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AN EFFICIENT DEFLATION TECHNIQUE FOR THE COMMUNICATION-
AVOIDING CONJUGATE GRADIENT METHOD *

ERIN CARSON, NICHOLAS KNIGHTf, AND JAMES DEMMELT#

Abstract. By fusing s loop iterations,communication-avoidindormulations of Krylov subspace methods
can asymptotically reduce sequential and parallel commuait&bsts by a factor oD (s). Although a num-
ber of communication-avoiding Krylov methods have been dgeslp there remains a serious lack of available
communication-avoiding preconditioners to accompany thesleads. This has stimulated active research in discov-
ering which preconditioners can be made compatible with comeatinn-avoiding Krylov methods and developing
communication-avoiding methods which incorporate thesegmditioners. In this paper we demonstrate, for the
first time, that deflation preconditioning can be applied imomnication-avoiding formulations of Lanczos-based
Krylov methods such as the conjugate gradient method whiletaining anO(s) reduction in communication
costs. We derive a deflated version of a communication-avpidamjugate gradient method, which is mathemati-
cally equivalent to the deflated conjugate gradient meth@&bad et al. [SIAM J. Sci. Comput., 21 (2000), pp.1909—
1926]. Numerical experiments on a model problem demonstraténth@ommunication-avoiding formulations can
converge at comparable rates to the classical formulatimes, for large values of. Performance modeling illus-
trates thatD(s) speedups are possible when performance is communication bdhese results motivate deflation
as a promising preconditioner for communication-avoidingléysubspace methods in practice.
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1. Introduction. Krylov subspace methods (KSMs) are a class of iterativerdlgos
commonly used to solve the linear systetw = b when A is large and sparse. In each
iterationm, updates to the next solutiory,; and residual,,,.;, consist of one or more
sparse matrix-vector multiplications (SpMVs) and veatector operations in each iteration.
On modern computers, these operationsam@munication-boundthe movement of data
rather than the computation is the limiting factor in penfiance. Recent efforts have focused
oncommunication-avoidingSMs (CA-KSMs), which reorder the computations in claskica
KSMs to performO(s) computation steps of the algorithm for each communicatiep; see,
e.g., b, 10, 12, 14, 16, 20, 26, 27, 49, 51]. This formulation allows ar)(s) reduction in the
total communication costs per iteration, which can trameslato significant speedup3].

In addition to speed per iteration, the performance of ibezanethods also depends on
the total number of iterations required for convergencer. the conjugate gradient method
(CG), the KSM of choice for solving symmetric positive det@n{SPD) systems, it is well-
known that the rate of convergence in exact arithmetic camooeded in terms of the eigen-
value distribution. Although these bounds are not alwayfsttand additional complications
arise in finite precision computations (see, e.g4]); nonetheless, preconditioning tech-
nigues, wherein the system’s eigenvalue distribution tisratl to improve the convergence
bounds, have been employed successfully in practice; fonayg of approaches, seé4].
Unfortunately, except for simple examples like (block)als¢c polynomial, and sparse ap-
proximate inverse preconditioners, the ability to expteinporal locality across KSM iter-
ations is diminished by preconditioning, and the relatieadfits of a CA-KSM, compared
to its classical counterpart, decline; see, eg7].[ Avoiding communication in a general
preconditioned method seems to necessitate significanificaimns to the algorithm.
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This has stimulated an active area of research in desigmagipal preconditioners for
CA-KSMs with much recent progress. To this end, we propodktitn, which can be
viewed as a type of preconditioning with a singular prectioder, as a feasible technique
for improving convergence in CA-KSMs. We derive a commuti@&avoiding deflated CG
(CA-D-CG), based on the deflated CG formulation (which werréd as ‘D-CG’) in 5]
Our analysis shows that the additional costs of CA-D-CG @&fCG are of lower-order,
which means that, as in (non-deflated) CA-CG, we still expgmssible)(s) speedup pes
steps over the classical implementation. This motivatéstiten as a promising precondi-
tioner for CA-KSMs in practice. We give a numerical examphe @erformance modeling
results which demonstrate that choosing the number of deflaectors as well as the block-
ing factor s result in complex, machine-dependent tradeoffs betweercdmvergence rate
and the time per iteration.

2. Related work. Deflation and augmentation techniques have been appliedxwmve
convergence in many KSMs since the mid 1980s; for a survey4€e Chapter 9]. Many ap-
proaches in the literature can be viewed as instances of gameral deflation/augmentation
frameworks P1, 25]. Connections have also been drawn between deflation antilewel
preconditioners; see, e.g4d and the references therein.

In this work, we consider the case of CG, the first KSM that waslifired to perform
deflation [L7, 39. We note that the potential for eigenvalue deflation wae &isown to
Rutishauser before such methods gained popularity in teeature L8]. In this work, we
study the D-CG formulation as given id9].

CG is convenient since it allows us to concretely demonstrat algorithmic reorganiza-
tion while sidestepping technical issues involving bremiud, i.e., where KSM iterates may
not exist in exact arithmetic. However, we see no obsta@gsid breakdown for extending
our approach to other KSMs that deflate in a similar manner.

Many authors have reformulated KSMs to reduce communicatasts. Our approach
is most closely related to the CA-KSMs developed by Hoemnteal.e[27, 36], which
in turn are based on-step KSMs proposed in the 1980s; s&&][for a historical per-
spective on avoiding communication in KSMs. Works that adeisCG in particular in-
clude [, 10, 11, 27, 49, 51]. The derivation of the CA-D-CG algorithm here most closely
follows [6].

As mentioned in Sectioh, there has been much recent work in the development of prac-
tical preconditioners for CA-KSMs. Grigori et al. develapa CA-ILU(O) preconditioner
for CA-GMRES R4]. For structured problems, their method exploits a novesimerder-
ing to obtain triangular factors that can be applied witts lesmmunication. There is also
recent work in developing a new “underlapping” techniqgue@mmunication-avoiding do-
main decomposition preconditioners for CA-KSM#.[For the case of preconditioners with
both sparse and low-rank components (e.g., hierarchicaiseparable matrices), applying
the low-rank components dominates the communication c@stshniques in47, 30] block
together several applications of the low-rank componentsder to amortize communication
costs over several KSM iterations. We also note that thesdban recent work in developing
a high-performance deflated “pipelined” conjugate gradieethod p2].

Previous work has developed efficient deflation techniqoesCA-KSMs in order to
recover information lost after restarting the Arnoldi pess. Wakam and Erhefl]] ex-
tended a special case of CA-GMREX[36] with an adaptive augmentation approach. Both
their algorithm and ours aim to reduce the frequency of dlab#ectives incurred by de-
flation/augmentation compared to previous approaches.eienvour applications differ: in
our case we apply deflation as a more general preconditidactmique for Lanczos-based
methods. We note that the algorithm presentedtilj festricts the constructed Krylov bases
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to Newton polynomials. It may be beneficial to extend theprapch to the more general
family of polynomials which we consider here.

2.1. The communication-avoiding conjugate gradient methd. We briefly review the
communication-avoiding conjugate gradient method (CAy&&solving Az = b, whereA
is SPD and given any vectay, interpreted as an initial approximationto

For reference, the classical CG method is shown in Algorithin Within the iteration
loop, communication occurs in the SpM¥p,,, required by lines3 and5 as well as in the
inner products in line8 and®6.

ALGORITHM 2.1. Conjugate Gradient Method (CG).

Require: Approximate solution:, to Ax = b
1 rg =b— Axg, po = 1o
2. for m =0, 1,... until convergencelo
3 am = (rprm) /(D5 APm)

Tm+1 = Tm + amPm

T"m+1 = Tm — amAan

Bmy1 = (T'?;L-&-lrﬂl-i—l)/(rrjr;rm)

Pm+1 = Tm+1 + 6m+1pm

8: end for

9: return z,,1

N o a A

In CA-CG, iterations are split into an inner loop o¥ex j < s and an outer loop ove,
whose range depends on the number of steps until convergéfecedex the iteratiom: in
CG as the iteratiom = sk +j in CA-CG. By induction on lined, 5, and7 of Algorithm 2.1,

psk+j7 Tsk+j7 xsk+j — Tsk S ICerl(Aapsk) + ICS (A, Tsk)v
for 0 < j < s, wherelC;(A, v) denotes the-th Krylov subspace ofl with respect ta, i.e.,
Ki(A,v) = spaf{v, Av, A%v,..., A" v}

Therefore, we let lengti2s + 1) vectorsz), ;, ;. ;, andp; ; denote the coordinates for
Tsktj — Tsky Tsk+j, andpgp44, respectively, |n the columns of

(2.1) Vi = [Pi, Ri] = [po(A)Psks -5 ps(A)Psks po(A)Tsks -« ps—1(A)Tskl],

wherep; is a polynomial of degreé That is, we have
(22) Tsk+j — Tsk = Vkl‘;g_j’ Tsk+j = VkT‘;C_’j, and Psk+j = Vkp;c,jv

for 0 < j < s. For brevity, we will refer tol, as a basis, although the columnslafneed
not be linearly independent, e.g., fore= 0, K (A, ) C Ks11(A4, po) Sincepy = ryo.

We assume that the polynomials ih1) can be computed via a three-term recurrence in
terms of the parameters, ¢;, ando;, as

po(A) =1, pi(A) = (A= 00I)po(A)/v, and
(2.3) pi+1(A) = (A= 0:1)pi(A) — 0ipi—1(A)) /i,

for 1 < ¢ < s. This three-term recurrence covers a large class of poljalsrincluding
classical orthogonal polynomials. The monomial, Newtan @hebyshev bases are common
choices for generating Krylov bases; see, e4f], [To simplify notation, we assume the basis
parameters remain the same throughout the iteration.



ETNA
Kent State University
http://etna.math.kent.edu

128 E. CARSON, N. KNIGHT, AND J. DEMMEL

The basisV}, is generated at the beginning of each outer loop using thermtir,;, and
psk Vectors. Assumingl is sufficiently sparse, thege(s)-dimensional bases can be com-
puted after only reading (sequential case) or exchanging vector entries with neighfpar-
allel case)O(1) times, using the communication-avoiding ‘matrix powersne# described
in [16, 27, 36].

Substituting each polynomial on the right-hand side o2(1) by its recursive definition
given in 2.3), rearranging terms, and postmultiplying ﬁyj we obtain

(24) AKkp;€7j = Vkka;c%j’

whereV, = [P,,0, R, 0], andP, andR, areP, andRy, respectively, with the last columns
omitted, and

Cr.s 0,
By — [ k,s+1 +1,1] 7

[Cr,s 0s1]
with
0y o ;
Yo b
Chrjt+1 = Mo o
0;_1
L Yi—1l

Then by @.2) and @.4), the multiplicationAp,y,; in the standard basis becom@gpgw
in the basig/},. Recall thatB;, andp;w are both of dimensio®(s), which means that they
either fit in fast memory (in the sequential case) or are lazahch processor (in the parallel
case), and thus the computatlBlapk does not require data movement.

In each outer loop of Algorlthrﬁ 2 below, we compute thé(s)-by-O(s) Gram matrix
Gy = VI'Vi. Then by @.2) and @.4), the inner products in line3 and6 of Algorithm 2.1
can be written as

T /T / .
Tkt sk+i = Tk GkTk for 0<j<s, and

PinsjAPskrj = i GrBrpy; for 0<j <s.

Thus, afterG) has been computed in the outer loop, the inner products caoreuted
without additional communication. Although many detaile amitted, this gives the general
idea behind avoiding data movement in Lanczos-based KSkisrdsulting CA-CG method
is shown below in Algorithn®.2.

ALGORITHM 2.2. Communication-Avoiding Conjugate Gradient (CA-CG).
Require: Approximate solution:g to Az = b
119 =b— Axg, po =10
2: for k= 0,1, ... until convergencelo
3 ComputePy, Ry, letVy, = [Pk, Ri]; assembl&By,.
G = VkTVk
Pgo = [1»02J Tk 0~ [0e+1a I»Of—l]- x%,o = 02541
for j=0,..., s—1do
Ask+j = (ngGkr;c,j)/(pngkBk:p;c,j)

No a s
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. / _ ! /
8: T j41 = Tp j + Oskij Dl j
. ! _ ! /
o Thi+l = Thy — Csh+i BePh;
. _ " / 1T /
10: Boktj1r = (e j41Gr7h j11)/ (T Grrye )
. / 2 /
11: Phjt1 = T+ T Bskrj+1Pp
12: end for
13 Tsk4s = ka;c,s + Tsk, Tskt+s = Vk{r‘;gjsy Psk+s = VkP;w
14: end for

15: return s+

2.2. Deflated conjugate gradient method.Our CA-D-CG is based on D-CG by Saad
et al. 5], shown in Algorithm2.3for reference. (As mentioned above, this was not the first
appearance of deflated CG in the literature.)

We now summarize the motivation for the use of eigenvaluatiefi in the CG method
as presented imip]. It is well-known (see, e.g.,23]) that in exact arithmetic, after itera-
tions of CG, the error is (loosely) bounded by

-1\
o~ 2lla < 2l — wolla [ VAL L)
Kk(A) +1

with K(A) = A\, /A1, whered; < A\ < --- < )\, are the eigenvalues of the SPD matrix
The authors of 45 prove that for some set of linearly independent vectors
W = w1, wa, ..., w.], D-CG applied todz = b is mathematically equivalent to CG applied
to the positive semidefinite systet’ AHZ = H'b, whereH = [-W (WL AW)=1(AW)T

is the A-orthogonal projection ontéV -+ andz = Hz. When the columns ofV are
exact eigenvectors associated wih ..., \., the effectivecondition number (seelp)) is
ket(HT AH) = X\, /\et1. When the columns dfi” are approximate eigenvectors associated
with Ay, ..., \., one can expect thates(HT AH) ~ A\, /Aes1. ThusifA. 1 > Aq, defla-
tion decreases the effective condition number of the sydiems theoretically improving the
bounds on the (exact arithmetic) convergence rate.

We note that it is well-known that in reality, the convergerd the conjugate gradient
method is much more accurately described by consideringpheing between eigenvalues
of the matrixA, and even these more descriptive bounds do not hold in fineigion B2].
However, the reduction of the effective condition numbesalbed above nonetheless re-
mains the motivation behind deflation and in practice cad teaan improved convergence
rate in many cases. We also note that there has been recénitvamveloping tighter bounds
on the rate of convergence in the deflated conjugate gradietitod; see, e.g.2§).

For consistency, we assume we have an initial gugssuch thatrg = b — Azy L W.

To satisfy this initial requirement, one can choasg= z_; + W(WTAW)'WTr_y,
wherex_; is arbitrary andr_; = b — Ax_;. Note that the selection of the subspate
is out of the scope of this paper. This topic is covered extehsin the literature; see,
e.g., [, 3,9, 15, 37, 38,47, 52.

ALGORITHM 2.3. Deflated Conjugate Gradient (D-CG).

Require: Approximate solutionz_; to Az = b with residualr_; = b — Axz_1; n-by-c
matrix W of rankc

. Compute and factoriz8/” AW

cxg=x_1 + WWTAW)"'WTr_y,rg = b — Axg

p=WTAW)TWT Arg, pog = 190 — Wp

: for m =0, 1,... until convergencelo

am = (1 rm) /(P APm)
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6: Tl = Ty + QO Pm
7. Tm+1 = Tm — amApm
. _ T T
8: Brm+1 = (Tm+1rm+1)/(rmrm)
o: SolveW T AW pyri1 = WT Arpy 1 fOF 141

10: Pm+1 = Tm+1 + ﬁm—&-lp’m - W/f”m-i—l
11: end for
12: return x,,41

3. Deflated communication-avoiding conjugate gradient métod. We now derive
CA-D-CG based on D-CG (Algorithm2.3). As before, we denote the iteration in Al-
gorithm2.3with m = sk + j to distinguish inner and outer loop iterations. By inductan
lines6, 7, and10 of Algorithm 2.3, we can write

(3-1) Psk+j, Tsk+j € ICS+1(Aapsk) + ]CS(A, Tsk) + ]CS—l(Aa W)7
(32) Tsk+j — Tsk S Ks(Aapsk) + Ks—l(Aa Tsk‘) + ICS—Q(A7 W),

for 0 < j < s. Deflation also requires the produdt ;4 in the computation ofisj ;41
in line 9. Again, by induction, we can write

(33) Arsk+j+1 S ICSJrQ(Avpsk) + ’Cs+1(A7 rsk:) + ICS(A7 W)

As before, we define matrices, and R;, whose columns span the Krylov subspaces
Ksi2(A, psi) andCsy1(A, rsr), respectively. For deflation, we now also require a b#gis
for Ks(A, ). Note that, assuming}/ does not change throughout the iteratid¥,needs
only be computed once. For the deflated method, we now de#nelbly-(2s+3+ cs) matrix

Vi = [Pk, Rk, W]
= [po(A)psks - - Pst1(A)Psks Po(A)Tsky - -y Ps(A)Tsiy po(A)W, ..., ps—1(A)W],

wherep; is defined as in4.1). By (3.2, (3.1), and @3.3), we can then write) < j < s,
Dsk+j = Vkp;m-, Tsktj = Vkr;J, andzg,t; — Tk = ka;w, i.e., the length2s + 3 + ¢s)
VeCtOI‘Sp;C)]», rfw, and:c;c}j are coordinates fQpsxyj, Tsk+j, aNdz gy ; — Tk, respectively,
in terms of the columns df;,.

As in CA-CG, we can write a recurrence for computing multigtions withA, that is,
for0 <j <s,

Apsk—i-j = Avkp;c,j: Vkka;ﬁ,j and A’I"Sk+j+1 = AVk’r;ﬂ,j-i-l: Vk‘Bk‘r;{;,jJ'-17

where, for the deflated method, we now define block diagongiixna

[Ck,s+2 OS+2,1]
B, = [Ck,s+1 Os+1,1]
[C,I“S ® Ic Ocs,l]

Thus, a multiplication byBy, in the basisV}, is equivalent to a multiplication byl in the
standard basis.

Assuming the sam#’ is used throughout the iteratiorid,” AW can be precomputed
and factorized offline. The smadtby-c factors of W ¥ AW are assumed to fit in local/fast
memory. If we compute th€s + 3 + cs)-by-(2s + 3 + cs) matrix G, = V,I'V, and extract
the c-by-(2s + 3 + cs) submatrixZ, = W1V, then we can form the right-hand side in the
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solve forpisp+5+1 in line 9 of Algorithm 2.3 by WTArskHH = ZkBkr;7j+1, replacing a
global reduction with a small, local operation. Note that tbrmulas for computingv,.+ ;
andfBsk+j+1 in Algorithm 2.3remain the same as in Algorithtnl. Thus, using,,, we can
compute these inner products in CA-D-CG using the same flasras in CA-CG (line§
and10 of Algorithm 2.2).

Similarly, the formulas for the updatesy ;+1 andrgj ;11 are the same for D-CG and
CG, so the formulas far; ; ., andr}, gt in CA-D-CG remain the same as those in CA-CG
(lines8 and9). The formula forpsk++1 in D-CG can be written as

Vkpk,j+1 = Vk?”k,jﬂ + 5sk+j+1vkpk,j - Vi [023+3’ Nk,j+1» 03(571)]T
for0 <j <s— 1. Thus, in CA-D-CGypj ,,, is updated by

Y

/ _ . / T T T T
Pkj+1 = Tkj+1 + /Bsk+y+1pk,j - [028+3’ Hk,j+15 00(571)] :

The resulting CA-D-CG method is shown in Algorithsril
ALGORITHM 3.1. Deflated Communication-Avoiding Conjugate Gradi€A{D-CG).

Require: Approximate solutionz_; to Az = b with residualr_;, = b — Az_1; n-by-c
matrix W of rankc

1: Compute and factoriz&/7 AW

2. ComputeW

3 x9g=a_1+ W(WTAW)_leT_l, ro =b— Axg

4 = WTAW)TWT Arg, po =19 — Wp

5. for k= 0,1, ... until convergencelo

6: ComputePy, Ry, letVy, = [Py, R, W|; assembl&3y.

7: G = V,I'Vy,; extractZ, = WV,

8: pgl: = [17 Ogs+2+cs]' ’I";£ = [Os+2’ 703-&-05] /sk = 028+3+CS
o: for j=0,...,s—1do

10: ek+1 = (Tk S GRTL, J)/(pk; ;GrBrpy, ;)

1L x,”_H :L,”—i—akjp,”

12: rk g1 = rkj ak,jkakJ»

13: Bsk+j+1 = (Tk:,j+1GkT;c,j+1)/(T;ZijT;c,j)

14: SO'VeWTAW/Lk’jJrl = ZkBkT;c,j+1 for P, 5+1

15 Phji1 = Thj1 + Bskrit1Phj — (03430 k10 Ogeny)”
16: end for

1 Tskt+s = ka;g,s + Xsky Tskts = VkT;€7s, Psk+s = Vkp275
18: end for

19: return g4

3.1. Algorithmic extensions. We assume in our derivation that the matrix of the defla-
tion vectorsiV is constant through the iterations. We could, however,rek@A-D-CG to
allow for updating ofi¥/;, in (some or all) outer loop iteratiorts see, e.qg.,1, 3, 33,42, 47] for
example applications. (Additional considerations arisemchanging the operator during the
iterations due to the loss of orthogonality propertidsghapter 12]; see alsd()].) Updating
Wi, in the outer loopk requires recomputingVy, a basis forkC; (A, Wy,). This computation
could potentially be fused with the computationf/f and i, such that no extra latency cost
is incurred. The quantityV;” AW}, can be recovered from the computation(®f, so no ad-
ditional communication is required. A factorization of thy-c matrix W, AW, can also
be performed locally. Note the number of deflation vectoesuld be allowed to vary over
outer loop iterations as well. This extension is considéuéare work.
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4. Numerical experiments. For the numerical experiments, our goal is to show that
CA-D-CG is competitive with D-CG in terms of the convergemate. While the approaches
are equivalent in exact arithmetic, there is no reason te&xyhat the CA-D-CG iterates
will exactly equal the D-CG iterates in finite precision, givthe different sets of floating-
point operations performed. There are many open questiong £A-KSMs'’ finite precision
behavior, some of which we hope to address in future work.iBlittu of theoretical results,
we will rely on our practical experience that CA-KSMs’ iteza deviate from their classical
counterparts as the-step Krylov bases become ill-conditioned (increasinglthvg), and
this effect can be diminished by picking different polynairbases§, 27, 43]. To focus on
this potential instability that grows with, we chose a test problem for which the classical
methods are relatively insensitive to rounding errors. sSTtaur experiments do not address
the possibility that the deviation between the D-CG and G&® iterates is much larger
when the convergence of the classical methods is highlygest by rounding errors.

We test the stability of our reformulation on a similar mogebblem to the one con-
sidered in §5] using codes written in a combination of MATLAB and C with diar al-
gebra routines from Intel's Math Kernel Library. We generatdiscrete 2D Laplacian by
gal | ery(’ poi sson’,512) in MATLAB, so A is an SPD matrix of orden = 5122.
We pick the right-hand sidé equal toA times the vector with entries ali—/2. Our de-
flation vectors are the eigenvectors corresponding to thengalues of smallest magnitude
computed using MATLAB'si gs. Note that the study indp] used (known) exact eigenval-
ues; this difference does not significantly affect the rssialr this test.

In Figures4.1-4.3, we compare convergence for the model problem using D-C&aad
D-CG with the monomial, Newton, and Chebyshev polynomiaifaespectively, each for a
few representative values. We report the 2-norm of the true residual computed-bylz,,
rather than the recursively updated residygland normalize by the 2-norm of the starting
residualry = b (i.e., the starting guess, is the vector of zeros). We declare convergence
after a reduction by a factor dfo® in the normalized residual 2-norm. The solid curves
correspond to D-CG, and circles correspond to CA-D-CG. Waattkewith ¢ € {0,4,8}
eigenvectors, plotted in black, red, and blue, respegtigghenc = 0, D-CG is just CG
and CA-D-CG is just CA-CG). Based on the formulas above,ghggests that the condition
numberk(A) ~ 1.07 - 10° in the undeflated case & 0) should improve tox 2.13 - 10% in
the case = 4 and to~ 1.25 - 10* whenc = 8.

We implemented the Newton basis by choosing paramete&s3dso; = 0, v, = 1,
andd; is thei-th element in a set of Leja-ordered points on the real liggre&mt|\. 1, \,.];
see, e.g.,43]. We implemented the Chebyshev basis by setting the basasnaders inZ.3)
asy; = |An — Aet1| /2 (exceptyg, which is not divided by2), 6; = A1 + | A — Ayl /2,
ando; = |\, — A.11] /8. These recurrence coefficients are based on the boundipgeell
of the spectrum of4, which is, in the present case of a symmetric mattixan interval on
the real line; see, e.g2§]. In practice, only a few Ritz values (estimates for the pigdues
of A) need to be computed up front to sufficiently determine thampeters for the Newton
or Chebyshev polynomials. One can also incorporate infaomabout new Ritz values ob-
tained as a byproduct of the iterations to improve the basiditioning; see43] for practical
details and experiments.

Note that\..; is used as the smallest eigenvalue in selecting the Newtb&habyshev
parameters above. This is because if the columig afre the exact eigenvectors.éfcorre-
sponding to the eigenvalues, . . ., A\., then using\; as a basis parameter in the computation
of the basis/V can cause cancellation and can thus produce a rank-defizsist Although
this cancellation does not occur in the computation of treebB,, and R, we used the same
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of the true residuab — Az, for tests withc = 0 (black),c = 4 (red), andec = 8 (blue) for both D-CG(—) and
CA-D-CG(0) using monomial bases of sizeNote that the y-axis in the bottom plot differs.

basis parameters chosen #0# (i.e., using\.;1) to computeP, and Ry, for simplicity with
no ill effects.

For the monomial basis (Figur 1), convergence is nearly identical fer= 4, but
we begin to see a delay in the convergence of CA-D-CGsfer 8 (top-left) and a failure
to converge by = 16. For the Newton basis (Figure?2), the two methods have similar
convergence behavior past= 16; only arounds = 100 (bottom-right) we begin to notice
a significant delay in convergence for CA-D-CG. The situai®similar for the Chebyshev
basis (Figuret.3); only the bottom-right figure now depicts the case 220. These results
clearly demonstrate that the basis choice plays an impaménfor the convergence of CA-
D-CG, at least on this well-behaved model problem. In thd segtion, we will introduce a
coarse performance model to ask about the practical benéfitdues as large as= 220.

5. Performance modeling. In this section, we give a qualitative description of the-per
formance tradeoffs between the four KSMs mentioned above—@ASCG, and their de-
flated counterparts—on massively parallel machines. ForQGAand CA-D-CG, we esti-
mate the time fors inner loop iterations and then divide byto estimate the time per it-
eration. Note that this ignores relative rates of convergerneated in Sectiod. We were
motivated to develop CA-D-CG based on the high relative obstterprocessor communi-
cation on large-scale parallel computers. In addition t@altel implementations, CA-KSMs
can avoid communication on sequential machines, namedyndavement within the memory
hierarchy. Indeed, the parallel and sequential approatdtesally compose hierarchically as
has been exploited in previous high-performance CA-KSMlémgntations 36], and we
suggest the same for a future CA-D-CG implementation. Hewen this section, we will
restrict ourselves to a parallel model which ignores setjaglescommunication costs to illus-
trate the changes in parallel communication costs. We dolaioh that this model’s predicted
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speedups are always attainable on real hardware. Howegédrelieve that such models can
help to detect the feasibility of a communication-avoidaggproach relative to a classical
approach as well as to efficiently explore and prune the (mae$pecific) parameter tuning
space for an optimized implementation.

5.1. Machine model. We model parallel computation as a fully connected netwéik o
homogeneous processors that perform local computatiahsxshange point-to-point mes-
sages. Each processor executes asynchronously and caor sendive at most one message
at atime. Passing anrword message takes+ 5n seconds on both the sending and receiving
processors, which cannot perform computation during thie.t The constant represents
a latency cost incurred by every message, whilepresents a bandwidth cost linear in the
message size. There is no notion of distance on the netwntkywa assume the network
has unbounded buffer capacity. While this simple model'siaggions are not all realistic,
similar models are widely used to analyze communicatiottscos distributed-memory ma-
chines; see, e.g.g[. One could refine this model to obtain, e.g., the LogP modg| which
distinguishes between network latency, software overhead network injection bandwidth
(blurred between our and3 terms), allows overlap of communication and computation, a
introduces constraints on the message size and the netaaglestion. We quantify the com-
putation time in terms of the floating-point operations (8pperformed: a processor can only
operate on data residing in its local memory (of unboundg@dcity), and each flop takes
seconds. If a processor perfortidlops and sends/receivésmessages containing a total of
W words, then we model its runtime @'+ oS + SW. This is a poor cost model for certain
programs like the one where therocessors relay a value from processdo processop:
each processor sends/receives at Megbdrds, but the actual runtime grows linearlyinTo
count correctly in such situations, one can consider themenalong critical paths, e.g., in a
program activity graphd4]. For our algorithms here, we will only consider certaindraied
parallelizations where one processor is always the slgwestie can simply count, S, W
for that processor to bound the total runtime.

Our assumptions that each processor has unbounded localmnand can execute each
flop at the peak raté/~ may be unrealistic when the neglected sequential costsoatet
ial. However, when considering largeand small local problems and when performance is
dominated by interprocessor communication, we expectthteasequential costs would not
significantly increase our models’ estimated costs.

We consider two parallel machine models, which we call ‘Eaad ‘Grid.” We use
~v = 1-10~' seconds per (double precision) flop in both cases based dittioas for a
‘node’ of an exascale machiné,[50]. This flop rate corresponds to a node with a 1024-
core processor and its own memory hierarchy with 256 GB oficip at the last level.
However, as discussed above, we ignore this intranodetsteucFor Exa, the interconnect
has parameters = 4 - 10~7 seconds per message afd= 3.7 - 10~!! seconds per word
(4-byte double precision value). For the second machinigl, @e replace this interconnect
by the Internet (via Ethernet) using the parameters- 10~ and3 = 2.5 - 108 given
in [35]. In contrast to their predecessors, our models allow aitrarip number of processors
in order to illustrate the asymptotic scaling behavior—wendo claim that every machine
configuration modeled is physically realizable.

5.2. Experiments. We assume the same model problem (5-point 2D stencil) and-defl
tion vectors as in the numerical experiments. However,esime are not modeling conver-
gence here, the actual (nonzero) values do not influenceetfi@rmance model. We assume
the /n-by-\/n mesh is partitioned across,#-by-,/p grid of processors, so that each pro-

cessor owns a contiguoqs’%-by—\/n/p subsquare, and we assume these fractions are
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integers. This layout minimizes communication within atéacof /2 (for this particular
stencil, a diamond layout would be asymptotically optimgalChapter 4.8]). We summarize
the S, W, F' costs for the four algorithms in Appendix. To simplify the analysis, we re-
stricts € {1,...,v/n/p} for the CA-KSMs, which means that the sparse computatiohs on
require communication with the (logical) nearest neiggborhe communication-avoiding
approach is correct for any, but the latency cost rises sharply when each processosneed
information from a larger neighborhood. We also simplifyusyng the same blocking param-
eters for the sparse and dense computations. In general, one ogout® thes-step Krylov
bases in smaller blocks and then compute a (larger) Gramxnatrvice versa, i.e., con-
structing the Gram matrix blockwise as thetep bases are computed. In practice, we have
observed significant speedups from the Gram matrix cortgrualone (with no blocking of
the SpMV operations)j3], and we suggest tuning the block sizes independently. fdso
simplify the analysis, we ignore the preprocessing cost®ofputing the deflation matri¥”

(not the algorithmic costs) and computing and factorizifig AW, assuming that they can
be amortized over many iterations. In practice, these coatsnot be negligible especially

if the number of iterations is small.

We first consider weak scaling in Figusel. We fix n/p = 45 and vary the grid parame-
terp € {4 : x € {2,...,14}}. The black curves correspond to the runtime of a single-itera
tion of the classical KSMs: CG (no markers), D-CG with- 4 (square markers), and D-CG
with ¢ = 8 (asterisk markers); the logarithmic dependence,odue to the collective com-
munications, is evident. The red curves allow us to vary gr@ameter € {1,...,+/n/p},
wheres = 1 corresponds to the classical KSMs ang 1 corresponds to their deflated coun-
terparts (markers mean the same as for the black curvesoRgrarison with the classical
methods, we compute the runtime of one CA-KSM outer looph(wiinner-loop iterations)
and then divide by. On both Exa and Grid, it was beneficial to pick- 1 for every problem
although the optimas varies as illustrated in Figure.3. The best speedups, i.e., the ratio
of the runtime withs = 1 to the best runtime witls > 1, were about 55, 38, and 28 for
¢ = 0, 4, and 8, respectively, on Exa, while the corresponding @sedups on Grid were
about 116, 174, and 173.

We now consider strong scaling, presented in FiguPe The curves represent the same
algorithms as in the previous figure, except that now we ui$ereint problems for the two
machines (we use the same range ab before). Note that the red and black curves coincide
for some points on the left of both plots. As the local probleize decreases, so does the
range ofs values over which the CA-KSMs optimize. For Exa, wefix= 4!°, so for the
largestp, for instance, the processors’ subsquare2amg-2 ands € {1,2}; for Grid, we
fix n = 4%2. While all tested KSMs scale when the local problem is larige GA-KSMs are
able to exploit more parallelism than the classical KSMsaitfimachines. In both cases, the
CA-KSM runtime eventually begins to increase, too. The Besedups on Exa were about
49, 42, and 31 for = 0, 4, and 8, respectively, while the corresponding best sgesdn
Grid were about 1152, 872, and 673.

Lastly, in Figure5.3 we demonstrate the benefits of increasing the paramédtar a
fixed problem and a varying numbere {0,...,50} of deflation vectors. The cage= 0
indicates the non-deflated KSMs and is depicted separatlyplot the CA-KSMs’ speedups
relative to the classical KSMs, i.e., the points along the $i= 1. For both machines, we fix
p = 4°, but to illustrate the tradeoffs on both, we pick= 4! for Exa andn = 42° for Grid.

In both cases, we see decreased relative benefits of avaidmgiunication ag increases
as the network bandwidth becomes saturated by the largectieds. For Exa, for smadl it

is beneficial to increaseto the maximum,/n/p we consider; for Grid, however, it is never
beneficial to increaseto its maximum for any:.
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D-CG withc = 8 (asterisk markers). Red curves correspond to the runtimreesifgle iteration of the CA-KSMs:
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FiG. 5.2.Modeled strong scaling for a model problem on Exa (left) amidl Gight). Black curves correspond
to the runtime of a single iteration of the classical KSMs: @@ markers), D-CG witle = 4 (square markers), and
D-CG withc = 8 (asterisk markers). Red curves correspond to the runtinesifgle iteration of the CA-KSMs:
CA-CG (no markers), CA-D-CG with = 4 (square markers), and CA-D-CG with= 8 (asterisk markers) using
the optimal value 0§ € {1, ..., /n/p} for each point.

6. Future work and conclusions. In this work, we have demonstrated that deflation
can be performed in a communication-avoiding way and is guigble for the use as a
preconditioner for CA-KSMs. We derived CA-D-CG, which isudglent to D-CG in exact
arithmetic but can be implemented such that parallel Iatéhceduced by a factor ad(s)
over a fixed number of iterations. Performance modeling shmwedicted speedups of CA-D-
CG over D-CG for a number of /p ratios on two model architectures fovalues constrained
tos < y/n/p. We performed numerical experiments for a model problentldstrate the
benefits of deflation for the convergence rate. Our resusts démonstrate that by using
better conditioned bases of Newton and Chebyshev polynsmiaan be made very large
before the convergence behavior of CA-D-CG deviates saamfly from D-CG. However,
for more difficult problems to be studied in future work, wepegt the practical range 6fto
be more restricted.

We also point out that, as in the classical case, our CA-D-@8hod is mathematically
equivalent to applying CA-CG (Algorithrd.2) to the transformed systedd” AHz = H™'b.
If we were to instead perform deflation in this way, commutiaraavoiding techniques re-
lated to blocking covers for linear relaxatioB] 31] and other ideas from those works could
be applied in the Krylov basis computation.
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FiG. 5.3.Modeled speedup per iteration for the model problem vessarsd c on Exa (left) and Grid (right).

The communication-avoiding reorganization applied hene also be applied to many
other deflated KSMs including adaptive deflation approagbkes, e.g.,1, 3, 33, 42, 47)),
where the matriXy’ is allowed to change. Our future work will address theseiaafibns, as
well as a distributed-memory implementation to evaluatepgérformance of our approaches
on real parallel machines.
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Appendix A: Complexity analysis. We can identify the elements of the vector iterates
with vertices on a/n-by-\/n 2D mesh. As explained above, each processor is assigned a
\/n/p-by-\/n/p subsquare. The matriA for the model problem is a stencil with constant
coefficients and can be representediifil) words. In the case of variable coefficients, we
would partitionA in a overlapping block rowwise fashion as explainedsis| [ The number of
flops, words moved, and messages required 8teps of CG, CA-CG, D-CG, and CA-D-CG
are as follows:

Flopsg = s(19n/p + 2log, p)
Wordsg = 3(4\/% + 4log, p)
Mesgc = s(4logy p + 4)
Flopsa.ce = 18(n/p)s + s(20s + 3(2s + 1)(4s + 1) + 10) + 12s°
+2(n/p)(4s + 1) + (n/p)(4s + 3) + 36/n/ps>
+ ((2s + 1)(2s + 2)(2(n/p) + logep — 1)) /2
Wordseace = 8v/1/ps + 4s2 + log, p(2s + 1)(25 + 2)
Mesga.cc = 2logy p + 8
Flops,.ce = s(30(n/p) + 2logy p + c(2(n/p) +logy p — 1) +2¢° + (n/p)(2c — 1))
Wordsp.cg = s((4 + 2¢) logy p 4 8+/n/p)
Mes.cc = s(6logy p + 8)
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Flopsap.ce = 12(s + 1)® 4+ 2(n/p)(4s + 2cs + 5) + (n/p)(4s + 2cs + 7)
+36y/n/p(s +1)2 +18(n/p)(s + 1) + 5(24s + c(4s + 2cs + 5)
+ 4(25 + s+ 3)(4s + 2¢s + 5) + 12¢s + 2¢% + 36)
+ (25 +3)(s +cs+2)(2(n/p) +logep — 1)

Wordseap-ce = 4(s + 1)2 +8+y/n/p(s + 1) + 2logy p(2s + 3) (s + cs + 2)
Mes$ap-.cc = 2 10g2 p+38

For the CA-KSMs, we exploit neither the symmetry @f, nor the nonzero structure
of By, and the length®O(s) coefficient vectors.

For D-CG, we note that one can computé/” offline (in line 1) and avoid the SpMV
Arp,41 in line 9. While this may improve some constant factors by u@tat does not
avoid the global reduction in the subsequent applicatiof4d?’ ), which our performance
modeling suggests is often the dominant cost.

We note that théog, p terms in the computation and bandwidth costs can often be re-
duced by exploiting efficient collectives based on recwrdialving/doubling approaches;
see B] for a survey. These approaches require that the number afsaia the collective
is at leastp, which was not always true in our experiments, hence our tisaxpler tree-
based collectives.
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