Lm

Ũm−1 = QT
Rm−1

Ṽm−1Σ̃m−1.

Calling Algorithm 2.2 with B+
m,m−1 andµ = σ̃2

m−1 returns the upper Hessenberg or-
thogonal matrices

Q+
Lm

= [Q+
Lm−1

,±QT
Lm−1

ũm−1] ∈ R
m×m,

whereQ+
Lm−1

= [q+L1
, . . . , q+Lm−1

] ∈ R
m×(m−1),

Q+
Rm−1

= [Q+
Rm−2

,±QT
Rm−1

ṽm−1] ∈ R
(m−1)×(m−1),

whereQ+
Rm−2

= [q+R1
, . . . , q+Rm−2

] ∈ R
(m−1)×(m−2),

and the lower bidiagonal matrix,

(2.12) B++
m,m−1 =















 B++
m−1,m−2



 0

0 ±σ̃m−1













∈ R
m×(m−1).

Since the columns ofQRm−1
are orthonormal and̃vm−1 ∈ R(QRm−1

), we have
QRm−1

QT
Rm−1

ṽm−1 = ṽm−1. LikewiseQLm−1
QT

Lm−1
ũm−1 = ũm−1. Therefore,

(2.13)

(

QL

[

Q+
Lm

0
0 1

])T

Bm+1,m QR

[

Q+
Rm−1

0

0 1

]

=















 B++
m−1,m−2



 0
±σ̃m−1

0 ±σ̃m













,

where

(2.14) QR

[

Q+
Rm−1

0

0 1

]

= [q++
R1

, . . . , q++
Rm−2

, ṽm−1, ṽm]

and

(2.15) QL

[

Q+
Lm

0
0 1

]

= [q++
L1

, . . . , q++
Lm−1

, ũm−1, ũm].

The matrices (2.14) and (2.15) are no longer upper Hessenberg; they have an additional
nonzero sub-diagonal below the diagonal, increasing the lower band width to 2.



ETNA
Kent State University 

http://etna.math.kent.edu

IMPLICITLY RESTARTING THE LSQR ALGORITHM 93

Repeating the process, we can use Algorithm2.2to apply multiple shifts. After applying
the largestp = m− k harmonic Ritz values (̃σ2

m, . . . , σ̃2
k+1) as shifts, we have

(2.16) QT
LBm+1,mQR =





















 B+
k+1,k



 0
±σ̃k+1

.. .

0 ±σ̃m



















,

where

(2.17)
QR = [QRk

, ṽk+1, . . . , ṽm]

QL = [QLk+1
, ũk+1, . . . , ũm].

The matrices (2.17) now have a lower band width equal top. Using the process outlined in
Section2.1with (2.16) and (2.17), we have analogous to (2.7) ak-step GK bidiagonalization,

(2.18)
ATW+

k+1 = P+
k B+T

k+1,k + α+
k+1p

+
k+1e

T
k+1,

AP+
k = W+

k+1B
+
k+1,k,

whereW+
k+1 = Wm+1QLk+1

, P+
k = PmQRk

, B+
k+1,k = QT

Lk+1
Bm+1,mQRk

,

(2.19) p+k+1 =
(αm+1qLm+1,k+1

)

|αm+1qLm+1,k+1
|
pm+1,

andα+
k+1 = |αm+1qLm+1,k+1

|. Using the vectorsp+k+1, w+
k+1 the (k + 1)st column vector

of W+
k+1, and the scalarα+

k+1, the k-step GK bidiagonalization decomposition (2.18) can
be extended to anm-step GK bidiagonalization decomposition (2.2) by starting at step 4 of
Algorithm 2.1and continuing forp more iterations.

We remark again that the importance of using harmonic Ritz values as shifts is the con-
nection with the LSQR method described in Section3 where zeroing out the diagonal el-
ements ofB+

m+1,m (cf. (2.11), (2.12), (2.13), (2.16)) is essential for restarting the LSQR
method.

2.3. Adaptive shift strategy. In order to help speed up convergence to the smallest sin-
gular triplets and ultimately speed up our implicitly restarted LSQR algorithm, we developed
an adaptive shift strategy. It was first observed in [26] that if a shiftµk+1 that is numeri-
cally close toσ2

k is used in the implicitly restarted GK bidiagonalization method, then the
component along thek-th left singular vector can be strongly damped in

w+
1 =

m
∏

i=k+1

(AAT − µiI)w1.

This can cause the resulting spacesW+
k+1 andV +

k (2.18) to contain unsatisfactory approxi-
mations to the left and right singular vector correspondingtoσk, respectively. When using an
implicitly restarted GK bidiagonalization to solve for a PSVD of A, a heuristic was proposed
in [26] to require that the relative gap between the approximatingvalueσ̃2

k and all shiftsµi,
defined by

relgapki =
(σ̃2

k − ek)− µi

σ̃2
k

,
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whereek is the error bound oñσ2
k, be greater than10−3. In the context of [26], the shifts

considered to be too close, i.e., the “bad shifts”, were simply replaced by zero shifts. This
strategy was adapted and applied in [21, 22] in which harmonic and refined harmonic Ritz
values were used as shifts for computing some of the smallestand largest singular triplets.
When searching for the smallest singular triplets, the “bad shifts” were replaced with the
largest among all shift. In either case, through observation and numerical experiment, this
improved the convergence of the smallest singular triplets. When implicitly restarting the GK
bidiagonalization in combination with the LSQR algorithm,we cannot replace a “bad shift”
by the largest among all shifts, i.e., our combined routine does not allow repeated shifts. This
would destroy the required Hessenberg structure ofQR andQL in the equations given in Sec-
tion 2. We also cannot use a zero shift; this would remove the null vector ũm+1 of Bm+1,m

from the space; see Section3 for details. In our case, we are not just concerned with finding
approximations to thek smallest singular triplets ofA, but rather to find a solution to the LS
problem. Instead of applyingp shifts, we therefore opt to dynamically change the number
of shifts to apply in order to have the best approximations toa set of singular triplets in our
updated spacesW+

k+1 andV +
k (2.18). That is, we look for the largest gap between certainσ̃s

and only apply shifts up to the gap.
Our heuristic is based on two properties: that the harmonic Ritz singular value approxi-

mationσ̃i to σi is such thatσi ≤ σ̃i [18] and the interlace property of the harmonic Ritz and
Ritz values [30]. Using these properties leads us to examine the gaps between consecutive
harmonic Ritz singular value approximationsσ̃. If σ̃i is very close tõσi+1 (and henceσi

is possibly very close toσi+1), then components of the updated starting vector in the direc-
tion of ui from (2.1) may be strongly damped by applying̃σ2

i+1 = θ̂i+1 as a shift, which is
undesired. To minimize the possibility of this happening, our heuristic method fixes a small
valuej and searches the interval[θ̂k+1−j , . . . , θ̂k+1, . . . , θ̂k+1+j ] aroundθ̂k+1 for the largest
gap between any two consecutive harmonic Ritz values. That is, an indexkj is chosen such
that

(2.20) max
k+1−j≤kj≤k+j

|θ̂kj+1
− θ̂kj

|

andk is replaced withkj where the number of shifts in the implicitly restarted GK bidiag-
onalization is set top = m − kj . Through numerical observation, a suitable choice forj is
typically between 2 and 6. Choosingj too large can have a dramatic negative effect on the
convergence rate. See Table6.2 in Section6 for numerical results for different values ofj
and an improved convergence rate by using this adaptive shifting strategy.

3. Implicitly restarted LSQR. In this section we describe the proposed implicitly re-
started LSQR method, Algorithm3.2, which is a combination of a restarted LSQR method
with the implicitly restarted GK bidiagonalization methoddescribed in Section2. Algo-
rithm 3.1outlines a single step of a restarted LSQR method that we willneed. A first call to
Algorithm 3.1with an initial approximate solution of the LS problemx0, r0 = b− Ax0 and
w1 = r0 will produced the same outputxm andrm as the Paige and Saunders [31] routine.
However, in order to call Algorithm3.1 again after we use the implicitly restarted formulas
of Section2 to reduce them-step GK bidiagonalization (2.2) to a k-step GK bidiagonal-
ization (2.18), we need to haverm ∈ R(W+

k+1). If rm 6∈ R(W+
k+1), then we are using a

Krylov subspace that does not contain the residual vector. This would require an approxima-
tion of rm from the Krylov subspace, which can severely slow down the procedure or lead to
non-convergence.

However, it was shown in [5] that if we have anm-step GK bidiagonalization (2.2) and
compute xm from the LSQR equations, i.e., steps 2 and 3 of Algorithm3.1, then
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rm = γWm+1ũm+1, whereũm+1 is the null vector (2.9) of Bm+1,m, andγ ∈ R. Us-
ing the implicitly restarted formulas of Section2 with an application of thep largest har-
monic Ritz values as shifts, we obtain ak-step GK bidiagonalization decomposition (2.18)
with W+

k+1 = Wm+1QLk+1
. Equation (2.17) shows that we must havẽum+1 ∈ R(QLk+1

)

and hencerm = W+
k+1fk+1 for some vectorfk+1 ∈ R

k+1, i.e.,rm ∈ R(W+
k+1).

ALGORITHM 3.1. RESTARTEDLSQR STEP

Input: k-step GK bidiagonalization(2.18) or (4.2) or thek-step factorization(4.1)
whererk ∈ R(W+

k+1),
p = m− k : number of additional bidiagonalization steps,
xk ∈ R

n : approximation to LS problem.

Output:m-step GK bidiagonalization(2.2),
xm ∈ R

n : approximation to LS problem,
rm ∈ R

ℓ : residual vector.

1. Applyp = m− k additional steps of Algorithm2.1to obtain an
m-step GK bidiagonalization(2.2).

2. Solve min
ym∈Rm

∥

∥

∥

∥

[

fk+1

0

]

−Bm+1,mym

∥

∥

∥

∥

for ym,

whererk = Wm+1

[

fk+1

0

]

for somefk+1 ∈ R
k+1.

3. Setxm = xk + Pmym.
4. rm = rk −Wm+1Bm+1,mym.

The residual and approximate solution to the LS problem can be updated during step 1
of Algorithm 3.1, i.e., during the GK bidiagonalization Algorithm2.1. The MATLAB code
irlsqr used for numerical examples in Section6 which implements Algorithm3.2updates
the LSQR approximation and the residual during the GK bidiagonalization steps. Below is
our algorithm that outlines the main routine of this paper.

ALGORITHM 3.2. IRLSQR

Input: A ∈ R
ℓ×n or functions for evaluating matrix-vector products withA andAT ,

x0 ∈ R
n: Initial approximate solution to LS problem,

r0 = b−Ax0 ∈ R
ℓ : initial residual vector,

m : maximum size of GK bidiagonalization decomposition,
p : number of shifts to apply,
j : integer used to adjust number of shifts(2.20),
δ : tolerance for accepting an approximate solution.

Output:xm : approximate solution to the LS problem(1.1),
rm = b−Axm ∈ R

ℓ : residual vector.

1. Setw1 = r0 andk = 0.
2. Call Algorithm3.1to obtainm-step GK bidiagonalization

ATWm+1 = PmBT
m+1,m + αm+1pm+1e

T
m+1

APm = Wm+1Bm+1,m

and the solutionxm and the residualrm.
3. If ‖AT rm‖/‖AT r0‖ < δ then exit.
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4. Compute them harmonic Ritz values,(2.10).
5. Adjust the number of shiftsp using user inputj and (2.20).
6. Apply the largestp harmonic Ritz values as shifts to obtain the
k-step GK bidiagonalization(2.18),

ATW+
k+1 = P+

k B+T
k+1,k + α+

k+1p
+
k+1e

T
k+1

AP+
k = W+

k+1B
+
k+1,k

.

7. Setxk = xm andrk = rm and goto 2.

We remark that the computation of‖AT rm‖/‖AT r0‖ in line 3 can be done efficiently
using the formula in [20]. The applications of the implicit shifts of the harmonic Ritz values
in step 6 of Algorithm3.2 with the bulgechasing Algorithm2.2 does not always yield the
required structure ofB+

m+1,m, i.e., α+
m = 0. For small values ofm we do getα+

m ≈ 0,
however, for modest values,m ≈ 100, we getα+

m 6= 0. Therefore, we developed an alternate
method for applying the shifts that is discussed in the next section.

4. Harmonic bidiagonal method. The bulgechasing algorithm applies a shift implicitly
to the bidiagonal matrixBm+1,m while outputting two orthogonal upper Hessenberg matrices
QR andQL such thatB+

m+1,m = QT
LBm+1,mQR. For the success of our method we need the

output matricesQR andQL to be upper Hessenberg with the last columns as singular vectors
andα+

m of B+
m+1,m (cf. (2.11), (2.12), (2.13), (2.16)) zero. However, in finite precision

arithmetic, Algorithm2.2(and the upper bidiagonal form of the algorithm) is prone to round
off errors and the diagonal elementα+

m of B+
m+1,m is not always zero; cf. Table4 and [38]

for a discussion. If the diagonal entryα+
m of B+

m+1,m is nonzero, then by Theorem2.3 we
did not shift by a harmonic Ritz valuẽσ2

j and hence,rm 6∈ R(W+
k+1); cf. the discussion in

Section3.
Other implicitly restarted methods [4, 20, 21, 22, 24] that apply shifts implicitly can

overcome the issue of a nonzeroα+
m by incorporatingα+

m into equation (2.5). This strategy
does not work in our method. Alternatively, the bulgechasing Algorithm 2.2 can be called
repeatedly with the same shift untilα+

m becomes small. This process destroys the required
upper Hessenberg structure ofQR andQL and often requires many calls for a single shift.
To overcome this difficulty and force the desired (i.e., required) structure for this paper, we
developed a method, Algorithm4.1, for implicitly applying the harmonic Ritz values as shifts
that utilizes the singular values and vectors ofBm+1,m.

Algorithm 4.1 takes advantage of the known structure of the orthogonal matricesQL

andQR. That is, in exact arithmetic, the application ofp = m − k harmonic Ritz values
(σ̃2

m, . . . , σ̃2
k+1) with Algorithm 2.2yields banded upper Hessenberg matrices (2.16)–(2.17),

QL = [QLk+1
, ũk+1, . . . , ũm],

QR = [QRk
, ṽk+1, . . . , ṽm],

with p sub-diagonals below the diagonal. The first vectorqL1
∈ QLk+1

has, at most, the
first p + 1 entries nonzero and is orthogonal to thep vectors{ũk+1, . . . , ũm}. The vec-
tor qL1

can be easily constructed by finding a vector of lengthp+ 1 that is orthogonal to the
first p + 1 entries of each vector in{ũk+1, . . . , ũm} and replacing the firstp + 1 entries of
qL1

with that vector. The process can be repeated to find the second vectorqL2
∈ QLk+1

by finding a vector of lengthp + 2 that is orthogonal to firstp + 2 entries of each vector
in {qL1

, ũk+1, . . . , ũm} and replacing the firstp + 2 entries ofqL2
with that vector. The

matrixQR is constructed in the same manner. The matricesQL andQR are constructed to
be orthogonal banded upper Hessenberg matrices, andB+

m+1,m = QT
LBm+1,mQR will have
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TABLE 4.1
The numerical value of|α+

m| from B+

m+1,m after computing anm-step GK bidiagonalization(2.4) for the

matrix [14] ILLC1850 ∈ R
1850×712 and calling Algorithms2.2and4.1to apply the largest harmonic Ritz value

as a shift. The computation time is not reported since it is considered negligible in the overall method.

m Method of Implicit Shift |α+
m| ‖qLm+1

− um‖ ‖qRm
− vm‖

20 Algorithm 2.2(Bulgechasing) 2.3e-11 2.2e-11 2.6e-11
20 Algorithm 4.1(Harmonic Bidiagonal) 1.1e-19 0 0
40 Algorithm 2.2(Bulgechasing) 7.7e-10 1.1e-4 6.4e-5
40 Algorithm 4.1(Harmonic Bidiagonal) 3.6e-17 0 0
80 Algorithm 2.2(Bulgechasing) 1.41 1.52 1.61
80 Algorithm 4.1(Harmonic Bidiagonal) 2.7e-17 0 0

120 Algorithm 2.2(Bulgechasing) 1.1e-6 1.4 1.4
120 Algorithm 4.1(Harmonic Bidiagonal) 1.8e-16 0 0

eachα+
i = 0 for i = k + 1 to m. However, the lower bidiagonal structure ofB+

m+1,m may
be compromised. It may happen that for some (or many) values of i, the firstp + i entries
of the columns of[ũk+1, . . . , ũm] (and [ṽk+1, . . . , ṽm]) may form a rank deficient matrix,
and hence steps 3 and 6 of Algorithm4.1 may return multiple vectors that satisfy the above
criteria. The matricesQL, QR, andB+

m+1,m, however, will have the required structure for
our method; and sinceQL andQR are orthogonal transformations, the singular values of the
updatedB+

m+1,m (not necessarily bidiagonal) matrix obtained from Algorithm4.1will be the
same as the bidiagonal matrix which would have been obtainedfrom Algorithm2.2.

After using Algorithm4.1to apply the shifts, we have the followingk-step factorization

(4.1)
ATW+

k+1 = P+
k B+T

k+1,k + α+
k+1p

+
k+1e

T
k+1

AP+
k = W+

k+1B
+
k+1,k,

which is similar to (2.18) except thatB+
k+1,k may not be lower bidiagonal. Algorithm3.2can

be successfully used with equation (4.1) by applying the shifts in step 6 of Algorithm3.2via
Algorithm 4.1.

The k-step GK bidiagonalization decomposition (2.18) can be recaptured by return-
ingB+

k+1,k to lower bidiagonal form via orthogonal transformations with a row-wise House-
holder method starting with the last row; see, e.g., [36, 37]. Using row-wise Householder
transformations (starting with the last row) creates orthogonal matrices̆QL ∈ R

(k+1)×(k+1)

andQ̆R ∈ R
k×k such thatB̆k+1,k = Q̆T

LB
+
k+1,kQ̆R is lower bidiagonal where

Q̆L =

[

⋆ 0
0 1

]

.

Letting P̆k = P+
k Q̆R andW̆k+1 = W+

k+1Q̆L, we can recover ak-step GK bidiagonalization
decomposition

(4.2)
AT W̆k+1 = P̆kB̆

T
k+1,k + α+

k+1p
+
k+1e

T
k+1,

AP̆k = W̆k+1B̆k+1,k,

whereB̆k+1,k is lower bidiagonal. The MATLAB codeirlsqr , used for numerical exam-
ples in Section6 and which implements Algorithm3.2, can be used with either structure (4.1)
and (4.2). The authors notice no numerical differences.
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ALGORITHM 4.1. HARMONIC BIDIAGONAL METHOD

Input: [ũk+1, ũk+2, . . . , ũm] ∈ R
(m+1)×p : left singular vectors ofBm+1,m (2.9),

[ṽk+1, ṽk+2, . . . , ṽm] ∈ R
m×p : right singular vectors ofBm+1,m (2.9).

Output:QL ∈ R
(m+1)×(m+1) : banded orthogonal upper Hessenberg,

QR ∈ R
m×m : banded orthogonal upper Hessenberg,

B+
m+1,m = QT

LBm+1,mQR ∈ R
(m+1)×m : updated matrix.

1. SetQLk+1
:= [ ] andQRk+1

:= [ ].
2. for i = 1 : k + 1

3. Find a vectorqLi
∈ R

p+i orthogonal to the firstp+ i rows of each
column of[QLk+1

, ũk+1, ũk+2, . . . , ũm].

4. SetQLk+1
:=

[

QLk+1
,

[

qLi

0

]]

.

5. if i ≤ k
6. Find a vectorqRi

∈ R
p+i orthogonal to the firstp+ i rows of each

column of[QRk+1
, ṽk+1, ṽk+2, . . . , ṽm].

7. SetQRk+1
:=

[

QRk+1
,

[

qRi

0

]]

.

8. endif
9. endfor
10. SetB+

m+1,m = QT
LBm+1,mQR.

Steps 3 and 6 of Algorithm4.1can be done in several ways, e.g., the MATLAB command
null applied to the transpose of the firstp+ i rows of[QLk+1

, ũk+1, ũk+2, . . . , ũm].

5. Connection to augmented LSQR.This section shows the parallels between the aug-
mented LSQR algorithm described in [5] and the implicitly restarted LSQR algorithm de-
scribed in this paper. Both algorithms use a restarted GK bidiagonalization in conjunction
with LSQR to solve the LS problem. The augmented LSQR algorithm of [5] is carried out by
explicitly augmenting the Krylov subspaces (1.2) with the harmonic Ritz vectors associated
with the smallest harmonic Ritz values. We briefly describe the spaces that result from the
augmenting routine and refer the reader to [5] for the full details.

The harmonic Ritz vector ofAAT associated with the harmonic Ritz valueθ̂j is defined
as

ûj = Wmgj ,

wheregj is the corresponding eigenvector from equation (2.8). Furthermore, it was shown
in [5] that the eigenvectorgj can also be expressed as

gj =
[

Im βm+1B
−T
m,mem

]

ũj ,

where ũj is the corresponding left singular vector associated with the singular valuẽσj

from (2.9). Similar to our method for the initial iteration, the augmenting method in [5]
setsw1 = r0 and calls Algorithm2.2 to obtain them-step GK bidiagonalization (2.2). The
augmenting restarting step of [5] creates a variant of the equations (2.18),

(5.1)
AT Ŵk+1 = P̂kB̂

T
k+1,k + (αm+1q̂m+1,k+1)pm+1e

T
m+1,

AP̂k = Ŵk+1B̂k+1,k,
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where Ŵk+1 = Wm+1Q̂, P̂k = PmṼk, B̂k+1,k = Q̂T ŨkΣ̃k, and q̂m+1,k+1 is the
(m+ 1, k + 1) element ofQ̂. The matrices̃Uk and Ṽk are the left and right singular vec-
tors ofBm+1,m, respectively, associated with thek smallest singular values, and̃Σk is the
diagonal matrix of thek smallest singular values. The matrix̂Q is taken from theQR de-
composition of

(5.2) Q̂R̂ =

[
[

ũm+1m+1
Im − ũm+11:m

]

Ũk ũm+1

0

]

,

whereũm+1m+1
∈ R is the(m+1)st element of the null vector̃um+1 andũm+11:m ∈ R

m has
as entries the firstm elements of the null vector̃um+1. The matrix on the right side of (5.2) is
considered to be full rank, and henceR̂ is invertible. We will show thatR(W+

k+1)=R(Ŵk+1)

andR(P+
k ) = R(P̂k).

THEOREM 5.1. Let w1 = r0 and call Algorithm2.2 to obtain them-step GK bidiag-
onalization(2.2). Then the matricesW+

k+1 andP+
k of (2.18) that are created by applying

thep = m− k largest harmonic Ritz values as shifts span, respectively,the same spaces as
the matricesŴk+1 andP̂k of (5.1), i.e.,R(W+

k+1) = R(Ŵk+1) andR(P+
k ) = R(P̂k).

Proof: Using the formulas of Section2 to apply the largestp = m − k harmonic Ritz
value as shifts generates the orthogonal matricesQR = [QRk

, ṽk+1, . . . , ṽm],
andQL = [QLk+1

, ũk+1, . . . , ũm], cf. (2.17). SinceR(QRk
) = R(Ṽk), P

+
k = PmQRk

,

andP̂k = PmṼk, we have

R(P+
k ) = R(P̂k).

DefineŨk+1:m = [ũk+1, . . . , ũm] and notice that̃UT
k+1:mQLk+1

= 0, and

ŨT
k+1:m

[
[

ũm+1m+1
Im − ũm+11:m

]

Ũk ũm+1

0

]

= 0.

Since the matrices of (5.2) are of full rank we haveN (Q̂T ) = N (QT
Lk+1

) and

R(QLk+1
) = R(Q̂). SinceW+

k+1 = Wm+1QLk+1
, andŴk+1 = Wm+1Q̂, we have

R(W+
k+1) = R(Ŵk+1).

In Section3 we showed that the residualrm of LSQR is in the restarted spaceW+
k+1

when implicit restarting is applied with the largestp harmonic Ritz values as shifts, and
it is in Ŵk+1 by construction (cf. [5, equation 3.9]). Furthermore, the restart vectorp+k+1

(2.19) of the implicitly restarted method is a multiple ofpm+1, and extending thek-step GK
bidiagonalization methods (2.18) and (5.1) back tom-step GK bidiagonalization will produce
R(W+

m+1) = R(Ŵm+1) andR(P+
m) = R(P̂m). The process is then repeated.

6. Numerical examples.In this section we present some numerical examples to show
the performance of Algorithm3.2, which is implemented by the Matlab codeirlsqr ∗. The

∗Code is available athttp://www.math.uri.edu/ ˜ jbaglama .

http://www.math.uri.edu/~jbaglama
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TABLE 6.1
List of matricesA, properties, andb vectors used in numerical examples. The first two matrices are taken from

the Matrix Market Collection and the last two are from the University of Florida Sparse Matrix Collection.

Example A ℓ n nnz b
6.1 ILLC1850 1850 712 8638 ILLC1850RHS1
6.2 E30R0000 9661 9661 305794 E30R0000RHS1
6.3 LANDMARK 71952 2704 1146848 rand(71952,1)
6.4 BIG DUAL 30269 30269 89858 A·rand(30269,1)

TABLE 6.2
Number of matrix vector products withA andAT required to get‖AT r‖/‖AT r0‖ ≤ 10

−12 using different
values ofj in the gap strategy given in Section2. The table shows two different choices ofp (number of shifts) and
setsm = 100 for the examples with the matrix ILLC1850 andm = 200 for the examples with the matrix E30R0000.
Columnj = 0 corresponds to no adjustments.

A p j = 0 j = 3 j = 6 j = 9
ILLC1850 20 3825 3647 3630 3657
ILLC1850 30 3750 3689 3681 3679
E30R0000 30 31753 30953 30153 42223
E30R0000 40 34731 30723 31037 31223

code uses the following user-specified parameters:
tol Tolerance for accepting a computed approximate solutionx as a solution to

the LS problem (1.1), i.e.,‖AT r‖/‖AT r0‖ ≤tol.
m Maximum number of GK bidiagonal steps.
p Number of shifts to apply.
j Size of interval around̂θk+1 to find largest gap.
maxit Maximum number of restarts.
reorth12 String deciding whether one or two sided reorthogonalization is used in Al-

gorithm2.1.

We compared the IRLSQR algorithm against the LSQR and LSMR algorithms. The
latter codes were adapted to output the norm of the residualsafter each bidiagonal step. Fur-
thermore, LSQR was adapted to perform either one or two sidedreorthogonalization against
any specified number of previous GK vectors. In order to make afair comparison between
the three methods and to keep storage requirements the same with the GK vectors, LSQR and
LSMR were reorthogonalized against only the previousm vectors. No comparisons were
made with ALSQR of [5], since these routines are mathematically equivalent; seeSection5.

All computations were carried out using MATLAB version 7.12.0.0635 R2011a on a Dell
XPS workstation with an Intel Core2 Quad processor and 4 GB ofmemory running under the
Windows Vista operating system. Machine precision is2.2 · 10−16. We present numerical
examples with matrices taken from the University of FloridaSparse Matrix Collection [13]
and from the Matrix Market Collection [12]; see Table6.1. All examples use the initial
approximate solution asx0 = 0, andr0 = b.

In Table6.2, we used two matrices ILLC1850 and E30R0000 from the Matrix Market
Collection along with the accompaniedb vectors ILLC1850RHS1 and E30R0000RHS1, re-
spectively, to show the results for various valuesj for the gap strategy outlined in Section2.3.
For all of the numerical examples, we setj equal to5.

EXAMPLE 6.1. We let the matrixA and vectorb be ILLC1850 and ILLC1850RHS1,
respectively. This matrix andb vector are from the LSQ group of the Matrix Market which
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FIG. 6.1. Example6.1: A = ILLC1850, b = ILLC1850 RHS1. IRLSQR(100,30) indicatesm = 100 and
p = 30. LSMR (reorth) and LSQR (reorth) indicate reorthogonalization is performed against them most recent
vectors. IRLSQR converged at 3,693 matrix-vector products.

consist of LS problems in surveying. The use of the matrix is to test iterative solvers, and it
was one of the matrices used by Paige and Saunders [31] in the testing of the LSQR algo-
rithm. For this example,b /∈ R(A), and therefore we only show convergence of the quotient
‖AT r‖/‖AT r0‖. The functionirlsqr was used with parametersm = 100, p = 30, and
reorth12 = 1. We settol = 1 · 10−12. In Figure6.1, we plot‖AT r‖/‖AT r0‖ versus the
number of matrix-vector products withA andAT .

EXAMPLE 6.2. The matrixA was chosen to be E30R0000, and the right hand sideb
was taken as E30R0000RHS1. The matrixA and vectorb are from the DRICAV group of
matrices from the Matrix Market Collection. The group consists of matrices used from mod-
eling 2D fluid flow in a driven cavity, and the main purpose of matrices from this collection
is for testing iterative solvers. The matrix is nonsymmetric and indefinite. Since the ma-
trix A is square and full rank,b ∈ R(A), and therefore we show convergence of the quotients
‖AT r‖/‖AT r0‖ and‖r‖/‖r0‖; see Figure6.2. We usedirlsqr with parametersm = 200,
p = 30, andreorth12 = 2. We used two-sided reorthogonalization since the condition num-
ber of this matrix is approximately3.47 · 1011. We settol = 1 · 10−12 and accept an iteratex
as a solution to the LS problem if‖AT r‖/‖AT r0‖ < 1 · 10−12.

EXAMPLE 6.3. The matrixA was chosen to be LANDMARK of the Pereyra group
from the University of Florida Sparse Matrix Collection. Itcomes from an LS problem. The
matrix LANDMARK does not have a correspondingb vector, hence we chose it to be ran-
dom with the MATLAB commandrand(71952,1) . The rank of the matrixA is 2671
and we do not assumeb ∈ R(A), therefore we only show convergence of the quotient
‖AT r‖/‖AT r0‖; see Figure6.3. We usedirlsqr with parametersm = 250, p = 35,
andreorth12 = 1. Settingtol = 1 · 10−10, an iteratex is accepted as a solution to the LS
problem if‖AT r‖/‖AT r0‖ < 1 · 10−10.

EXAMPLE 6.4. The matrixA was chosen to be BIGDUAL of the AG-Monien group
from the University of Florida Sparse Matrix Collection. The matrix is from a 2D finite
element problem. The matrix BIGDUAL does not have a correspondingb vector. The rank
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FIG. 6.2. Example6.2: A = E30R0000,b = E30R0000RHS1. IRLSQR(200,30) indicatesm = 200 and
p = 30. LSMR (reorth) and LSQR (reorth) indicate reorthogonalization is performed against the200 most recent
vectors. The top graph shows the convergence of‖AT r‖/‖AT r0‖ and the bottom graph shows the convergence
of ‖r‖/‖r0‖. irlsqr converged at 30,421 matrix-vector products.

of the matrix is 30,239 (not full rank), we chose the vectorb to beA·rand(30269,1) so
that b ∈ R(A). We plot the quotients‖AT r‖/‖AT r0‖ and‖r‖/‖r0‖; see Figure6.4. We
usedirlsqr with parametersm = 300, p = 45, andreorth12 = 1. Settingtol = 1 ·10−14,
an iteratex is accepted as a solution to the LS problem if‖AT r‖/‖AT r0‖ < 1 · 10−14.

7. Conclusion. We have presented a new implicitly restarted LSQR algorithmfor solv-
ing the LS problem. Theoretical results show the restartingto be equivalent to the augmented
LSQR algorithm of [5]. However, this version is much simpler to implement. The gap strat-
egy and ease of implementation of this method make it desirable. Numerical examples show
the proposed new method is competitive with existing methods.
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FIG. 6.3.Example6.3: A = LANDMARK andb = rand(71952,1) . IRLSQR(250,35) indicatesm = 250

and p = 35. LSMR (reorth) and LSQR (reorth) indicate reorthogonalization is performed against the250 most
recent vectors. The graph shows the convergence of‖AT r‖/‖AT r0‖. irlsqr converged at 29,185 matrix-vector
products.
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