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WEAK SYMPLECTIC SCHEMES FOR STOCHASTIC HAMILTONIAN
EQUATIONS*

CRISTINA ANTONT, JIAN DENG!, AND YAU SHU WONG*

Abstract. We propose a systematic approach to construct symplectionashie the weak sense for stochastic
Hamiltonian systems. This method is based on generating @ns;tso it is an extension of the techniques used
for constructing high-order symplectic schemes for detestimHamiltonian systems. Although the developed
symplectic schemes are implicit, they are comparable with théaiixweak Taylor schemes in terms of the number
and the complexity of the multipledtstochastic integrals required. We study the convergentkeeoproposed
symplectic weak order 2 schemes. The excellent long term mesgioce of the symplectic schemes is verified
numerically.
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1. Introduction. Consider the stochastic differential equations in the sefsStra-
tonovich:

d

GHO
dp; = “(P,Q) odw], P(ty)=p,
an Zl 0; Q) t (to) =p
(1.2)
OH
dQ; = 0<Pth+Z Jodw,  Q(to) =g,
whereP = (Py,...,P,)", Q = (Q1,...,Q,)T, p, ¢ aren-dimensional column vectors,
andwy, r = 1,...,d, are independent standard Wiener processes ®It,,to + T]. We

denote the solution of the stochastic Hamiltonian syster$)31.1) by

Xigw(t,w) = (PT (8, w), QF ,(t,w))"

wheret, < t < ty + T, andw is an elementary random event. It is known thatiif,

r =0,...,d, are sufficiently smooth, theX,, ,(¢,w) is a phase flow (diffeomorphism) for
almost anyw [12]. To simplify the notation, we will remove any reference e dependence
onw unless it is absolutely necessary to avoid confusion.

The equations1(1) represent an autonomous SHS. A non-autonomous SHS is given
by time-dependent Hamiltonian functiod$. (¢, P, @), r = 0,...,d. However, it can be
rewritten as an autonomous SHS by introducing new variablasd f. Indeed, if we
let df, = dt andde, = —2EPQ o gy, wheredw? := dt, with the initial condi-
tione,(ty) = —H,(to,p,q) and f,.(to) = to, 7 = 0,...,d, then the new Hamiltonian func-
tionsH,.(P,Q) = H.(f.,P,Q),r =1,...,d,andHy(P, Q) = Hoy(fo, P,Q)+eo+- - -+eq,
define an autonomous SHS with= (P7' e, ..., eq)T and@ = (Q7, fo, ..., fa)T. Hence,
in this paper we will only investigate the autonomous casgias in (1.1)
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The stochastic flowp, ) — (P, Q) of the SHS (.1) preserves the symplectic struc-
ture [16, Theorem 2.1] as follows:

(1.2) dP A dQ = dp A dg,

i.e., the sum of the oriented areas of projections of a tvmedisional surface onto the co-
ordinate plane$ép;,q;), i = 1,...,n, is invariant. Here, we consider the differential 2-form

dp Ndqg = dpy Ndgy + -+ - + dp,, A dgy,

and differentiation in 1.1) and (.2) have different meanings: inL(l), p andq are fixed
parameters and differentiation is done with respect to timehile in (1.2) differentiation

is carried out with respect to the initial dgtaq. We say that a method based on the one-
step approximatiol® = P(t + h;t,p,q), @ = Q(t + h;t,p,q) preserves the symplectic
structure L] if

dP A dQ = dp A dq.

If the approximationXy = z, Xz = (P(k),Q(k)), k = 1,2,..., of the solution
Xig o (i, w) = (Pyy p(te,w), Quy.q(tk, w)), satisfies

(1.3) |B[P(X(w))] = EIF(Xgyo(te,w))| < KB™,

for F from a sufficiently large class of functions, whege= ¢, + kh € [to, to + T, h is the
time step, and the constafit does not depend adnand#h, then we say thak;, approximate
the solutionX;, . (¢;) of (1.1) in the weak sense with a weak order of accuracjl7] .

Milstein et al. [L5, 16] introduced symplectic numerical schemes for SHSs, ang the
demonstrated the mean-square convergence and the siip@idhese symplectic methods
for long-time computations. In1[7] they also presented a weak first-order symplectic scheme
for the system.1). Several symplectic schemes with weak orders 2 or 3 areopsapfor
special types of SHS (such as SHSs with additive noise or S¥tBsseparable Hamiltoni-
ans), but it is concluded that further investigation is rezktb obtain higher-order symplectic
schemes for the general SHS 1) with multiplicative noise; see Remark 4.2 ih7. Our
work presented here makes a contribution to the open prabpgoposed by Milstein et al.
Our approach is a non-trivial extension of the methods basegenerating functions from
deterministic Hamiltonian systems8, [Chapter 4] to SHSs.

The generating function method in the stochastic case welinced in L8], and it was
applied to obtain symplectic schemes 8 10], but only the symplectic schemes with mean
square orders up t®/2 were constructed because of the requirement of high corityplex
determine the coefficients of the generating function 18} fome low-stage stochastic sym-
plectic Runge-Kutta methods with strong global order 1éamstructed. Low-rank Runge-
Kutta methods that perform well in terms of the stationastrihution function and the evo-
lution of the mean of the underlying Hamiltonian are repaiite[6]. Stochastic variational
integrators have been introduced B) 9], and it is interesting to note that the variational
integrators can be used to construct some of the sympletienses proposed i}, 16].
Weak second-order integrators preserving quadraticienvisr were constructed id] based
on modified equations.

In [7] we obtain general recursive formulas for the coefficieritthe generating func-
tions, and these results are used to develop symplectierssha the strong sense. 18][
we take advantage of the special properties of the stochdathiltonian systems preserving
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the Hamiltonian functions to propose computationally éffit symplectic schemes. In this
paper we propose a systematic approach to construct sytieebemes in the weak sense.

Similar to the deterministic case, the interest on symmesmthemes for SHSs is mo-
tivated by the fact that unlike usual numerical schemes,pdyctic integrators allow us to
simulate Hamiltonian systems on very long time intervalthwiigh accuracy. For exam-
ple, in [3] we apply an expansion of the global error to explain theécadly the better per-
formance of a weak first-order symplectic scheme proposél7) compared to the Euler
method (which is also a weak order 1 method). Here we consirweak second-order sym-
plectic scheme for the general SHE1), and we illustrate numerically that it gives more
accurate results for long-time simulations than the Rufggea weak second-order method;
see [L1, Chapter 15.1].

Preliminary results regarding the generating functionhoétfor SHS are reported in
Section2. Section3 presents the construction of the symplectic schemes. |[toBet,
we prove the convergence of the weak second-order schentesndmerical simulations
presented in Sectidhdemonstrate the excellent long-term accuracy of the pegpsshemes.

2. The generating functions. In this section, we present preliminary results regarding
the generating function method for SHE [L8]. These results will be used in SectiBrto
construct the weak symplectic schemes.

The generating functions associated with the SHS)(were rigorously introduced
in [4, Theorem 6.14] as the solutions of the associated Hamiltmobi partial differential
equations (HJ PDE); see alst?] Theorem 6.1.5]. Under appropriate conditions, we obtain
the following results T, Theorem 3.1]:

1. If SL(P,q,t) is a smooth solution of the HJ PDE written formally as

d
1) dSL=Hy(P,q+VpSh)dt+> H,(P.q+VpS.)odw;, Skli—, =0,

r=1

and there exists a stopping timg > t, a.s. such that the matriX P7q + S1)/0Pdq is a.s.
invertible forty < ¢ < 71, then the magp, ¢) — (P(t,w), Q(t,w)), to <t < 71, defined by

oS} oS}
2.2 , = P; < (P, = “ (P p=1,...
(2.2) pi z+aqi( .q), Qi q’+8Pi( .q), i=1,....n,
is the flow of the SHS1.1).

2. If S2(Q, p,t) is a smooth solution of the HJ PDE written formally as

d
(2.3) dS2=Ho(p+VqSs,Q)dt+ ZH’I‘ (p+VqS2.Q)odw], S2|i=t, =0,

r=1

and there exists a stopping time > t, a.s. such that the matriX(p” Q + S2)/9poQ is a.s.
invertible forty < ¢ < 79, then the magp, ¢) — (P(t,w), Q(t,w)), to < t < 72, defined by

0S? 0S?
2.4 i =Q; + =2 P=p + == i=1,...
( ) qi Qi + 5]?1' (p> Q)7 i =Di t+ 8@2 (pa Q)a 1 ) » 1,
is the flow of the SHS1.1).

3. 1f $3(z), = € R*", is a smooth solution of the HJ PDE written formally as

d
1 1
(2.5) dS2 = Hy(z + 5J-lvs;f;)dt +) Hy(z+ 5J—lvsj‘;) odwl, S3|i=, =0,

r=1
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where

0 I
=5 )
with I the n-dimensional identity matrix, and there exists a stoppimgts > ¢y a.s. such
that the matrixd((P + p)*(Q — q) — 252 (y + Y)/2)/0Y 0y, whereY = (P*, Q)T and

y = (p7,¢")7T, is a.s. invertible for, < t < 73, thenthe map — Y (t,w), to <t < 73,
defined by

(2.6) Y =y - JVS;((y +Y)/2),

is the flow of the SHS1(.1).

The key idea to construct high-order symplectic schemege@igerating functionsijg]
is to obtain approximations of the solutions of the HJ PRHE)( (2.3), or (2.5 and then to
derive the symplectic numerical scheme through the relat{.2), (2.4), or (2.6). As in [7]
we assume that the generating functigin( P, ¢,t), i = 1,2, 3, can be expressed locally by
the following expansion:

(2.7) SL(P,q,t) ZG Javtorts

wherea = (j1,72,---,41),Ji € {0,...,d} is amulti-index of lengthi(«) = I, and.J,, + iS
the multiple Stratonovich integral

t Sy So
_ J1 . Ji—1 Jz
(2.8) Jastot = / / / odw}} -+ odwll~! o dw]
to Jto to

For conveniencels is denoted byiw?, and we shall write/,.+, +, asJ, whenever the values
of the time indices are obvious. IT][we have derived a general formula for the coeffi-
cientsG, of the generating functiof’ , i = 1,2, 3.

First, consider the case when the multi-index= (j1, jo, ..., ;) has no repeated ele-
ments (i.€.j,, # jn if m #£n,m,n=1,...,1), and define the seét(«) to be the empty set,
R(a) =0,if I = 1,andR(a) = {(jm, jn)|m <n,m,n =1,...,1}if | > 2.

A general formula for the coefficients!, of the generating functioS!, can be obtained
by replacing the expansiof.(7) in (2.1) and is given by the following recurrence from.[ If
a=(j1),j1=0,...,d, thenGl = H; . If (o) =1 > 1, then

l(a)—1
(2.9 Gl = Z Z 0'H,, 3 0Gq, .”3031
=iy, SR kO, aq’“ o)t tan=i(@—1 Ok Ok

R(a1)U---UR(a; ) CR(a—)

wherea— = (j1,j2,...,71—1) and the arguments afé’, ¢) everywhere. For example, for
any;j =0,...,dandanyr = 1,...,d we get:

Z 0H, 0H, Z 0H, 0H,

G
( 8qk 8Pk (7 0~ 8qk aPk

3=

Hj’ (O r) T

where the arguments at&, ¢) everywhere.
The coefficients of the generating functiéf are obtained by replacingby p and P
by @ in the recurrence9). A general formula for the coefficients? of the generating
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function S3 is obtained using2(5) and is given by the following recurrenc@ [ If o = (j1),
g1 =0,...,d, thenG3 = H;,. If a = (j1,...,51-1,51)s J1,---»J1 = 0,...,dandl > 1,
then

(2.10) 1
(577 VG ks - (5T IVG ks

o)+ -+l (ai)=l(a)—1
R(a1)U-UR(a;) CR(a-)

where(J~'VG? ), is thek;-th component of the column vectdr 'VG? ,y = (™, ¢*)7,
Y = (PT,QT)7T, and the arguments afE +y) /2 everywhere. For example, in the SH]SJ()
for S3 we get

(211) G}y =H;, G} = (VHO)TJ*VHT, G(Or)ff(VHr)TJ”VHO,

foranyj =0,...,dand anyr = 1,...,d, where the arguments af¥ + y)/2 everywhere.

If the multi-indexa contains any repeated components, then we first form a neti- mul
index o’ without any duplicates by associating different subssriptthe repeating numbers
(e.g., ifa = (1,0,0,1,2,1) thena/ = (11,01,02,12,2,13)). Secondly, we apply29
and @.10 to find G}, andG2,, respectively. Finally the formulas fd¥}, and G2, are de-
rived by deleting the subscripts introduced for definingrhdti-indexa’ from the formulas
for G, andG2, and by making any eventual simplifications.

For example, folG'}, we get

(0,0,0)
1 1
G(o,o 0) = G(ol,oz,og)

_ Z 8f[03 01,02) i: l 82H03 8G%01) 8G%02) +8G%02) 8G(101)
Oqr, 0P, 2! 0q1, Oq, \ 0Py, 0P, 0Py, 0Py,

Ky ka=1
_ Z dH, 9G o ) Xn: 02H, G 0G
Oa, 0Py, 4= 0, Oqy, 0Py, 0P, '

Using

Z OHo, OH, Z 9H, OH,

1
G(o 0) G(01,02) Oqr, 0Py oqr, 3Pk

we have

Gl — zn: ( 82H0 6H0 6H0 + 8H0 8H0 82H0
oo k1,ka=1 anl agk? aPkl apkz aqkl 8Pk2 8(]k28pk1
OH, OH, 0%Hy
8qk1 8qk2 8Pk1 3Pk2

where again the arguments &R, q) everywhere. Similarly, to find the coefficie@t?r’r),
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r=0,...,d, of S3 we use 2.10 and the first equation ir2(11), and thus we have

2n 2n
0H,, 1 _ OH, 1
G?W“) = G?Tl’TZ) = Z 0 (5‘] IVGil)k = Z p) (§J 1VG§)k
(2.12) =1 Y = Oyi
_12’6( OH, OH, OH, 8HT)_0

=y (- +
24\ Oyk OYksn  OYan Oyk

where the arguments a(® + y)/2 everywhere.

3. The weak symplectic schemesln this section, we present a method to generate
symplectic numerical schemes in the weak sense for the $HES (

From (2.34) and 11, Chapter 5], we have the following relationship between Itbe
integrals

t ET] S2 ) ) )
Ll e = [ [ [ R au duddul, = L,
to Jto to
and the Stratonovich integrals, defined in 2.9): I, = J,, for l{(a) = 1 and

1
(3.1) Jo = 1y ol + Xtii=jn 1201 (0) [2%—)—} fori(a) > 2,

wherea = (j1, jo, ..., J1),Ji € {0,1,...,d}, xa denotes the indicator function of the skt
andf is any appropriate proceskl, Chapter 5].

ThUS, in 61) we getJ(O) = I(o), J(i) = I(i), J(O,O) = 1(010), J(O,i) = I(O,i)r
Ja.0) = Loy Ji0g) = 160y Jaon = Lioa Jagy = lag Jaoo) = La00),
J0,1,00 = L(0,,0)» J(0,0,6) = L(0,0,6)s J(i,5.6) = L350

1 1
Ja = Lii + 510 Jaig) = Laiq + 5l0.4)
1 1
S = LGan + 51G.0) S0 = L0 + 5100
1 1
(3.2) Joi0) = Lo + 5100 Teii) = Lain + 5 (Toa +16.0)

1 1
Teii) = Taigg + 5055 + 16i0) + 7100

1 1
Tiii) = Laiia) + 5 T0a0) + 1600 + 1660) + 10,0,

forany: # j,4,5=1,...,d.

To obtain a weak first-order scheme, %) we replace the Stratonovich integrals by It
integrals according td3(1), and we truncate the series to include ondyifttegrals with multi-
indicesa with I(«) < 1. UsingJ(,y = I(;y, 7 = 0,...,d, and the first equation ir8(2), we
get the following approximations for the generating fuoos;, i = 1,2, 3:

d d
S (Gw) +32 G(k,k)> Iy + 2 Gl law:
k=1 k=1

where the arguments até, q) if i = 1, (p,Q) if i = 2, or (Y +y)/2if i = 3. If his
the time step, therl, = h and for a scheme of weak order 1 we can replace the Gaussian
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increments/ () by the two-point distributed mutually independent randaamablesy/hg,
with P(¢, = +1) =1/2,k=1,...,d; see L1, Chapter 14.1].

REMARK 3.1. The symplectic weak order 1 scheme witk- 8 = 1 presented in]7] is
obtained if we replacé’, in (2.2) by the previous approximation. Since froth12) we know
that Gf’k’k) =0,k =0,...,d, we can obtain the symplectic weak order 1 schemée. i [
with o = 8 = 1/2 using the previous approximation 6 and @.6).

3.1. The symplectic weak second-order schemeSimilarly, to obtain a weak second-
order scheme, we replace the Stratonovich integfals (2.7) by 1t integrals usingd.1),
and we truncate the series to include onfyititegrals corresponding to multi-indicassuch
thati(«) < 2. Thus, from 8.2) we can easily verify the following approximations for the
generating functions? , i = 1,2, 3:

d

d

+ G(00)+ ZkaOﬁG(Okk) Z Gk | Lo0)
k, 1
(3.3) .

d d
2| Glow + 52 Clam | Low + | Gleoy + 5 2 CGlas | Livo)
= =1 j=1

d

+ > Glwlom,
g k=1

where the arguments a(, q), (p,Q), or (Y + y)/2 if i = 1,2,3, respectively. For a
scheme of weak order 2, we can simulate tlgesitochastic integrals ir3(3) as described
in [11, Chapter 14.2] and thus get the approximations

d d
Qi 7 1 7 7
Si =h (G(O) +3 > G(M)> +Y Gy Vi
k=1 k=1
2 1</ , 1<
7 7 3 7
+5 | Cloo +3 2 (Gwm + G(o,k,k>)+4 > Gk

k=1 k,j=1
(3.4)
h3/2

1 4
kZCk G(Ok: +G(k0 +221( k.j.3) +GEJ}J’J€))
1 j=

ho
+5 D Glm (GG + G,

j,k=1

wherel is the time step and the arguments éfeq), (p,Q), or (Y +y)/2if i = 1,2,3,
respectively. Her&y, (i for j,k = 1,...,d are mutually independent random variables
with the following discrete distributions

(3.5) PG=+Vh) =g, PG=0)=12
and(hm = —].,jl = ]., .. .,d,

1 . . .
(36) P(le,jz 211)253]2:1»-“3]1717 le,jz :7Cj2,j1732:‘71+1a"'7d'
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ReplacingS} by S! in (2.2, we get the scheme corresponding to the following one-step
approximation:

oGl 1L 0Gh, d_pG1
5 _ . )\ (k)
P =p; h( +2§ B » B Vhee
k=1

h? aG%o,o) 1< 8G%k k,0) 9G|, (0,k,k) aG%k k.j.5)
2( 9qi +§Z 9q; * 9qi 42

k=1 k,j=1
3.7 d 1 al d 1
B3 36 Cow , o lz G 55) L %CGam
2 94 9q; 2 9q; 04
k=1 Jj=1
d 1
h <~ %G00
—3 Z 34 (GiCk + Cik)s
7,k=1
801 1 <L oGt 4 0G}
A (k,k) (k)
i=¢q +h ~—\h
2 q+( +2;az IR
n2 [ 0G 1o,o) 1< (k k,0) 8G 0.k k) (k Fuiod)
5 ( 5 ; 3 Z
(3.8) d 1 1 d 1 1
. B3/2 Z@ 8G(97k OG(M N 1 Z 8G(k”) 8G(H I
2 opP; P 2 & OP;
k=1 Jj=1
d 1
h oG
5 2 o GG+ G,
k=1
wherei = 1,...,n, the arguments aréP,q), and the random variables;, ¢;
for j,k = 1,...,d are mutually independent and are independently generateath time

step according to the distributions given 519)—(3.6).

The one-step approximatio.{7)—(3.8) corresponds to an implicit scheme. In Section
we will prove that it is well-defined and of weak order 2, bustiwe show the following
result.

LeEmmA 3.2. For the SHY1.1), the scheme corresponding to the one-step approxima-
tion (3.7)—(3.8) is symplectic.

Proof. The scheme is symplectic if it preserves the symplecticctire, i.e., if we have
P AQ = dp A dq[16]. This can be proved by adapting the proof of Theorem 3.115). [
Notice that we have

_ oSt _ 851
. D =p, — =2(P ; p
(3.9) =P g, (P,q), Qi= + b, = (P, q),

whereS! is given in 3.4). Using the second equation i8.g), we get

5, n 8251
PAQ= ZdP/\sz de/\(dql"'Zapap J+Z(9P3 )

i=1 =1

(3.10) de A dg; +§n:§n: aa;g dP; A dg;.

i=1 j=1
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Here, we us@P; A dP; = —dP; AdP;,i,7 = 1,...,n. From the first equation ir8(9), we
have

_ Ry o
dP; =dp; — ) ——5dP;— ) ——=dgj,
jz:: ﬁqian J =1 8qi8qj J

n 825'&)

o) replacin@jj:1 5005
]

dP; in (3.10 and using agaidg; A dg; = —dg; A dg;, we get

PAQ:dei/\dqi:dp/\dq. a
i=1

Analogously, using the approximatidgi? of S2 in (2.4) or replacingS? by S2 in (2.6),
we can obtain two more schemes of weak order 2 for the SHI$ (Notice that the proof of
Lemma3.2can be adapted in an obvious way to show that these schemsmapéectic.

We can extend the method used to construct symplectic westk dind second-order
schemes for the derivation of symplectic schemes of weag&rondin a similar way, by re-
placing the Stratonovich integrals i2.7) by Itd integrals using3.1) and keeping the &
integralsI,, with /(o)) < m. However, form > 2 the schemes become too complex and re-
quire extensive simulations. The error due to these MortdeGimulations could overcome
the advantage of using a weak higher-order scheme.

4. Convergence study.In this section, we study the convergence of the symplectic
weak second-order numerical schemes proposed in the pees@xtion for the SHSL(D).
We will illustrate the idea of the proof for the scheme of wealler 2 corresponding to the
one-step approximatior8(7)—(3.8). This scheme is based on the approximati@#d)(of S?,
but the same approach can be followed for the symplecticnsebebtained using the ap-
proximationS?2 of S2 in (2.4), or replacingS? by S3 in (2.6).

For any functionsF' defined onR?" and any multi-indexa = (aq, ..., as,), with
a; =0,1,...,i=1,...,2n, with length|a| = a3 + - -+ , +9,, letd, F denote the partial
derivative of ordefa|:

ol
30‘111 e aa2n1'2n ’

As in [17], we define the clas& to consist of the functiong on R?" for which there exist
constantds > 0 andy > 0 such that

[F()] < K1+ [lz]),

for anyz € R*", where|| - || is the Euclidean norm. We assume that the funcfioim (1.3)
together with its partial derivatives up to order 6 belonghe classF. We also suppose
that the functionsd,, r = 0,. .., d, are smooth enough such that their partial derivatives of
order 1 up to order 7 are bounded. Consequently/, € F with y = 1, for any multi-
index« with |o| = 1,...,7, andr = 0,...,d, and we have the following global Lipschitz
condition: there exists a constaht> 0 such that for anyP", Q") (pT,¢")T € R?*",

o =1,...,6,andr =0,...,d, we have

(4.1) |00 H, (P, Q) — 0o H,(p,q)| < L(|P —pll + [|Q — qll)-

_ For the one-step approximatio.()—(3.8) and any; = 1,. .., 2n, we use the notation
Ai=X;—xi,i=1,...,2n,whereX = (PT,QT)T, 2z = (pT,¢")T.
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LEMMA 4.1. There exist constant&, > 0 and hg > 0, such that for anys < hy,
x = (pT,¢")7T B € R?", the system formed K.7) for i = 1,...,n has a unique solution
P= (Pl,...,P) which satisfies

(4.2) Al < K1+ ||z])Vh, i=1,...,n.

Proof. The lemma can easily be proven similarly as Lemma 2.4%hysing the contrac-
tion principle, the global Lipschitz conditiod (1), the boundedness of the partial derivatives
of H.,r = 0,...,d, of orders 1 to 7, and the fact that at each time step the random v
ables(;, ¢, i, satisfy|(,| < V3, [¢rkl < 1,7,k =1,...,d. The solution can be found by the
method of simple iteration witk = (p”', ¢7)7" as the initial approximation. 0

REMARK 4.2. Substituting the solutio® = (P, ..., P,)T in the explicit system of
equations §.8) with « = 1,...,n and using again the global Lipschitz conditich1) and
the boundedness assumptions, we show that there exisaotsst > 0 andhy > 0 such
that for anyh < hg, = = (p*,¢q")T € R?", the systemJ.7)—(3.8) has a unique solution
X = (PT,QT)T € R?>" which sat|sf|es the inequality

IX — 2| < K (1 + |l2[) V.

Thus the scheme corresponding to the one-step approxim@&tig—(3.8) is well-defined.

To prove the convergence with weak order 2, we use the gemesallt stated
in [17, Theorem 4.1]; see alsd4, Theorem 9.1]. The idea of the proof is to compare the
scheme corresponding to the one-step approximafof(3.8) with the Taylor scheme of
weak order 2; cf. 11, Chapter 14.2]. To simplify notation, let us denotefet 1,...n

£(PQ) = -5 (P.G)
1 d n 82H oH, 82H
JrZ;JZl(@QJ )8P8Q1(P Q)*TP],(P Q)anan(P Q)>
OH,
gi(P,Q) = P, %(P,Q)
1L & 02H, oL .
+§;; 8QJ(PQ)3P8P (PQ)+ op, (PQ)apaQJ(PQ)>
OH, OH,
U,T(P7Q):78Ql (P7Q)a rYlT‘(P,Q) aP (P Q) TZI,’d

Using It stochastic integration, we rewrite the SHSIJ as

d
(43) AP = f(P,Q)dt + Y 0in(P,Q)duy}, P(to) = p,
r=1
d
r=1

The Taylor scheme with weak order 2 (cl.1] Chapter 14.2]) for the @t system 4.3)—(4.4)
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corresponds to the following one-step approximation:

3/2
P' =p;+hfi+ hl/QZCTUM + e LO(fz i ZCT‘ Lo Uzr) + L, (fz))

(4.5) . =
h
+ 5 Z Lr Uzk C'I‘Ck: +Cr,k)a
rk=1
- 1/2 h? h3/2
Qi = qi + hgi + b/ ZQ«%+3L0(92) ZQ Lo(vir) + Ly (1))
r=1 r=1
(4.6) L
+ 5 Z Lr(%k)(Cer + an)v
rk=1
where the arguments afg, ¢) everywhere, and the operatats andL,,r = 1,...,d, are
given by
n a
L
d n n
1 02 0? 0?
+ B} ; ; jz::l (O'irgjr 78Pipj + YirVjr 78Qin + 2074y 8Pin> ,
S (o
- Pt r 8Pl Yir an .
The mutually independent random variabigsand(,. ,, 7,k = 1, ..., d, are generated inde-
pendently at each time step according to the dlscretehmmmns glven in8.5) and 3.6).
Fori =1,...,2n, letA; = X; — z;, whereX = (PT,.QTT, 2 = (p”,¢")7, and

A= Xi(t+ h) — x;, whereX (t + h) = (P (t + h), QF ,(t + h))T is the solution of the
system {.1) and X (¢) = . Then from [L4, Chapter 8] we know that

4.7) ’E(ﬁA HA )’<F0 Y3, s=1,...,5,
j=1

wherei; =1,...,2n, andf, € F.
We definep by
pi=XI—Xi=N —N, j=1,...2n.

7

LEMMA 4.3. There existd(; € F,l = 1,...,4 such that for any, j,k = 1,...,2n, we
have

(4.8) lp;| < K1(z)h®/2,
(4.9) |E(p;AiAg)| < Ka(x)h?,
(4.10) |E(piAi)| < Ka(a)h?,

(4.11) Eo)| = |E (&) = A;) | < Ka(o)n®
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Proof. Expanding the terms on the right-hand side37(—(3.8) aroundr = (p”, ¢*)7,
we get

_ 409G, 0?Gt _
Pi—pi=—) — fck—chkZAja a(l’jjpwi,k(P—p),q)
iy 94 -
el aG! B2 [ 9G!
_ (0 (k k) s (0,0)
h( P Z 5 L4 ) 2( 9q, 09
d 1 d 1
1 G (11.0) , 5 OGlonk) , 5 1 G ki) 5
- T kk0) (B ZOkR (B - T kkii) (p
# o (Tpar P+ e 7q>)+4k21 LL2D ()
= )=
B3/ & G ior) - 0G,,. 0 1 < (k) [ 5
G R (P g)+ —ED(p gy 4 2 23) (P,
5 kZ:l Co < 34 (P,q) 90 5 ; 9a. q)

1
G.dh) h m
+ 94, )) §J;1 B0, @) (CiCk + Gk

_ d aG
Qz‘—(hzz 8p () VA +Z\FQ€ZA i op, (P+ Oitnk(P =), q))

k=1 o
+i;(%@,mf’“g)];m@,@)gk;lfw@,q))
+h32/2§:;<k<3<;%k> (P,q)+a?]§l°> +;é<aagkm B
" %@vq)))% 4: 18?;%3 DG+ G,

frm

where0 < 0, < 1,i=1,....2n,k=1,...,d.
Using @.2) and the fact thai¢,| < V3, [¢re] < 1,7k = 1,...,d, and the partial
derivatives ofH,, r = 0,...,d of order 1 up to order 7 are bounded, we show that there

exists a positive constarf, such that forany = 1,...,2n,
(4.12) Ai=Ni1(z)+ Rian(Pq), |Ri1(P,q) < Ko(1+ [lz])h,
where, fori = 1,...,n, we have

A % 2)Vh A ’ aG%k) N
4.13 AV Aiin = hp.
(4.13) ,; Sa @V Aina (@) ; ML

Increasing the order of the deterministic Taylor expansiaroundr = (p”,¢?7)7 in
equations 3.7)—(3.8) and using additionally4.12), we show that there exists, € F such
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M\W

thatforanyi = 1,...,2n,we haved; = A, »(z)+ R 2(P, q), with |R; 2 (P, q)| < Fa(z)h2.
Here, fori = 1,...,n, we have

d 1 n 1 d 1
e oG oG
_pl2 Z YA () <o> Z 0]
< ( 7! 0q;0p; i

J=1
hd
52
j3,k=1
d

1

8 CjCk + k)
" - 0%G 9G
A, (k) +h Z (k k)
OpiOp; 3171 Op;
d

h 1
+3 > 2 “ (G + G-
jk=1

’L

’LJrTL 2 = hl/

The arguments are = (p”, ¢*)T everywhere.
Replacing the formulas for the coefficier®, according to 2.9) and using 8.6) and
(4.13, after simple but tedious calculations, we have the falhgaesult fori = 1,. .. n,

ZQ—hf +h1/2Z<rUzr+ Z L Uzk Cr<k+<rk)

Tkl

_ h
Ai+n72 = hg; + h1/2 Z CrYir + 5 Z LT('Vik)(C’er + Cr,k)~

r=1 rk=1

Comparing with 4.5—(4.6) we get the inequality4.8).
Similarly, by successively increasing the order of the dagxpansions in3.7)—(3.9),
we have

— — — j41

A, =A;j(x) + R, ;(P,q), \R”(P 9| < Fj(z )hia 1=1,...,2n,

whereF; € F, j = 3,4,5. Forj = 3,4,5 the calculations required to obtain the exact
formulas forA; ;,i = 1,...,2n, are obvious but lengthy, and they were done using MAPLE
software. Sincey, (..., are mutually independent, and we ha!ﬂ(ag,’c) = 0 for any odd
powerl, E(¢l,,) =0,k,r,m =1,...,d,r # m, from the formulas fol\; 5, A; 4 andA, s,
1 =1,...,2n, we obtain the inequalitiegt(9), (4.10, and @.11), respectively. d
THEOREM 4.4. The implicit method corresponding to the one-step appratim
on (3.7)—3.8) for the systenfl.1) is symplectic and of weak order 2.
Proof. From Lemmas3.2and4.1, it is clear that the scheme is well-defined and sym-
plectic. To prove the convergence with weak order 2, we yerdnditions (2) and (4)
in [17, Theorem 4.1] (or 14, Theorem 9.1]).
Firstly we prove that there exisfs; € F such that

(4.14) ‘E(HA HA >’<K5 2)h3, s=1,...,5.
j=1

Fors = 1, from (4.11), there existd{, € F such that forany = 1,...,2n, we have

|E(A; — A)| = |E(pi)| < Ka(a)h®.
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Fors =2,...,5, we can write

(4.15) ’E(HAij—HAij)‘ ’ <H (A, +piy) — H ) =1,....2n.
Jj=1 Jj=1 j=1 j=1

Hence fors = 2 and anyiq,i5 = 1,...,2n we have

2

2
’E(H Az] H )‘< ‘E lei2)‘+|E(Ai2pi1)‘+E|pi1pi2‘7
j=1

so (4.8) and @.10 imply (4.14).

Fors = 3,4,5, from (4.15 the dif'ference]_[j:1 Ai]. — H;:1 A;, consists of the terms
including either a produqtl-j&k A; ,ora producl;, - - - p;,, with at least two factors, or a
productp;, (A, -+ A;,) with at least four factors. For the first type and fromd, there
existsK, € F such that

(4.16) [E(pi; Ai, A, < Ka(x)h®.
For the second type and from.@), there exist¥, ; € F such that
(4.17) \E(pi, - pir)| < Elpi; -+ pi| < Kaa()h?.

For the third type and applying the Cauchy—Schwarz inetyuaing @.2) and @.9), there
existsK, » € F such that

(418)  |B(pi, (Biy -+ Ai, )| </ B(p2 )E(AE, - A2 ) < Kya(a)h?.

The inequalities4.16—(4.18 imply that @.14) is true also fors = 3,4,5. Using @.14) and
(4.7) we can easily show that there existe F such that

'E<HA HA%)‘g k(z)h®, s=1,...,5, i;=1,...,2n,
j=1 j=1

and condition (2) in17, Theorem 4.1] is satisfied.

To conclude the proof, we have to show that for a sufficierghgé numbern, the mo-
mentsE(|| X (k)||*™) exist and are uniformly bounded with respectaandk = 0, ..., N,
whereh = T'/N (see condition (4) inT4, Theorem 9.1]). Since at each time stepe have
E(¢)=0,r=1,...,d,from@.12 and @.13, foranyi = 1,...,2n, we have

[E(Ai)| = |E(Ri1(P,q))] < Ko(1+ ||z[)h.

This inequality and 4.2) ensure the existence and uniform boundedness of the mement
E(|| X (k)||>™); see 14, Lemma9.1]. O

Analogously, we can prove a similar result for the midporiteame constructed by re-
placingS2 by S3 in (2.6).

5. Numerical tests. To validate the performance of the proposed symplecticraelse
we present numerical simulations in this section. Firstcaesider a non-linear SHS with
additive noise. Then we investigate two systems with miidégive noise: a linear case for
the Kubo oscillator and a non-linear model for synchrotreailtations. Since we work with
schemes in the weak sense, we only need to simulate unifaistlyouted random numbers
for the Monte Carlo simulations. In all computations, we @868 000 samples to calculate
the expectations (unless we specify otherwise).
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5.1. A non-linear model with additive noise. We consider the SHS with additive noise
given by the following equations:

dP = (Q — Q®)dt + edwy,
dQ = Pdt,

wheree is a constant. Notice that thedland the Stratonovich formulations are the same for
this model with additive noise, and we have the separableilttanian functions
Q4 Q2 PQ

Hy(P,Q) = = = -+ 5 =U(Q+V(P), Hi(P,Q)=-eQ.

This is also referred to as the Double Well problem, and itgsduin p] to illustrate the
accuracy of some low-rank Runge-Kutta methods to estinhatexpectation of the Hamilto-
nian Hy. Notice that we haveq|

(5.1)

(5.2) E(Ho(Po,p(T), Qo,q(T))) = Ho(p, q) + %T.

Here, we estimat&( Hy(T')) using the weak second-order schemes basett andS?.
From the general formul&(9), the coefficients., of S are given by:

p? 1 1 3
DR G(1) = —¢q, G(o,o) = P(q¢” — q),

Gloy) = —¢P, Glony) =€,

4 2
1 _ 4 q

where the arguments af@, q) everywhere. Similarly, by4.10, we get the following coef-
ficientsG3 of S2:

I

v 3 3 3 €p
+ 9 G(1)(Pa¢]) = —¢q, G(1,0) (p,q) = —G(()’l)(p, Q) =~

Gy (pa) = & -
(O 4 2’

62

G?l,l,o) (p,q) = G?o,1,1)(p, q) = 1

All other G¢, i = 1,3 included in the weak second-order symplectic schemes ace ze
and the weak first- and second-order symplectic schemesl loaws§’ are explicit for the
SHS 6.1).

To compare with the results reported B],[we consider the same values of the param-
eters, namely the noise term= 0.5, the initial values ar@ = ¢ = /2, and the number of
simulations isM = 50000. In Figure5.1 we plot the values oFE(Hy(Fp (1), Qo,q4(%)))
for t € [0,60] obtained using the weak second-order symplectic schenssdbanS?
with ¢ = 1,3. These approximations are in excellent agreement withxhetevalues given
in (5.2) and are visually similar with the ones displayed in Figuria P6]. To illustrate the
accuracy of the symplectic methods, we have also included/éiues obtained using the
Runge-Kutta method of weak order 2; s&é,[Chapter 15.1]. In€] the time step is: = 0.1,
but since the Runge-Kutta method of weak order 2 is not cgaverforh = 0.1, for all the
simulations presented in FiguEel, we conside, = 0.05. We notice that, in addition to
requiring a smaller time step for convergence, the non-$gctip method is less accurate for
long-term simulations than the symplectic methods.

We also carry out a Monte Carlo simulation for the weak seeanalr symplectic scheme
based orS], (given by the one-step approximatio® )—(3.8)), and we estimat@5% confi-
dence intervals foE (Hy (P ,(T'), Qo,q(T))) as

T p,q T
(5.3) Ho, o(T) + 1.968\/%),
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FIG. 5.1. Expected value affy.

where) is the number of independent realizations in the Monte Ganulations Hy,, , (1))

is the sample average, ang (7)) is the sample standard deviation; see alsg, [For-
mula 7.7]. In addition to the weak scheme error, we also hiageMonte Carlo error, but
the margin of error in the confidence intervats3 reflects the Monte Carlo error only.
The results in Tablé.1 are in good agreement with the exact value obtained fror),(
namelyE(Ho (P, 5(40), Q@ 3(40))) = 6.

TABLE 5.1

Estimation of £(Ho(F, ,5(40), Q, ./3(40))) by the weak second-order symplectic scheme based on the
one-step approximatiof8.7)—(3.9). '

h M Hy3.5(40)  95% confidence interval
0.1 5-10° 6.1431 6.122 10 6.164
0.05 5-10° 6.0256 6.005 to 6.046
0.01 5-10° 6.0036 5.983 t0 6.023
0.01 4-108 5.9990 5.991 to 6.006

5.2. Kubo oscillator. In [15] the Kubo oscillator based on the following SDEs in the
sense of Stratonovich is used to demonstrate the advantaging a stochastic symplectic
scheme for long-time computations:

(5.9) dP = —aQdt — 0@ o dwy, P(0) = po,
' dQ = aPdt + o P o dwy, Q(0) = qo,

wherea ando are constants.

Here, we consider four stochastic symplectic schemes iwtek sense, namely the
weak first- and second-order schemes basef'oandS2. The coefficientsr), of S, for the
system §.4) are given by (see the general formutad)):

a o
Gloy = §(P2 +¢°), Gh= §(P2 +4¢*), Glog =0a°Pq, G, =0"Pq,
G%Lo) = G%O,l) = aoPq, G%o,o,o) = GS(Pz + qz)’ G%l,l,l) = US(P2 +q2),
G%m,o) = G%Lo,l) = G%o,m) = aUQ(Pz + q2), G%1,1,1,1) = 504Pq,

where the arguments af&, ) everywhere. The symplectic schemes of various weak orders
are obtained by truncating the generating functigrappropriately.
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For S, in the general formula(10), we getGy, = 0 whenla| = 2 andG{, | | ;) = 0.

Therefore,

a
Gloy(p,a) = 50" + ),
G3 _ﬁ 2 2
(0,0,0)P: @) = 1 (r*+q°),

G?1,1,0) (p,q) = G?1,0,1)(P7 q)

G?1,1,1)(paQ) =

Gty(pa) =

G?o,1,1)(P7 Q> =

4

P* +4°).

It is well-known [L5] that the Hamiltonian function&ly (P (t), Q(t)) = a(P(t)? + Q(t)?)/2

andH; (P(t),Q(t)) = o(P(t)?>+Q(t)?)/2 are preserved under the phase flow of the system.
Therefore, the expected value Bft)? + Q(¢)? is also invariant with respect to time and we

have

(5.5)

o2T

E(Pop(T)

a2T

e~ = (cos (aT)p — sin (aT)q),

E(Qo,q(T)=e" = (sin(aT)p+ cos (aT')q).

101

—11 b+

—-12

o first order Si) weak scheme

[=] second order Si) weak scheme

first order reference line

= = = second order reference line

—8.5

-7
10g,,(h)

-5.5

FiG. 5.2.Convergence rate of different ord8f, symplectic weak scheme.

Iogz(Error)
|
(o]
T

-11

O  first order Si) weak scheme

o second order Si weak scheme

first order reference line
= = = second order reference line

I
-4.5

log,(h)

FiG. 5.3.Convergence rate of different ord8f, symplectic weak scheme.

The convergence rates of various symplectic weak scheragsvastigated numerically
by comparing the estimations of the expected values of thiisos to the exact values ).
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The results presented in Figuse? and Figures.3 confirm the expected convergence rates of
the proposed symplectic schemes. The error is defined asffinedce between the estima-
tion of the expected value of the numerical solution and #aeevalue .5 atT = 10. The
values of the parameters are= 2, o = 0.2, the initial values ar@ = 1, ¢ = 0, and the time
step ish = 27°.

A study of the computing time required for the symplecticestles compared to Tay-
lor non-symplectic schemes of the same weak order is pedent[2]. For this system
preserving the Hamiltonian functions, the symplectic sobg of weak order 2 require less
computing time than thedtTaylor scheme of weak order 2 corresponding to the ore-ste
approximation 4.5—(4.6).

5.3. Synchrotron oscillations. The mathematical model for the oscillations of the par-
ticles in storage ringslf is given by:

(5.6) dP = —/3%sin Qdt — o4 COSQOdwtl —agsinQOdwf,
' dQ = Pdt.
Notice thatHy (P, Q) = —B%cosQ + P?/2 = U(Q) + V(P), H1(Q) = oysinQ, and
Hy(Q) = —ogcos@. Thus 6.6) is a SHS with separable Hamiltonians and the explicit
symplectic schemes i, Section 4.2] can be applied.
From the general formul2(9), we obtain the following formulas for the coefficierts,
of S1,

p? )
G%o) = o /82 Ccos ¢, G%l) = 018114, Gé) = —09C0S (,
G(lO,O) = ﬂQPsiIlq, G%O,l) = 01 P cosgq, G%O,Q) = 09 Psing,
G%U,l,l) = o} cos’q, 0%0,272) = 0Zsin’ ¢,

where the arguments a(&, ¢) everywhere. All othet7}, included in the weak second-order
symplectic scheme based on the one-step approximai@)-(3.8) are zero, and the weak
first- and second-order symplectic schemes basef.care explicit for the SHSH.6).

The mean energy of the system§) is defined a(e(p, ¢)), where [L7]

e(p,q) = p*/2 — % cos(q).
If 01 = 02, we have L7]
0,2
(5.7) B(e(Pop(T), Qoq(T))) = e(p,a) + 5 T

To investigate the accuracy of the proposed symplecticrseken the weak sense, we
carry out a Monte Carlo simulation and estimate 95% confidence intervals for

E(e(Pop(T), Qo.q(T)))

as

T
Gopg(T) £ 1.96780’]”’%[ )7

where) is the number of independent realizations in the Monte Gantwilationsgg ,, 4 (T)
is the sample average, asgl, ,(7") is the sample standard deviation.
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TABLE 5.2
Estimation ofE (e(Fo,1(200), Qo,0(200))) by the weak second-order symplectic scheme based on the one-
step approximatioi(3.7)—(3.9).

h M €0,1,0(200) 95% confidence interval
0.05 10° -6.609 -6.665 to -6.552
0.025 10° -6.544 -6.601 to -6.488
0.01 10° -6.497 -6.553t0 -6.44
0.01 4106 -6.502 -6.511 to -6.493

The experiments presented in TaBl demonstrate that the weak second-order sym-
plectic scheme based on the one-step approximasioh(3.8) has a similar accuracy com-
pared to the explicit symplectic schemes (7.3) and (7.5)@sed by Milstein and Tretyakov;
see [L7, Table 1]. The values of the parameters used in the sima&toes; = o2 = 0.3,

B = 4, the initial values ar@ = 1, ¢ = 0, andT = 200. The sample averages ; o(200)
displayed in Tablé.2 corresponding to various time stepsand number of realization/
are good estimations of the exact solutifife(Fp 1(200), Qo,0(200))) = —6.5 obtained
from (5.7). This confirms the excellent performance for a long-termusation of the weak
second-order symplectic scheme based on the one-stepxapption (3.7)—(3.9).

6. Conclusions. In this paper, we present an approach based on the genefaticg
tion method to construct symplectic schemes in the weakeseRise derived weak order 1
schemes are the same as the ones proposed by Milstein agdKbein [L7]. However, it
should be noted that a different approach is presenteti/ingnd no detail is provided how
the approach can be extended to construct symplectic scbiemweak ordersn > 1 for gen-
eral SHSs. To our knowledge, this may be the first paper tceptedbhe weak second-order
symplectic schemes which can be applied to general SHSs.

For the symplectic weak order 2 schemes, we present a ceneggtudy and we val-
idate their accuracy by numerical simulations for threéedént stochastic Hamiltonian sys-
tems. Itis known that there are effective explicit methodseak order 2 for general stochas-
tic differential equations]1, Chapters 14, 15], but these methods are not symplectic.-Com
pared to the methods based on Taylor expansion, the propgsgilectic weak second-order
methods are implicit, but they are comparable in terms ohtimaber and the complexity of
the multiple 16 stochastic integrals or the derivatives of the Hamiltorianctions required.
Moreover, since we can use bounded discrete random vasitdEmulate the multiple dt
stochastic integrals for the weak schemes, the derived welaémes are well defined and
they are also computationally efficient.

REFERENCES

[1] A. ABDULLE, D. COHEN, G. VILMART, AND K. C. ZYGALAKIS, High weak order methods for stochastic
differential equations based on modified equatj@i&M J. Sci. Comput., 34 (2012), pp. A1800-A1823.

[2] C. ANTON, Y. WONG, AND J. DENG, Symplectic schemes for stochastic Hamiltonian systenseviag
Hamiltonian functionsint. J. Numer. Anal. Model., 11 (2014), pp. 427-451.

, On global error of symplectic schemes for stochastic Hami#in systemsint. J. Numer. Anal.
Model. Ser. B, 4 (2013), pp. 80-93.

[4] J.-M. BismuT, Méchanique Adatoire Springer, Berlin, 1981.

[5] N. Bou-RABEE AND H. OwHADI, Stochastic variational integratordMA J. Numer. Anal., 29 (2009),
pp. 421-443.

[6] K. BURRAGE AND P. M. BURRAGE, Low rank Runge-Kutta methods, symplecticity and stoahatgtimilto-
nian problems with additive noisd. Comput. Appl. Math., 236 (2012), pp. 3920-3930.

(3]




ETNA
Kent State University
http://etna.math.kent.edu

20 C. ANTON, J. DENG, AND Y. S. WONG

[7] J. DENG, C. ANTON, AND Y. WONG, High-order symplectic schemes for stochastic Hamiltorggstems
Commun. Comput. Phys., 16 (2014), pp. 169-200.
[8] E.HAIRER, C. LuBICH, AND G. WANNER, Geometric Numerical Integratiorspringer, Heidelberg, 2006.
[9] J. HoNG, L. WANG, AND R. SCHERER Simulation of stochastic Hamiltonian systems via geneggfiinc-
tions in Proceedings of the 4th IEEE Intern. Conf. on Computerr&seand Information Technology,
ICCSIT 2011, IEEE Conference Proceedings, Los Alamitos12pf. 523-528.
, Symplectic numerical methods for a linear stochastic oit with two additive noisesn Proceed-
ings of the World Congress on Engineering vol. 1, S. I. Ao, Elr@an, D. W. L. Hukins, A. Hunter, and
A. M. Korsunsky, eds., Newswood Limited, London, 2011, pp-23
[11] P. KLOEDEN AND E. PLATEN, Numerical Solutions of Stochastic Differential Equatio8gringer, Berlin,
1992.
[12] H. KuNITA, Stochastic Flows and Stochastic Differential EquatjoBsmbridge University Press, Cam-
bridge, 1990.
[13] Q. MA, D. DING, AND X. DING, Symplectic conditions and stochastic generating funstioinstochastic
Runge-Kutta methods for stochastic Hamiltonian systertts multiplicative noiseAppl. Math. Com-
put., 219 (2012), pp. 635—-643.
[14] G. N. MiLsTEIN, Numerical Integration of Stochastic Differential Equat®Kluwer Dordrecht, 1995.
[15] G. N. MILSTEIN, Y. M. REPIN, AND M. V. TRETYAKOV, Numerical methods for stochastic systems pre-
serving symplectic structur&IAM J. Numer. Anal., 40 (2002), pp. 1583-1604.
[16] ———, Symplectic integration of Hamiltonian systems with additioise SIAM J. Numer. Anal., 39 (2002),
pp. 2066-2088.
[17] G. N. MILSTEIN AND M. V. TRETYAKOV, Quasi-symplectic methods for Langevin-type equafitvia J.
Numer. Anal., 23 (2003), pp. 593—-626.
[18] L. WANG, Variational Integrators and Generating Functions for Stastic Hamiltonian SystemBhD. The-
sis, IANM, University of Karlsruhe, KIT Scientific Publishg, University of Karlsruhe, Germany, 2007.
[19] L. WANG, J. HONG, R. SCHERER AND F. BAl, Dynamics and variational integrators of stochastic Hamil-
tonian systemdnt. J. Numer. Anal. Model., 6 (2009), pp. 586-602.

(20]




