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IMPLICITLY RESTARTING THE LSQR ALGORITHM ~ *

JAMES BAGLAMAT AND DANIEL J. RICHMONDY
Dedicated to Lothar Reichel on the occasion of his 60th Hath

Abstract. The LSQR algorithm is a popular method for solving least-segi@roblems. For some matrices,
LSQR may require a prohibitively large number of iterationsiébermine an approximate solution within a desired
accuracy. This paper develops a strategy that couples tigRL&gorithm with an implicitly restarted Golub-
Kahan bidiagonalization method to improve the convergentee réhe restart is carried out by first applying the
largest harmonic Ritz values as shifts and then using LSQR1gpate the solution to the least-squares problem.
Theoretical results show how this method is connected toulgenanted LSQR method of Baglama, Reichel, and
Richmond [Numer. Algorithms, 64 (2013), pp. 263-293] in whibk Krylov subspaces are augmented with the
harmonic Ritz vectors corresponding to the smallest harmoiticv@lues. Computed examples show the proposed
method to be competitive with other methods.
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1. Introduction. In this paper, we investigate large-scale least-squai®@stoblems

(1.1) min [[b — Az, AcR”™  beR*
zER™

where|| - || denotes the Euclidean vector norm. The mattils assumed to be sparse and too
large to use direct solvers efficiently. Therefore itemtivethods, which can also take advan-
tage of the sparse structure 4f are required in order to solve the LS problem. Wlien n
the preferred iterative method for solving LS problems &sit$QR Algorithm of Paige and
Saunders3dl]. LSQR is a Krylov subspace method that is based on the Gigalian (GK)
bidiagonalization, in which orthonormal bases for thedimensional Krylov subspaces

(1 2) ICm(AAT, wl) = Spar{wh z‘LAT’LUl7 ceey (AAT)mil’wl},
' Km(AT A p1) = spardpy, AT Apy, ..., (ATA)™ 1p}
are formed using the starting vectars = ro/||ro|| andp; = ATw, /|| ATw,|, respec-
tively, wherery = b — Az for an initial guesse of the LS problem. Using the orthonor-
mal bases for the spaces ih.%), the LSQR Algorithm computes an approximate solution
Tm € 1o+ Km (AT A, p1) and corresponding residua), = b — Ax,, € K,,(AAT w;) such
that||b — Az,,| is minimized over all possible choices fof,. The LSQR algorithm is a
non-restarted method where the dimensiois increased until an acceptable solution of the
LS problem is found. The theoretical foundation of LSQR ¢#eh process that only requires
the storage of a few basis vectors for each Krylov subspacexdct arithmetic, LSQR ter-
minates with the solution of the LS problem when linear deleece is established id.Q).
For LS problems with a well-conditioned matrix or a small effective condition number,
LSQR converges quickly yielding an approximation of theusoh of the LS problem of
desired accuracy long before linear dependence is encedni (1.2); see Bprck [9] for
remarks. However, for LS problems with an ill-conditionedtnix A and a solution vectat
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with many components in the direction of the singular vextssociated with the smallest
singular values, LSQR may require a prohibitively large bemof iterations; seed]. A
contributing reason is that in finite arithmetic, the steraj only a few basis vectors at a
time cannot maintain orthogonality among all previousin+stored basis vectors. Hence the
generated Krylov subspaces have difficulty obtaining ggmgr@imations to the smallest
singular triplets. The loss of orthogonality can be overedim keeping previously computed
basis vectors and reorthogonalizing. Howevenyalsecomes large, this can become a com-
putationally expensive, impractical storage requiremédne solution is to use a restarted
Krylov subspace method to solve the LS problem. Restartingo subspace methods af-
term iterations, forn << n, can maintain orthogonality with a modest storage requérmm
The restarted GMRES method of Saad and Schadl is one of the most popular Krylov
subspace methods for solving the LS problem whenn. However, using the restarted GM-
RES method to solve the LS problem introduces another difficstagnation and/or slow
convergence,d, 39]. To overcome stagnation and/or slow convergence, rest@BMRES

is often combined with a preconditioner or the minimizatisrover an augmented Krylov
subspace; seé [7, 19, 28, 29, 33] and references within.

If we implement a restarted LSQR method, i.e., restartin@RSafterm iterations, we
can maintain strong orthogonality among the bases by kgeglinthe vectors in storage.
However, similar to GMRES, the restarted LSQR method can@mer stagnation and even
slower convergence than using LSQR without reorthogoatidim (cf. [L5] for details on
restarting the related LSMR algorithm). To overcome stéignand/or slow convergence of
restarting LSQR, we propose to solve the LS problem impjiaver an improved Krylov
subspace, a form of preconditioning. We consider implidiflstarting the GK bidiagonal-
ization (and hence LSQR) with a starting vectef, such thato = ¢(AAT)w, for some
polynomial ¢ that is strong in the direction of the left singular vectoss@ciated with the
smallest singular values. The Krylov subspaies(AAT, wi") andiC,, (AT A, p) will then
contain good approximations to the left and right singu&ters corresponding to the small-
est singular values, respectively. Also, with judicioushosen shifts (i.e., zeros of AAT))
we can ensure that,, (AA”, wf’) will contain the LSQR residual vector at each iteration of
the restarted method. This is essential so that our redgtaRB&R method produces a non-
increasing residual curve. Since the singular valued afe not known prior to starting the
LSQR method, approximations must be found.

Implicitly restarted GK bidiagonalization method3 B, 5, 21, 22, 24] have been used
very successfully in providing good approximations to tiiaBest and largest singular triplets
of a very large matrix4 while using a small storage space and not many matrix-vectat-
ucts. In this paper, we describe an implicitly restarted Gdidgonalization method which
selects a polynomial filter that produces good approximatiaf the singular vectors associ-
ated with the smallest singular values, thus improving #gech spaces while simultaneously
computing approximate solutions to the LS problem. Theeenaany methods for precon-
ditioning LSQR to improve convergencg, 9, 10, 23, 33]. However, most methods require
constructions prior to approximating solutions to the L8pem adding to the storage and/or
computational time.

In [5], we solved the LS problem with an LSQR method over a Kryldyspace that was
explicitly augmented by approximate singular vectorslofAugmenting Krylov subspaces in
conjunction with solving the LS problem whén= n with the restarted GMRES method was
first discussed by Morgan ir2§]. Later, Morgan showed the mathematical equivalence be-
tween applying harmonic Ritz values as implicit shifts andraenting the Krylov subspaces
by harmonic Ritz vectors to solve the LS problem whers= n with restarted GMRES;
cf. [29). Similarly, in Section5, we show that our proposed method of this paper, apply-
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ing harmonic Ritz values as implicit shifts to a restarted@ESmethod to improve the Krylov
subspaces, is mathematically equivalent to the routing] ithfit obtains Krylov subspaces by
explicitly augmenting them with the harmonic Ritz vectardrmhprove convergence. There-
fore, the theorems fron®], which show improved convergence for LSQR using augmented
spaces, are applicable to this method. Applying the shifigicitly is simple, and we in-
troduce a new strategy for choosing and applying the shiftéch, based on our heuristics,
further improves the convergence rates.

The paper is organized as follows: Sectibdescribes, in detail, an implicitly restarted
GK bidiagonalization method and the simplifications that && utilized when using the
harmonic Ritz values as shifts. Sectidescribes how LSQR can be successfully restarted
by using the implicitly restarted GK bidiagonalization atijhm with harmonic Ritz values as
shifts. The numerical issues of implicitly shifting via thalgechasing method are discussed
in Section4 along with a new method for implicitly applying harmonic Ritalues as a
shift. Sectionb gives the theoretical results of how the implicitly restart SQR algorithm
generates the same updated Krylov subspaces as the augrh&Q®& algorithm from ).
Section6 gives numerical experiments to show the competitivenesiseoproposed method,
and Sectiory gives concluding remarks.

Throughout this paper, we will denaté(C) as the null space ard(C) as the range of
the matrixC'.

2. Implicitly restarted Golub-Kahan bidiagonalization. The GK bidiagonalization
forms the basis for the LSQR algorithm discussed in Seciiamd is needed to approxi-

mate a set of the smallest singular tripletsAf DefineU,, = [u1,us,...,u,] € RExn
andV,, = [v1,v9,...,v,] € R"*™ with orthonormal columns, as well as the diagonal ma-
trix X, = diag[oy, 09,...,0,] € R"*™. Then

(2.1) AV, =U,2, and AU, =V,%,

are singular value decompositions (SVD)4and A7, respectively, and
AV =UpY,  and  ATUL = V5,

for k << n are partial singular value decompositions (PSVD{and A7, respectively. We
assume the singular values to be ordered from the smalldst fargest one, i.e.,

0<o1 <0< ... <0y,

since we are interested in the smallest singular values of

The GK bidiagonalization was originally proposed it6] as a method for transform-
ing a matrix A into upper bidiagonal form. However, for its connectiontie LSQR algo-
rithm in solving (1.1), we consider the variant that transformsto lower bidiagonal form
(cf. [31, bidiag 1]), described in Algorithn2.1. The lower bidiagonal algorithm was de-
scribed by Bprk [11] as the more stable version of the GK bidiagonalization me#nd this
form fits nicely into our implicitly restarted method.

ALGORITHM 2.1. GK BIDIAGONALIZATION METHOD

Input: A € R®*™ or functions for evaluating matrix-vector products withand A”',
w; € RY : initial starting vector,
m : number of bidiagonalization steps.
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Output: P, = [p1, - .., pm] € R™*™ : matrix with orthonormal columns,
Wina1 = [wi, ..., wny1] € RZ™FD - matrix with orthonormal columns,

Buy1.m € ROMTDX™ Jower bidiagonal matrix,
pmi1 € R™ : residual vector,
Qi1 € R.

1. Computes; := [[wi|l; wy :=wi/B1; Wi = wi.
2. Computeyy := ATwy; g = |p1|l; p1:=p1/aa; Pri=p1.
3.forj=1:m
4, CompUtQUj+1 = Apj — w;Qy.
5. Reorthogonalization stepw;+1 1= wj+1 — W(lzj)(W(lej)ij).
6. Computed; 11 == [[wjs1l; wjs1 = wjp1/Bjva-
7. Comput@j+1 = ATU]]'+1 — pj6j+1'
8. Reorthogonalization stepp; 1 := pj41 — P(1:j)(P(€;j)pj+1)-
9. Computey; i1 := [[pj1ll; Pj+1 = Pjt1/Q41.
10.ifj <m
11. Pjiy = [Py, pjyal.
12. endif
13. endfor

After m steps, Algorithn2.1 determines matrice®/,,,.; and P,,, whose columns form
orthonormal bases for the Krylov subspadés, (AA”,w;) andC,,,(AT A, py), respec-
tively, as well as the decompositions

T T T
A Wm+1 = PmBm+1,m +0‘m+1pm+16m+1

(22) APm - Wm+1Bm+1,m

wherep? ., P,,, =0, ande,,, 11 is the(m + 1)Staxis vector. The matrix

aq
B2 0
(23) Bm-‘rl,m _ Bs c R(’m—i—l)xm

. am
L O 5m+1 i

is lower bidiagonal. We assume that Algorittitrl does not terminate early, that is; # 0
andj; # 0for1 < j < m + 1; see p] for a discussion on how to handle early termina-
tion. To avoid loss of orthogonality in finite precision aritetic in the basis vectoid’,,,
and P,,,, we reorthogonalize in lines 5 and 8 of the algorithm. Thettemgonalization steps
do not add significant computational cost whean<< n. For discussions and schemes on
reorthogonalization we refer the reader £ %, 15, 25, 35] and references within. For the
numerical examples in Secti@we follow the same scheme used &.[

It is well known that using a Krylov subspace to obtain acablgt approximations to
the smallest singular triplets of with equationsZ.2) can require a prohibitively large value
of m. Therefore, a restarting strategy is required. The mostt¥fe restarting strategy is
to use an implicit restart technique. By implicitly restagt afterm << n steps of the GK
bidiagonalization, storage requirements can be kepivelgtsmall and provide good approx-
imations to the desired singular vectors from the genentdtglbv subspaces. The following
section provides a detailed discussion on how to impligiistart the GK bidiagonalization
method.
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2.1. Implicit restart formulas for the GK bidiagonalizatio n. Implicitly restarting a
GK bidiagonalization method was first discussedif][and used in2, 3, 5, 21, 22, 24].
Starting with them-step GK bidiagonalization decompositidh %), the implicit restarting is
done by selecting a shift and applying the shift via the Golub-Kahan SVD stéf, [Al-
gorithm 8.6.1]. The algorithm given inlf] assumes an upper bidiagonal matrix is given.
We modify the algorithm for a lower bidiagonal matrix, andsitgiven as the bulgechasing
(lower bidiagonal) algorithm (cf. Algorithn2.2). Algorithm 2.2 uses the shifix and gen-
erates upper Hessenberg orthogonal matrigese R(m+Dx(m+1) and@Qr € R™*™ such
that B = QT B,,+1.mQr is lower bidiagonal. Multiplying the first equation d.Q)

m+1,m

by @, from the right and the second equation ®f3) by Q r also from the right yields

2.4) ATWp1Qr = PuBlL., QL+ tmiiPmirer, QL
AP’mQR = Wm+1Bm+1,mQR-

2.5) ot b ot A (1L, 4y 0 )Pmt
. m

”aﬁlpj;l (O‘mﬂ-querLm)pm-ﬁ-lH ’

where !, is the (m, m) diagonal entry ofB;; |, ,, andqy,, ., . is the(m + 1,m) entry
of Q1. Now sete;t, = |k pif + (m+14L,, 4.0, )Pm+1 |- Then we have after removing the
last column from both sides of the equationsdnf) a valid (m—1)-step GK bidiagonalization
decomposition,

T — + +T T
(26) A IjLV'r—rt - Pm—l?m,m—l + a;lr—ij—nem’
Amel = Wnth,mfl'

The (m — 1)-step GK bidiagonalization decomposition.§) is the decomposition that we
would have obtained by applyingn — 1) steps of Algorithm2.1 with the starting vector
wy = y(AAT — ul)wy, i.e., a polynomial filter has been applieditg. See B, 11, 24]
for detailed discussions on polynomial filters in the conhteikimplicitly restarting a GK
bidiagonalization method. Given a suitable choice of atghifthe polynomial filter helps
dampen unwanted singular vector componentsl dfom w;. Multiple shifts p = m — k
shifts i1, p2, . . ., pp) can be applied via this process yielding the following dalistep GK
bidiagonalization decomposition,

2.7) ATT/JH = P,;ZB;;T% + ol e

AP, = Wk+1Bk+1,k

which would have been obtained by applyfgteps of Algorithn2.1with the starting vector
wi = TP, (AAT — p;I)w,. Using the vectors;”, ,, w;, , the (k + 1)St column vector
of W,jﬂ, and the scalam,jﬂ, the k-step GK bidiagonalization decompositich {) can be

extended to amn-step GK bidiagonalization decompositioR.Z) by starting at step 4 of
Algorithm 2.1 and continuing fop more iterations.

ALGORITHM 2.2. BULGECHASING (LOWER BIDIAGONAL)

Input: By, 1., € ROPD*™ Jower bidiagonal matrix,
= implicit shift.
Output: Q € R(m+Dx(m+1) . ypper Hessenberg matrix with orthonormal columns,

Qr € R™*™ : upper Hessenberg matrix with orthonormal columns,
Bl = Q¥ By1.mQr € RIMTUX™ . ypdated lower bidiagonal matrix.

m—+1m
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1. Determine thém + 1) x (m + 1) Givens rotation matrixG(1, 2, ¢,) such that

c s bil—u | o
—S C bl,l . b271 o 0 ’

2.SetQ] :=G(1,2,61); Qr:=1Im; B, :=G(1,2,01)Byiim.
3.fori=1:m-—1
4. Determine then x m Givens rotation matrixG (i, + 1, 6;) such that

[b;’_z b:i+1]|:§ _Z}:[* 0] .

5. UpdateQr := QrG(i, i+ 1,0;); By, =Bl ,,Gli,i+1,0).
6. Determine thém + 1) x (m + 1) Givens rotation matridxG(i + 1,7+ 2,0,41)
such that

c s bl-trl_j RS
-5 c bi++2.,i 10|
7. UpdateQ] := G(i +1,i+2,0;41)QT; B i, :=Gli+1,i+20,1)B .
8. endfor

2.2. Implicit restart with harmonic Ritz values as shifts. The dampening effect of the
polynomial filter,[T7_, (AAT — p,;I), depends on the choice of shifis. There are several
choices foru; that have been investigated in the literature in this cdntsse, e.g., Ritz
and harmonic Ritz value{l], refined Ritz valuesql], refined harmonic Ritz valueJ],
and Leja points3]. We examine the choice of using harmonic Ritz values agssfof our
implicitly restarted method. Harmonic Ritz values not oplypvide good approximations
to the smallest singular values df, they have a much needed connection with the LSQR
algorithm described in Sectidh

The harmonic Ritz valueéj of AAT are defined as the eigenvalues to the generalized
eigenvalue problem

(2.8) ((Bm,mBg;L,m) + O‘qznﬂgm+1(Bm,7nqur;,m)716m€£)gj =095, 1<j<m,

whereB,, ., is them x m principal submatrix oB,,+1..,, andg; € R™\{0} is an eigen-
vector; see e.g.2[/, 30] for properties and discussions of harmonic Ritz valuese &igen-
pairs {0, g;}7-, can be computed without forming the matti,, ., B, ,, from the SVD
of Bm+1,m:

Bry1,mVim = |:0m ﬂm+1} [im] ,
2.9)

Bvqr;ﬂ,m |:Um am+1:| =Vn [Zm 0] ,
where the matrice@"n - [617 ﬂQa s alaﬁl] € Rmxm andUm = [ﬁ‘la ﬂg, . 7ﬁm] 6R(m+1)><m
have orthonormal columng,,,+; € R™*+1 (the null vector) is a unit-length vector such that

a,TnHUm =0, andy,, = diag[cy, 09, ...,0,] € R™*™. We order then singular values
according to

(2.10) 0<01<09<...<Tpm-

The strict inequalities come from the assumption that tlagalal and sub-diagonal entries
of B,+1,m, are all nonzero32, Lemma 7.7.1].
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We haveéj = &f— [30). The eigenvectorg; are the columns df,,, BmHB;f;nem]Um;
see p] for details. Furthermore, ifi]? is used as a shift in Algorithrd.2, then the return
matrlix B,;H?m has entriesyl, = 0 and;},,, = +56;. The following theorem shows this
result.

THEOREM 2.3. Given a lower bidiagonal matrix3,,, 1, (2.3) wherea; # 0 for
1<j<mandpg; #0for2 <j <m+ 1. InAlgorithm2.2, i = &JQ- (cf. (2.10) if and only
if the return matrixB,;, |, ,, hasa;l, = 0 and 3} ,, = +6;. Furthermore, Algorithn®.2
returns the matrice§);, and@Q r such thatQ pe,, 11 = +4; andQre,, = +0;.

Proof. Compute the QR-factorization O?mﬂ,mBZ;H,m — plpmy1 = QR where
Q € RUm+Dx(m+1) is orthogonal andR € R(m+1)x(n+1) is ypper triangular. An in-
spection of steps 1 and 2 in Algorithéth2 shows that the first columns @j; and@ are
equal. Therefore, via the implicit Q Theore/[ Theorem 7.4.2] we hav@ = QD where
D = diag[l,+1,...,+1] and

+ +T _N7T T _ T T
Bm+1,mBm+1,m - QLBm+1,mBm+17mQL - DQ Bm+1,mBm+17mQD'

The matrix B BT, is a symmetric tridiagonal matrix, and jf is an eigenvalue

m+1,m~=m+1m

of Byi1,mBL 1, then [L7, Section 8.3.3]

T T T T
QLBm+17mBm+1,mQLem+1 = DQ Bm+1,mBm+1,mQDem+1 = HUem41-

Therefore,
+ +T - T r =
Bm+1,mBm+1,m6m+1 =DQ Bm+1:mBm+1,mQDem+1 = Mem+1,

B ok, = 0and(B,,)* = u. Sinces? # 0 are eigenvalues aBy, 1 BY 1, We
havea), = 0 and s}, = +5;. One can see that the reverse holds by noticing that
Bpi1,mBL 1, is unreduced, and if. is not an eigenvalue, theR; BT, must

m+1m—m+1m

also be unreduce®p, Lemma 8.13.1]. Algorithn2.2returns@Qr, Qr,, andBj;LH’m satisfy-

iNg Byy1.mQr = QLB;:-H,m andBl ., QL = QRB:@L,W Using the structure of the
last column ofB* we have

m+1,m

_ + 1=
Bm+1,77LQRe7n = QLBWL+1’mem = inQL6m+1
T _ +T _ ~
Bm+1’mQL€m+1 = QRBm+17m€m+1 = ianRem.

The resultQre,,+1 = +4; andQgre,, = £0; follows from the SVD of B, 1., (2.9
and the fact that the singular vectors of non-degeneratgilsinvalues are unique up to sign
difference P]. a

Calling Algorithm 2.2 with B,,, 41, andu = &2, returns the upper Hessenberg orthog-
onal matrices

Qr = [Qr,,, £iy,) € RV - whereQy, | = [q1,, ..., qr,,] € R™T*m,
QR = [Qerl—l Y iﬁm] e R77L><m7 WhereQanfl = [QRI P ’QRﬂlfl] e R’,’LX(m_l)’

and the lower bidiagonal matrix,

m,m—1 O
O +om,

(2.11) BT e Rim+xm,

m4+1,m =
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The singular values aB" | are
0<o1<09<...<0m-1

and the SVD o3, is

B;;,m_qu]; ,Ym—-1 = Qg

m—

m UnL— 1 E'rn—l )
+T T 717 _ T ) S
Bm7m_1QLmUmfl - QR7H71Vm712m71-

Calling Algorithm 2.2 with B:Z,mq andu = &2, returns the upper Hessenberg or-
thogonal matrices

Q1 =[Q1, , £QL,  im-1] €R™™,
whereQ}  =l[qf ,....qf _]eR™ L
Qf,. . =[Qf, , £Qk,, ,0m] eRUPDXIMTD,
whereQ}, . =lqh ,...,q} ] €RmTIxm=2),

and the lower bidiagonal matrix,

b | O

m—1,m—2

(212) B;:j;nfl = c Rmx(mfl)'
0 N

Since the columns ofQr, , are orthonormal andy,,—1 € WR(Qr, _,), we have
Qr, Q% Um—1=0p_1. LikewiseQr, Q]  Gm_1 = im—1. Therefore,

m—1

+ r p
(o ] e % 2

0

~ )

:l:o—mfl

O +om

(2.13) B+t

m—1m—2

where
+ 0 _ ~
(2.14) Qr { Ré”* 1 ] = [q];;r, . .,qgiiz,vm,l,vm}
and
+
0 - -
(215) QL l: Qém 1 :| = [qz_j_a ey qz::ilau7n—1; um}-

The matrices 4.14 and @.15 are no longer upper Hessenberg; they have an additional
nonzero sub-diagonal below the diagonal, increasing tlverdand width to 2.
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Repeating the process, we can use Algorith@to apply multiple shifts. After applying

the largesp = m — k harmonic Ritz valuesi?,, ..., 57, ) as shifts, we have
+
Bk+1,k O

(2.16) QL Bm+1,mQr = 0k 11 ,

0) o ]

where

QR = [QRkvﬁk-i-lv e avm]
(2.17)

QL = [QL;H.lvﬂkJrl» cee aam}

The matricesZ.17) now have a lower band width equal o Using the process outlined in
Section2.1with (2.16) and @.17), we have analogous t@.(7) ak-step GK bidiagonalization,

Ty = +p+T + o+ T
(2.18) 4 Ifkﬂ - Pk+Bk+3r,k + Qg1 Pt1€hgrs
AP = WiaBiie

T
WhereW];:l = W77L+1QLk+1a P]:_ = PH’LQRk! B;ilrl)k; - QLk+le+1,'rnQRka

(2.19) szrl _ (am+1QLm+1,k+1)

pm+1;
|am+1qu,+1,k+1 |

anda), | = [@mi1qr,, 41 ... |- Using the vectors;”, , wi, , the (k + 1)St column vector
of W,';, and the scalan;’, ,, the k-step GK bidiagonalization decomposition.1§ can
be extended to am-step GK bidiagonalization decompositioh %) by starting at step 4 of
Algorithm 2.1 and continuing fop more iterations.

We remark again that the importance of using harmonic Rilizegas shifts is the con-
nection with the LSQR method described in Sect®where zeroing out the diagonal el-
ements ofBj,:JrLm (cf. (2.11), (2.12), (2.13, (2.16) is essential for restarting the LSQR
method.

2.3. Adaptive shift strategy. In order to help speed up convergence to the smallest sin-
gular triplets and ultimately speed up our implicitly ret¢a LSQR algorithm, we developed
an adaptive shift strategy. It was first observeddf] [that if a shift j;41 that is numeri-
cally close too? is used in the implicitly restarted GK bidiagonalizationthe, then the
component along the-th left singular vector can be strongly damped in

m

wi = H (AAT — piDw.
i=k+1

This can cause the resulting spadz@g“ ., and V' (2.18 to contain unsatisfactory approxi-
mations to the left and right singular vector corresponding, respectively. When using an
implicitly restarted GK bidiagonalization to solve for aV3 of A, a heuristic was proposed
in [26] to require that the relative gap between the approximataiges? and all shiftsy;,
defined by

~2 _ _ .
relgap,; = Ce—er) — f’;) =3
Ok
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whereey, is the error bound o7, be greater than0—2. In the context of 26], the shifts
considered to be too close, i.e., the “bad shifts”, were Bimgplaced by zero shifts. This
strategy was adapted and applied 24,[22] in which harmonic and refined harmonic Ritz
values were used as shifts for computing some of the smaliebstargest singular triplets.
When searching for the smallest singular triplets, the “Haiftss were replaced with the
largest among all shift. In either case, through obsermadiod numerical experiment, this
improved the convergence of the smallest singular triplatisen implicitly restarting the GK
bidiagonalization in combination with the LSQR algorithwe cannot replace a “bad shift”
by the largest among all shifts, i.e., our combined routioesthot allow repeated shifts. This
would destroy the required Hessenberg structu@ gfand@ , in the equations given in Sec-
tion 2. We also cannot use a zero shift; this would remove the neliovéi,, | of B, 1.m
from the space; see SectiBrior details. In our case, we are not just concerned with figdin
approximations to thé smallest singular triplets o, but rather to find a solution to the LS
problem. Instead of applying shifts, we therefore opt to dynamically change the number
of shifts to apply in order to have the best approximationa set of singular triplets in our
updated spacéd¥, +1 andV," (2.18. That s, we look for the largest gap between ceréain
and only apply shifts up to the gap.

Our heuristic is based on two properties: that the harmoiticdigular value approxi-
mationég; to o; is such that; < &; [18] and the interlace property of the harmonic Ritz and
Ritz values BQ]. Using these properties leads us to examine the gaps betvorsecutive
harmonic Ritz singular value approximatiodis If ; is very close tas;,; (and hencer;
is possibly very close te; 1), then components of the updated starting vector in thedire
tion of u; from (2.1) may be strongly damped by applyiag, ;, = ézﬂ as a shift, which is
undesired. To minimize the possibility of this happeningy beuristic method fixes a small
valuej and searches the mter\{ﬁ}cﬂ EPI 9k+1, .. 9k+1ﬂ} around9k+1 for the largest
gap between any two consecutive harmonic Ritz values Bhaniindext; is chosen such
that

(2.20) k41— Ifik <k+j |9k”1 a Gk]|

andk is replaced withk; where the number of shifts in the implicitly restarted GKibgt
onalization is set tp = m — k;. Through numerical observation, a suitable choicejft
typically between 2 and 6. Choosingoo large can have a dramatic negative effect on the
convergence rate. See Talil€ in Section6 for numerical results for different values ¢f
and an improved convergence rate by using this adaptiveérghgtrategy.

3. Implicitly restarted LSQR. In this section we describe the proposed implicitly re-
started LSQR method, Algorithi®.2, which is a combination of a restarted LSQR method
with the implicitly restarted GK bidiagonalization methoescribed in Sectio2. Algo-
rithm 3.1 outlines a single step of a restarted LSQR method that wene@d. A first call to
Algorithm 3.1 with an initial approximate solution of the LS problery, 1o = b — Az and
wy = 1o Will produced the same output,, andr,,, as the Paige and SaundeBd][routine.
However, in order to call Algorithn3.1 again after we use the implicitly restarted formulas
of Section2 to reduce then-step GK bidiagonalization2(2) to a k-step GK bidiagonal-
ization .18, we need to have,, € R(W,jﬂ). If r,, & R(W,jﬂ), then we are using a
Krylov subspace that does not contain the residual vectas Would require an approxima-
tion of r,,, from the Krylov subspace, which can severely slow down tleegaure or lead to
non-convergence.

However, it was shown ing] that if we have ann-step GK bidiagonalizatior?(2) and
compute z,,, from the LSQR equations, i.e., steps 2 and 3 of AlgoritBni, then
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Tm = YWmt1Um+1, Whered,,; is the null vector 2.9) of B,,41,m, andy € R. Us-
ing the implicitly restarted formulas of Sectichwith an application of the largest har-
monic Ritz values as shifts, we obtairkestep GK bidiagonalization decompositich 19

with W,j+1 = Win1Qr,.,- Equation .17 shows that we must havg,, .1 € R(Qz,,)
and hence,,, = W, fi41 for some vectorfy. 41 € RF*, ie.,r, € R(W,5 ).

ALGORITHM 3.1. RESTARTEDLSQRSTEP

Input: k-step GK bidiagonalizatiof2.18) or (4.2) or the k-step factorizatior{4.1)
wherer;, € R(W,!,,),
p = m — k : number of additional bidiagonalization steps,
x, € R™ : approximation to LS problem.

Output: m-step GK bidiagonalizatio2.2),
T, € R™ : approximation to LS problem,
rm € RY : residual vector.

1. Applyp = m — k additional steps of Algorithri.1to obtain an
m-step GK bidiagonalizatioi2.2).

[ Srt1

2. Solve min
ymERm

0 :| - Bm+1,mymH for Ym

Jrt1

wherery, = W11 { 0

} for somef; € RFHL,

3. Setr,, =z + Py
4.1y =1 — Wm+1Bm+17mym-

The residual and approximate solution to the LS problem eangdaated during step 1
of Algorithm 3.1, i.e., during the GK bidiagonalization Algoriththl. The MATLAB code
irlsqr  used for numerical examples in Secti@which implements Algorithn3.2 updates
the LSQR approximation and the residual during the GK bidliedjization steps. Below is
our algorithm that outlines the main routine of this paper.

ALGORITHM 3.2. IRLSQR

Input: A € R®*™ or functions for evaluating matrix-vector products withand A7,
xo € R™: Initial approximate solution to LS problem,
ro = b — Axo € RY : initial residual vector,
m : maximum size of GK bidiagonalization decomposition,
p : number of shifts to apply,
j :integer used to adjust number of shifgs20),
0 : tolerance for accepting an approximate solution.

Output: z,, : approximate solution to the LS problgfn1),
rm =b— Az, € R’ : residual vector.

1. Setw; = rg andk = 0.
2. Call Algorithm3.1to obtainm-step GK bidiagonalization

T T T
A Wm+1 = PmBm+1,m + Am+1Pm~+1€m 41
APnL - WTVL+1B1'7L+1,77L

and the solution,,, and the residuat,,,.
3.0 [[AT 1, || /||ATro|| < & then exit.
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4. Compute then harmonic Ritz valueg2.10).

5. Adjust the number of shifisusing user inpuj and (2.20).

6. Apply the largesp harmonic Ritz values as shifts to obtain the
k-step GK bidiagonalizatio2.18),

Tyw+ _ ptptT + o+ T
A ‘fkﬂ = Pk+Bk+3r,k+0‘k+1pk+16k+1
AP Wii1Briik

7. Setr, = z,,, andr, = r,,, and goto 2.

We remark that the computation A7 r,,||/|| AT ro|| in line 3 can be done efficiently
using the formula inZ0]. The applications of the implicit shifts of the harmonidRvalues
in step 6 of Algorithm3.2 with the bulgechasing Algorithrd.2 does not always yield the
required structure oB;, ., .. i.e., a;, = 0. For small values ofn we do geto;, ~ 0,

however, for modest values; ~ 100, we geta;. # 0. Therefore, we developed an alternate
method for applying the shifts that is discussed in the neatign.

4. Harmonic bidiagonal method. The bulgechasing algorithm applies a shift implicitly
to the bidiagonal matri¥,,, 1, while outputting two orthogonal upper Hessenberg matrices
Qr and@, such thatthLLm = QT B,,+1.mQr. Forthe success of our method we need the
output matrice$) r and@, to be upper Hessenberg with the last columns as singulasngect
and ;! of B;L+1,m (cf. (2.11), (2.12, (2.13, (2.16) zero. However, in finite precision
arithmetic, Algorithm2.2 (and the upper bidiagonal form of the algorithm) is proneotend
off errors and the diagonal element, of B)f ., . is not always zero; cf. Tabk and B8]
for a discussion. If the diagonal entny, of B}, ,, ,, is nonzero, then by Theoreth3we
did not shift by a harmonic Ritz valué? and hencer,,, ¢ R(W,j+1); cf. the discussion in
Section3.

Other implicitly restarted methodgl,[ 20, 21, 22, 24] that apply shifts implicitly can
overcome the issue of a nonzetg, by incorporatingy,!, into equation 2.5). This strategy
does not work in our method. Alternatively, the bulgechgsigorithm 2.2 can be called
repeatedly with the same shift untilt, becomes small. This process destroys the required
upper Hessenberg structure @i and@r, and often requires many calls for a single shift.
To overcome this difficulty and force the desired (i.e., iieel) structure for this paper, we
developed a method, Algorithi1, for implicitly applying the harmonic Ritz values as shifts
that utilizes the singular values and vectorg®f 1 ..

Algorithm 4.1 takes advantage of the known structure of the orthogonaliceat?),
andQg. That is, in exact arithmetic, the applicationof= m — k harmonic Ritz values
(62,,...,07,,) with Algorithm 2.2yields banded upper Hessenberg matriéesg—(2.17),

QL
Qr

with p sub-diagonals below the diagonal. The first veatpr € @, ., has, at most, the
first p + 1 entries nonzero and is orthogonal to theectors{uy1,...,4m}. The vec-
tor ¢1,, can be easily constructed by finding a vector of length 1 that is orthogonal to the
first p 4+ 1 entries of each vector ifiig41,. . ., @, } and replacing the firgt + 1 entries of
qr, with that vector. The process can be repeated to find the dewmtorq,, € Qr,
by finding a vector of lengthy + 2 that is orthogonal to firsp + 2 entries of each vector
in {qr,,Uk+1,--.,Un} and replacing the firsh + 2 entries ofq;, with that vector. The
matrix @) r is constructed in the same manner. The matr@gsand(@ i are constructed to
be orthogonal banded upper Hessenberg matricesB;iprqym = QT B,11.mQr Will have

[QLk,+1,ﬂk+1, e ,ﬂm]’
[QRk,@]ﬁLl, L. 71~jm]7



ETNA
Kent State University
http://etna.math.kent.edu

IMPLICITLY RESTARTING THE LSQR ALGORITHM 97

TABLE 4.1
The numerical value qfa | from Bm+1 . after computing ann-step GK bidiagonalizatiori2.4) for the
matrix [14] ILLC1850 € R850%712 and calling Algorithms2.2 and4.1to apply the largest harmonic Ritz value
as a shift. The computation time is not reported since it issadered negligible in the overall method.

m | Method of Implicit Shift ot | L1 — umll lar,, — vmll
20 | Algorithm 2.2 (Bulgechasing) 2.3e-11 2.2e-11 2.6e-11
20 | Algorithm 4.1 (Harmonic Bidiagonal) 1.1e-19 0 0

40 | Algorithm 2.2 (Bulgechasing) 7.7e-10 1l.1le-4 6.4e-5
40 | Algorithm 4.1 (Harmonic Bidiagonal) 3.6e-17 0 0

80 | Algorithm 2.2 (Bulgechasing) 1.41 1.52 1.61
80 | Algorithm 4.1 (Harmonic Bidiagonal) 2.7e-17 0 0
120 | Algorithm 2.2 (Bulgechasing) 1.1e-6 1.4 1.4
120 | Algorithm 4.1 (Harmonic Bidiagonal) 1.8e-16 0 0

eacha; = 0 for i = k + 1 to m. However, the lower bidiagonal structureBﬁ;HrLm may
be compromised. It may happen that for some (or many) valtigstbe firstp + ¢ entries
of the columns oflig 1, ..., Un] (@Nd [Og41,. - ., 0m]) Mmay form a rank deficient matrix,
and hence steps 3 and 6 of Algorithtrl may return multiple vectors that satisfy the above
criteria. The matrice§);,, Qr, andBj,, , ,,,, however, will have the required structure for
our method; and sinc@;, andQx are orthogonal transformations, the singular values of the
updatedBm+1 . (not necessarily bidiagonal) matrix obtained from Algamit4.1will be the
same as the bidiagonal matrix which would have been obtdioet Algorithm 2.2.

After using Algorithm4.1to apply the shifts, we have the followirigstep factorization

T
(4.1) ATT/JH = P+Blj+1 kO PGl
: AP = W . B

k+17k+1,k>

which is similar to 2.18) except thaIBk+1 . may not be lower bidiagonal. Algorith2can
be successfully used with equatichi) by applying the shifts in step 6 of Algorithh2 via
Algorithm 4.1

The k-step GK bidiagonalization decompositioR.18 can be recaptured by return-
ing Bk+1 .. to lower bidiagonal form via orthogonal transformationshwa row-wise House-
holder method starting with the last row; see, e.86, B7]. Using row-wise Householder
transformations (starting with the last row) creates agthmal matrices);, € R(x+1)x(k+1)
andQr € R"* such thatBy,y 1, = Q1 B}, ,Qr is lower bidiagonal where

v * 0
QL{O 1}

Letting P, = P,f Qr andWj,1 = W,!,,Q 1, we can recover a-step GK bidiagonalization
decomposition

4.2) AY:W’““ - Ikaﬂ;,H%ilPLleﬂp
AP = Wit1Brsik,

whereBHLk is lower bidiagonal. The MATLAB codé&lsqgr , used for numerical exam-
ples in Sectiord and which implements Algorithr8.2, can be used with either structure 1)
and @.2). The authors notice no numerical differences.
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ALGORITHM 4.1. HARMONIC BIDIAGONAL METHOD

INPUL: [Tgy 1, Uy, - - -, Ghn] € ROPHDXP - left singular vectors 0B, 41 ., (2.9),
[Ok+1, Vk+2, - .., 0m] € R™*P :right singular vectors oB3,,, 41 ., (2.9).

Output: Q, € Rm+Dx(m+1) . handed orthogonal upper Hessenberg,
Qr € R™*™ : banded orthogonal upper Hessenberg,
Bl = QT Byi1.mQr € RUMTUX™ - yupdated matrix.

m+1,m

1.SetQr, ., :=[]andQr,,, :=[].
2.fori=1:k+1
3. Find a vectorg;,, € RP™ orthogonal to the firsp + i rows of each

columnoflQr, ., txy1, Ugt2,- -, Um].

4.SetQ,,, = {QLM, [ qéi H
5.ifi <k
6. Find a vectorr, € RP** orthogonal to the firsp + i rows of each
column oflQr, ., » Ur41: Vks25 - - - > U]

7. SetQR,cH = |:QRR:+17 |: qgi :|:|

8. endif
9. endfor

10. SetB; | ,,, = Q7 Bry1,mQr-

Steps 3 and 6 of Algorithm.1can be done in several ways, e.g., the MATLAB command
null  applied to the transpose of the figst- i rows of [(Q 1, . ., Ury1, kg2, - - -, U

5. Connection to augmented LSQR.This section shows the parallels between the aug-
mented LSQR algorithm described if] [and the implicitly restarted LSQR algorithm de-
scribed in this paper. Both algorithms use a restarted Gkagahalization in conjunction
with LSQR to solve the LS problem. The augmented LSQR algariof [5] is carried out by
explicitly augmenting the Krylov subspacels?) with the harmonic Ritz vectors associated
with the smallest harmonic Ritz values. We briefly descrhm gpaces that result from the
augmenting routine and refer the reader3pfgr the full details.

The harmonic Ritz vector ot A associated with the harmonic Ritz val@igis defined
as

Uj = ngj,

whereg; is the corresponding eigenvector from equatiarg), Furthermore, it was shown
in [5] that the eigenvectay; can also be expressed as

9; = [ Im Bm-‘rlB;l:‘,;nem ]uja

where ; is the corresponding left singular vector associated with dingular values;
from (2.9). Similar to our method for the initial iteration, the augmiag method in ]
setsw; = rg and calls Algorithn2.2 to obtain them-step GK bidiagonalizatior2(2). The
augmenting restarting step df][creates a variant of the equatiorZs(8),

T4 5 AT . T
A" Wi PyBi .y g+ (Qmt1Gm+1,k+1)Pm+1€m 41

(5.1)
AP, = Wis1Brt1k,
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where Wy11 = WiQ, B = PoV, Bk-i—lk = QTUxZk, and gpi15+1 IS the
(m+1,k+1) element on The matriced/, andVj, are the left and right singular vec-
tors ome+17m, respectively, associated with thesmallest singular values, ang, is the

diagonal matrix of thek smallest singular values. The matixis taken from the) R de-
composition of

(5.2) QR = [am+1m+1[m _am+11:ml iy . G ]
0 | ’

wherei,, 1, ,, € Ris the(m+1)st element of the null vectar,, 1 andi,,,11,,, € R"™ has
as entries the firsk elements of the null vectar,,,..1. The matrix on the right side 0b(2 is
considered to be full rank, and hen&és invertible. We will show thaR (W7, ;) = R(Wiy1)
andR(P}) = R(Py).

THEOREM5.1. Letw; = 7o and call Algorithm2.2 to obtain them-step GK bidiag-
onalization(2.2). Then the matriceﬁ/,;:l and P,j of (2.18 that are created by applying
thep = m — k largest harmonic Ritz values as shifts span, respectitledysame spaces as
the matricesV, 4, and P of (5.1), i.e, R(W;',,) = R(Wit1) andR(P;) = R(P).

Proof: Using the formulas of Sectioato apply the largest = m — k& harmonic Ritz
value as shifts generates the orthogonal matricgs = [Qr,;Tk+1,---;0ml,
andQL = [QLkJrl,ka-_H,...,ﬂm}, cf. (Zln SinceR(QRk) = R(Vk), P]:— = mQRka
andP, = P,,V;, we have

R(PF) = R(By).

DefineUyt1:m = [iigt1, - - - , Gim) @nd notice that’!', .. Qr,,, = 0, and
UkT+1;m A ‘ Umy1 | — Q.
0 |
Since the matrices of5(2) are of full rank we haveN(QT) = N/ Lm) and

R(Qr,,,) = R(Q). SinceW,", , = W, 11Q1,,,, andWji1 = W,,41Q, we have
R(Wl;i_+1) - R(Wk-i-l)' a

In Section3 we showed that the residuaj, of LSQR is in the restarted spa(i?l'!'?,j+1
when implicit restarting is applied with the largestharmonic Ritz values as shifts, and
it is in W1 by construction (cf.}, equation 3.9]). Furthermore, the restart veqi@jnl
(2.19 of the implicitly restarted method is a multiple pf, 1, and extending th&-step GK
bidiagonalization method£ (18 and ©.1) back tom-step GK bidiagonalization will produce
RW, )= R(Wyny1) andR(P;7) = R(P,,). The process is then repeated.

6. Numerical examples.In this section we present some numerical examples to show
the performance of Algorithr.2, which is implemented by the Matlab coillsqr ~ *. The

*Code is available dittp://www.math.uri.edu/ ~ jbaglama .
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TABLE 6.1
List of matricesA, properties, and vectors used in numerical examples. The first two matriceseen from
the Matrix Market Collection and the last two are from the Wanisity of Florida Sparse Matrix Collection.

Example | A 14 n nnz b
6.1 ILLC1850 1850 712 8638 ILLC185&HS1
6.2 E30R0000 9661 9661 305794 E30ROORBIS1

6.3 LANDMARK 71952 2704 1146848 rand(71952,1)
6.4 BIG.IDUAL 30269 30269 89858 A-rand(30269,1)

TABLE 6.2
Number of matrix vector products with and A” required to gef| A7r|| /|| ATro|| < 10~'2 using different
values ofj in the gap strategy given in Secti@n The table shows two different choicespdhumber of shifts) and
setsm = 100 for the examples with the matrix ILLC1850 amd= 200 for the examples with the matrix E30R0000.
Columnj = 0 corresponds to no adjustments.

A | p j=0 j=3 j=6 j=9
ILLC1850 | 20 3825 3647 3630 3657
ILLC1850 | 30 3750 3689 3681 3679
E30R0000| 30 31753 30953 30153 42223
E30R0000| 40 34731 30723 31037 31223

code uses the following user-specified parameters:

tol Tolerance for accepting a computed approximate solutias a solution to
the LS problem1.1), i.e.,||ATr| /||ATrq]|| <tol.

m Maximum number of GK bidiagonal steps.

p Number of shifts to apply.

j Size of interval arounékH to find largest gap.

maxit Maximum number of restarts.

reorth12 String deciding whether one or two sided reorthogonalireis used in Al-
gorithm?2.1.

We compared the IRLSQR algorithm against the LSQR and LSMfridhms. The
latter codes were adapted to output the norm of the resi@figiseach bidiagonal step. Fur-
thermore, LSQR was adapted to perform either one or two sielethogonalization against
any specified number of previous GK vectors. In order to mak@racomparison between
the three methods and to keep storage requirements the stémtbevGK vectors, LSQR and
LSMR were reorthogonalized against only the previeusvectors. No comparisons were
made with ALSQR of §], since these routines are mathematically equivalentSeetion5.

All computations were carried out using MATLAB version 7.00635 R2011a on a Dell
XPS workstation with an Intel Core2 Quad processor and 4 GBeshory running under the
Windows Vista operating system. Machine precisiod.is- 10715, We present numerical
examples with matrices taken from the University of Florgfzarse Matrix Collection1[3]
and from the Matrix Market CollectionlP]; see Table6.1 All examples use the initial
approximate solution ag, = 0, andrg = b.

In Table6.2, we used two matrices ILLC1850 and E30R0000 from the Matraxhét
Collection along with the accompaniédectors ILLC1850RHS1 and E30R00Q&HS1, re-
spectively, to show the results for various valyidsr the gap strategy outlined in Sectiar8.
For all of the numerical examples, we getqual to5.

EXAMPLE 6.1. We let the matrix4d and vecton be ILLC1850 and ILLC185(RHS1,
respectively. This matrix anblvector are from the LSQ group of the Matrix Market which
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FiG. 6.1. Example6.1: A = ILLC1850, b = ILLC1850.RHS1. IRLSQR(100,30) indicates = 100 and
p = 30. LSMR (reorth) and LSQR (reorth) indicate reorthogondiiza is performed against the: most recent
vectors. IRLSQR converged at 3,693 matrix-vector products

consist of LS problems in surveying. The use of the matrioitest iterative solvers, and it
was one of the matrices used by Paige and Saun@é}sn the testing of the LSQR algo-
rithm. For this example) ¢ R(A), and therefore we only show convergence of the quotient
|ATr||/||ATro||. The functionirlsqr ~ was used with parameters = 100, p = 30, and
reorth12 = 1. We settol = 1-10~'2. In Figure6.1, we plot||ATr||/||ATrq| versus the
number of matrix-vector products with and A7

EXAMPLE 6.2. The matrixA was chosen to be E30R0000, and the right hand side
was taken as E30R0O00RHS1. The matrixA and vectom are from the DRICAV group of
matrices from the Matrix Market Collection. The group caitsiof matrices used from mod-
eling 2D fluid flow in a driven cavity, and the main purpose oftricas from this collection
is for testing iterative solvers. The matrix is nonsymneettnd indefinite. Since the ma-
trix A is square and full rank, € R(A), and therefore we show convergence of the quotients
|ATr|| /|| ATro|| and|r||/||ro]|; SE€ Figures.2. We usedrisqr  with parameters:, = 200,

p = 30, andreorth12 = 2. We used two-sided reorthogonalization since the conditiam-
ber of this matrix is approximatety.47 - 10!, We settol = 1-10~'2 and accept an iterate
as a solution to the LS problem|jfA”r|| /|| ATrq|| < 1- 10712,

ExAMPLE 6.3. The matrixA was chosen to be LANDMARK of the Pereyra group
from the University of Florida Sparse Matrix Collection.climes from an LS problem. The
matrix LANDMARK does not have a correspondingector, hence we chose it to be ran-
dom with the MATLAB commandand(71952,1) . The rank of the matrix4 is 2671
and we do not assumie € R(A), therefore we only show convergence of the quotient
|AT7||/||ATro||; see Figures.3. We usedirlsqr  with parametersn = 250, p = 35,
andreorth12 = 1. Settingtol = 1- 1071, an iterater is accepted as a solution to the LS
problem if[| AT r||/[|ATro|| < 1-10710.

EXAMPLE 6.4. The matrixA was chosen to be BI®UAL of the AG-Monien group
from the University of Florida Sparse Matrix Collection. &lmatrix is from a 2D finite
element problem. The matrix BIBUAL does not have a correspondihgector. The rank
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FIG. 6.2. Example6.2 A = E30R0000p = E30RO000RHS1. IRLSQR(200,30) indicates = 200 and
p = 30. LSMR (reorth) and LSQR (reorth) indicate reorthogondiiaa is performed against th200 most recent
vectors. The top graph shows the convergencg4f || /|| AT ro|| and the bottom graph shows the convergence
of |r]|/||ro]|- irlsqr  converged at 30,421 matrix-vector products.

of the matrix is 30,239 (not full rank), we chose the vedtdo be A-rand(30269,1) o)
thatb € R(A). We plot the quotient§ A7 r|| /|| ATro|| and||r||/||ro|; see Figures.4. We
usedrlsqr  with parametersn = 300, p = 45, andreorth12 = 1. Settingtol = 1-10~'4,
an iterater is accepted as a solution to the LS problemdAf’ || /|| AT ro|| < 1- 10714

7. Conclusion. We have presented a new implicitly restarted LSQR algoriitmsolv-
ing the LS problem. Theoretical results show the restattirige equivalent to the augmented
LSQR algorithm of p]. However, this version is much simpler to implement. Thp gaat-
egy and ease of implementation of this method make it ddsirbdlumerical examples show
the proposed new method is competitive with existing method
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o landmark
10 T T
—  — LSQR (reorth)

— — — LSMR (reorth)
10+ IRLSQR(250,35) | |
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FiG. 6.3.Example6.3 A = LANDMARK and =rand(71952,1) . IRLSQR(250,35) indicates = 250
andp = 35. LSMR (reorth) and LSQR (reorth) indicate reorthogondiiaa is performed against th250 most
recent vectors. The graph shows the convergengieldfr|| /|| AT ro||. irlsqgr  converged at 29,185 matrix-vector
products.
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