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COMPUTING APPROXIMATE (BLOCK) RATIONAL KRYLOV SUBSPACES
WITHOUT EXPLICIT INVERSION WITH EXTENSIONS TO SYMMETRIC
MATRICES *

THOMAS MACHT, MIROSLAV S. PRANKCE, AND RAF VANDEBRIL t

Abstract. It has been shown that approximate extended Krylov subspsssede computed, under certain
assumptions, without any explicit inversion or system salvinstead, the vectors spanning the extended Krylov
space are retrieved in an implicit way, via unitary similatignsformations, from an enlarged Krylov subspace. In
this paper this approach is generalized to rational Krylavspaces, which aside from poles at infinity and zero,
also contain finite non-zero poles. Furthermore, the algmidtare generalized to deal with block rational Krylov
subspaces and techniques to exploit the symmetry when wowkthgHermitian matrices are also presented. For
each variant of the algorithm numerical experiments illustthe power of the new approach. The experiments
involve matrix functions, Ritz-value computations, and tbligons of matrix equations.
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1. Introduction. In [17] we presented a method for computing approximate extended
Krylov subspaces generated by a mattixand vectorw. This approach generates the vectors
A~Fky, spanning the Krylov subspace, in an implicit way withoug arplicit inversion:A—!
or system solveA~'v. We showed that for several applications the approximationides
satisfying results. Here we generalize this algorithm tiorel (block) Krylov subspaces, and
we will show how to use and preserve symmetry when dealinly syimmetric or Hermitian
matrices.

Let A € C"*™ andv € C". The subspace
(1.12) K (A, v) = span {v, Av, A%v, ... ,Amflv}

is called aKrylov subspace Krylov subspaces are frequently used in various appdoati
typically having large datasets to be analyzed, e.g., fbrirep symmetric sparse indefi-
nite systemsZQ], large unsymmetric system&4], or Lyapunov equationslfl]. Rational
Krylov subspaces were introduced by Ruhe 2d][ investigated later ing2, 23, 24], and
they have been used to solve matrix equations, for instanctiye context of model or-
der reduction; see, e.g1,[3,5, 7, 9] or more recently for bilinear control system3.[ Let
o=|o1,09,...,0m-1], Witho; € (CU{o0}) \ A(A), whereA(A) is the set of eigenvalues
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of A. Then

m—1

KA, 0,0) = gm-1(A) " Km(A,0), With gm_1(2) = [] (z=0;)
=1
a_jﬁéoo
is called arational Krylov subspacelf we set all finite shifts of amn, + m, — 1 dimensional
rational Krylov subspace t, then the subspace becomes

Kinpm,. (A, v) = span {A_m"""lv, AT v, Av, Ao, . ,A””_lv} ,

which is called arextended Krylov subspacExtended Krylov subspaces were investigated
first by Druskin and Knizhnerman il]. The advantage over rational Krylov subspaces is
that only one inverse, factorization, or preconditioneAdto approximately computd —'v)
is necessary; see, e.gl2[13,15]. On the other hand the additional flexibility of different
shifts in the rational Krylov case might be used to achiewegme accuracy with smaller
subspaces, but for this, one needs good shifts, which fgosat investigated in10] by
Gittel.

For every Krylov subspack,,, (4, v) of dimensionm a matrixV € C™*™ with orthog-
onal columns exists, so that

1.2) span{V. 1.} = span {v,Av,sz, . ,Akilv} vk < m,

whereV. ;.;, is MATLAB -like notation referring to the first columns ofV. It is well known
that theprojected counterpart! := V* AV of A, with V* being the conjugate transpose of
V, is of Hessenberg form, i.e., all the entriffs ; with ¢ > j + 1 are zero §]. Let V' now
be defined analogously for a rational Krylov subspace witly finite poles, KA, v, o).

In [6], Fasino showed that fad Hermitian thatH = V* AV is of Hermitian diagonal-plus-
semiseparable form, meaning that the submatrées s11.,, fork = 1,...,n — 1, are of
rank at most 1. However, if spans an extended Krylov subspace of the form

span {1)7 Av, A7 Yo, A=20, A3, A%0, A3v, .. } ,

thenH = V*AV is a matrix having diagonal blocks of Hessenberg or of irevétessenberg
form [28] (these blocks overlap), where a matrix is of inverse Hessemfornt if the rank of
Hy.;kn isatmostl for k =1,...,n —1; at the end of SectioB.1a more precise definition
of extended Hessenberg matrices is presented. In Sextienwill describe the structure of
H for rational Krylov subspaces with mixed finite and infinitelgs.

The main idea of computing approximate, rational Krylovspdices without inversion
is to start with a large Krylov subspace and then apply speuidlarity transformations to
H to bring the matrix into the extended Hessenberg plus digigorm, the form one would
get if one applied a rational Krylov algorithm directly. Tohaeve this form no inversions or
systems solves withl or A — o1 are required. At the end we keep only a small upper left
part of H containing the main information. We will show that undertagr assumptions the
computedH andV approximate the matriced and V' obtained directly from the rational
Krylov subspace, as we have already shown for extended Keplbspaces inl[7].

Block Krylov subspace methods are an extension of Krylowspabe methods, used, for
instance, to solve matrix equations with right-hand sideak larger than one; se&1, 14].

1These matrices are said to be of inverse Hessenberg form, iasntreeses, for nonsingular matrices, are
Hessenberg matrices.
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Instead of using only a single vectos, one uses a set of orthogonal vectors
V = [v1,vs,...,vs). The block Krylov subspace then becomes

K:W(Av V) = Span {V, AV, AQV, A3V, . Am_lV}

= span {vy,..., v, Avy, ..., Avp,.. . }.

Block Krylov subspaces can often be chosen of smaller dimarthan the sum of the di-
mension of the Krylov subspacé&g A,v,),...,K(A,v), since one uses information from
K(A,v;) for, e.g., the approximation of a matrix function times ateec f(A)v;. Block
extended and block rational Krylov subspaces can be formediting negative powers of
such asA=*V or H}:k,g#m(/l — o;1)~1 V. We will describe the approximation of block
rational Krylov subspaces in Secti@n

If the matrix A is symmetric or Hermitiah then the matrixd = V* AV inherits this
structure; thudd becomes tridiagonal. Exploiting the symmetry reduces threputational
costs of the algorithm and is discussed in Section

First we introduce the notation and review the essentialsiatotators.

1.1. Preliminaries. Throughout the paper the following notation is used. We apéal
letters for matrices and lower case letters for (columnjamscand indices. For scalars we use
lower case Greek letters. Arbitrary entries or blocks ofrinas are marked by or by ®.
Let I, € C™*" denote the identity matrix angg € C™ stands for theth column of[,,,.
We further use the following calligraphic letter§? for the big O notation/C for Krylov
subspacesy for subspaces, ang; for the subspace spanned by the fitestolumns of the
identity matrix.

The presented algorithms rely on clever manipulations t#toos. Therefore we briefly
review them Rotatorsare equal to the identity except foRa 2 unitary block on the diagonal

of the form
a f
_B al’

with |04|2 + \5|2 = 1. They are also known &Sivensor Jacobi rotationg8]. To simplify the
notation and be able to depict the algorithms graphical&yumﬁ to depict a single rotator.
The tiny arrows point to the two rows where thex 2 block is positioned. If the rotator is
applied to a matrix on the right, then the arrows also poirhéotwo rows of the matrix that
are changed. If we have a series of rotators, e.g.,

[
it
X

then we call the ordering of the rotatorskapeor apattern[19].

To handle rotators efficiently we need three operationsgingr turnover, and transfer
of rotators through upper triangular matrices. Two rot#eting on the same rows can be
merged resulting in a single rotator

C

L=

2In the remainder of this paped symmetric means thatl equals its conjugate transposgt = A7 for
A € R"*™andA = A* for A € C™*™.
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Three rotations in a V-shaped sequence can be replaced dy thitations in an A-shaped
sequence (and vice versa),

This is called aurnover. More generally it is possible to factor an arbitrary unjtaratrix
Q@ € C*"™ into %n(n — 1) rotators times a diagonal matri?,. This diagonal matrixD,,
equals the identity except for a single diagonal elementdet Q. There are various possible
patterns for arranging these rotators and the positioniofthe diagonal ofD,,. The A- and
V-pyramidal shape, graphically visualized as

B N+ S S
Q* X X X X X X - [[EEKEE - E[E[:E )
[ A (

A-pyramidal shape V-pyramidal shape

where in the schemes the diagonal matflx is not shown, only the value is depicted,
having the row in which it is positioned corresponding to dli@gonal position oty in D,,.
The main focus is on the ordering of the rotators, the diabwoadrix D, does not complicate
matters significantly and is therefore omitted. If the pyidahshape points up we call it an
A-pyramidal shape, otherwise a V-pyramidal shape. A seggiefrotators in A-pyramidal
shape can always be replaced by a sequence of rotators irexAmal shape 47, Chapter 9].

Further, one catransfer rotators througlan upper triangular matrix. Therefore one has
to apply the rotator to the upper triangular matrix, assuime acting on rows and: + 1,
creating thereby an unwanted non-zero entry in positios 1,¢) of the upper triangular
matrix. This non-zero entry can be eliminated by applyingtator from the right, acting on
columnsi andi + 1. Transferring rotators one by one, one can pass a wholepafteotators
through an upper triangular matrix, e.g.,

XXX X XXX XXX X XXX
E X X X X X X X X X X X X E
H X X X XX X X X XX E
E XX XX = X X X X E
EEE X X X X X X E[E !
X X X X
S x x [t

thereby preserving the pattern of rotations.

In this article we will use the QR decomposition extensivéforeover, we will factor
the unitary@ as a product of rotations. If a matrix exhibits some struigtwften also the
pattern of rotations ii))’s factorization is of a particular shape.

A Hessenberg matri¥ is said to beunreducedf none of the subdiagonal entries (the
elementsH; 1 ;) equal zero. To shift this notion to extended Hessenbergiceatwe exam-
ine their QR decompositions. The QR decomposition of a Hesmsg matrix is structured,
since the unitary matrik) is the product of. — 1 rotators in a descending order, e.g.,

XX X XXX X X X X XX XX X X X X X X
XXX XXX XXX X K XXX X X X X XX
XX X X X X X X X E XXX X XX X X
XX X X X X X X E XX X X X X X
XXX X XXX — E X X X X X X
XXX XXX E XX XX X

X X X X X E X X X X

X X X X E X X X

X X X [ X X

X X E X

The matrix H being unreduced corresponds thus to that all rotators #exetit from a di-
agonal matrix. Anextended Hessenberg matfix6] is defined by its QR decomposition
consisting ofn — 1 rotators acting on different rows as well, but reorderedriragbitrary,
not necessarily descending, pattern; see, e.g., the teftitethe right-hand side o2(5). In
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correspondence with the Hessenberg case we call an exteledsdnberg matrinnreduced
if all rotators are non-diagonal.

2. Rational Krylov subspaces.In [17] we have shown how to compute an approximate
extended Krylov subspace. We generalize this, starting thi¢ simplest case: the rational
Krylov subspace for an arbitrary unstructured matrix. Wehier discuss block Krylov sub-
spaces and the special adaptions to symmetric matricesn@imedifference to the algorithm
for extended Krylov subspaces is that finite non-zero palegpeesent and need to be intro-
duced. This affects the structure of the projected couatefp = V* AV and the algorithm.
Further, we need an adaption of the implicit-Q-theorém Theorem 3.5]; see Theoreml

2.1. Structure of the projected counterpart in the rational Krylov setting. Let
o=lo1,02,...,0m-1], With o, € (CU{c0}) \ A(A), be the vector of poles. We have
two essentially different types of poles, finite and infinitEor the infinite poles, we add
vectorsA*v to our space and for the finite poles vect@B;:MJ#OO(A —o;1)7')v. For
o = [00,09,03,00,...] the rational Krylov subspace starts with

(1) K@(A,v,0)= {v, Av, (A - ool) "t (A — a3])"HA — ouI) v, A%, . .. }.

The shifts for finite poles provide additional flexibility,hich is beneficial in some applica-
tions. For the infinite poles, we can also shifand add A — ;. )v instead, but this provides
no additional flexibility, since the spanned space is nohged: LetK,, (A, v) be a standard
Krylov subspace of dimension as in (L.1). Then

(2.2) span{K,,(4,v) Uspan {A™v}} = span{K,,(A4,v) Uspan{(A — (xI)™v}}.
Let V' span the rational Krylov subspace of dimensiersuch that
(2.3) span {V. 1.1} = Kj2(A,v,0) Yk <m,

and letH = V*AV. The matrixH — D, whereD is a diagonal matrix with

Ti—1, Oi—1 7 00,

yeeey — 1,
0, 0j—1 = 0Q,

(24) D171 =0 and Diﬂ‘ = {

is of extended Hessenberg structure, se& $ection 2.2], §]. If o, is an infinite pole, then
the (i — 1)st rotation is positioned on the left of tlith rotation. If, insteadg; is finite, then
the (¢ — 1)st rotator is on the right of théh rotation.

For the Krylov subspace ir2(1), the matrixH has the structure

XX XX X X X X X X XX XX X X X X X X 0
X[X X[X X]|x X x X X E XX X X XX XXX 0
X XX X|X X X X X E XXX XX XXX o2
XXX XX X X X X E[ X X X X X X X o3
(25) X XX XX X X X X[ — E X X X X X X + ®
. X X X X X X X X X X X ®
X X X X X E X X X X ®
X X X X E X X X ®
X X X [ X X ®
X X E X ®

The matrixH consists of overlapping Hessenberg (first and last squatkingerse Hessen-
berg blocks (second square). For infinite poles we are frebdose any shift a®(2) shows.
These shifts are marked loy in the scheme above. For convenience we will choose these
poles equal to the last finite one.
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2.2. Algorithm. We will now describe how to obtain the structure shown in tkemeple
above. The algorithm consists of three steps:

e Construct a large Krylov subspaé®,, (A4, v) spanned by the columns &f and
setH = V*AV.

e Transform, via unitary similarity transformations, thetra H into the structure of
the projected counterpart corresponding to the requeatienhal Krylov space.

e Retain only the upper lefia x m part of H and the firstn columns ofV.

We will now explain these steps in detail by computing thsratl Krylov subspaceX1).
The algorithm starts with a large Krylov subspacg,;,(A,v). Let the columns oft/
spankC,,+,(A4,v) as in (L.2). Then the projection oft onto V' yields a Hessenberg matrix
H = V*AV, that satisfies the equation

(2.6) AV=VH+r[0 0 - 1],

wherer is the residual. The QR decompositionffis computed and th@ factor is stored in

the form ofn — 1 rotators. In casé{ is not unreduced, one has found an invariant subspace,
often referred to as a lucky breakdown as the projected egpatt contains now all the
essential information and one can solve the problem withpptoximation error; the residual
becomes zero. Solving the resulting small dense problerada of a breakdown is typically
easy and will not be investigated here. Thus we assumétiatinreduced; hence all rotators

in @ differ from the identity.

Let us now discuss the second bullet of the algorithm. The @€bhposition of the
Hessenberg matri¥l = QR equals the left term in2(7) and as an example we will, via
unitary similarity transformations, bring it to the shagewn in 2.5). According to dia-
gram @.5) we keep the first two rotators but have to change the positidhe third rotator.
The third rotator is positioned on the right side of rotateo twhich is wrong, thus we have
to bring this rotator (and as we will see, including all thailtng rotators) to the other side.
Therefore, we apply all rotators except the first twdtoBecause of the descending ordering
of the rotators, this creates new non-zero entries in thdiagbnal ofR. We then introduce
the poleo,: the diagonal matrixliag [0,0, 03, . .., 03] is subtracted fron§) R. These steps
are summarized in the following diagrams:

XXX XXX XXX X XXX X XXX XXX XX XX X XX XXX 0
[ XX X X X X X X X E XX X X X X X X X E X @ X XXX XXX 0
E XX X X X X X X E XX X X X X X X [ @ X X X X XXX [}
E XX X X X XX X X X X X X X X X @ X X XX XX [}
(27) K[ XXX XXX — XX XX XXX — X ® X X X X X + [}
: X X X X X X X X X X X X @ X X XX [}
E X X X X X X X X X X @ X X X 02
E X X X X X X X X ® X X [P
E X X X X X X @ X [}
[ X X X X @ o2

The elements marked by are the ones that are changed by introducingdkis on the
diagonal. In the next step we restore the upper trianguldrixiay applying rotators from
the right. These rotations are then brought by a similarigsformation back to the left-hand
side. This similarity transformation preserves the strieebdf D, as the same shift; appears
in all positions inD from the third one on,

X %o C 0

E E JZ”‘Z ) simi;rity E E

X

X X

X X X

X X XX

X X X X X

X X X X X X

XX XX XXX
XX X X X XXX
XXX XXX XXX

X X X
XXX XXX XXXX
q
&)
S
IS

X X XX

X X X X X

X X X X X X

XX XX XXX

XX X X X XXX
XXX XXX XXX
XXX XXX XXXX

X X
ﬁx
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1 1
€ €
—0

(a) Initial A. (b) First step.
1 /—— 1
€ €
=0 —é P =0

(c) After 15 steps. (d) Selecting the first vectors.

FIG. 2.1. Log-scale plots of the residual, showing the effect of thelarity transformation and the selection
of the first vectors.

The procedure is then repeated for all subsequent polesnirbduction of the second finite
pole is illustrated in the following figures:

E XXX X X X X X X X 0 [
XX @ XXX XXX 0
¥ EE

X
X X
X X X
X X X X
XX X X X
X X X X X X
X X X X X X X
X X X X X XXX
XXX XXX XXX
XXX XX XX XXX
+
N
a8

E X @ X X X X X X o2
® X X X X X X 03 similarity [:

X @ X X i i i _|_ (730-3 :> E

>§ X X o3 E K
g% *os L

For the infinite poles, we do not change the pattern as weedtédm a matrix in Hessenberg

form; we leave it like that. But, we do keep the possible nerozshifts present on the

diagonal matrix. We could try to change them and set them rto, Zmit this would require

unnecessary computations a@d shows that this is redundant.

These transformations bring to the desired extended Hessenberg plus diagonal struc-
ture 2.5. But, considering 4.6) we see that the residual also gets affected, which is an
undesired side-effect. The similarity transformatioret tive apply toH correspond to uni-
tary matrices, which are applied from the right 06). The residual matrix? is of rank 1
and initially has the following structure

R:rh:r[O o --- 1].

The first similarity transformation corresponding to a &ngitole results in applying a series
of rotators toh, thereby immediately destroying the zero pattern and tieguin a rather
dense vectoh.. However, since the norm is preserved under unitary tramsftions, we
observe that the energy bfgets distributed over many componentgirthe absolute values
of the entries ik are typically decaying fronk,, to i;. This is sketched in Figurg.1(a)
and2.1(b) where a logarithmic y-axis with an added point fas used. The stands for the
machine precision. Every time a similarity transformatiimiked to a finite pole is handled
the “energy” is pushed a bit more to the left; see Figlifgc) Finally we retain the first part
of V', where the residual is often very small; see FigtuHd)

We choose an oversampling parametahat determines how many additional vectors
we add to the standard Krylov subspace. Since we kegpctors, we start withn + p ones.
By applying the similarity transformations, we charigeH, andh in (2.6). At the end, we
select the leading: x m block of H. The approximation is successful if the entries of the
new residual (blue dashed part in Figaré(d) are sufficiently small, as in this case we have
numerically computed the projected counterpart linkethéoraitional Krylov space. This will
be shown by the implicit-Q-theorem in the next subsection.
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2.3. The implicit-Q-theorem. The following variant of the implicit-Q-theorem irif]
shows that the algorithm described in the last subsectemslendeed to an approximation of
the rational Krylov subspace sought after. It is shown thatd is essentially one extended
Hessenberg plus diagonal matrix with the prescribed stractvhich is at the same time the
projection ofA onto the range oV, with Ve; = v.

THEOREM2.1. Let A be a regulaf n x n matrix,o andé be two shift vectors, and |t
andV be twon x (m+1) rectangular matrices having orthonormal columns, shatimgfirst
columnVe; = Ve;. LetV andV consist of the firstn columns ofi’ and V, respectively.
Consider

AV =VH +rwj, =
AV = VH + i} =

VH=V(QR+ D),
Vit = V(QR+ D),
whereQ and @ are decomposed into a series of rotations, denote(d?ﬁyand G?, and
ordered as imposed byandé. Let furtherf — D and H — D be invertible.
Then defing as the minimum

fc:m_in{l < i < n—2such thatG¥ :I,Gf2 =1, 0ro;_; 75&2-_1},

if no suchk exists, set it equal tor.

Then the firstk columns ofl” and V, and the upper left: x k& blocks ofV*AV and
V* AV are essentially the same, meaning that there is a diagonaixng, with | E; ;| = 1,
suchthatV E = V and E*V*AVE = V*AV.

To prove this theorem the following lemma is required, whigtthe rational Krylov
analog of P8, Theorem 3.7].

LEMMA 2.2.Let H be ann x n matrix, with

H=QR+D,

where( is unitary with a decomposition into rotations accordingaahift vectors, R an
upper triangular matrix, and) a diagonal matrix containing the poles as(ih4). Let further
H — D be unreduced. Thenfér=1,...,n —1,

span{ei,...,ep} =& = KRY(H, ey, 0).

Proof. First we show as in]8, Lemma 3.6] that fok = 1,...,n — 2,

(a) if o = oo, thenHK(H,v,0) C Kj2(H,v,0) and

(b) if 0% # oo, then(H — o4 1) K2(H, v,0) C K2, (H,v,0).
Let

1
/C;Cat(H,U,U)—span{< [ (HUjI)1> v,...,v,...,Hka},
=05 #00
with g, = |{i < k|o; = oo}|. Further letu, be defined fop < k — gx by
1
Up = H (H- O'jf)il v,

Jj=p,0;7#00

SRegular in this case means invertible.
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p- = argmax;_, 0; # 00, andp,. := argmin, ., 0; # 00.
If o, = oo, thenHH % = H9t 1y andHu, = (H — o, _I)u, + 0,_u, € span {up_ , up}.
If o1 # oo, then

(H— o) "H% = (H — o3, I) " (H — o041 + o, ])HI™!
=H" '+ op(H — o)1) " HT o

and

(H—op])  upy = (H— oy I) ™ (H — 0, I)(H — 0, 1) s,

= upt1 + (o — 0p )J(H — o I) My

Let us now prove the lemma using the same argument a8jntheorem 3.7], i.e., by in-
duction. The statement is obviously true for= 1. We choose a decomposition Hf of the
form

H=G.G,GrR+ D,

whereG, andGr, are the rotators to the left and right 6§, respectively, the rotation acting
on rowsk andk + 1.

Suppose that;, = co. Using (a) withv = e, j < k shows thatH &), C ICE}}C(H, €1,0).
We will now show that there is an € &, suchthat = Hx € &1 andey ;2 # 0.

We setr = R—nglek. SinceGy, is not inGgr and R is a regular upper triangular
matrixz € &. The vectory := GyGrRx isin &1 and sinces, # I, we havee; y # 0.
FurtherGry € &,41 sinceGy41 is not inG, because 0§, = ¢. The vectorz defined by

z = (GLGrGrR+ D)x

has the desired structure sinbeis diagonal withDy,; ;+1 = 0.

We now suppose that;, # oo. Lety € span{ex,er+1} be the solution of
Gry = ex. SinceGy # I we havee; ,y # 0. We further have thaGire, € & since
s, =r. We setz := R™'G 'y € Epy1, With e}, 2z # 0 sinceR ™! is invertible. The vector
2 :=(GLGrGrR+ D —oiI)z is in & since D — oI is a diagonal matrix with
(D —o0k1)kt1,6+1 = 0. Thus, we have a pafr, z) with z = (H — o I) ~'z. This completes
the proof. 0

Proof of Theoren?.1 The proof is a partial analog of.f, Theorem 3.5]. Let us now
assume that = . Let further K'®(H, e, o) be the Krylov matrix having as columns the
vectors iteratively constructed for generating the asgediKrylov subspack'(H, ey, o).
Then we know from Lemma.2that K'3(H, e, o) is upper triangular. Since it holds that

VK™ H, e;,0) = K*(VHV* Vey,0) = KA, Ve, 0) =
K™®(A Vey,0) = K®VHV* Vey,0) = VK™(H, e;,0),

VK®(H, ey,0) andf/K{f‘t(ﬁ, e1,0) are QR decompositions of the same matrix and #ius
andV, andH and H, are essentially the same for the full-dimensional cask isientical
shift vectors. By multiplication with”, = [ey,...,e;] from the right, the equality can be
restricted to the first columns and the upper leftx & block. For the case # ¢ and if one
of the matrices is not unreduced, we refer to the proofl@f Theorem 3.5]. O
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2.4. A numerical example. For this and all other numerical experiments in this paper,
we use MaTLAB implementations of the algorithms. In the (block) ratiocases reorthogo-
nalization has been used when generating the orthogones b@be experiments have been
performed on an Int& Core’i5-3570 (3.40GHz). The following example is an extension
of [17, Example 6.5].

EXAMPLE 2.3. We choosel € R200%200 tg be a diagonal matrix with equidistant eigen-
values{0.01,0.02,...,2}. We used the approximate rational Krylov subspk&(A, v, o)
to approximatef (A)v as

f(Av=VIH)Vv=Vf(H)e |v],,

with the columns o ;.; spanningC’*(A, v, o) for all j < m andH = V*AV. The entries
of the vectorv are normally distributed random values with meaand variancel. To
demonstrate the power of shifts, we choose a continuougiumg 10 ,0.16) focusing on a
small part of the spectrum:

exp(—100 (0.10 — z)), = < 0.10,
fi0.10,0.16) () = 1, x € [0.10,0.16],
exp(—100 (z — 0.16)), z > 0.16.

In Figure2.2 we compare three different Krylov subspaces. The greenskmsvs the ac-
curacy of the approximation ofy.10,0.16](A)v With K,,,(A,v), the red line is based on the
approximate extended Krylov subspa€g'(4, v, [0, o0, 0, 00, . .. ]), and the orange line links
to K13 A, v, [0.115, 00, 0.135, 00, 0.155, 00, 0.105, 0o, . . . |) computed as an approximate ra-
tional Krylov subspace. For the latter two subspaces wehesalgorithm described in Sub-
section2.2, where we have chosen the oversampling parameter100. In Figure2.3we
compare the approximate rational Krylov subspaces foewifit oversampling parameters
The approximate rational Krylov subspaces are computed faoger Krylov subspaces and
thus their accuracy cannot be better. The gray lines showxpected accuracy based on the
large Krylov subspace.

The use of the shifts0(115,0.135,0.155,0.105) improves the accuracy significantly.
The shifts boost the convergence on the relevant intgéval, 0.16]. This can also be ob-
served in the plots of the Ritz values in Figwr€l. In Figure2.4(a)the Ritz values for the
standard Krylov subspace are plotted. Each column in tloisgblows the Ritz value of one
type of subspace for dimensiohdo 160. Red crosses stand for Ritz values approximating
eigenvalues with an absolute error smaller thén”->; orange crosses indicate good approx-
imations with absolute errors betwegd "> and10~°; the green crosses are not so good
approximations with errors betweeén—> and10~2-5. The typical convergence behavior to
the extreme eigenvalues is observed.

Figure2.4(b)shows the Ritz values of the approximate rational Krylovspaites com-
puted with our algorithm and the above mentioned shifts. €are clearly see that well-
chosen shifts ensure that the relevant information movélsedirst vectors. In and nearby
[0.10,0.16], there are only tiny differences compared with Figaré(c) where we see the
Ritz values obtained with the exact rational Krylov subspac

Finally, Figure2.4(d)shows the Ritz values determined with the exact extendetbiKry
subspace. The Ritz values|in10, 0.16] approximate the eigenvalues much later than in the
previous plot and, thus, the accuracy of the approximatiofj,o,0.16) (A)v by an approx-
imate, extended Krylov subspace, red graph in Figufeis not as good as for the rational
Krylov subspace, orange graph.
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FiG. 2.2. Relative error in approximatingio.10,0.16] (A)v for m = 12, 24, 36, 48, 60, p = 100.
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FiG. 2.3.Relative error in approximatingio.10,0.16] (A)v.

The first three plots of Figur@.4 have been merged into a videallowing easy compar-
ison.

3. Block Krylov subspaces. Computing f(A)vy, ..., f(A)v, simultaneously can be
done by a block Krylov subspace of the form

/cm(A,V):span{v,Av,A2v,A3v,...,Am/b*v} with V=T[o1,...,0).

The dimension ofC,, (A, V) is m and must be an integer multiple &f
We will first analyze the structure of the matiik, the projection ofd onto the Krylov

4htt p: // et na. mat h. kent . edu/ vol . 43. 2014/ pp100- 124. di r/ rati onal _eq_spaced. np4


http://etna.math.kent.edu/vol.43.2014/pp100-124.dir/rational_eq_spaced.mp4

ETNA
Kent State University
http://etna.math.kent.edu

RATIONAL KRYLOV WITHOUT INVERSION 111
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(a) Standard Krylov. (b) Approx. rat. Krylov.
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(c) Rational Krylov. (d) Extended Krylov.

FIG. 2.4.Ritz value plots for equidistant eigenvaluegin2]; the interval[0.10, 0.16] is marked blue.

subspacé’?(A, V, o), before we explain the necessary transformations to aetis struc-
ture.

3.1. The structure of the projected counterpart for block Krylov subspaces.Let V
be a tall and skinny matrix containing the starting vectdtss [vy,...,v;] € C**?, where
b is the block-size. The rational Krylov subspace contairsitpe powers ofd, A*V, for
o; = 0o, and negative powe?s(Hi:w#oo(A — o)1)V, for o; # oo.

Let K := KP(A,V,0) € C™ " be the Krylov matrix linked toC'2(A,V, o). The
columns ofK are the vectors oK A4, V, o) without orthogonalization, while the columns
of V, defined as inZ.3), form an orthonormal basis of this Krylov subspace. We m&sthat
forall i € {1,...,b} the smallest invariant subspace#fcontainingv; is C*. Then there
is an invertible, upper triangular matrix, so thatK’ = VU. Since the Krylov subspace is
of full dimension, we havelV = VH andAKU ! = KU 'H. SettingHg := U 'HU
yields

(3.1) AK = KHyg.

SinceU andU ! are upper triangular matrices the QR decompositio/dfias the same
pattern of rotators a# . We will derive the structure off based on the structure éfy .

3.1.1. The structure of the projected counterpart for rational Krylov subspaces
spanned by a non-orthogonal basisWe describe the structure éfx and show that the

5 F[%:LU#OO(A — oI)~! denotes the product {4 — o 1)~ --- (A — o11)~ 1.
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QR decomposition oH i — D = QR, whereD is a diagonal matrix based on the shifts, has

a structured pattern of rotators. The following exampld & used to illustrate the line of
argumentsg = [0, 09, 03, 00, 05, 00, 00, . . . |. The corresponding Krylov matrix K is

(3.2) K™(A,V,0) = [v, AV, (A — 0D) "V, (A — 03) " (A — 0o 1)1V, A2V,
(A—os)"HA —03) " HA —0o]) 7V, A3V, A% .|,
Inserting @.2) into (3.1) provides
(3.3) KA, V,0)Hy = |AV, A?V, A(A — o1) 'V, A(A — 03) (A — 02I) 1V,
A3V, A(A — o51) HA — 03) H(A — 02I) IV, AW A5V L.

The matrix Hx consists of blocks of sizé x . We will now show thatH i in the exam-
ple (3.3 satisfies

0 0 I 0 0 0 0
I 0 O o 0 0 0
0 oof I O O O
o 0 0 o3I 0 I 0
Hie = I 0 0 0 0 O
0 0'5[ 0
I 0 O
. I -
One can show that far; # oo,
1 1 1
AA—o; D)™ H A-o ) ' V=0, H (A-a)'V+ H (A-0o )" ' V.
t=j—1 t=j t=j—1
o1F#00 o1F#00 o1 F 00

Thus, from B.3) it follows that the diagonal ofix is D, where D is a diagonal matrix
containing the shifts, cf2(4),

(3.4) D = blockdiag (0L, X11p, - - ., xn_1Ly) with XZ:{‘“’ 9i 7 00,

0, o; = OQ.

Lets andj be the indices of two neighboring finite shitts ando;, with i < j andoy, = oo
Vi<k<j. ThenHg(bi+1:b(i+1),bj+1:b(j+1)) = I.Additionally, forj, the index
of the first finite shift, we havél (1 :b,bj +1:0(j + 1)) = 1.

Let ¢ be the index of an infinite shift. Then the associated coluaiis and AK are

K pgvgin—1 =AY and  AK. 0411 = ATV

Thus, for two neighboring infinite shifts;, = co ando; = oo, with ¢ < j andoy, # oo
Vi <k <j,wehaveHg(bj+1:b(j+1),bi +1:0b(i+ 1)) = I. Additionally, for j, the
index of the first infinite, shift we havB i (bj +1:b(j +1),1:b) = I.

The column offi - corresponding to the last infinite pole has a special stractlated to
the characteristic polynomial of. For simplicity, we assume that the last shift is infinite and
that the last block column dff i is arbitrary. The matrid i is now completely determined.
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In the next step, we compute the QR decompositiort{@f. For simplicity, we start
with examining the case when all poles equal zero. Let ugthialimatrix %, with the QR
decomposition 7. = Q¢ R,. The rhombi inQ, are ordered according to the shift vector
For the infinite shifts the rhombus is positioned on the rigtthe previous rhombus and for
finite shifts on the left. Thus, e.g.,

RO )

where x now depicts a matrix of size x b instead of a scalar. The rotations in the trailing
triangle ofQ, introduce the zeros in the last block columnigy.

Let us now reconsider the rational case with arbitrary figitéts. LetD be the diagonal
matrix defined in .4). We then havex — D = HY = Qo Ry.

3.1.2. The structure of the projected counterpart for rational Krylov subspaces
spanned by an orthogonal basis.We use the QR decompositidid;, — D = QoRy to
compute the QR decomposition &f. The matrixH can be expressed as

H=UHgU ' =U (QyRyU '+DU ' -~U"'D)+ D,

sinceD — UU D = 0. The matrixWW = DU~! — U~!D is upper triangular. 1; = oo,

thenD,; ,;) = 0, with p(i) the set of indicegbi + 1,bi + 2,...,bi + b} fori > 0. Thus,
if 0, = oo ando; = oo, thenW,i) ,(;) = 0. Further, W) (i) = 0 sinceDy;) p(i) = 0il;

see B.4). Inthe example3.1), W is a block matrix with blocks of sizex b and the following
sparsity structure:

(e )

S X X

S X X X

o X X © o

S X X X X X

O X © X X © o
SO X ©OX X oo

We now factorQ, asQQ§, where all blocks, which are on the left of their predecessa
put into @} and the others int@y,
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SinceQ§ consist solely of descending sequences of rhombi, the nBri= QSR U ! is
of block Hessenberg form, in this example:

(0 0 I x|

I 0 0 X

I 0 X

1 X

Hy = 0 I X
I 0 X

0 x

L I X_

Recall that we can writél as
H=U(QyH,+DU ' —~U"'D)+D=UQ; (H,+ QW)+ D.

SincelV is a block upper triangular matrix with zero block diagonadl&)g* contains only
descending sequences of rhombi, the prodjgth is block upper triangular, in this exam-
ple:

o O

o X X

X © X X
X X © O O

* _
oW =

S X X X X X
X ©O X X © o O
O X ©O X X © OO

For o; # oo we get a non-zero blockQy* W) ,i+1),p(i+1), Since for eachr; # oo the
block rows p(i) and p(i + 1) are swapped. However, siné€,;;1) ;) = 0 the block
(Q0"W)p(i),p(4) is zero if additionallys; ; = oo. Hence, the sum off, andQy*W is also
block Hessenberg with the same block subdiagondladn this example the sum is

[0
1

~N o O
o X ®

® o X X

Hy + QS*W =

~N X X © oo
O® X X X X
N X O X X OO0 0o
X X X X X X X X
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We now determing); = Q5Q4Q%, whereQ! andQf§ have the same pattern of rotators and
Q! will be added later. The rotations @{ have to be chosen so thHy + Q5*W becomes
block upper triangular and so that the blogKs), p(i) with o; = oo ori = 0 also are upper
triangular. Because of the special structurefhf+ Q5*W and Q¥ this is possible. The
remaining blocks in this example can be brought into uppangular form by the rotators

in Qi:

After passingR; through the upper triangular matrix to the right, we have the QR decom-
position of H — D.

Summarizing the steps above, we have shown that the pmjeofiA onto a block
rational Krylov subspace such a3.2) spanned by the matrik leads to a structure of the
form

XX X X XXX XXX X X
XXX X X X X[X X X X[X X X

H=V*AV =

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X X X XX X X XXX X XX X X
X
X XX X]X X X X X X X X[X X X

cosollfoo

N
—
oo

with R an upper triangular matrix.

This structure is not suitable for our algorithm, since thed@composition off — D for
the Krylov subspace with solely infinite poles does not haweeaidditional rotators i)%. We
will now show that there are similarity transformationsttremove the rotators i@} . These
transformations change the basis of the Krylov subspaceriytwithin the block columns.
Thus, the approximation properties are not affected if weags select full blocks.

The following three structure diagrams show the main steps:

: E
[ a 3
E

[E
|: I: similarity [: E E 5 E E E E
C = N
(3.5) EEE
X

E

EEK

e

5%

E EEE Lpsct
b Lt

C

First we bring the middle triangle to the other side. It hadhéopassed through the upper
triangular matrix first and next a unitary similarity traoghation eliminates the triangle on
the right and reintroduces it on the left. This transformabnly changes columns within one
block. After that, a series of turnovers (blue circles) gsrthe rotators in the triangle down
to the next triangle:
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¢ ¢ {
(o0 N (ot
Pt b b PRONH AN
E@EEEE Letemti FARIAQN!
1 = 1 = oAt
(3.6) e (oL \E
Lelpbp Cplpbe G
VA Tt AR

Doing this for every rotation in the triangle complet&s5. Finally, we can merge the two
triangles; in this example with = 3: fuse the rotations in the middle, do a turnover, and fuse
the pairs on the left and right. Thus bringifj into a shape without the rotations @ is
sufficient to approximate the blocks of the block rationayldv subspace. However, we are
not able to approximate the individual vectdt§'( A, V, o) and thus the Krylov condition
that V. 1.; spans the firs§ vectors ofC!2%( A, V, o) holds only forj = ib with i € N. The
desired shape in our example is:

3.2. The algorithm. We can now describe the algorithm to obtain the structurgveho
in the last subsection. The difference with respect to tgerdghm from Subsectio.2 is
that now the rhombi instead of individual triangles are ageed according to the shift vector.
For eachr; # oo, starting withi = 1, we have to introduce the pole and bring all the rhombi
beginning with the(i + 1)st to the other side. After this has been done for the wholé shi
vector the first block columns are selected. The approxonasi successful if the residual is
small enough.

We will now describe in detail how to introduce one pole as thithe essential differ-
ence. If we apply the trailing rotations before introducthg shift, the matrix structure is
not perturbed. Since the trailing rhombi form a descendeguence of rhombi, applying the
rotations to the upper triangular matrix produces a Hessgnimatrix withb subdiagonals.
Let oy # oo, and introduce the shift;. The following diagram illustrates the introduction of
the shift:

¢ XXX X XXX XXX XXX X XX 5 ¢
Top XXX XXX XXX XXX XXX X X X FL’- thp 0 0
sLhe b XOXXX XXX XXX XX XXX X X X NN SLo L 0
(48 EE XXX EX XXX XXX XXX X X X EEL L EL [ 0
E [ XX@EX X XXX XX XXX X X —E E *EEE 0 0
LAt E XRR® X X X X X XXX X X X b EE[ [Spas 0 0
Core BREX X X X X X X X X X X EE D00 o 2
EEE BB X X XX XX XXX X X EE E[Q o2 o2
RREX X XXX X XXX X X T2 02

@ X X X X XXX X X X

XXX XX X X XX

X XX

X X

XX X@XX XXX
XX X@X XXX X

XX XE®X XXX X X

XX XE®X X X X X o2 a2
XX X@X X X X o2 o2
XX X@X XX o2 o2
XX X®X X o oo

XX X®X o2 a2
XXXQ o2 o2

where the marked entries represent the non-zero pattern of the second term. Thdéranfs
the rotations is completed by pulling the rotators out tortgkt, thereby restoring the upper
triangular shape. Unfortunately, this is not as simple dkérone-dimensional case with only
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one vector. Because of the block structure, the zeroingeoéttiries based on rotators from
the right-hand side leads to

XXX XX XXX XX XXX XX XX X

where the rotations are not entirely in the desired pattaife have to transform the V-
pyramidal shape in the triangle into an A-pyramidal shape #¥en move the triangle to
the lower end by a series of turnovers asdrb( and 3.6):
[
(el
C.02T
4R
CoCoC
0.0 )
Lrot
Lottt
L°c
The rotations on the right-hand side of the upper triangulatrix are now in the right shape.
We use a unitary similarity transformation to bring theseatars back to the left side of the
matrix. Since this transformation must also be applied ® dtagonal matrix containing
the shifts, we have to use the same shift for all trailing pmss as in Sectio2. Then we
continue with the next rhombus. If this rhombus correspdodm infinite pole, nothing has
to be done; also the shifts ib remain unaltered for convenience asng. If this rhombus
corresponds to a finite pole, the trailing part of the matpiis updated to the next shift. The

process is continued until the desired shape is retrieved.

C
(
C

3.3. The implicit-Q-theorem. With the following theorem one can show that, in the
absence of a residual, the above described algorithm cempublock rational Krylov sub-
space.

THEOREM 3.1. Let A be a regular matrix, and let and 6 be two shift vectors. L&t
andV be twon x (k + 1)b rectangular matrices having orthonormal columns sharihg t
firstb columnsV[ey, ..., ey] = Vler, ..., es). LetV andV be the firstkb columns oft” and
V, respectively. Consider

AV =VH +rwf =VH =V(QR+ D),
AV = VH +#if, = VH = V(QR+ D),

whereQ and( are decomposed into a seriestof b rhombi of rotations ordered as imposed
by o andé and letH — D and H — D be invertible.

Definek as the minimum index for which one of thi€ rotations in theith rhombus of
Qor Qs the identity oro; 1 # 6;—1; if no suchk exists, set it equalto — 1.

Then the firstkb columns ofV and V, and the upper lefic x k blocks of V* AV
and V*AV are block essentially the sameBlock essentially the sameeans here that
V,]b+1.](b+1) V]bJrl 25 (b+1) U with U € C**t andU*U = 1.

The theorem is a generalization of Theorgrand can be shown analogously based on
an analog generalization of Lemma? for the block case. Therefore, one has to show first
thatfork =1,..., % — 2,

(a) if o = oo, thenHK?(H,V,0) C K&, (H,V,0) and

(b) if o) # oo, then(H — o3 I) ' KRY(H, V,0) C IC;Cajrl(H,V,a).
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The next step is to decompogginto
H=G,Gy,GrR+ D,

whereG, contains all rotators in théth rhombus. Based on this decomposition, one can
prove the block generalization of Lemr@&2 As a block QR decomposition is block essen-
tially unique we get

VK®(H, |e1,...,e),0) = K®VHV* Vle,...,ep),0) = KA, V,0) =
KAV, 0)= KVHV* Viey,...,ep],0) = VK(H, [ey,...,e],0).

Thus, ensuring that the computéthas the desired structure is sufficient to compute an
approximation to a block rational Krylov subspace, as itlted by the numerical example
in the next subsection.

3.4. A numerical example. The algorithm described above was used to approximately
solve a Lyapunov equation

AX + XA+ BB* =0,
for the unknown matrixx. The matrix4 € R5000%5000 j5 3 diagonal matrix with entries
\; = 5.05 + 4.95cos(6;), 0; € [0,27) Vi,

having equally distributed;. The matrixB is of size5000 x 2, so that one actually needs
a block Krylov algorithm with block-sizé = 2. The dimension ofB is the only point
where this example differs fromif, Example 4.2]. The entries @ are computed with the
MATLAB command andn, meaning they are pseudo-random based on a normal digtribut
with variancel and mear0. A reference solution is computed with theaVLAB function

| yapchol , which we assume to be exact. The approximate solutior X is computed
based on the projection onto an approximate rational Krgldyspace via

X = VYV*, whereY is the solution of /Y + Y H + (V*B)(V*B)* = 0,

with H = V*AV. In Figure3.1, we compare the relative error fé of rank2 (colored lines,
bottom axis) with the results for& of rank1 (gray lines, larger marks, top axis). We need for
the block-sizéh = 2 about twice as many vectors as toe= 1. The oversampling parameter
p was chosen to bE00 - b. To make the comparison easier the gray lines are scaledtgo
to the axis on top.

We observe that the relative accuracy shows almost the sahavior. According to the
results from the last section, we also observe that the uskift$ (here{0.5,0,0.25,0.125}
in round robin for the finite poles) improves the accuracy.

4. Symmetric matrices. If the matrix A is symmetric, then the Hessenberg matrix
H = V*AV is also symmetric and thus tridiagonal. In this section wi exiploit the sym-
metry when computing the approximate extended Krylov sabsp Therefore, we replace
the QR decomposition aff by the LDL* factorization. Besides this adaption the algorithm
remains the same and we can reuse the implicit-Q-theorertharstructure of{.
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FiG. 3.1.Relative error when solvingl X + X A* + BB* = 0 form = 12,24, 36, 48, 60.

4.1. Eliminators. The factorizationd = LDL* of the tridiagonal matrix{ is of the
form

X X 1 X 1 x E
X X X x 1 X 1 x L E
X X X x 1 X 1x L |f
X X X x 1 x 1 x L r
X X X — x 1 x 1% — L r
X X X - x 1 X 1x - L D r s
X X X x 1 X 1 x L E
X X X x 1 X 1x L L
X X X X1 X 1x L E
X X x 1 X 1 L

where we replaced the diagonal matrix in the middle/byo simplify the notation. In the
second part of the equation, we factor the bidiagonal meriicto special Gaussian elimina-
tion matrices: identity matrices except for a single norezaib- (or super-)diagonal element.
We use resembling symbols as for rotators and call them font stiminators [, = (L]

is alower eliminatorand f = [1 X } anupperone. Applying such an eliminator to a matrix
means adding a multiple of a row or column to another row aurool respectively, e.g.,

o e 1 g e e R R

As with rotators we can perform several operations with ilators. If the eliminators act on
disjoint rows we can change their order arbitrarily. We aamthfer change the ordering in the
following cases:

1 ¢ 1 1 ¢
EL: 11 )1(1— ilerandLr:rL.

We can also pass eliminators through diagonal matricedyiagpan eliminator to a diagonal
matrix creates a x 1-bulge; this bulge can be removed by another eliminatongdtom the
other side. If we want to change the ordering of a lower andpeueliminator acting on the
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same rows,

[ Lel [

we have to compute the product and factor the resuftin@ matrix by an LDU or UDL fac-
torization, respectively. This creates, however, an &t diagonal matrix. This diagonal
matrix can be passed through the other eliminators and mevigk the main diagonal.

4.2. The algorithm. We run the same algorithm, but replace the QR decomposition b
the LDL* factorization and update this representation insteadt,Rire investigate the non-
block, non-rational variant. We start with a large standémdov subspace withif = LDL*.

The matrix H must now be brought into the shape determined by the shifoxeThe
lower eliminators on the left have the same pattern as tlaioos in the general case. The
pattern for the upper eliminators, however, is flipped. Aikimstructure has been used
in [18, Section 4] to solve an inverse eigenvalue problem.

The transfer of rotators through the upper triangular masrreplaced by bringing the
corresponding lower eliminators from the left to the rightldhe corresponding upper elimi-
nators from the right to the left. We start with the last ehiatiors. The trailin@ x 2 matrix is
given by an LDU factorization. We compute the UDL factoriaatof the product. The upper
eliminator on the left commutes with the lower eliminatorius, the penultimate eliminators
are now the most inner ones and we can repeat the processdartteeway. After we have

repeated this steps for the— 4 trailing eliminators, say fos = [00, 0, 00, . . . |, we have the
following diagram:
L . . r L . . r
LL . r ob E[}
L D r = C D L
[ r r L
L . . r 0 r L .
L r r L

Now we have to bring the eliminators back to the other side.aByngle unitary similarity
transformation, we can bring both the lower eliminatorstanright to the left and the upper
eliminators on the left to the right. This can be achieved by
I X
1

N i e Y E | Y

with

R S
Y T

This step also preserves the symmetry and we end up with ari Ed2torization of the form

o
3]

After we have brought all the eliminators in the right shapéedmined by the shift vector,
we select the first columns and the upper left patof

The main advantage of this eliminator-based approach tsnbamake full use of the
symmetry. First of all that means that fewer unknown parenseh H, O(k + p) instead of
O((k + p)?), are needed. This reduces the number of required floating pperations. For
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instance, passing one rotator through the upper trianguédrix change2(k + p) entries
in the upper triangular matrix. By using the LDlfactorization we have to change only
two entries on the diagonal. The reduced number of floatingt mperations also reduces
the runtime of the algorithm; see Examplel. Unfortunately, the overall complexity is
almost the same as for non-symmetric matrices. This willlbstrated and explained in the
numerical example. Second, we preserve the symmetry anelxgdwit this in the remaining
computations that have to be executed on the projected eqmant.

4.3. A numerical example. The matrices in]7, Examples 6.1-6.4] are all symmetric.
The runtime of the symmetric variant is up to 5% less than tinéime of the non-symmetric
implementation used inl[/]. This small gain can be explained by the fact that the most ex
pensive step, the update of the subsgdcerhich is of linear complexity im, the dimension
of A, is the same for the symmetric and the non-symmetric imphtation. However, the
accuracy of the symmetric variant is almost the same as Weetilin the following example.

ExAMPLE 4.1. This example is identical td.§, Example 5], which has been used
also in [L7, Example 6.3] in the context of approximate extended Kndolispaces without
explicit inversion.

We compute the product of a matrix function and a vecfor v, with f(z) = 1/\/x,
using an approximate, extended Krylov subspace. The matigxthe discretization of the
differential operatod.(u) = Tl()um — 100u,, on the unit square. We use 40 equally spaced
interior points. The discretization uses three-pointaterin both directions. Together with
homogeneous boundary conditions the mattiss symmetric, positive definite, and of size
1600 x 1600. The vectom is chosen to have the entries= 1/1/40, V.

We choose the oversampling parametdo be 200. In Figure4.1 we can see almost
no difference between the symmetric and the non-symmetipéeimentation; the crosses are
always inside the circles. Thus the accuracy of the symmediiiant is as good as the one of
the non-symmetric variant in this example.

~0-[0 00 0 oo 0 oo 00 00 0 c0 -]
-o-[0 oc0coo 0 cwoo 00w 0 00 oo -]
~0=[0 00 0o 0o 0 ocooooo 0 ocooooo -]
T T T T T T
1072 )
— @’7’,"\..,
5 T
T e
o 107°F g\"\ |
2 g
3 S N
@ 1n-10| T ST |
10 """" 73 - :':'.'4':-_-:......@
10—14 [ | | | | | |
10 20 30 40 50 60 70

—e— non-symmetric variant— symmetric varian#

FiG. 4.1.Relative error in approximating (z) = 1/+/z for m = 12,24, 36, 48, 60.
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4.4. Combination with block rational Krylov subspaces. Obviously one can combine
the ideas for exploiting the symmetry with the algorithm &mproximating a block rational
Krylov subspace. This leads again only to a different imgatation based on the more
efficient representation of the symmetric matrix. Thus tieotetical results from Sectich
and3 remain valid.

4.4.1. Block matrices. We will explain the block matrix approach for an example with
b = 2, where we get a pentadiagonal matrix instead of the tridiabone as fob = 1.
Hence the LDE factorization of this matrix gives us two sequences of elatdrs on both
sides, which we can group in rhombi as in SectnBased on the shift vector similarity
transformations are used to order the rhombi on both sidasaiay that the result approxi-
mates a block extended Krylov subspace. &#ot [c0, 0, cc] the following diagram sketches
the shape:

: R
similarity L N
= [

LL [

L

4.4.2. Rational Krylov subspaces.The LDL* factorization of the projected counter-
part H of the rational Krylov subspace

;?Z(A, v,0) = span {v, Av, (A — ool) " tv, A%v, Adv, .. -}

with symmetricA looks like

For the introduction of the shifts a similar trick as for tltional case is used: we apply the
trailing eliminators to the diagonal matrix and get a trgiaal matrix. Then the shifts are
introduced and the tridiagonal matrix is refactored. Therimediate step is

><>< E ><>< [> 0
LLL y L " ox [ o
[« - _ X x oy
LL X ff - X ® X +d|agﬂ2,
LLXX Eﬁ X%;OX gi

L T “Se o

where the entrie are changed by introducing the shifts. We observe that thgodial
matrix that is subtracted from the tridiagonal matrix is obanged by applying the inverses
of the four eliminators. Next the UDUfactorization of the tridiagonal block is computed.
Hence, we get (the diagonal matrix equals
L
[ r 7
Ef LL ”

where we now can use rotations to bring the trailing elinorasimultaneously by unitary
similarity transformations back to the other side as4ri); If the desired rational Krylov
subspace has several finite poles the above described staptotbe repeated.
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4.4.3. Block rational Krylov subspaces.We just provide an example pattern of a sym-
metric block rational Krylov subspace for= 3. The necessary steps to achieve this pattern
are analogous to the previous sections. The projected equant H of the block rational
Krylov subspace

K rire8(A,V,0) = span {V, AV, (A = o51) "'V, ...},

with A = A* andV € C™*3 has the factorization:

XX XXX l; r
(hete (et i
XXXXXXXXXXXXX l; l; l; lf lf [} 1]
XXX X X XX XXX X X X LLE [SNNY 0
HKXXXXXXXXXXX |:> L L E [) E o2
XXXXXXXXXXXX [> [) |:> [) E [) o2
HKXXXXXXXXXXX l; l; l; lf lf [} o2
XXXXXXXXXXXX L [> L |:> [) |:> o3
HXXXXXXXXXXXX LLLLLE [)f[)[}[)f o3
= 4000 D t.t.0> +diag ¢
XXXXXXXXXXXXXXXX L L [> [) |:> [) 0
XXXXXXXXXXXXXXXX |:> [) |:> E E [) 1]
XXXXXXXXX l; l; l; [} r [} o5
XXX XXX X XX [N r.o4t o
XXXXXXXXX [> [) [> [) E [) o5
XX XX XXX XXX L0 t.r.t 0
6L (NN 9
XXX XX XX XXX [> L [> E [) 0
XXX X X X LLLL [)[}[) 0

G ¢

5. Conclusions. We have presented an algorithm to approximately computenit
Krylov subspaces and rational block Krylov subspaces. Wga@éxed how to exploit the
symmetry of the original matrix. The numerical experimeititsstrate that the algorithm
is efficient for some of the examples. The algorithm can berpreted as a compression
algorithm operating on an oversampled large Krylov subspaid this implies that it cannot
add new data in the compression step. Unfortunately, thenséhat the algorithm fails to
deliver good results for those applications or examples@tie large Krylov subspace lacks
the information on the inverse.

Even though this is a major step forward towards an algoritfipractical use, further
research is necessary. Future investigations includérpnelry analysis of the matrices to
predict whether the algorithm will succeed, incorporatprgconditioning, examining pos-
sible extensions to bi-orthogonal Krylov methods, and ipocation of good pole selection.
When testing the algorithm on some rational Krylov spaceseeidently picked poles equal
to the eigenvalues, and even, though the associated Krgbmess ill-defined, the algorithm
performed well. This behavior requires further study.

Acknowledgments. The authors thank the referees for their valuable comments.

REFERENCES

[1] A. C. ANTOULAS, Approximation of Large-Scale Dynamical Syste8i&\M, Philadelphia, 2005.

[2] T.BREITEN AND T. DAMM, Krylov subspace methods for model order reduction of balirentrol systems
Systems Control Lett., 59 (2010), pp. 443-450.

[3] T.DAmMM, Direct methods and ADI-preconditioned Krylov subspacehost for generalized Lyapunov equa-
tions, Numer. Linear Algebra Appl., 15 (2008), pp. 853-871.

[4] V. DRUSKIN AND L. KNIZHNERMAN, Extended Krylov subspaces: Approximation of the matrijasgjtoot
and related functionsSIAM J. Matrix Anal. Appl., 19 (1998), pp. 755-771.

[5] V. DRUSKIN AND V. SIMONCINI, Adaptive rational Krylov subspaces for large-scale dyraahsystems
Systems Control Lett., 60 (2011), pp. 546-560.

[6] D. FAsINO, Rational Krylov matrices and QR-steps on Hermitian diadguias-semiseparable matrices
Numer. Linear Algebra Appl., 12 (2005), pp. 743-754.

[7] R.W. FREUND, Krylov-subspace methods for reduced-order modeling cudisimulation J. Comput. Appl.
Math., 123 (2000), pp. 395-421.

[8] G.H. GoLus AND C. F. VAN LOAN, Matrix Computations4th ed., Johns Hopkins University Press, Balti-
more, 2013.

[9] S.GUGERCIN, A. C. ANTOULAS, AND C. BEATTIE, H2 model reduction for large-scale dynamical systems
SIAM J. Matrix Anal. Appl., 30 (2008), pp. 609-638.



ETNA

Kent State University
http://etna.math.kent.edu

124 T. MACH, M. S. PRANIC, AND R. VANDEBRIL

[10] S. GUTTEL, Rational Krylov approximation of matrix functions: Nungi methods and optimal pole selec-
tion, GAMM-Mitt., 36 (2013), pp. 8-31.

[11] M. HOCHBRUCK AND G. STARKE, Preconditioned Krylov subspace methods for Lyapunov matfuations
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 156-171.

[12] C. IAGELS AND L. REICHEL, The extended Krylov subspace method and orthogonal Lapmpnhomials
Linear Algebra Appl., 431 (2009), pp. 441-458.

, Recursion relations for the extended Krylov subspace ndethioear Algebra Appl., 434 (2011),
pp. 1716-1732.

[14] K. JBiLOUu AND A. J. RIQUET, Projection methods for large Lyapunov matrix equatiobmear Algebra
Appl., 415 (2006), pp. 344-358.

[15] L. KNIZHNERMAN AND V. SIMONCINI, A new investigation of the extended Krylov subspace methrod f
matrix function evaluationsNumer. Linear Algebra Appl., 17 (2010), pp. 615-638.

, Convergence analysis of the extended Krylov subspace thédhthe Lyapunov equatioiNumer.
Math., 118 (2011), pp. 567-586.

[17] T.MACH, M. S. PRRANIC, AND R. VANDEBRIL, Computing approximate extended Krylov subspaces without
explicit inversion Electron. Trans. Numer. Anal., 40 (2013), pp. 414-435.
http://etna. math. kent. edu/ vol . 40. 2013/ pp414- 435. dir

[18] T. MACH, M. VAN BAREL, AND R. VANDEBRIL, Inverse eigenvalue problems linked to rational
Arnoldi, and rational (non)symmetric Lanczod. Comput. Appl. Math., (2014). In press, DOI:
10.1016/j.cam.2014.03.015.

[19] T. MACH AND R. VANDEBRIL, On deflations in extended QR algorithn®AM J. Matrix Anal. Appl., 35
(2014), pp. 559-579.

[20] C. C. RAIGE AND M. A. SAUNDERS, Solution of sparse indefinite systems of linear equati@aM J.
Numer. Anal., 12 (1975), pp. 617-629.

[21] A. RUHE, Rational Krylov sequence methods for eigenvalue compumidtinear Algebra Appl., 58 (1984),
pp. 391-405.

(23]

(16]

[22] , The Rational Krylov algorithm for nonsymmetric eigenvatueblems, Ill: Complex shifts for real
matrices BIT, 34 (1994), pp. 165-176.

[23] , Rational Krylov algorithms for nonsymmetric eigenvaluetgems, |l: Matrix pairs Linear Algebra
Appl., 197/198 (1994), pp. 283-296.

[24] , Rational Krylov: A practical algorithm for large sparse ngymmetric matrix penciJsSIAM J. Sci.

Comput., 19 (1998), pp. 1535-1551.

[25] Y. SAAD, Krylov subspace methods for solving large unsymmetri@atisgstemsMath. Comp., 37 (1981),
pp. 105-126.

[26] R. VANDEBRIL, Chasing bulges or rotations? A metamorphosis of the QRrilgo, SIAM J. Matrix Anal.
Appl., 32 (2011), pp. 217-247.

[27] R. VANDEBRIL, M. VAN BAREL, AND N. MASTRONARDI, Matrix Computations and Semiseparable Ma-
trices, Volume [: Linear System3ohns Hopkins University Press, Baltimore, 2008.

[28] R.VANDEBRIL AND D. S. WATKINS, A generalization of the multishift QR algorithi @AM J. Matrix Anal.
Appl., 33 (2012), pp. 759-779.


http://etna.math.kent.edu/vol.40.2013/pp414-435.dir

